第七章 风荷载作用下的内力和位移计算

合集下载

3.5结构设计——风荷载

3.5结构设计——风荷载

3.5风荷载以及其内力分析3.5.1各层风荷载值基本风压值为:ω0=0.5kN/m,建筑位于城市郊区属B类。

由于建筑总高度不超过30m,所以βz=1.0查规范得:迎风面μs=0.8,背风面μs=−0.5,所以取μs=1.3各层μz查表得,P w=βzμzμsω0A,计算数据及结果见表3-5-1表3-5-1层次βz μs z(m)μz ω0(kN/m2)A(m2)P w(kN)天面 1 1.3 21.30 1.250 0.50 19.25 15.645 1 1.3 17.80 1.195 0.50 24.50 19.034 1 1.3 14.30 1.140 0.50 24.50 18.153 1 1.3 10.80 1.020 0.50 24.50 16.242 1 1.3 7.30 0.880 0.50 24.50 14.011 1 1.3 3.80 0.608 0.50 25.55 10.10 风荷载作用下的计算简图见下:3.5.2风荷载作用下的内力计算风荷载作用下需要考虑框架节点的侧移,采用D 值法计算 【1】各柱D 值及前力分配系数η计算结果见表3-5-2(1),表3-5-2(1)注:i c =1.66×10^4【2】各柱的反弯点位置、分配剪力、柱端弯矩及层间位移计算结果见表3-5-2(2)注:y 0123查《混凝土结构 中册》附录10得到M (t )=V i ×(1−y)×ℎi ; M (b )=V i ×y ×ℎi ; △μ=V j∑D【3】各层层间位移与层高比值表3-5-2(3)表3-5-2(3)则移验算:由表6可知,对于框架结构,楼层层间最大位移与层高比的限值为1/550 =0.00182。

本框架最大位移在底层,其最大位移与层高比值为0.000784,满足要求,所以框架抗侧刚度足够。

【4】梁的弯矩计算:悬挑梁部分是作走廊用,所以不考虑风荷载影响,计算结果见表3-5-2(4)表3-5-2(4)层号节点M(l)kN.m M(r)6 G 16.70 F 16.705 G 44.65 F 44.654 G 77.54 F 77.543 G 107.60 F 107.602 G 115.94 F 115.941 G 160.46 F 160.46【4】风荷载作用下弯矩图见右图【4】风荷载作用剪力、轴力图梁端剪力计算用以下公式:V b l=V b r=(︳M b l+M b r︳)/L 计算结果见下图:。

风荷载计算解析

风荷载计算解析

4.2风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物受的风荷载。

4.2.1单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。

垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:式中:1.基本风压值Wo按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最值确定的风速V0(m/s)按公式确定。

但不得小于0.3kN/m2。

对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感,要与高层建筑的自振特性有关,目前还没有实用的标准。

一般当房屋高度大于60米时,采用100年一遇的压。

《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。

2.风压高度变化系数μz《荷载规范》把地面粗糙度分为A、B、C、D四类。

A类:指近海海面、海岸、湖岸、海岛及沙漠地区;B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区;C类:指有密集建筑群的城市市区;D类:指有密集建筑群且房屋较高的城市市区;风荷载高度变化系数μz计算公式A类地区=1.379(z/10)0.24B类地区= (z/10)0.32C类地区=0.616(z/10)0.44D类地区=0.318(z/10)0.6位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。

3.风载体型系数μs风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的大小。

一般取决于建筑建筑物的平面形状等。

计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型系或由风洞试验确定。

几种常用结构形式的风载体型系数如下图注:“+”代表压力;“-”代表拉力。

(整理)风荷载作用下框架内力计算

(整理)风荷载作用下框架内力计算

风荷载作用下框架内力计算:框架在风荷载作用下的内力计算采用D 值法。

计算时首先将框架各楼层的层间总剪力Vj ,按各柱的侧移刚度值(D 值)在该层总侧移刚度所占比例分配到各柱,即可求得第j 层第i 柱的层间剪力Vij ;根据求得的各柱层间剪力Vij 和修正后的反弯点位置Y ,即可确定柱端弯矩Mc 上和Mc 下;由节点平衡条件,梁端弯矩之和等于柱端弯矩之和,将节点左右梁端弯矩之和按线刚度比例分配,可求出各梁端弯矩;进而由梁的平衡条件求出梁端剪力;最后,第j 层第i 柱的轴力即为其上各层节点左右梁端剪力代数和。

(1)一榀框架上风荷载的作用计算:前面已经算出风荷载作用下的一榀框架下每层楼的剪力,但是还要计算出一品框架下每根柱子分得的剪力Vi DijDijVij sj ∑==1,具体的计算结果见下表:(2)风荷载作用下反弯点高度的计算:反弯点高度比即: V=V0+V1+V2+V3式中:V0 ——标准层反弯点高度比;注:本框架风荷载采用分段式均布荷载,故可查《高层建筑结构设计》表5.8a。

V1 ——因上、下层梁刚度比变化的修正值,查《高层建筑结构设计》表5.9;V2 ——因上层层高变化的修正值,查《高层建筑结构设计》表5.10;V3 ——因下层层高变化的修正值,查《高层建筑结构设计》表5.10。

具体计算结果见下表:(3)计算各柱端、梁端弯矩:①柱端弯矩计算:柱上下端弯矩按式:M u = V (1 - y)h,M d = Vyh计算;②梁端弯矩计算:梁端弯矩按式M = i b / ∑ i b ⨯ (M u + M d )具体结果如下:(4)计算各梁端剪力:计算方法:以梁为隔离体根据力矩平衡可得到梁端剪力。

具体计算结果如下表:注:单位为KN(5)计算各柱轴力:计算方法:已知梁的剪力,由上到下利用节点的竖向力平衡条件,即可得到柱的轴力,计算方法同恒。

(6)风荷载作用下的内力图绘制:风载作用下的梁端、柱端弯矩,梁端柱端剪力,柱的轴力计算完毕,恒载作用下的标准值如下几图所示:手算风荷载作用下柱端弯矩图手算风荷载作用下两端弯矩图与电算内力图的比较:电算风荷载作用下柱端弯矩图电算风荷载作用下两端弯矩图误差分析:风荷载作用下梁柱剪力图的绘制与误差分析:手算风荷载作用下的梁柱剪力图电算风荷载作用下的梁柱剪力图误差分析:风荷载作用下柱轴力图的绘制与误差分析:手算风荷载作用下的柱轴力图电算风荷载作用下的柱轴力图误差分析:水平地震作用下框架内力计算:框架在水平地震荷载作用下的内力计算采用D值法。

岳阳市一中新校区宿舍楼设计毕业设计论文

岳阳市一中新校区宿舍楼设计毕业设计论文

学号:毕业设计题目:岳阳市一中新校区宿舍楼设计方案3作者届别2015 系别建筑与化学工程系专业土木工程指导老师职称完成时间2015.05摘要本工程为岳阳市一中新校区宿舍楼,按功能将建筑分为6层,本工程结构设计采用多层钢筋混凝土框架结构,基本步骤为:结构计算简图的确定;荷载计算;内力分析;内力组合;梁、柱截面配筋、板的设计、楼梯的设计、基础的设计以及结构施工图的绘制等。

其中,内力计算考虑以下四种荷载作用,即恒荷载、活荷载、风荷载以及地震作用;柱、板的设计采用弹性理论;梁的设计采用塑性理论;楼梯选用梁式楼梯;基础选用柱下独立基础。

在进行截面抗震设计时,遵循了强剪弱弯,强柱弱梁,强节点弱构件的设计原则,且满足构造要求。

本设计从建筑到结构是一个较为完整的设计过程,通过毕业设计复习和巩固了以前所学知识,把主要课程联系成一个完整的体系,并运用于设计中;本次毕业设计培养了我进行独立设计的基本能力,为毕业后的工作打下了坚实的基础。

关键字:框架结构;板设计;内力计算;内力分析AbstractThisworksforthe cityofYueyangina newcampus dormitory, accordingtothefunctionof thebuildi ng isdividedinto6layers, atotal constructionareaThedesignofengineeringstructuresusing multi-s toreyreinforcedconcreteframestructure,theasicstepsare: todeterminethe structure calculationdia gram; loadcalculation; forceanalysis; internalforcecombination; beamandcolumn reinforcemen t, platedesign, staircase design and foundation design and construction drawing etc.. Among them, the internal force calculation to consider the following four types ofloads, namely, constant load, live load, wind loadandseismicaction; designofcolumn, platewith elastictheory; beamdesignusesplastictheory; stair case staircase selection plate; the basis of selection of independent foundation under column. Seismic design in cross section, following astrong shearweakbending, strongcolumnandweakbeam, strong node weak component design principle, and to meet the construction requirements. Fromconstructiontothedesignofthe structureisamorecomplete designprocess, throughthegradua tion design reviewandconsolidate thepreviousknowledge, tolinkthemaincourseintoa completes ystem, and applied inthedesignof thegraduationdesign; cultivatemy basicability ofindependentdesign, lay a solid the foundation for work after graduation.Keywords:frame structure; design; internal force calculation; internal force analysis目录第一章工程概况 (1)1.1建设项目 (1)1.2结构设计资料 (1)1.21气象条件 (1)1.22地质条件 (1)1.23地震资料 (1)第二章结构平面布置 (2)2.1框架梁柱截面尺寸预估 (3)2.11梁截面估算 (3)2.12柱截面尺寸估算 (3)第三章板内力与配筋计算 (4)3.1板荷载计算 (4)3.11屋面恒载 (4)3.12楼面恒载 (4)3.13卫生间恒载 (4)3.14活载设计 (5)3.2内力与配筋计算配筋 (5)3.21 B-1板计算 (5)3.22 B-2区板计算 (5)3.23 B-3板配筋计算 (6)第四章框架竖向荷载计算 (8)4.1所用材料容重 (8)4.2恒载计算 (8)4.21楼面恒载 (8)4.22屋面恒载 (9)4.3活荷载计算 (12)4.4重力荷载计算 (14)4.41楼面 (14)4.42屋面 (14)第五章内力计算 (15)5.1惯性矩及线刚度计算 (15)5.2分配系数计算 (15)5.3恒载作用下的内力计算 (16)5.4活载作用下的内力计算 (23)5.5重力荷载作用下的内力计算 (30)5.6风荷载作用下的内力和位移计算 (37)5.61风振系数的计算 (37)5.62各层楼面处集中风荷载标准值 (38)5.63线刚度计算 (38)5.64侧移刚度D值计算 (39)5.65反弯点高度计算 (40)5.66风荷载作用下的内力计算 (41)5.7水平地震作用下的内力和位移计算 (49)5.71荷载计算 (49)5.72位移计算 (50)5.73侧移刚度D值计算 (51)5.74结构基本自振周期计算 (52)5.75地震影响系数 (53)5.76各层水平地震作用标准值、楼层地震剪力及楼层层间位移 (54)5.77刚重比与剪重比验算 (54)5.78内力计算 (54)第六章框架内力组合 (63)6.1梁AC内力组合 (63)6.2梁CD内力组合 (65)6.3 A轴柱内力组合 (67)6.4 C轴柱内力组合 (69)第七章配筋计算 (73)7.1梁正截面配筋计算 (73)7.2梁斜截面配筋 (75)7.3柱截面配筋计算 (76)7.31轴压比验算 (76)7.32二阶效应与偏心 (77)7.4柱配筋计算 (79)第八章基础设计 (82)8.1设计资料 (82)8.2基础验算 (83)8.3内力与配筋计算 (83)第九章楼梯设计 (84)9.1设计资料 (84)9.11几何参数 (85)9.12荷载标准值 (85)9.13材料信息 (85)9.2梯板计算 (85)9.21荷载计算 (85)9.22正截面配筋计算 (86)9.3平台板计算 (86)9.31荷载与内力计算 (86)9.32配筋计算 (87)9.4平台梁计算 (87)参考文献 (88)致谢 (89)第一章工程概况1.1建设项目本项目拟建于岳阳市南湖风景区内,宿舍楼规划用地面积1200m2。

风荷载作用下幕墙铝板内力和变形的计算

风荷载作用下幕墙铝板内力和变形的计算

pa n tfnn is( ot p a )aecl lt .T esf nn ba dteau iu l e l ead5sf igr t ie b p r ly ef me r ac a d h tf igr n h lm n m pa at l u e ie i t cre a .T ec m uai d l s on r ra r tosn i dj n trst ig o t id h o p tt nmoe i p i v b h g o h ni u o
板 块 内部空 间 狭窄 ,在施 工 现场 板块 内部 的加 劲肋 连 接螺 丝 已难 以重新 补装 ,这 样 原正 常状 态下 的计
压 、转 角处 立 面受 负风 压作 用 的情况 ,其 受力 和变 形 较 为复杂 ,引起业 内的 日益 关 注 IJ 同时 ,由 9。 于单 元 板块 在 车 间组 装后 运 至现 场 吊装 时 ,少 数加
形计 算 ,并 与正 常状态 下 的计算 结果 进行 了 比较 。
1 槽 型 铝 板 与 加 劲肋 正 常状 态 受力 与 变形 计 算
Pl t nt r a r e a s o to l u a i n a e I e n lFo c nd Dit r i n Ca c l to
D 日 凡 n 0 0
( h n h nS e gXn o t , h n sa 2 4 2 hn ) Z o gS a h n igC ,Ld Z o gh n5 8 1 ,C ia
b ita d isb g e ti tr a o c n s l c me ta e o ti e u l n t i g s n e n lf r e a d dip a e n r b an d.F n l i a l he p a tc la p ia in i n y,t r ci a p lc to s i — to c d. r du e

水平荷载作用下结构侧移计算

水平荷载作用下结构侧移计算

水平荷载作用下结构侧移计算
1风荷载作用下结构位移计算
风荷载作用下框架的层间位移可按下式计算:
式中,第j层的总剪力
第j层所有柱的抗侧刚度之和
第j层的层间侧移
第一层的层侧移求出以后,就可以计算各楼板标高处的侧移值得顶点侧移值,各层楼板标高处的侧移值是该层以下各层层间侧移值之和,顶点侧移值是所有各层侧移值之和。

风荷载作用下侧移计算表如下(取中间跨):
层次
4 3.64 3.64 27942.570 0.00013 1/28409
3 4.4
4 8.08 36311.033 0.00022 1/14830
2 4.18 12.26 36344.03
3 0.0003
4 1/10000
1 5.23 17.49 34415.344 0.00051 1/10000
由表可得:
层间最大位移值,满足要求。

柱顶位移
,满足要求。

4.2地震荷载作用下位移验算
地震荷载作用下框架的层间位移可按下式计算:
式中,第j层的总剪力
第j层所有柱的抗侧刚度之和
第j层的层间侧移
层次
4 127.92 127.92 27942.570 0.004
5 1/806
3 106.27 234.19 36311.033 0.0065 1/513
2 74.27 308.46 36344.03
3 0.0085 1/389
1 50.50 358.96 34415.344 0.0104 1/473
由表可知:
(1)、各层层间位移角均小于1/250,满足要求。

(2)、顶点位移
,满足要求。

风荷载水平位移计算

风荷载水平位移计算

风荷载水平位移计算风荷载水平位移计算是结构工程中一个重要的计算环节,特别是在设计高层建筑、桥梁和其他大型结构时。

这种计算有助于预测结构在强风作用下的动态响应,确保结构的安全性和稳定性。

一、风荷载的基本概念风荷载是指风对结构产生的压力和吸力。

当风吹向结构时,结构的迎风面受到风的压力,而背风面则受到吸力。

这种压力和吸力的分布是不均匀的,会随着风的速度、结构的形状和高度而变化。

二、水平位移的计算方法计算风荷载引起的水平位移时,首先要确定风荷载的大小和分布。

这通常通过风洞试验或计算流体动力学(CFD)模拟来实现。

得到风荷载数据后,可以将其施加到结构上,然后使用有限元分析(FEA)或其他结构分析方法计算结构的动态响应。

在计算水平位移时,需要考虑结构的阻尼和刚度。

阻尼是指结构在振动过程中能量的耗散,而刚度则反映了结构抵抗变形的能力。

这两个参数对结构的动态响应有重要影响,需要在计算中进行适当的考虑。

三、影响水平位移的因素1.风速:风速是影响风荷载大小的主要因素。

风速越大,风荷载越大,引起的水平位移也越大。

2.结构形状:结构的形状会影响风荷载的分布和大小。

例如,钝形结构比流线型结构更容易受到风荷载的影响。

3.结构高度:结构的高度也会影响风荷载的大小。

一般来说,高度越高,受到的风荷载越大。

4.地基条件:地基的刚度和阻尼也会影响结构的动态响应。

如果地基较软或阻尼较小,结构的水平位移可能会更大。

四、减小水平位移的措施为了减小风荷载引起的水平位移,可以采取以下措施:1.优化结构形状:通过改变结构的形状,使其更加流线型,可以减小风荷载的影响。

2.增加结构刚度:通过增加结构的截面尺寸或使用更高强度的材料,可以增加结构的刚度,减小变形。

3.提高地基刚度:通过加固地基或使用桩基础等措施,可以提高地基的刚度,减小结构的动态响应。

4.设置阻尼器:在结构中设置阻尼器,可以增加结构的阻尼,减小振动幅度。

建筑风荷载计算

建筑风荷载计算

风荷载标准值计算风荷载标准值计算公式为:0k z s z w w βμμ=,作用在屋面梁和楼面梁节点处的集中风荷载标准值计算公式为:0W z s z P w A βμμ= 式中:W P -作用于框架节点的集中风荷载标准值(KN) z β-风振系数s μ-风荷载体型系数 z μ-风压高度变化系数0w -基本风压(KN/㎡)A -一榀框架各层节点受风面积(㎡)本建筑基本风压为:200.3/w KN m =,由《荷载规范》得,地面粗糙为C 类。

s μ风荷载体系系数,根据建筑物体型查得 1.3s μ=。

z β风振系数,因结构总高度H=21.128m<30m ,故 1.0z β=。

风压高度变化系数z μ查《荷载规范》表7.2.1。

一榀框架各层节点受风面积A 计算,B 为3.3 3.9() 3.622m +=, h 取上层的一半和下层的一半之和,屋面层取到女儿墙顶,底层取底层的一半。

底层的计算高度从室外地面取()mm 45003004200=+。

一层: 24.5 3.9() 3.615.1222A m =+⨯= 二层: 23.9 3.9() 3.614.0422A m =+⨯=三层: 23.9 3.9() 3.614.0422A m =+⨯=四层: 23.9 3.9() 3.614.0422A m =+⨯=五层:23.9(1.50) 3.612.422A m =+⨯=计算过程见表所示:欠左风、右风荷载受荷简图框架梁柱线刚度计算框架梁柱线刚度计算见表表7-1 纵梁线刚度计算表表7-2 柱线刚度Ic 计算表7.2.2 侧移刚度D 值计算 考虑梁柱的线刚度比,用D 值法计算柱的侧位移刚度,表7-4 柱侧移刚度计算表2~5层柱D 值计算2~5层柱D 值合计:D ∑=1.572+1.572=3.144KN/m底层柱D 值计算低层柱D 值合计:D ∑=1.612+1.612=3.224KN/m 7.2.3 风荷载作用下框架位移的计算风荷载作用下框架的层间侧移可按下式计算,即jj ijV u D∆=∑式中:j V -第j 层的总剪力;ij D ∑-第j 层所有柱的抗侧刚度之和;j u ∆-第j 层的层间位移。

毕业设计手写计算书

毕业设计手写计算书

毕业设计(论文)计算书题目: XXXXXXX教学楼设计系别:土木与建筑工程学院专业:工民建方向姓名:XX班级 XXXX学号:XXX指导教师:XXX二零一四年四月XXXXXXX教学楼设计design of Teaching building总计毕业设计(论文) 52 页表格 18 个插图 13 幅第1章工程概况 (1)1.1 设计资料 (1)第2章荷载计算 (2)第3章楼板计算 (2)第4章框架设计 (5)4.1截面初选 (5)4.2框架结构分析 (11)第5章内力计算 (15)第6章内力组合 (21)6.1框架梁内力组合 (21)6.2框架柱内力组合 (23)第7章框架构件设计 (23)7.1框架梁截面计算 (23)7.2框架柱截面计算 (25)第8章节点设计 (29)8.1柱脚节点设计 (29)8.2框架梁柱边节点设计 (35)第9章混凝土基础设计 (38)第10章楼梯设计 (41)参考文献 (48)致谢第一章工程概况1.设计资料(1)工程概况XXXXXX(钢结构)教学楼设计(a University Teaching building of Jingdezhen Ceramic Institute )(2)建设地点:XXXXXXX(3)建筑介绍:本工程为XXXXX大学教学楼,建筑面积约3000平方米,建筑物从室内地面至女儿墙高度为15.6m,层高均为3.9m。

室内外高差450mm,室内设计标高±0.000,主体结构为钢框架结构,层数为5层,属二类建筑,二级耐火等级,抗震设防烈度为6度,设计使用年限50年,室外有停车场及绿化布置。

(4)建筑做法说明外墙做法:采用240mm加气混凝土砌块,双面粉刷。

抹灰厚20mm,外墙涂料。

内墙做法:采用200mm加气混凝土砌块,双面粉刷。

抹灰厚20mm,内墙涂料。

楼面做法:20mm厚水泥砂浆找平,10mm厚水磨石地面,底板为混凝土楼板。

屋面做法:25mm厚水泥砂浆找平,65厚挤塑聚苯保温,4+3油毡防水层(包括沥青防水卷材),底板为混凝土楼板。

回字型四层中学教学楼设计完整图纸

回字型四层中学教学楼设计完整图纸

目录建筑部分1.建筑设计 (1)1.1建筑平面设计 (1)1.1.1设计要点 (1)1.1.2平面设计 (1)1.2建筑立面设计 (2)1.2.1设计要点 (2)1.2.2立面设计 (2)1.3建筑剖面设计 (3)1.3.1设计要点 (3)1.3.2剖面设计 (3)1.4垂直交通设计 (3)1.5防火设计 (3)2.构造做法 (4)2.1屋面做法 (4)2.2楼面做法 (4)2.3墙面做法 (4)2.4门窗 (4)3.建筑说明 (5)结构部分4.一般说明 (6)5.结构布置与计算简图 (7)5.1结构布置 (7)5.2框架计算简图及梁柱线刚度 (8)5.2.1梁柱截面尺寸估算 (8)5.2.2确定框架计算简图 (9)5.2.3框架梁柱的线刚度计算 (9)6.荷载计算 (11)6.1恒荷载标准值计算 (11)6.2活荷载标准值计算 (13)6.3竖向荷载作用下框架受荷总图 (13)7.风荷载作用下内力计算 (18)7.1风荷载作用下的位移计算 (18)7.1.1横向D值的计算 (18)7.1.2风荷载作用下框架侧移计算 (19)7.2风荷载标准值作用下的内力计算 (20)8.水平地震作用下内力计算 (24)8.1重力荷载代表值计算 (24)8.1.1顶层重力荷载标准值 (24)8.1.2标准层重力荷载标准值 (24)8.1.3底层重力荷载标准值 (27)8.2框架柱抗侧刚度D和结构基本自振周期 (27)8.2.1横向D值的计算 (27)8.2.2结构基本自振周期计算 (28)8.3水平地震作用计算 (29)9.内力计算 (35)9.1恒荷载作用下梁的弯矩计算 (35)9.1.1梁的固端弯矩 ...................................................................... 错误!未定义书签。

9.2活荷载作用下梁的弯矩计算 ................................................. 错误!未定义书签。

第七章风荷载作用下的内力和位移计算

第七章风荷载作用下的内力和位移计算

第七章风荷载作⽤下的内⼒和位移计算第7章风荷载作⽤下的内⼒和位移计算由设计任务资料知,该建筑为五层钢筋混凝⼟框架结构体系,室内外⾼差为0.45m 基本风压20m /4.0KN =ω,地⾯粗糙度为C 类,结构总⾼度19.8+0.45=20.25m (基础顶⾯⾄室内地⾯1m )。

计算主要承重结构时,垂直于建筑物表⾯上的风荷载标准值,应按下式计算,即oz s z k w w µµβ=1、因结构⾼度H=20.25m<30m,⾼宽⽐20.25÷18.2=1.11<1.5,故可取0.1z =β;2、s µ为风荷载体型系数,本设计按《建筑结构荷载规范》(GB50009--2012)中规定,迎风⾯取0.8,背风⾯取0.5,合计sµ=1.3。

3、z µ为风压⾼度变化系数,本设计的地⾯粗糙度类别为C 类,按下表选取风压⾼度变化系数。

7.1 横向框架在风荷载作⽤下的计算简图6轴线框架的负荷宽度B=(6.6+6.6)/2=6.6m。

各层楼⾯处集中风荷载标准值计算如表7.1:表7.1根据表7.1,画出6轴框架在风荷载作⽤下的计算简图,如图7.2所⽰:图7.2框架在风荷载作⽤下的计算简图7.2 位移计算7.2.1框架梁柱线刚度计算考虑现浇楼板对梁刚度的加强作⽤,故对6轴线框架(中框架梁)的惯性矩乘以2.0,框架梁的线刚度计算:跨度为7.3m 的梁(b ×h=250mm ×600mm ):)(109126.0250.0212bh 24333m I -?=??=?=m KN L I E c b /105.33.7109108.2i 437b ?===-跨度为3.3m 的梁 (b ×h=200mm ×400mm ):)(43-33m 101.2124.02.0212bh 2?=??=?=Im KN L I E c b /109.13.31013.2108.2i 437b ?===-7.2.1.1 框架柱的线刚度 1、底层柱: A 、D 轴柱:)(1021.512500500433c m I -?=?=m KN h I E c c c /100.32.51021.5100.3i 437?===-B 、C 轴柱:)(1021.512500500433c m I -?=?=m KN h I E c c c /100.32.51021.5100.3i 437?===-2、上层柱: A 、D 轴柱:)(1021.512500500433c m I -?=?=m KN h I E c c c /100.49.31021.5100.3i 437?===-B 、C 轴柱:)(1021.512500500433c m I -?=?=m KN h I E c c c /100.49.31021.5100.3i 437?===-7.2.1.2 侧移刚度D 计算框架柱刚度修正系数a 计算公式见表7.3: 表7.3表7.4 各层柱侧向刚度计算风荷载作⽤下框架的层间侧移可按下式计算,即有:∑= ijjj DV u式中jV ------第j 层的总剪⼒标准;D--------第j 层所有柱的抗侧刚度之和;ju ?--------第j 层的层间侧移。

风荷载作用下的内力和位移计算

风荷载作用下的内力和位移计算

风荷载作用下的内力和位移计算
风荷载作用下的内力和位移计算通常涉及以下步骤:
1.确定建筑物的风荷载标准以及建筑物的几何形状和尺寸参数;
2.计算建筑物的风荷载大小和方向,可采用建筑物结构设计规
范或专业软件进行计算;
3.将风荷载作用下的内力和位移分解为平面内力和垂直于平面
的剪力与弯矩,根据不同的加载条件,可以采用不同的计算方法进行计算;
4.通过应力-strain关系计算元件的应力和应变,然后对于剪切
应力和弯曲应力进行的评估。

对于抗弯性能较弱的构件,需要考虑稳定性及挠度分析;
5.通过数值算法,考虑各种边界条件下的结构位移情况,可以
计算出风荷载作用下的建筑物结构的整体变形情况,以评估结构的稳定性和安全性。

需要注意的是,针对不同的建筑物结构类型和工作条件,风荷载作用下的内力和位移计算方法可能会有所不同,需要设计师按照相关规范和标准进行具体的计算。

第七章--风荷载作用下的内力和位移计算

第七章--风荷载作用下的内力和位移计算

第7章 风荷载作用下的力和位移计算由设计任务资料知,该建筑为五层钢筋混凝土框架结构体系,室外高差为0.45m 基本风压20m /4.0KN =ω,地面粗糙度为C 类,结构总高度19.8+0.45=20.25m (基础顶面至室地面1m )。

计算主要承重结构时,垂直于建筑物表面上的风荷载标准值,应按下式计算,即o z s z k w w μμβ=1、因结构高度H=20.25m<30m,高宽比20.25÷18.2=1.11<1.5,故可取0.1z =β;2、s μ为风荷载体型系数,本设计按《建筑结构荷载规》(GB50009--2012)中规定,迎风面取0.8,背风面取0.5,合计s μ=1.3。

3、z μ为风压高度变化系数,本设计的地面粗糙度类别为C 类,按下表选取风压高度变化系数。

7.1 横向框架在风荷载作用下的计算简图6轴线框架的负荷宽度B=(6.6+6.6)/2=6.6m。

各层楼面处集中风荷载标准值计算如表7.1:表7.1根据表7.1,画出6轴框架在风荷载作用下的计算简图,如图7.2所示:图7.2 框架在风荷载作用下的计算简图7.2 位移计算7.2.1框架梁柱线刚度计算考虑现浇楼板对梁刚度的加强作用,故对6轴线框架(中框架梁)的惯性矩乘以2.0,框架梁的线刚度计算:跨度为7.3m 的梁(b ×h=250mm ×600mm ):)(109126.0250.0212bh 24333m I -⨯=⨯⨯=⨯= m KN L I E c b /105.33.7109108.2i 437b ⨯=⨯⨯⨯==- 跨度为3.3m 的梁 (b ×h=200mm ×400mm ):)(43-33m 101.2124.02.0212bh 2⨯=⨯⨯=⨯=I m KN L I E c b /109.13.31013.2108.2i 437b ⨯=⨯⨯⨯==- 7.2.1.1 框架柱的线刚度 1、底层柱: A 、D 轴柱:)(1021.512500500433c m I -⨯=⨯=m KN h I E c c c /100.32.51021.5100.3i 437⨯=⨯⨯⨯==- B 、C 轴柱:)(1021.512500500433c m I -⨯=⨯=m KN h I E c c c /100.32.51021.5100.3i 437⨯=⨯⨯⨯==- 2、上层柱:A 、D 轴柱:)(1021.512500500433c m I -⨯=⨯=m KN h I E c c c /100.49.31021.5100.3i 437⨯=⨯⨯⨯==- B 、C 轴柱:)(1021.512500500433c m I -⨯=⨯=m KN h I E c c c /100.49.31021.5100.3i 437⨯=⨯⨯⨯==- 7.2.1.2 侧移刚度D 计算框架柱刚度修正系数计算公式见表7.3: 表7.3表7.4 各层柱侧向刚度计算风荷载作用下框架的层间侧移可按下式计算,即有:∑=∆ijjj DV u式中 jV ------第j 层的总剪力标准;∑ijD --------第j 层所有柱的抗侧刚度之和;ju ∆--------第j 层的层间侧移。

高层住宅楼建筑结构设计(校优秀毕业设计)

高层住宅楼建筑结构设计(校优秀毕业设计)

分类号编号X X 大学毕业设计金都广场1#高层住宅楼建筑结构设计Architectural and Structural Design of NO.1 Apartment in JinduSquare Residential Community申请学位:工学学士院系:土木工程学院专业:土木工程姓名:X X X学号:XXXXXXXXX指导老师:X X X (教授)XXXX年X月X日XX大学[摘要]本设计为XX市金都广场1#高层住宅楼建筑结构设计。

依据XX市市中心规划和住宅建筑使用要求,综合考虑与周围建筑协调、层高、总高、平面布置、立面处理等建筑设计因素,使本建筑建筑风格保持与周围建筑基本一致。

结构体系选用钢筋混凝土框架-剪力墙结构。

在结构设计中,主要进行了刚度计算、荷载计算、内力组合、截面设计和楼梯设计等,绘制了建筑施工图和结构施工图。

整个结构在设计过程中,严格遵循相关的专业规范的要求,参考相关资料和有关最新的国家标准规范,对设计的各个环节进行综合全面的科学性考虑,严格遵守适用、安全、经济、使用方便的设计原则。

关键词:钢筋混凝土框架-剪力墙结构;刚度;地震;风荷载;竖向荷载;内力组合;截面设计;楼梯设计。

目录任务书 (i)摘要 (iv)第1章工程概况及结构选型 (1)1.1 工程概况 (1)1.2 结构选型及布置 (1)第2章结构抗侧刚度计算 (5)2.1 结构计算单元和计算简图 (5)2.2 总剪力墙的等效抗弯刚度 (6)2.3 总框架的抗推刚度 (14)2.4 连梁的约束刚度 (20)2.5 结构刚度特征值 (22)第3章重力荷载及重力荷载代表值 (24)3.1 重力荷载标准值的计算 (24)3.2 重力荷载代表值 (30)第4章横向荷载计算 (32)4.1 横向风荷载 (32)4.2 横向水平地震作用 (34)第5章水平荷载作用下结构内力与位移计算 (37)5.1 位移计算与验算 (37)5.2 剪重比验算 (37)5.3 总框架、总剪力墙和总连梁内力计算 (38)5.4 横向风荷载作用下构件内力计算 (42)5.5 横向水平地震作用下构件内力计算 (48)第6章竖向荷载作用下结构内力计算 (53)6.1 计算单元 (53)6.2 荷载计算 (53)6.3 构件内力计算 (56)第7章内力组合及抗震调整 (59)7.1 抗震等级的确定 (59)7.2 框架梁内力组合及抗震调整 (59)7.3 框架柱的内力组合及抗震调整 (61)第8章截面设计 (64)8.1 框架梁截面设计 (64)8.2 框架柱截面设计 (67)8.3 框架梁柱节点核心区截面抗震验算 (73)第9章板的配筋计算 (76)9.1 板的设计资料 (76)9.2 板的内力计算 (76)9.3 板的截面设计 (77)第10章楼梯设计 (80)10.1 基本资料 (80)10.2 梯段板设计 (80)10.3 平台板设计 (81)10.4 平台梁设计 (82)附录内力组合表 (85)致谢 (88)参考文献 (89)第1章工程概况及结构选型1.1 工程概况1.1.1 建筑概况该工程为XX金都广场1#高层住宅楼,建设地点为XX市XX区。

校学生宿舍结构设计(框架)-毕业论文

校学生宿舍结构设计(框架)-毕业论文
d.基岩层(7): 泥岩、粉砂质泥岩、粉砂岩、泥质粉砂岩、细砂岩等,呈褐色、棕褐色,埋
藏较浅,稳定分布于场区下部。按其风化程度可分为四个风化岩带:(7-C)层,
全风化,平均层厚7.65m;(7-I)层,强风化,平均层厚5.9m;(7-M)层,中 等风化,平均层厚4.25m;(7-S)层,微风化,平均层厚2.45m。
80个单元房。
2.3
2.3.1
采用钢筋混凝土框架结构,外形美观,具体结构自拟。
2.3.2
基本风压为0.50KN/m2(0.60KN/m2、0.70KN/m2),地面粗糙度为B类。
2.3.3
(1)场地地貌: 拟建场地地形较平坦,场地属河漫滩地貌单元。
(2)地层结构及工程地质特征:
据钻探揭露的结果, 该地地层按成因类型分类, 自上而下可分为耕土层、 冲 积土层、残积土层及白垩系下统白鹤洞组碎屑岩层四大层。分述如下:
悬臂梁:高为1800X1/6〜1/5)=300〜360mm,考虑到梁高一般大于400mm,故 取h=400mm;
泥岩
微风化
7500
234
三材由建材公司供应,品种齐全。墙体采用灰砂砖
2.4
绘制建筑平面、立面及剖面图各一张(1:100)。
2.5
2.5.1
1、结构布置。
2、标准层或天面板的内力及配筋计算。
3、一榀框架结构设计(包括竖向荷载作用下的内力计算;风荷载作用下的 内力及位移计算;内力组合及配筋计算)。
4、楼梯设计。
3.2
3.2.1
结构柱网布置见下页。
3.2.2
根据毕业设计任务书要求,整体结构采用电算,并取一榀框架作手工计算,
故取①〜⑧轴框架作计算简图如下:
纵横向框架计算简图见下页。

风荷载作用下的内力和位移计算

风荷载作用下的内力和位移计算

第7章 风荷载作用下的内力和位移计算由设计任务资料知,该建筑为五层钢筋混凝土框架结构体系,室内外高差为基本风压20m /4.0KN =ω,地面粗糙度为C 类,结构总高度+=(基础顶面至室内地面1m )。

计算主要承重结构时,垂直于建筑物表面上的风荷载标准值,应按下式计算,即o z s z k w w μμβ=1、因结构高度H=<30m,高宽比÷=<,故可取0.1z =β;2、s μ为风荷载体型系数,本设计按《建筑结构荷载规范》(GB50009--2012)中规定,迎风面取,背风面取,合计s μ=。

3、z μ为风压高度变化系数,本设计的地面粗糙度类别为C 类,按下表选取风压高度变化系数。

横向框架在风荷载作用下的计算简图6轴线框架的负荷宽度B=(+)/2=。

各层楼面处集中风荷载标准值计算如表:表根据表,画出6轴框架在风荷载作用下的计算简图,如图所示:图 框架在风荷载作用下的计算简图位移计算框架梁柱线刚度计算考虑现浇楼板对梁刚度的加强作用,故对6轴线框架(中框架梁)的惯性矩乘以,框架梁的线刚度计算: 跨度为的梁(b ×h=250mm ×600mm ):)(109126.0250.0212bh 24333m I -⨯=⨯⨯=⨯= m KN L I E c b /105.33.7109108.2i 437b ⨯=⨯⨯⨯==- 跨度为的梁 (b ×h=200mm ×400mm ):)(43-33m 101.2124.02.0212bh 2⨯=⨯⨯=⨯=I m KN L I E c b /109.13.31013.2108.2i 437b ⨯=⨯⨯⨯==- 框架柱的线刚度 1、底层柱: A 、D 轴柱:)(1021.512500500433c m I -⨯=⨯=m KN h I E c c c /100.32.51021.5100.3i 437⨯=⨯⨯⨯==- B 、C 轴柱:)(1021.512500500433c m I -⨯=⨯=m KN h I E c c c /100.32.51021.5100.3i 437⨯=⨯⨯⨯==- 2、上层柱: A 、D 轴柱:)(1021.512500500433c m I -⨯=⨯=m KN h I E c c c /100.49.31021.5100.3i 437⨯=⨯⨯⨯==- B 、C 轴柱:)(1021.512500500433c m I -⨯=⨯=m KN h I E c c c /100.49.31021.5100.3i 437⨯=⨯⨯⨯==- 侧移刚度D 计算框架柱刚度修正系数计算公式见表: 表表 各层柱侧向刚度计算风荷载作用下框架的层间侧移可按下式计算,即有:∑=∆ijjj DV u式中 jV ------第j 层的总剪力标准;∑ijD --------第j 层所有柱的抗侧刚度之和;ju ∆--------第j 层的层间侧移。

单层厂房排架结构设计混凝土结构课程设计

单层厂房排架结构设计混凝土结构课程设计

单层厂房排架结构设计混凝土结构课程设计(3)材料基础混凝土强度等级为C20;柱混凝土强度等级为C30。

柱中受力钢筋基础采用HRB335级、箍筋、构造筋、基础配筋采用HPB300级钢筋。

(4)设计要求分析厂房排架内力,并进行排架柱和基础的设计;绘制排架柱和基础的施工图。

图1厂房平面图图2厂房剖面图2.结构构件选型、结构布置方案确定说明因该厂房跨度在15〜36m之间,且柱顶标高大于8m,故采用钢筋混凝土排架结构。

为了保证屋盖的整体性和刚度,屋盖采用无檩体系。

由于厂房屋面采用卷材防水做法,故选用屋面坡度较小而经济指标较好的预应力混凝土折线形屋架及预应力混凝土屋面板。

普通钢筋混凝土吊车梁制作方便,当吊车起重量不大时,有较好的经济指标,故选用普通钢筋混凝土吊车梁。

厂房各主要构件选型见表1。

表1主要承重构件选型表构件名称标准图集选用型号重力荷载标准值屋面板04G410-11.5m×6m预应力混凝土屋面板YWB-2Ⅱ(中间跨)YWB-2s(端跨)(包括灌缝重)天沟板04G410-11.5m×6m预应力混凝土屋面板(卷材防水天沟)TGB68-1屋架04G415-1预应力混凝土折线型屋架(跨度21m)YWJA-24-1Aa吊车梁04G323-2钢筋混凝土吊车梁(吊车工作级别为A1-A5)DL-9Z(中间跨)DL-9B(边跨)轨道连接04G325吊车轨道联结详图基础梁04G320钢筋混凝土基础梁JL-3由上图可知,吊车轨顶标高为9.00m。

对起重量为、工作级别为A5的吊车,当厂房跨度为24m时,可求得吊车的跨度Lk=22.5m,由附表4可查得吊车轨顶以上高度为2.187m;选定吊车梁的高度,暂取轨道顶面至吊车梁顶面的距离,则牛腿顶面标高可按下式计算:牛腿顶面标高=轨顶标高--=9.00—1.20—0.20=7.0m由建筑模数的要求,故牛腿顶面标高取为7.50m。

实际轨顶标高=7.50+1.20+0.20=8.90m<9.00m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章 风荷载作用下的内力和位移计算
由设计任务资料知,该建筑为五层钢筋混凝土框架结构体系,室内外高差为0.45m 基本风压20m /4.0KN =ω,地面粗糙度为C 类,结构总高度19.8+0.45=20.25m (基础顶面至室内地面1m )。

计算主要承重结构时,垂直于建筑物表面上的风荷载标准值,应按下式计算,即
o z s z k w w μμβ=
1、因结构高度H=20.25m<30m,高宽比20.25÷18.2=1.11<1.5,故可取0.1z =β;
2、
s μ为风荷载体型系数,本设计按《建筑结构荷载规范》(GB50009--2012)中规
定,迎风面取0.8,背风面取0.5,合计s μ=1.3。

3、z μ为风压高度变化系数,本设计的地面粗糙度类别为C 类,按下表选取风压高度变化系数。

7.1 横向框架在风荷载作用下的计算简图
6轴线框架的负荷宽度B=(6.6+6.6)/2=6.6m。

各层楼面处集中风荷载标准值计算如表7.1:
表7.1
根据表7.1,画出6轴框架在风荷载作用下的计算简图,如图7.2所示:
图7.2 框架在风荷载作用下的计算简图
7.2 位移计算
7.2.1框架梁柱线刚度计算
考虑现浇楼板对梁刚度的加强作用,故对6轴线框架(中框架梁)的惯性矩乘以2.0,框架梁的线刚度计算:
跨度为7.3m 的梁(b ×h=250mm ×600mm ):
)(109126.0250.0212bh 2433
3m I -⨯=⨯⨯=⨯= m KN L I E c b /105.33
.7109108.2i 43
7b ⨯=⨯⨯⨯==- 跨度为3.3m 的梁 (b ×h=200mm ×400mm ):
)(43
-33m 101.2124.02.0212bh 2⨯=⨯⨯=⨯=I m KN L I E c b /109.13
.31013.2108.2i 43
7b ⨯=⨯⨯⨯==- 7.2.1.1 框架柱的线刚度 1、底层柱: A 、D 轴柱:
)(1021.512
500500433
c m I -⨯=⨯=
m KN h I E c c c /100.32
.51021.5100.3i 43
7⨯=⨯⨯⨯==- B 、C 轴柱:
)(1021.512
500500433
c m I -⨯=⨯=
m KN h I E c c c /100.32
.51021.5100.3i 43
7⨯=⨯⨯⨯==- 2、上层柱: A 、D 轴柱:
)(1021.512
500500433
c m I -⨯=⨯=
m KN h I E c c c /100.49
.31021.5100.3i 43
7⨯=⨯⨯⨯==-
B 、
C 轴柱:)(1021.512
500500433
c m I -⨯=⨯=
m KN h I E c c c /100.49
.31021.5100.3i 43
7⨯=⨯⨯⨯==- 7.2.1.2 侧移刚度D 计算
框架柱刚度修正系数计算公式见表7.3: 表7.3
表7.4 各层柱侧向刚度计算
风荷载作用下框架的层间侧移可按下式计算,即有:∑=
∆ij
j
j D
V u
式中 j
V ------第j 层的总剪力标准;
∑ij
D
--------第j 层所有柱的抗侧刚度之和;
j
u ∆--------第j 层的层间侧移。

各层楼板标高处的侧移值是该层以下各层层间侧移之和。

顶点侧移是所有各层层间侧移之和,即有:
第j 层侧移:
∑=∆=j
j j
i u u 1
顶点侧移:
∑=∆=n
j j
u u 1
框架在风荷载作用下侧移的计算过程详见表7.5: 表7.5
侧移验算:由《高层建筑混凝土结构技术规程》(JGJ3-2010)表3.73可知,对于框架结构,楼层间最大位移与层高之比的限值为1/550=0.0018。

本框架的层间最大位移与层高之比在底层,其值为0.0002652<0.0018,框架侧移满足要求。

7.3 内力计算
框架在风荷载作用下的内力计算采用D 值法。

计算过程如下:
7.3.1 反弯点高度计算
反弯点高度比按下式计算,即
3210y y y y y +++=
式中 0y -----标准反弯点高度;
1y -----因上、下层梁刚度比变化的修正值; 2y -----因上层层高变化的修正值; 3y -----因下层层高变化的修正值。

反弯点高度比的计算列于表7.6。

表7.6
7.3.2 弯矩及剪力计算
风荷载作用下的柱端剪力按下式计算,即:j
ij
ij
ij V D
D V ∑=
式中 ij V ----第j 层第i 柱的层间剪力; j
V ----第j 层的总剪力标准值;
∑ij
D
-----第j 层所有柱的抗侧刚度之和;
ij
D ----第j 层第i 柱的抗侧刚度。

风荷载作用下的柱端弯矩按下式计算,即
h y M ij c )1(V -=上
yh
M ij c V =下
风荷载作用下的柱端剪力和柱端弯矩计算列于下表7.7。

表7.7
梁端弯矩及剪力计算
由节点平衡条件,梁端弯矩之和等于柱端弯矩之和,将节点左右梁端弯矩之和按左右梁的线刚度比例分配,可求出各梁端弯矩,进而由梁的平衡条件求出梁端剪力。

风荷载作用下的梁端弯矩按下式计算,即
中柱:







左j
c
j
c
b
b
b
ij
b
K
M M
M
K
K1
+
+
=
+







右j
c
j
c
b
b
b
ij
b
K
M M
M
K
K1
+
+
=
+
边柱:)
(上下总j c j c ij b M M M 1+=+
式中:
ij
b M 左、ij b M
右--表示第j 层第i 节点左端梁的弯矩和第j 层第i 节点右端梁的弯矩;
左b K 、右
b K --表示第j 层第i 节点左端梁的线刚度和第j 层第i 节点右端梁的线刚度;
j
c j c 上下、M M 1+--表示第j 层第i 节点上层柱的下部弯矩和第j 层第i 节点下层柱的上
部弯矩。

7.3.2.1 风荷载作用下的梁端弯矩计算列于表7.8和7.9 梁端弯矩AB M 、DC M 计算
表7.8
梁端弯矩M BA =M CD 、M BC =M CB 计算:
表7.9
依据表7.8—表7.9,画出框架在风荷载作用下的弯矩图,如图7.10所示。

图7.10 框架在风荷载作用下的弯矩图(单位:KN.m)
7.3.2.2 风荷载作用下的梁端剪力计算见详表7.11
表7.11
依据表7.11,画出框架在风荷载作用下的剪力图,如图7.12所示。

图7.12 框架在风荷载作用下的剪力图(单位:kN)
7.3.3 轴力计算
由梁柱节点的平衡条件计算风荷载作用下的柱轴力,计算中要注意剪力的实际方向,计算过程详见表7.13
风荷载作用下轴力计算(单位:KN)见下表:
表7.13
依据表7.13,画出框架在风荷载作用下的轴力图,如图7.14所示。

图7.14 框架在风荷载作用下的轴力图(单位:kN)。

相关文档
最新文档