三效催化剂机理研究

三效催化剂机理研究
三效催化剂机理研究

综述专论

引言

汽车工业的发展在推动经济繁荣的同时也造成了严重的环境污染。汽车排放的污染物包括一氧化碳(CO)、碳氢化合物(HC)、氮氧化物(NOx)、硫化物、颗粒(铅化合物、黑碳、油雾等)、臭气(甲醛、丙烯醛)等,其中CO、HC、NOx是造成环境污染的三种主要气态污染物,对人体的危害极大,在增加大气污染的同时,也破坏了生态平衡。更重要的是,这些污染物在一定条件下会生成二次污染物——光化学烟雾,从而对环境造成更大的危害,因此,许多城市将控制机动车尾气作为改善空气质量的重要措施[1]。而在众多的尾气排放控制手段中,催化净化已经成为控制汽油车尾气污染的重要手段之一[2]。1.三效催化剂的结构与组成

汽车尾气催化剂主要有两种类型:蜂窝型和颗粒型。但是,由于颗粒型催化剂单位体积的重量为蜂窝型的23倍,且有加热时间长,易磨损等缺点,因此自80年代起,颗粒型催化剂逐渐为蜂窝型催化剂所取代。

汽车尾气催化剂从70年代中期在美国开发并使用

三效催化剂机理及技术进展

以来,按其特点可以分为以下几个阶段:

(1)Pt,Pd氧化型催化剂为第一代产品,主要控制CO和HC的排放,70年代在美国曾得到广泛的应用。

(2)还原氧化双段催化剂为第二代产品,应用于80年代。在催化剂的还原段,NOx被还原为NH 3,但是经过氧化段又被复原,所以它并未得到实质性的使用。

(3)三元催化剂为第三代产品,主要控制尾气排放中的CO、HC及NOx,其主要活性成分为Pt、Rh、Pd 等贵金属。

(4)单钯催化剂为第四代产品,虽然可耐更高的温度,但对空燃比和燃油的要求也更高,因此未得到工业应用。

现今最为常见的汽车尾气催化剂又被称为三效催化剂或三元催化剂(Three-Way Catalyst,简称TWC),这是因为它能同时净化汽车尾气中的三种有害成分的缘故。

三效催化剂主要由四部分组成:载体、氧化铝涂层、活性组分和助剂。

1.1载体

载体是担载主催化剂和助催化剂组分的组分[3],从汽车尾气排放标准要求及催化技术发展来看,载体形式主要有颗粒状和整装两类。颗粒状载体主要为氧化铝小球,因其堆密度大、热容量大、预热性能差、排气阻力大、使用中易收缩、活性组分容易剥落等缺点,基本上已经被淘汰。目前最常用的车用三效催化

剂为整体蜂窝状堇青石陶瓷(2MgO 2Al2O35SiO2),

作者简介:于娜娜(1987-),女,河北沧州人,中北大学化工与环境学

院在读硕士。主要研究方向:超重力场中的多相流传质与化学反应。

于娜娜*1 鲁静2 郭宇鹏2 苏理瑶2

(中北大学1化工与环境学院,2材料科学与工程学院 山西 太原030051)

摘要:本文论述了三效催化剂的结构、反应机理、制备及表征方法,同时创新性的提出了可能的三效催化剂的新型制备方法,综述了三效催化剂的国内外发展现状,并对国内三效催化剂的发展前景进行了展望。

关键词:三效催化剂;汽车尾气;净化

中图分类号:TQ426.96 文献标识码: 文章编号:A 文章编号:T1672-8114(2011)11-009-06

Chenmical Intermediate2011年第11期· ·

10

由许多薄壁平等小通道构成,其气流阻力小、几何表面积大、无磨损、耐高温、催化转化率高[4]。近年来,人们也对金属合金、氧化铝、莫来石、分子筛及玻璃纤维等尾气净化催化剂载体进行了相关研究,其中金属合金载体研究最多,且已经开始在美国、日本等的部分电加热催化剂的汽车上安装使用,它对降低汽车排气阻力十分有利,明显改善了动力性能,提高了尾气净化效率,同时延长了净化器的使用寿命。研究表明[5]:Ni-Cr,Fe-Cr-Al,Fe-Mo-W三类合金均可作为尾气净化催化剂载体。而从加工性能和经济价值等方面综合考虑,Fe-Cr-Al是最具有应用前景的合金载体。

1.2氧化铝涂层

涂层附着于载体表面,其作用是提供大比表面来附着贵金属或其它催化成分。γ-Al2O3具有很强的吸附能力和很大的比表面,因而常用于涂层材料。但γ-Al2O3的缺点是高温不稳定,在1000℃时会相变成比表面很小(<10m2/g)的α-Al2O3,从而降低催化活性。为防止α-Al2O3高温劣化,通常加入Ce、La、Ba、Sr、Zr等稀土或碱土元素氧化物作为助剂。

1.3活性组分

活性组分是三效催化剂中最重要的成分。目前,国际上商业催化剂的主要成分是贵金属。主要组分有Pt-Pd、Pt-Rh、Pd-Rh、Pt-Pd-Rh,其优点是起燃温度低、寿命长,对CO、HC、NOx同时具有较高的催化转化效率;缺点是贵金属价格昂贵,资源稀少,易发生Pb、S中毒。

针对贵金属催化剂价格昂贵的缺点,人们对非贵金属化合物进行了探索,用其取代或部分取代催化剂中的贵金属,以期降低催化剂的昂贵成本。

目前,非贵金属催化剂以Mn、Co、Fe、Sr、Cu、Ni、Bi等过渡金属与碱金属氧化物为主要活性组分,非贵金属氧化物添加物中常见的是稀土氧化物[6]。

钙钛矿(ABO3)型三效催化剂具有多种优秀的物理化学性质与催化性能,其催化组分可变,能通过选择合适替代物来控制金属离子价态,从而增强反应活性,因此用来处理汽车尾气[7~9]。LaCoO3和L a M n O3对C O和H C的氧化催化活性与P t相当。La0.8K0.2MN0.9O0.1O3催化剂在过量(CO+H2)气氛中对NO还原活性很高并生成较多NH3,有较好的初始三效性能,但高温老化导致活性下降。

非贵金属催化剂具有容易获得和价格低廉的优点,也成为尾气净化三效催化剂的首选材料。但非贵金属又具有不可克服的缺点,如在低温下对硫很敏感,在富氧环境下更易失活;活性不如贵金属高;非贵金属对空速更为敏感等。

1.4助剂

助剂是自身无催化作用或活性较低的添加物,但将其加入催化剂中可以提高催化剂性能[10]。常用作助剂的为一些稀土元素和碱金属氧化物[11]。如铈具有强储放氧能力,可提高贵金属催化剂的热稳定性,延缓γ-Al2O3向α-Al2O3的高温相变,增强Al2O3的热稳定性。CeO2是应用最广泛的稀土氧化物添加剂。La也是常用的汽车尾气催化助剂,主要以La2O3的形式存在。稀土复合氧化物催化剂La-Co/γ-Al2O3有优良的CO氧化性能并有一定的NO还原活性。另外还有一些其它的助剂如Zr、Ti、Sm和及碱金属氧化物MgO、BaO、CaO、SnO等[12]。

2.三效催化剂的反应机理

汽车尾气净化催化转化器通过催化作用,利用排放废气中残余氧和排气温度,使尾气中CO、HC、NOx 三种有害物质转化为CO2、N2、H2O等无害物质再排入大气,从而达到减少污染、保护环境的目的。汽车尾气在三效催化剂上发生的化学反应主要可以分为以下几类:

(1)CO、HC氧化反应:

(2)NO还原反应:

(3)水蒸气重整反应:

(4)水煤气转换反应:

车用三效催化剂的催化过程是多相催化反应过程,一般包括以下步骤:

①反应物分子从气体中通过滞流层向催化剂外表

面扩散(外扩散);②反应物分子从催化剂外表面向孔内扩散(内扩散);③反应物分子在催化剂内表面吸附;④吸附态的反应物分子在催化剂表面相互作用或与气相分子作用;⑤反应产物从催化剂内表面脱附;⑥脱附的产物分子自内孔向催化剂外表面扩散(内扩散);⑦产物分子从催化剂外表面经滞流层向气体主体扩散(外扩散)。

通过CO、HC和NOx之间的催化氧化和还原反应,三效催化剂可使汽油机的CO、HC和NOx排放同时降低90%以上。

3.三效催化剂的制备

3.1三效催化剂制备的传统方法

催化剂的物理化学特性,如化学组成,物理结构和机械强度对催化剂性能的影响是决定性的,而催化剂的制备对其活性、选择性的稳定性有重要影响,是控制催化剂化学组成和物理结构的关键所在。

工业催化剂的制造方法有混合法、浸渍法、离子交换法、共沉淀法等。由于汽车尾气催化剂的特点,一般采用浸渍干燥法。

3.1.1浸渍法

浸渍法是将活性组分金属盐类配置成水溶液,再将载体浸泡在溶液中,让溶液渗透到载体内表面,有时为了控制金属组分的分布,加入一些竞争吸附剂于溶液中,活性组分盐类均匀分布在载体细孔内,经干燥、水分蒸发逸出,再经灼烧得到高分散度的催化剂。

催化剂的制备大致需要以下步骤:选样,涂胶,灼烧,活性成分助剂的浸渍,干燥,还原。负载型催化剂活性组分的分布,即活性组分自溶液中向载体渗透,主要取决于浸渍和干燥条件,所以催化剂的制备过程中浸渍和干燥是重要步骤。

浸渍一般有三种类型:

(1)载体浸泡在金属盐溶液中,经加热将溶液水分蒸发逸出,使金属盐穿透于整个载体空隙。

(2)将载体浸渍于预先准备好的金属盐胶体悬浮物中,使胶体负载于载体外表面。

(3)在浸渍液中加入一些竞争吸附剂,在浸渍过程中使金属以不同密度在载体表面的不同位置上沉淀。

如微球硅胶磷钼铋铈催化剂就是将微球硅胶浸在含硝酸铋铈和磷钼酸的溶液中,浸渍后的湿催化剂,经快速干燥、焙烧、活化后制得成品三效催化剂。

浸渍法制备的催化剂的优点是活性组分多数情况下仅仅分布在载体表面上,利用率高、用量少、成本低,适于制备单、双或多金属负载型催化剂。缺点是浸渍法制备催化剂的过程中影响因素较多,其中主要有载体的选择、浸渍液的配制、浸渍时间、干燥、焙烧、还原等。

3.1.2沉淀法

沉淀法通常是将载体浸在含金属盐类的水溶液中,然后在搅拌情况下加入沉淀剂,使催化剂组分沉淀在载体上,经洗涤去掉不需要的组分后,在选定的温度下进行干燥和焙烧。

沉淀法中,沉淀剂的选择、溶液的浓度、温度、加料顺序以及沉淀的速度与制得的催化剂的物理性质有很大关系,沉淀条件一般通过反复试验来确定。

张爱敏等[13]应用共沉淀法,定量混合的硝酸镧、硝酸铈和硝酸铝溶液中加入聚乙烯醇和双氧水,制得混合硝酸盐溶液。然后,将浓度为10wt%近摩尔比1:1配制的NH3-(NH4)2CO3溶液与混合硝酸盐溶液并流导入容器,得到浆状液。将该浆状物在常温常压陈化4天,洗涤后的产物再与聚乙二醇及少量去离子水混合,制得胶状物CP-LCA-S、80℃真空干燥下的产物CP-LCA-G 及500℃焙烧4小时的复合氧化物CP-LCA-P-V2;同时将CP-LCA-G直接在空气中烘干后再在500℃焙烧4小时,制得了CP-LCA-P。

Pengpanich 等[14]以尿素为沉淀剂,用共沉淀法制备了系列CeO2-ZrO2,发现Ce0.75Zr0.25O2比例的CZ对甲烷氧化表现出较好的活性。

浸渍法制备的催化剂的优点是具有比常规制备方法更大的比表面积,表现了更好的活性及选择性。缺点是在形成沉淀过程中,沉淀剂的加入可能导致局部浓度过高而产生团聚,或由于沉淀的不同顺序而导致组成不够均匀。

3.1.3溶胶-凝胶法

溶胶-凝胶法是将金属醇盐或无机盐经水解形成溶胶,然后溶胶由其他因素诱导聚成以网状力式交连的凝胶,而后再经过洗涤、干燥、焙烧等过程制得催化

Chenmical Intermediate2011年第11期· ·

12

剂。

姚青等[15]采用溶胶-凝胶法,以柠檬酸作为胶凝剂,将一定量的Ce(NO3)36H2O和Zr(NO3)45H2O混合溶解于去离子水中,加入一定量乙醇助溶的柠檬酸溶液,控制总盐浓度为0.25mol/L,柠檬酸浓度与之相同。室温下搅拌,并升温至一定温度陈化,去除乙醇和水,得到有一定流动性和黏度的黄色凝胶;120℃下发泡,得到的固体泡沫分别于不同温度下焙烧2h,得到系列三效催化剂CexZr1-xO2(0.5≤x<1)。

如杨振明等[13]也用柠檬酸溶胶-凝胶法制备出Pt-Rh三效催化剂,

溶胶-凝胶法的优点是可以把金属微粒均匀地分布并锚定在载体及其他助剂所形成的网状结构中,这种结构可以减弱高温条件下钯金属微粒的活动性,提高其抗烧结能力,而且具有很高的反应活性,具有足够的机械强度和较高的抗失活能力。该法的缺点是所制的催化剂中部分金属钯粒径较大,可能还有部分颗粒被载体包埋,所以催化剂活性比浸渍法制备的催化剂略低一些。

3.2三效催化剂最新制备方法

3.2.1超声波强化方法

蔡黎等[16]在CeO2-ZrO2-La2O3/Al2O3材料制备过程中,使用超声波振动对材料进行处理,并以此材料为载体制备了单Pd三效催化剂。并对所制备的载体进行了结构性能分析(BET)和X射线衍射(XRD)表征。对催化剂进行了NO程序升温脱险(NO-TPD)及H2程序升温还原(H2-TPR)表征,并对催化剂进行了活性测试。BET结果表明,900℃焙烧后,超声波振动处理的载体比表面积为130m2g-1,而没有进行处理的载体比表面积为117m2g-1,超声波处理的CeO2-ZrO2-La2O3/Al2O3材料介孔直径为11.4nm,相对较大,载体更加稳定。XRD测试结果表明,超声波处理的载体在1150℃焙烧5h后仍然只有Ce0.5Zr0.5O2一个单一物相,而未经过超声波处理的载体此时出现相分离,体相中有θ-Al2O3出现。以超声波处理材料为载体的Pd催化剂和老化后NO-TPD测试结果变化很小。H2-TPR测试中,超声波振动处理的材料制备的催化剂中活性组分的载体的还原峰温较未超声处理材料制备的催化剂稍高。而峰面积远大于未超声处理材料制备的催化剂。活性测试结果说明,由超声波振动处理过的载体制备的三效催化剂对汽车尾气中的三种污染物的起燃温度更低,有更好的活性以及温度特性。

另外,陈曦等[17]也采用超声协同溶胶-凝胶法制备了催化剂SiW12/SiO2,其活性组分SiW12分散较均匀,且不易脱溶,提高了催化剂的活性及稳定性。

3.2.2超重力强化方法

罗爱文[18]等以硝酸铜、氧氯化锆为原料,以w(NaOH)=20%水溶液为沉淀剂,采用超重力场共沉淀法,在超重力反应器转速为800r/min,沉淀pH=12,陈化时间为5h以及原料n(Zr):n(Cu)=2:1和锆盐初始浓度为0.2mol/L优化条件下,采用超重力共沉淀法,制备出催化剂前驱体,再经500℃焙烧5h,220~240℃通氢气还

表征方法作用

XRD X射线衍射光谱分析体相金属氧化物

TPRS程序升温反应测定吸附、脱附与表面反应机理(包括TPR、TPO、TPD)

TEM透射电镜描述晶体表面微区金属分布特点SEM扫描电镜负载金属粒径变化、塌陷研究EDS能量散射光谱晶体表面晶相组成

XPS X射线电子能谱分析表面元素组成,价态,氧化

还原性质

EXAFS 广延X射线吸收精细

结构

分析表面原子配位结构

FTIR傅立叶红外分析分析催化剂表面吸附态,研究表面金属状及金属间的相互作用

表3.1 常用催化剂表征方法

原5h得到了Cu/ZrO2催化剂。新鲜催化剂在实验室小试反应中用于二乙醇胺脱氢制备亚氨基二乙酸钠,收率可达97.50%,选择性高达98.05%,催化剂重复使用5次,平均收率为95.02%。催化性能优于传统共沉淀法制备的Cu/ZrO2催化剂,表明利用超重力场作用制备的Cu/ZrO2催化剂具有良好的工业应用前景。

陈曦及罗爱文等的方法虽未用于三效催化剂,但却是探索用新型强化技术制备三效催化剂的一个很好的参考。另外,超临界水浸渍法强化催化剂制备技术也是一个发展的方向[19]。

4.三效催化剂的表征

催化剂的表征是研究催化剂行为与结构关系的有效手段,有助于我们掌握催化作用机理,开发高效催化剂。对于组成相同或相近的原料,制备条件不同,可以产生不同的物相,由于这些物相的微观结构不同,使催化性质有很大的差异。所以,催化剂制备出来后,可用XRD对其进行物相鉴定,分析结晶度、杂晶与制备条件之间的关系。并且了解催化剂选择性及失活原因。常用的表征方法如表3.1所示

近年来,人们通过TPR等表征方法对金属与载体间的相互作用及其对催化性能的影响进行了大量的研究。Bond发现金属氧化物与通常的载体氧化物如Al2O3、SiO2和TiO2等之间存在着强相互作用。从XPS 可以获得关于表面元素组成、价态、氧化还原性质的信息。Jermin通过XPS,XRD方法研究了在不同的酸碱条件下用溶胶-凝胶法制得的单Pd三效催化剂的性质。赵波等[20]在Omnisorp 100CX型全自动吸附仪上测定并计算了载体的比表面积和孔结构;在日本理学公司生产的Rigaku D/Max-ⅢB型射线粉末衍射仪上进行了X射线衍射(XRD)分析。

5.三效催化剂的国内外发展现状

三效催化剂是陶瓷蜂窝、氧化铝载体、贵金属活性组分、稀土氧化物等助剂等各种稳定剂构成的复杂体系,各组成部分功能不同,互相协调,使催化剂具有良好的性能和较长的使用寿命。为此,国内各研究机构和催化剂生产厂家从1982年开始,对陶瓷蜂窝载体的制备技术、涂层材料及工艺技术、催化剂优化配方及制备技术、催化净化器总成技术等进行了长期的研究开发和应用研究,部分关键技术已接近或达到国际先进水平。自1997年起汽油开始无铅化,目前已不再生产有铅汽油,1999年颁布并实施了相当于欧洲I标准的新的汽车排放标准,这也极大地推动了我国三效催化剂的研究、开发、产业化及实际应用,为国产化工作和逐步替代进口催化剂奠定了重要的基础。开发的三效催化剂充分利用稀土资源丰富的优势,以稀土氧化物为主,并添加少量或微量贵金属为活性组分,构成了中国汽车尾气净化催化剂的特色。

天津化工研究设计院开发的稀土基三效催化剂,已在国家轿车质量监督检验中心进行了夏利1.3升电喷轿车5万公里的跑车试验,5万公里后污染物排放值达到欧洲II标准;其生产线生产的催化剂在天津汽车研究所进行8万公里的快速老化试验,在1升电喷轿车上进行装车测试,老化后的污染物排放值分别为:CO 为0.5654g.km-1,HC+NOx g.km-1为0.1613 g.km-1。清华大学、昆明贵金属研究所、大连化物所等单位开发的低贵金属催化剂,各种测试效果良好,也达到了国际先进水平。同样也有些单位主要关注于在用车的改造,为其花费了很大的精力,虽然取得了一定的成功,但也暴露了很多问题,这是这些单位不得不面对和解决的。此外,大部分国产催化剂初活性好、但耐久性稍差,与发动机和整车匹配不好,是今后应重点解决的问题。

但国内三效催化剂也存在一些问题:(1)国内目前的排放标准对机动尾气污染物控制要求仍然较低,对三效催化剂性能的要求也不像欧美那么严格;(2)国内的路况与国外相比也有很大的差别;(3)国内燃油质量还有待提高,燃油中铅及硫(能使三效催化剂很快中毒)的含量还是过高,在开发三效催化剂时要充分考虑催化剂的抗中毒问题;(4)国内在开发三效催化剂时大多尽量少用贵金属,以尽可能降低催化剂生产成本。

6.三效催化剂的前景展望

三效催化剂是控制汽车排放污染物的最有效的措施之一。随着国家排放法规的不断严格,国内三效催化剂产业进程将大大加快。在我国没有单独的贵金属矿藏,用于三效催化剂的贵金属主要依赖于进口,而国内稀土资源却非常丰富。随着市场贵金属价格的不断上涨,对三效催化剂的研究将更关注催化剂的用量

Chenmical Intermediate2011年第11期· ·

14

及开发单钯的三效催化剂和采用非贵金属作催化剂的活性组分。所以,目前三效催化剂研究的难点和热点在于开发一种新型的贵金属-复合金属氧化物型三效催化剂,同时满足在贫燃条件下具有选择性还原及冷启动时迅速起燃的要求。最终国内应结合实际情况,尽快开发出具有自主知识产权的稀土添加少量贵金属型车用三效催化剂。同时紧密耦合催化剂、高性能铈基储氧材料的开发和高耐久性载体涂覆技术的开发也将是三效催化技术下一步的发展趋势。

参考文献

[1] 李丽.汽车尾气净化催化剂铁基稀土钙钛矿的结构和性能研究[M].黑龙江:黑龙江大学出版社,2007.

[2] 赵敏伟.Pd-CZ-Al2O3模型催化剂的动态储放氧与三效催化性能研究[D].天津:天津大学,2008.

[3] 刘旦初.多相催化原理[M].上海:复旦大学出版社,1997.

[4] 王军,沈美庆,秦永宁等.整体式催化剂的物化性能和研究[J].化学工业与工程,2000,17(6):326~329.

[5] 张宏艳,牟元平,常志伟.汽车尾气净化三效催化剂研究进展[J].化工科技,2006,14(5):70~72.

[6] 张继光.催化剂制备过程技术[M].北京:中国石化出版社,2004.

[7] 俞守耕.钙钛矿型氧化物在净化汽车尾气催化剂中的应用[J].贵金属,2001,22(2)61~66.

[8] Voorhoeve R J H.Rare earth oxide of manganese & cobalt rival platinum for the treatment of CO in auto exhaust[J].Science,1972,177:353.

[9] Voorhoeve R J H.Rare earth manganites:catalysts with low ammonia yield in the reduction of NOx[J].Science,1973,180:62.

[10] 许越.催化剂设计与制备工艺[M].北京:化学工业出版社,2003.

[11] 谭镜明,吴勘.三效催化剂研究进展[J].

[12] 肖霞,何新秀.我国汽车尾气污染的催化净化[J].环境科学研究,1998,11(5):26~28.

[13] 杨振明,张劲松,曹小明等.用柠檬酸溶胶-凝胶法制备三效催化剂[J].材料研究学报,2003,17(4):370~374.

[14] Pengpanich S,Meeyoo V,Rirksomboon T,et al.Appl. Catal. A,2002,234:221.

[15] 姚青,田群,陈宏德等.柠檬酸溶胶凝胶法制备铈锆固溶体的物性和氧化还原特性研究[J].中国科学院研究生学报,2006,23(1):65~69. [16] 蔡黎,王康才,赵明等.超声波振动在Ce-Zr-La/Al2O3及负载型Pd三效催化剂制备中的应用(英文版)[J].物理化学学报,2009,25(5):853~858.

[17] 陈曦,王俊,韩越等.超声辅助溶胶-凝胶法制备SiW12/SiO2催化剂及其性能[J].化学反应工程与工艺,2010,26(6):521~525.

[18] 罗爱文,段正康,曾红艳等.超重力场共沉淀法制备Cu/ZrO2催化剂[J].精细化工,2011,28(1):54~58.

[19] 司伟平.超临界水浸渍法制备锰基中温脱硫剂的研究[D].山西:太原理工大学,2010.

[20] 赵波,王秋艳,葛昌华等.Ce0.67Zr0.33O2材料的制备和表征及其负载单Pd三效催化剂的性能[J].催化学报,2009,30(5):407~413.

Catalytic Mechanism and Technical Progress of Three-Way Catalyst

Yu Nana*1 Lu Jing2 Guo Yupeng2 Su Liyao2

(1 College of Chemical and Environment,2 College of Materials Science and Engineering,

North University of China,Taiyuan,030051,Shanxi)

Abstract: In this paper,the structure,catalytic mechanism,preparation and Characterization of Three-Way Catalyst are firstly discussed,and the new preparation methods that may be come true in the future are also presented.The current situation of Three-Way Catalyst at home and abroad is reviewed.The problems and prospects of Three-Way Catalyst are also presented.

Key Words: Three-Way Catalys;vehicle exhaust;decontamination

大学生2014年形势与政策论文{关于雾霾}

雾霾的成因与防治 班级:20134041 学号:2013404145 姓名:苏芮 论文摘要:历史数据表明,近50年来中国雾霾天气总体呈增加趋势,且持续性霾过程增加显著。从空间分布看,霾日数呈现东部增加西部减少趋势。其中,珠三角地区和长三角地区增加最快。从今年春天开始,我国中东部地区逐渐出现轻雾天气,随着时间的推移,轻雾、雾和霾的范围逐渐加大、程度逐渐加剧;特别是北京天津等地雾霾连续数日,严重的影响了市民的生活质量。而霾的组成成分非常复杂,,对人体和生态环境都有很严重的影响。对此,我决定对雾霾成因和其成分分析及防治问题进行研究,从而建立解决此类问题的模型。 关键词:雾霾的成因与防治;PM 2.5;环保; 正文: 历史数据表明,近50年来中国雾霾天气总体呈增加趋势,且持续性霾过程增加显著。从空间分布看,霾日数呈现东部增加西部减少趋势。其中,珠三角地区和长三角地区增加最快。今春开始,我国中东部地区逐渐出现轻雾天气,而随着时间的推移,轻雾、雾和霾的范围逐渐加大、程度逐渐加剧;特别是北京天津等地雾霾连续数日,严重的影响了市民的生活质量。而霾的组成成分非常复杂,包括数百种大气化学颗粒物质。如矿物颗粒物、海盐、硫酸盐、硝酸盐、有机气溶胶粒子、燃料和汽车尾气等,对人体健康和生态环境都有很严重的影响。那么,雾霾的成因是什么?对环境和人体有何影响?对于我们居民来说,应如何防治?政府及相关环保部门应如何应对?我们对化石燃料燃烧而产生的二氧化氮.一氧化氮等氮氧化物对环境产生的影响的防治有什么深刻的认识? 一.雾霾的成因 由于我国中东部地区冷空气势力较弱;华北平原、长江中下游平原地区风力较小;大气层结构稳定;一些地区受降水和地面水汽蒸发的影响,使得近地面空气的相对湿度越来越大,却极少降雨;在这种稳定的天气形势下,空气中的污染物在水平和垂直方向上都不容易向外扩散,使得污染物在大气的浅层积聚,从而导致污染的状况越来越严重。这些是雾霾天气持续的自然因素,而人为方面的原因主要是由于大气污染物排放负荷巨大。中国社会科学院发布的《气候变化绿皮

双氧水用钯催化剂的分类

双氧水用钯催化剂的分类 2016-04-18 12:20来源:内江洛伯尔材料科技有限公司作者:研发部 4万吨/年H2O2工业化示范装置 蒽醌法双氧水生产中所需氢化催化剂主要分为镍催化剂和钯催化剂两大类,其中钯催化剂是当前使用最多的催化剂。 1.钯系固定床催化剂 研究发现,在固定床内分段交叉装填催化剂和惰性颗粒物(如Al2O3等),可显著提高催化剂生产能力,减少降解物生成。如MGC公司采用(0.5%~2.0%) Pd/Al2O3催化剂,FMC公司采用颗粒催化剂0.3 % Pd/Al2O3。 为了提高活性组分的利用率,有人研制出钯载非均布蛋壳形催化剂,其载钯薄层厚度为微米级。通过该技术减薄催化剂活性层,既可避免滴流床反应器中因蒽醌在催化剂孔道中滞留时间过长导致深度加氢等问题,又可降低钯含量和催化剂生产成本。 固定床催化剂的形状有圆柱形整体催化剂和蜂窝催化剂两大类。将蜂窝催化剂和整体催化剂用于蒽醌氢化工艺则是近年来双氧水工业中的研究热点,因为这两类催化剂不仅可抑制蒽醌降解和降低钯含量,还可改善反应物料在床层内向催化剂表面的传质,从而提高滴流床内催化剂的总体效能。 2.钯系悬浮床催化剂 用于悬浮床氢化的钯系催化剂有以Al2O3 (粉状) 或SiO2 (粉状) 为载体的,亦可用钯黑无载体催化剂。杜邦公司采用活性Al2O3为载体,载体粒径在20~400目(以50~300目为佳) ,催化剂比表面25~400m2/g。而低表面的无定形SiO2 做载体,因具有良好的活性和选择性,减少了蒽醌的降解,并能克服γ- Al2O3对H2O 敏感、易于失活等缺点,从而可提高催化剂的使用寿命。 无载体的钯黑催化剂能消除载体的影响,较软的钯颗粒可以避免对设备的磨损。研究发现,制备钯黑催化剂时,如添加少量过渡金属(相当于钯量的0.01%~3.0%),如Fe 、Cr 和Ni等,可提高催化剂的活性和稳定性。

(完整版)工业催化试卷及答案

、单项选择题(每小题 1分,共10 分) 1.为催化剂提供有效的表面和适宜孔结构的是( ) A .活性组分 B .载体 C .助剂 D .助催化剂 2 . BET 等温式属于五种吸附等温线中的类型( ) A . I B . II C . III 3.能给出质子的称为( ) A . B 酸 B . B 碱 C . L 酸 D . L 碱 4.工业上氧化乙烯制环氧乙烷的催化剂是( ) A . Cu/ Y AI 2O 3 B . Ag/ a Al 2O 3 C . Ag/ Y AI 2O 3 D . Ni/ 丫Al 2O 3 5.所有金属催化剂几乎都是过渡金属,主要是因为它们 ___________ () A .易失去电子 B .易得到电子 12 .能给出电子对的固体称为 L 碱。 13 .对固体表面酸的描述包括酸的类型、酸强度和酸量。 14 .吸附的逆过程称为 脱附。 15 .在分子筛结构中,相邻的四面体由氧 _____ 联结成环。 16 .研究金属化学键的理论有 能带理论 、价键理论和配位场理论。 17. Cu 的加入使 Ni 的d 带空穴 变少 。 18 .金属氧化物催化剂中直接承担氧化功能的是 晶格氧 。 19 .三效催化剂中Pt 能有效的促进 一氧化碳 和HC 的催化氧化。 20 .催化剂的活性随时间的变化分为成熟期、稳定期和 衰老期 二、填空题(每空1分,共10分) 11. 一种良好的工业实用催化剂,应该具有三方面的要求,即活性、选择性和稳定性。 26 .催化剂 凡能加速化学反应趋向平衡,而在反应前后其化学组成和数量不发生变化的物质。 C .易强烈吸附反应物 D .有着d 电子结构 6 . X 型分子筛最大孔径约为( ) A . 0.4 nm B . 0.6 nm C . 0.7 nm D . 0.8 nm 7.金属在载体上的细微程度用( ) A .分散度表示 B . 单层分布表示 C .粒度表示 D . 比表面表示 & Ziegler-Natta 催化属于( ) A .酸催化 B . 金属催化 C .金属氧化物催化 D . 络合催化 9.下面属于n 型半导体的是( ) A . ZnO B . NiO 纸 订 装 C . Cu 2O D . CuO 三、判断改错,在题后的括号内,正确的打“V” ,错误的打“x”并 改正。 (每小题2分,共10分) 21 .对于工业催化剂来说,活性越高越好。(f ) 22 .有机物的乙酰化要用 L 酸位催化。(t ) 23 . X 型和Y 型分子筛的结构是一样的。 (f ) 10.将燃料的化学能转化为电能的电化学装置称为( ) A .燃料电池 B .蓄电池 C .发电机 D .燃烧反应器 24 .择形催化是分子筛的主要特征。 (t ) 25 .金属的禁带宽度很大。 (f ) () 四、名词解释(每小题 4分,共20分)

催化原理

一、催化剂的定义与催化作用的特征 1.定义:凡能加速化学反应趋向平衡,而在反应前后其化学组成和数量不发生变化的物质。2.特征:①加快反应速率;②反应前后催化剂不发生化学变化(催化剂的化学组成--不变化物理状态---变化(晶体、颗粒、孔道、分散))③不改变化学平衡④同时催化正、逆反应。⑤对化学反应有定向选择性。 二、催化剂的评价指标 工业催化剂的四个基本指标:选择性、稳定性、活性、成本。 对工业催化剂的性能要求:活性、选择性、生产能力、稳定性、寿命、机械强度、导热性能、形貌和粒度、再生性。 1.活性催化剂使原料转化的速率:a=-(1/w)d(nA)/dt 2.生产能力--时空收率:单位体积(或单位质量)催化剂在单位时间内所生产的目的产物量Y v,t=n p/v.t or Y W,t=n p/w.t 3.选择性:目的产物在总产物中的比例S=Δn A→P/Δn A=(p/a).(n P/Δn A) =r P/Σr i 4.稳定性:指催化剂的活性随时间变化 5.寿命:是指催化剂从运行至不适合继续使用所经历的时间 三、固体催化剂催化剂的组成部分 主催化剂---活性组份:起催化作用的根本性物质,即催化剂的活性组分,如合成氨催化剂中的Fe。其作用是:化学活性,参与中间反应。 共催化剂:和主催化剂同时起作用的组分,如脱氢催化剂Cr2O3-Al2O3中的Al2O3。甲醇氧化的Mo-Fe催化剂。 助催化剂:它本身对某一反应无活性,但加入催化剂后(一般小于催化剂总量10%)能使催化剂的活性或选择性或稳定性增加。加助催化剂的目的:助活性组份或助载体。 载体:提高活性组份分散度,对活性分支多作用,满足工业反应器操作要求,满足传热传质要求。 四、固体催化剂的层次结构 初级粒子:内部具有紧密结构的原始粒子; 次级粒子:初级粒子以较弱的附着力聚集而成-----造成固体催化剂的细孔; 催化剂颗粒:次级粒子聚集而成-----造成固体催化剂的粗孔; 多孔催化剂的效率因子:η=K多孔/K消除内扩散=内表面利用率<1 五、催化剂的孔内扩散模型 物理吸附:分子靠范德华力吸附,类似于凝聚,分子结构变化不大,不发生电子转移与化学键破坏。 努森扩散(微孔扩散):当气体浓度很低或催化剂孔径很小时,分子与孔壁的碰撞远比分子间的碰撞频繁,扩散阻力主要来自分子与孔壁的碰撞。散系数D K=9700R(T/M)0.5 式中:R是孔半径,cm; T是温度,K;M是吸附质相对分子量。 体相扩散(容积扩散):固体孔径足够大,扩散阻力与孔道无关,扩散阻力是由于分子间的碰撞,又称分子扩散。体相扩散系数D K=νγθ/(3τ)式中ν、γ 分别是气体分子的平均速率和平均自由程;θ 固体孔隙率;τ 孔道弯曲因子,一般在2~7。 过渡区扩散:介于Knudsen扩散与体相扩散间的过渡区。分子间的碰撞及分之与孔道的碰撞都不可忽略 构型扩散:催化剂孔径尺寸与反应物分子大小接近,处于同一数量级时,分子大小发生微小变化就会引起扩散系数发生很大变化。例如:分子筛择形催化 六、催化过程的分类 均相催化:反应物和催化剂处于同一相

内燃机紧耦合三效催化剂性能研究

第31卷第9期 2008年9月 合肥工业大学学报( 自然科学版) JO U RN AL O F H EFEI U N IV ERSIT Y OF T ECH N OL O GY Vol.31No.9 Sept.2008 收稿日期:2007-09-21 基金项目:安徽省教育厅自然科学基金重点资助项目(KJ 2007A061);安徽省科技厅2005年度重点资助项目作者简介:王继先(1950-),男,安徽萧县人,安徽农业大学教授,硕士生导师. 内燃机紧耦合三效催化剂性能研究 王继先1, 王大祥2, 黄新林3, 业红玲1, 曹 丽1 (1.安徽农业大学工学院,安徽合肥 230036;2.中国汽车技术研究中心,天津 300162;3.安徽省安凯福田曙光车轿有限公司,安徽合肥 230001) 摘 要:催化剂是整个催化转换器的核心部分,决定催化转换器的主要性能指标。文章详细地介绍了Pd -YCZ 紧耦合型催化剂的制备和加工工艺过程,并通过催化转化率、起燃温度、空燃比特性和抗高温老化能力等实验进行性能测试;实验结果表明,研制的Pd -Y CZ 紧耦合型催化剂性能良好,完全能满足紧耦合型催化剂的使用要求,为紧耦合催化转换器的进一步研制打下了良好的基础。关键词:P d -Y CZ 催化剂;紧耦合;内燃机 中图分类号:T P336;U 482 文献标识码:A 文章编号:1003-5060(2008)09-1386-04 Performance study of engine close -coupling catalyst WANG J-i xian 1 , WA NG Da -x iang 2 , H U ANG Xin -lin 3 , YE H ong -ling 1 , CAO Li 1 (1.C ollege of En gineering,Anh ui Agricultural U nivers ity,H efei 230036,China;2.C hina Automotive Techn ology an d Research Center, Tianjin 300162,C hina; 3.Anhui Ankai Fu tian Shu guan g Axle Co.,Ltd.,H efei 230001,C hina) Abstract:The cataly st is the co re part of a catalytic conv erter,w hich affects main per for mance index es of the catalytic conver ter.The paper presents the Pd -YCZ catalyst design and processing technolog ical pro cess in detail.Per for mance tests o f the Pd -YCZ cataly st are carried o ut in term s of the catalyzed conversio n rate,co mbustion temperature,air -fuel ratio char acteristic and ant-i high temperatur e abil-i ty.T he ex perim ental results show that the per for mance of the Pd -YCZ catalyst is goo d.As a result,it meets w ell w ith the operation requirem ents of the catalytic converter,and it is valuable for further development o f the cataly tic conver ter. Key words:Pd -YCZ catalyst;close -co upling ;engine 0 引 言 紧耦合催化器就是将催化转化器安装在靠近发动机排气口的位置,利用发动机本身的排气高 温对催化器进行迅速加热,达到缩短起燃时间及降低发动机冷起动排放的目的。但由于紧耦合催化器距离发动机排气口较近,当发动机正常工作时进入催化器的排气温度可能会超过1000e ,因此对催化剂的耐高温性要求较高[1]。 目前车用催化剂大都采用贵金属铂(Pt)、铑(Rh)、钯(Pd)作为活性组份,而其中又以钯的耐高温性能最好。由于钯的价格又最低,更适合于国内的经济型轿车[2] 。 选择贵金属钯作为活性组份,同时选择Y (钇)、Ce(铈)和Zr (锆)的复合氧化物作为单钯紧耦合催化剂的热稳定助剂,制得储氧能力较好的单钯紧耦合催化剂,简称为Pd -YCZ 紧耦合催化剂。 1 Pd -YCZ 紧耦合催化剂的研发 催化剂是指催化活性组分和水洗涂层的合称,是整个催化转换器的核心部分,决定催化转换器的主要性能指标。图1所示为研发的Pd -YCZ 紧耦合催化技术路线图 [3] 。

三效催化剂

4 三效催化剂反应机理 4.1 参与反应的物种和反应条件 汽油车排气组成成份非常复杂,除和燃料和机油的品质有关外,还受发动机和整车的状况、运行工况及环境条件等因素影响。除氧气O2和氮气N2外,目前已检测到的汽油车排气中的物种约有130多种,其中多数为碳氢化合物及其燃烧、热解的中间产物(丙烷、丙烯、甲醛、丙烯醛等);另外还有水蒸气、氢气H2、CO、CO2、NO2、NO、N2O、SO2、SO3及磷P、铅Pb、锰Mn、钙Ca、锌Zn的化合物和硫酸盐等。三效催化剂的目标反应物主要有丙烷C3H8、丙烯C3H6、CO和NO x等,三效催化目标反应物的浓度一般在10-9─10-6范围内,远小于障碍物N2(>80%)和CO2(>10%)的浓度。这就要求三效催化剂具有很好的选择性,这也是三效催化剂区别于一般工业催化剂的主要特征之一。图35对比了工业催化剂和三效催化剂的工作环境。如图35所示,与工业催化剂相比,车用三效催化剂的工作温度范围在0 ℃以下(冬天冷启动)至1 000 ℃以上,且温度升、降速率很大(骤冷骤热);空速在0~30000 h-1范围内变化;工作压力的变化范围也很大。尤其是三效催化剂目标反应物的浓度一般在10-9~10-6范围内,而有碍物(指不参加反应的惰性组份、杂质及对催化剂有毒害作用的污染物等)浓度大多数在10%以上。因此,相对而言三效催化剂的工作环境更为恶劣。同时,受装车及实际使用条件所限,车用催化剂在使用空间、再生与更换等方面都不如工业催化剂。所以对车用催化剂要求其具有更高的活性、更好的选择性、更强的抗中毒能力及更长的使用寿命。 从理论上说,图2所示的电喷闭环控制系统能精确控制排气气氛空燃比为14.63。但实际上采用图2所示控制系统发动机排气气氛在14.63左右振荡,振荡的频率与幅度与电喷系统的性能有关。如图36所示,电喷系统匹配较好的发动机空燃比变化幅度很小,排气气氛基本维持在理论空燃比附近。若电喷系统匹配不好,排气气氛变化范围较大,会出现过稀或过浓的气氛,从而使排放变差并加重三效催化剂负担。另外,对于多缸发动机,顺序的排气过程造成排气管内存在很强的气流脉冲和偏析,排气温度变化范围也很大。由此可见排气组份在流经三效催化剂时,在时间和空间上都是极不均匀的,从而导致催化剂某些部位不能充分利用而造成浪费;另外一些部位因利用率较大而过早失活。因此在开发三效催化剂时一定要根据发动机的实际情况,结合电喷系统对整个排气系统(尤其是转化器的扩张管形状与锥角等)进行匹配和优化设计。 4.2 三效催化反应历程 如前所述三效催化反应是一类气——固异相界面反应,反应过程包括两相传质、扩散、换热及吸脱附和表面催化反应等过程。反应速率有可能受扩散过程控制,也有可能受吸脱过程或表面反应过程控制。三效催化反应过程可用图37简单表示。 反应物(1或2个以上物种)先从载体孔道的主气流中经传质过程到达氧化铝涂层微孔内,再经扩散到达催化剂活性位。在活性位上,发生吸附、迁移、反应、生成产物、产物脱附等过程完成表面反应,再按相反过程经扩散、传质回孔道内主气流中。汽车排气空速很大,也就是说孔道内气流速率很大,无论反应分子或产物分子在催化剂表面驻留的时间都很短,这就要求三效催化反应过程速度要足够快,效率要足够高。三效催化剂传质、扩散和吸脱附特性等都会影响催化反应的速率,而成为三效催化反应的速控步骤。当催化剂表面温度较低时(如怠速或冷起动),表面反应速率较低,反应过程是速控步骤;当催化剂表面温度较高时,反应速率足够大,微孔内的扩散过程将成为速控步骤。 4.3 三效催化反应机理 所谓三效催化反应是指在三效催化剂表面同时发生对HC和CO的催化氧化反应和对NOx的催化还原反应,其主要化学反应式如下: (1) 氧化反应 2 CO + O2→ 2 CO2 C m H n + (m + n/4)O2→ mCO2 + n/2 H2O 2H2 + O2→ 2H2O

汽车尾气催化剂的进展

汽车尾气催化剂的进展 【摘要】:汽车排放的尾气中含有大量的N0x、HC及CO,对人体危害很大,而高效汽车尾气净化催化剂是实现车外净化、解决这一问题的关键。本文综述了目前国际上催化消除汽车尾气催化剂的研究现状,分析了三效贵金属催化剂、钙钛矿氧化物催化剂、分子筛催化剂等各自的优势和存在的问题。对催化消除机理作了简单的概述,最后对汽车尾气净化催化剂的发展方向提出了展望。 【关键词】汽车尾气;催化剂;净化;贵金属,钙钛型催化剂 1、前言 随着经济社会的进步,我国汽车工业得到了快速发展,汽车尾气造成的环境污染也日益严重.城市汽车尾气污染已成为城市大气不断恶化的主要污染源头。有效治理城市汽车尾气污染,是环境保护专业和汽车业面临的一项紧迫任务。由于全球汽车销量的不断增加,汽车尾气排放造成的大气污染问题受到了人们的更大关注。因此,研究开发催化汽车尾气催化剂便成为汽车尾气催化剂科研的一个主要热点和可行方向。 2、复合型催化剂 2.1、钙铁矿型氧化物(ABO3) 为了降低成本,作为贵金属的替代物,近年来,钙铁矿型氧化物(AB03)在汽车尾气净化方面发挥了越来越重要的作用。钙钛矿结构催化剂的分子式为ABO3.A位通常是La系元素和K,Rb,Sr,Pb等半径0.90-1.65埃的金属离子,B位是过渡金属Ni,Co,Mn,Cr,Cu,Fe,Ti等。AB03的重要性质在于:钙钛矿型氧化物(ABO3)能在维持其基本晶体结构的同时,具有可变价的阳离子和颇多的氧空位,其他体系是难以相比的。由基本结构派生出不同构架的可能性,A和B位阳离子的可替代性使我们可对催化剂的性能进行修整,设计新材料。ABO3作为一种原型体系汇聚了催化领域的众多学科,B位过渡元素离子的活性和选择性是催化研究的主题。Ru、Rh和Pt在B位上的部分替代提高和稳定了ABO3的活性,增强了抗毒性;另一方面,Ru的易挥发性,Rh的氧化扩散,Pt颗粒高温下长大,都由于它们进入了ABO3结构中而被抑制。选择B位上的阳离子和组成比,使之有适当对称能级的轨道,对提高还原N0x 的选择性和三效催化剂的功能尤为重要。1972年Wiswanathen对钙铁矿型氧化物作过系统的评述,其中对LaCo0,的初步检验表明,N0x的高转化率可在C0高浓度时达到,CO和HCx 的高转化率可在C0低浓度时达到。 虽然钙钛矿型氧化物ABO3近来在尾气消除方面得到了很大的发展,但总体来说,这类

三效催化剂资料

对稀燃条件下汽车尾气催化净化是有关汽车排污控制的世界性难题。由于发动机在稀燃条件下工作时,空燃比远大于理论值,燃烧充分,提高燃油经济性,其排放的污染物中CO和HC的含量大幅度下降,但富氧使得尾气中O2及NOx含量较高。目前的铂族金属三效催化剂不适用氧过量条件下的尾气净化,在富氧下NOx还原性能大幅度降低,因而研究稀燃(富氧)条件下的催化净化技术成为控制汽车尾气污染排放的关键技术之一。并且稀燃条件下的催化净化技术对柴油车、压缩天然气和液化石油气车的尾气排放控制也可提供相应的技术平台。 目前,世界各国均是以铂族金属(铂、钯、铑等)或铂族金属与稀土为活性组份,其中铂族金属用量1.5克~2.5克/升。全球每年在汽车催化剂上耗用铂、钯、铑152.1吨,占总消耗量的58.9%。为降低催化剂生产成本,部分取代或全部取代铂族金属的三效催化剂成为近年来研究发展趋势。 近年来,我国以研究、开发低含量铂族金属稀土基三效催化剂为主,工作集中在尽量降低铂族金属含量上,目前铂族金属含量已降至1g/L左右。但由于我国铂族金属资源非常短缺,每年都需花费大量的外汇进口铂族金属;并且近年来国际市场铂族金属价格上涨迅猛,因此研究进一步降低铂族金属用量和以稀土为主,添加其它贱金属氧化物制成非铂族金属汽车尾气净化催化剂已成为当今世界各国研究的重要方向之一。 针对国内燃油稀燃条件和汽车尾气排放的特点,研制开发具有自主知识产权的非铂族金属汽车尾气净化催化剂及配套技术,主要分为以下6个方面: 1)纳米稀土基复合催化剂活性组分和助剂的制备技术 汽车尾气净化催化剂的制备关键技术一是配方,二是工艺。近年来在非铂族金属催化剂上最终确定了几种较为成熟的、三效催化性能较好的催化剂配方。如Ag系列、Au系列催化剂等,这几种催化剂已显示出良好的开发应用前景。同时为给催化剂提供良好的催化环境,并提高催化剂的高温稳定性与使用寿命,我们现已将纳米粉体制备技术等先进技术用于制备活性组分与涂层助剂,由于纳米粉体的尺寸效应,使得催化剂、活性涂层助剂组分更容易达到均质、稳定。其中对活性涂层中应用广泛的Ce-Zr 粉体的研究较为深入。我们对包括Ce-Zr在内的二元和二元以上的复合稀土纳米?br /> 劢 辛硕嗄甑难芯浚 丫 圆 返拇慷取⒕ 唷⒘6取⒈缺砻婊 确矫婺芙 醒细竦目刂疲 ⒕哂幸欢ǖ牟 倒婺!K 没钚酝坎鉉e-Zr粉体高温老化后比表面仍保持25m2/g以上,对催化剂的催化能力与高温稳定性起到了很大促进作用。但仍需对复合纳米粉的修饰与稳定性进行更深入的研究,进一步提高其储氧能力与高温老化后的比表面积。 2)催化剂的活性涂层涂覆工艺 涂层的涂覆工艺对涂层材料的热稳定性和抗热冲击能力有直接的影响,最终影响到催化剂的稳定性和使用寿命。通过对涂层的多种涂覆方法进行考察后,建立了独特的真空多层渐变涂覆技术和热处理工艺,增加催化剂体系的热稳定性和抗热冲击的能力,延长催化剂的使用寿命。使涂层与蜂窝载体之间的结合更为紧密,大幅度提高了涂层的热稳定性和抗热冲击能力。按此方法制备的催化剂经高温老化试验后仍保持较高的活性,显示了良好的应用前景。 3)催化剂热稳定性及抗中毒能力等各种性能评价 主要针对国内燃油中苯系物、不饱和烯烃和硫含量相对较高的特点,提高催化剂抗中毒能力,延长使

稀土催化材料种类用途及其生产现状与发展分析(精)

稀土催化材料种类用途及其生产现状与发展分析 稀土催化材料种类用途及其生产现状与发展分析 一、稀土催化材料的种类 众所周知,我国稀土矿以轻稀土组分为主,其中镧、铈等组分约占60%以上。随着我国稀土永磁材料、稀土发光材料、稀土抛光粉、稀土在冶金工业中等应用领域逐年扩大,国内市场对中重稀土的需求量也快速增加。造成了高丰度的铈、镧、镨等轻稀土的大量积压,导致我国稀土资源的开采和应用之间存在着严重的不平衡。 研究发现,轻稀土元素由于其独特的4f电子层结构,使其在化学反应过程中表现出良好的助催化性能与功效。因此,将轻稀土用作催化材料是一条很好的稀土资源综合利用出路。 催化剂是一种能够加速化学反应,且在反应前后自身不被消耗的物质;加强稀土催化的基础研究既提高生产效率,又节约资源和能源,减少环境污染,符合可持续发展的战略方向。 到目前为止,能够在工业中获得应用的稀土催化材料主要有3类,包括分子筛稀土催化材料、稀土钙钛矿催化材料、以及铈锆固溶体催化材料等,见表1所示。其中分子筛稀土催化材料又可细分为中孔、微孔、介孔、以及纳孔稀土催化材料等几大类,且目前主要用于炼油催化剂。 稀土钙钛矿催化材料由于其制备简单、耐高温、抗中毒等性能优越,目前主要用作环保催化剂,也广泛用于光催化分解水制氢、以及石油化工行业的碳氢化合物重整反应等方面。目前已开发并应用的主要有钙钛矿型稀土复合氧化物催化剂、以及掺杂微量贵金属的稀土钙钛矿型催化剂等。 铈锆固溶体催化材料是应汽车尾气净化市场的需求发展起来的一种稀土催化材料。早期主要利用铈的储氧性能来调节汽车尾气中的氧化还原反应。后来发现单一的铈储氧材料其持久性耐高温性能并不能满足日益发展的汽车尾气催化剂的寿命要求,而添加一些锆可明显改善储氧材料的抗高温性能,从而改善催化剂的耐久性。目前,铈锆固溶体催化材料不仅用于石油化工领域的各种催 化过程,也广泛用于汽车尾气净化、以及其它环保领域。 与传统的贵金属催化剂相比,稀土催化材料在资源丰度、成本、制备工艺、以及性能等方面都具有较强的优势。目前不仅大量用于汽车尾气净化,还扩展到工业有机废气、室内空气净化、催化燃烧、以及燃料电池等领域。自20世纪90年代末以来,发达国家的环保催化剂市场一直以20%速度增长。因此,稀土催化材料在环保催化剂产品市场,特别是在有毒、有害气体的净化方面,具有巨大的应用市场和发展潜力。 二、汽车尾气净化 近年来,随着我国汽车产量及保有量一直呈高速增长势态。自2002年10月以来,我国汽车产量平均增长率超过37%。2002年产量为325万辆, 2003年已达440余万辆。预计2004年汽车产量将超过510万辆。继美国、日本、德国之后,中国2003年汽车产量已超过法国,已成为世界第四大汽车制造国。 汽车的大量使用,使我国许多城市产生了严重的大气污染。治理机动车的排气污染,主要依靠安装含催化剂的三元净化器。由于稀土催化材料可以扩大三效催化剂的操作窗口,提高净化效率和稳定性,在汽车尾气净化方面已获得广泛应用。在全球范围内,仅汽车尾气净化方面的稀土年消耗量可达1.5万吨

合金催化剂及其催化作用和机理

合金催化剂及其催化作用 金属的特性会因为加入别的金属形成合金而改变,它们对化学吸附的强度、催化活性和选择性等效应,都会改变。 (1)合金催化剂的重要性及其类型 炼油工业中Pt-Re及Pt-Ir重整催化剂的应用,开创了无铅汽油的主要来源。汽车废气催化燃烧所用的Pt-Rh及Pt-Pd催化剂,为防止空气污染作出了重要贡献。这两类催化剂的应用,对改善人类生活环境起着极为重要的作用。 双金属系中作为合金催化剂主要有三大类。第一类为第VIII族和IB族元素所组成的双金属系,如Ni-Cu、Pd-Au等;第二类为两种第IB族元素所组成的,如Au-Ag、Cu-Au等;第三类为两种第VIII族元素所组成的,如Pt-Ir、Pt-Fe等。第一类催化剂用于烃的氢解、加氢和脱氢等反应;第二类曾用来改善部分氧化反应的选择性;第三类曾用于增加催化剂的活性和稳定性。 (2)合金催化剂的特征及其理论解释 由于较单金属催化剂性质复杂得多,对合金催化剂的催化特征了解甚少。这主要来自组合成分间的协同效应(Synergetic effect),不能用加和的原则由单组分推测合金催化剂的催化性能。例如Ni-Cu催化剂可用于乙烷的氢解,也可用于环己烷脱氢。只要加入5%的Cu,该催化剂对乙烷的氢解活性,较纯Ni的约小1000倍。继续加入Cu,活性继续下降,但速率较缓慢。这现象说明了Ni与Cu之间发生了合金化相互作用,如若不然,两种金属的微晶粒独立存在而彼此不影响,则加入少量Cu后,催化剂的活性与Ni的单独活性相近。 由此可以看出,金属催化剂对反应的选择性,可通过合金化加以调变。以环己烷转化为例,用Ni催化剂可使之脱氢生成苯(目的产物);也可以经由副反应生成甲烷等低碳烃。当加入Cu后,氢解活性大幅度下降,而脱氢影响甚少,因此造成良好的脱氢选择性。 合金化不仅能改善催化剂的选择性,也能促进稳定性。例如,轻油重整的Pt-Ir催化剂,较之Pt催化剂稳定性大为提高。其主要原因是Pt-Ir形成合金,避免或减少了表面烧结。Ir有很强的氢解活性,抑制了表面积炭的生成,维持和促进了活性。

贵金属三效催化剂的研究进展

贵金属三效催化剂的研究进展 河南科技大学车辆与动力工程学院陈昊王学涛 摘要:本文围绕贵金属三效催化剂为中心,介绍它了的现状,详细描述了它的构成和研究进展。最后,叙述纳米技术在贵金属三效催化剂中的应用。 关键词:贵金属三效催化剂,稀土金属,纳米材料 Abstract:This focus on precious metal three-way catalyst as the center,describing its status. A detailed description of its composition and research progress. Finally,description of nanotechnology in the precious metals in the three-way catalyst applications. Key words:precious metal three-way catalyst,rare earth,nanomaterials 随着我国经济的高速发展,资源的有限性与环境的日益恶化已经对我们的生存空间造成严重的威胁。为了能够的缓解环境的自身净化污染物的负担,有效的脱除废气中的污染物是一个重要途径。废气主要有生活废气和工业废气两部分组成。生活废气大部分是由现代化交通工具排放出来的尾气构成,而工业废气主要是由工厂中的烟气与垃圾焚烧中的烟气组成。开展废气的有效治理,已成为当代环境治理急需解决的重大问题之一。常规的物理化学、生物脱除方法,处理其中的有机物在技术难以完全降解或矿化部分有毒有害有机物。甚至某些中间产物更加有毒有害,对运行成本和设备上的要求较高,限制了这类废气处理技术。自从贵金属三效催化剂的引入,在有毒有害的有机难降解污染物的脱除方面有显著的效果,同时它的高活性、高选择性、高热稳定性及良好的物理性能,能脱除其它大部分的污染物。所以它成为国内外学术界与环境科学与工程界研究的热点与焦点。 1.贵金属三效催化剂的反应机理 贵金属三效催化剂具有高活性、高热稳定性、高选择性、良好物理性能[1],能同时净化废气中的CO、HC和NO x等有害物质。其反应机理如下:氧化反应(氧化催化剂): 2CO+O2→2CO2 4H m C n+(m+4n)O2→2mH2O+4nCO2 (8n+2m)NO+4H m C n→(4n+m)N2+2mH2O+4nCO2 三元反应(三效催化剂):

工业催化试卷及答案

一、单项选择题(每小题1 分,共10 分) 1.为催化剂提供有效的表面和适宜孔结构的是() A.活性组分B.载体 C.助剂D.助催化剂 2.BET等温式属于五种吸附等温线中的类型() A.I B.II C.III D.IV 3.能给出质子的称为() A.B酸B.B碱 C.L酸D.L碱 4.工业上氧化乙烯制环氧乙烷的催化剂是() A.Cu/γ-Al2O3B.Ag/α-Al2O3 C.Ag/γ-Al2O3D.Ni/γ-Al2O3 5.所有金属催化剂几乎都是过渡金属,主要是因为它们______()A.易失去电子B.易得到电子 C.易强烈吸附反应物D.有着d电子结构6.X型分子筛最大孔径约为() A.0.4nm B.0.6nm C.0.7nm D.0.8nm 7.金属在载体上的细微程度用() A.分散度表示B.单层分布表示 C.粒度表示D.比表面表示8.Ziegler-Natta催化属于() A.酸催化B.金属催化 C.金属氧化物催化D.络合催化 9.下面属于n型半导体的是() A.ZnO B.NiO C.Cu2O D.CuO 10.将燃料的化学能转化为电能的电化学装置称为() A.燃料电池B.蓄电池 C.发电机D.燃烧反应器 二、填空题(每空1 分,共10 分) 11.一种良好的工业实用催化剂,应该具有三方面的要求,即活性、选择性和稳定性。12.能给出电子对的固体称为L碱。 13.对固体表面酸的描述包括酸的类型、酸强度和酸量。 14.吸附的逆过程称为脱附。 15.在分子筛结构中,相邻的四面体由氧桥联结成环。 16.研究金属化学键的理论有能带理论、价键理论和配位场理论。 17.Cu的加入使Ni的d带空穴变少。 18.金属氧化物催化剂中直接承担氧化功能的是晶格氧。

三效催化剂的应用

汽车尾气处理——三效催化剂(实习报告) 【前言】20世纪70年代,汽车尾气污染物已成为城市大气主要的人工污染源[1]。造成城市大气污染的主要物质有总悬浮颗粒TSP、二氧化硫SO2、氮氧化物NO x、臭氧O3、一氧化碳CO、重金属和有机污染物等。其中,因汽车排放形成的污染物包括CO、NO x、碳氢化合物HC、硫氧化物SO x、铅Pb和细微颗粒物等[2]。这些污染物严重损害了人类的健康、破坏了人类赖以生存的自然环境。 【摘要】贵金属铂(Pt)、铑(Rh)、钯(Pd)因其优异的三效催化性能而在国内外被广泛用作三效催化剂的活性成分。Rh促进NO x还原,使NO x选择性地还原为N2,对CO有不亚于Pt、Pd的氧化能力;Rh 有较好的抗硫中毒能力。Pt和Pd对CO、HC氧化活性高,Pd对不饱和烃的活性比Pt好,对饱和烃效果稍差,抗S、Pb中毒能力差[9],易高温烧结,与Pb形成合金。其中Pd一般作为氧化型催化剂,但是研究表明,Pd也可作为还原型催化剂,对NO x进行净化。 【关键词】三效催化剂化学组成催化原理制备工艺改进措施 【正文】 一、三效催化剂应用领域

20世纪70年代,汽车尾气污染物已成为城市大气主要的人工污染源[1]。造成城市大气污染的主要物质有总悬浮颗粒TSP、二氧化硫SO2、氮氧化物NO x、臭氧O3、一氧化碳CO、重金属和有机污染物等。其中,因汽车排放形成的污染物包括CO、NO x、碳氢化合物HC、硫氧化物SO x、铅Pb和细微颗粒物等[2]。这些污染物严重损害了人类的健康、破坏了人类赖以生存的自然环境。 我汽车保有量及需求量增长迅速,但目前我国的排放法规对汽车尾气控制要求相对较宽松,汽车整体性能和路况又相对较差,因此,尽管汽车的总保有量与发达国相比还较小,但汽车尾气主要污染物在大气污染物中的分担率却与发达国家相当[2]。2001年11月10日,我国正式成为“世界贸易组织成员”。入世后,我国汽车保有量和需求量将进一步增加,而入世对国内的环境质量要求将更为严格。汽车尾气治理分机内治理和机外治理。三效催化剂(器)是汽车尾气机外治理的主流产品之一。到1998年底,世界上已有三千多亿辆汽车安装有三效催化剂产品,占汽车总量的60%。其中,世界上生产三效催化剂的三大公司——英国的Johnson-Matthey、美国的Engelhard和德国的Degussa占据了该市场的75%的份额[11]。现在国内使用的三效催化剂大多依赖于进口,进口产品价格约在300-400美元每套不等。 二、车用三效催化剂的发展历程 1943和1954美国洛杉矶两次光化学烟雾事件后,各国科研工作者开始关注汽车尾气的污染与防治问题。20世纪60~70年代大多数的文献只集中于对尾气中CO和HC的氧化,即氧化型“二元“催化剂(第1代车用催化剂)的开发与研究[14-18]。当时汽车使用的是含铅汽

雾霾的成因与防治-现代文阅读题在线测试(附答案)_高三语文_在线做题网

雾霾的成因与防治|现代文阅读题在线测试(附答案)_高三语文_在线做题网 雾霾的成因与防治 雾霾,雾和霾的组合,是特定气候条件与人类活动相互作用的结果。高密度人口的经济及社会活动必然会排放大量细颗粒物(PM2.5),一旦排放超过大气循环能力和承载度,细颗粒物浓度将持续积聚。此时如果受静稳天气等影响,极易出现大范围的雾霾。 春季开始,我国中东部地区会逐渐出现轻雾天气。随时间推移,轻雾、雾和霾的范围逐渐加大,程度逐渐加剧;特别是北京天津等地连续雾霾,严重影响市民的生活质量。霾的组成成分非常复杂,包括数百种大气化学颗粒物质。其中有害健康的主要是直径小于10微米的气溶胶粒子,如矿物颗粒物、海盐、硫酸盐、硝酸盐、有机气溶胶粒子、燃料和汽车废气等,对人体和生态环境都有很严重的影响。 在稳定的天气形势下,空气中的污染物在水平和垂直方向上都不容易向外扩散,污染物在大气的浅层积聚,从而导致污染的状况越来越严重。而人为因素一是由于大气污染物排放负荷巨大,远超出环境承载能力。北方在冬季取暖时,大部分地区燃煤量大幅增加,导致大气污染物排放量急剧上升。二是复合型大气污染日益突出。三是汽车尾气污染问题更加突出。 雾霾对公路、铁路、航空、航运、供电系统、农作物生长等均产生重要的不良影响,空气质量下降,影响生态环境,给人体健康带来较大危害。雾霾天气时,空气中往往会带有细菌和病毒,易导致传染病扩散和多种疾病发生。使城市中空气污染物不易扩散,加重了二氧化硫、一氧化碳、氮氧化物等物质的毒性,危害人体健康。尤其冬季遇雾、霾天气时,若空气污染严重,这样可能形成烟尘或黑色烟雾等毒雾,严重威胁人的健康甚至生命。 加强环保立法,完善法律制度是解决包括雾霾在内的大气污染的根本途径。国家可以修改《环境保护法》及《大气污染防治法》等相关环保法律。 工业废气排放是形成雾霾的主要源头。为此,国家一定要加大对工业部门的监管力度,在保证经济高效快速发展不受影响的前提下,尽量减少对化石燃料的使用,或加大对燃料燃烧废气的加工和处理,降低化石燃料占一次能源的比重,增加清洁能源占一次能源的比重。 我国的重化工业主要集中在华北、东北和西北地区。华北地区高耗能的钢铁工业的比重过高,而且中小钢铁企业数量多,能耗高。所以,必须优化钢铁工业布局,减少华北地区的钢铁产能,从而降低化石燃料的燃烧和使用,减少空气中氮氧化物的含量,以减轻雾霾对城市和人体的影响。 汽车废气是污染的一大主要原因,而三效催化剂(TWC)法是净化汽车尾气的有效手段。添加适当的贵金属助剂,如镧、铈、钡等,能够同时除去机动车尾气中的碳氢化合物、一氧化碳和一氧化氮三种污染物。其中铂、钯对一氧化碳、碳氢化合物的氧化脱除具有高活性,而镧具有对一氧化氮优良的催化还原作用,它能选择地将一氧化氮还原为氮气而抑制氨气的生成。 通过我们的共同努力,通过以政府对环境保护与可持续发展的大力治理,相信雾霾天气终将成为历史,我们的生活质量也会大大提高。

第一篇_汽油车用三效催化剂

第一篇汽油车用催化剂 以汽油为燃料的、装用点燃式(Spark Ignition)发动机的车辆(汽油车)的主要排放污染物有3类:一氧化碳CO、碳氢化合物HC和氮氧化物NO x。汽油车排放的碳氢化合物HC是一种混合物,包含数百种具有不同碳原子数的烷烃和烯烃,所以也称总碳氢化合物THC。不同的发动机及同一发动机在不同行驶状态下排放的HC种类和数量变化较大,其主要组分为丙烯C3H6和丙烷C3H8。汽车排放的氮氧化物包括一氧化氮NO和二氧化氮NO2等,主要组分为一氧化氮。车用催化剂通过对HC和CO的催化氧化及对NO x的催化还原,达到催化净化这三种排放污染物的目的,而催化净化技术也是机动车排气污染机外净化的最常用的技术。 1 车用催化剂的发展 车用催化剂已经历了约30年的发展,是催化领域,尤其是异相催化领域开发最为成功的一类催化剂。而实际上车用催化剂的发展是与各国排放法规的发展紧密对应的,日趋严格的排放法规是推动车用催化剂发展的最直接原因。 20世纪中期美国加州洛杉矶地区发生两起典型的、因汽车尾气污染所形成的光化学烟雾事件,导致严重伤亡事件。此后,各国政府在投入大量的人力物力进行机动车排放污染防治的同时,纷纷立法对机动车污染物排放量进行严格控制。1957年,美国加州颁布世界上第一部汽车排放限值标准,以此为起点,日本、美国及欧洲等相继出台全国性的排放法规,对机动车污染问题进行防治。在这一段时期,各国的排放法规主要限制机动车一氧化碳CO 和碳氢化合物HC的排量。相应,大多数有关车用催化剂的研究也主要集中于对CO和HC 的氧化净化,即对“二元”的氧化型车用催化剂的开发,车用氧化型催化剂得到了很好的发展。最初的氧化型催化剂主要采用非贵金属铜Cu、铬Cr、钒V等作为活性组份,后来逐渐采用贵金属钯Pd和铂Pt作为活性组份,以解决非贵金属催化剂抗中毒能力弱、起燃特性差等问题。当时仍采用工业催化剂用的颗粒状氧化铝球作为车用催化剂载体,而颗粒状填充床式催化剂的密度、热容和排气背压都很大而且容易粉化,用于车用催化剂存在很多难以克服的内在的缺陷,所以很快被淘汰出车用催化剂领域。 1952年E.J.Houdry为其蜂窝陶瓷(Honeycomb Ceramic) 载体的发明申请了专利。在这一专利的基础上,1974年美国Corning公司开发出每平方厘米31孔、壁厚0.254mm的以堇青石为原料的蜂窝陶瓷载体,为整装式车用催化剂的开发奠定了基础。此后蜂窝陶瓷载体取代颗粒状氧化铝载体被广泛应用于车用催化剂。目前,孔密度在每平方厘米100孔以上、壁厚在0.1mm以下的蜂窝陶瓷载体已经被开发出,用于应对更为严格机动车排放限值。另外,金属蜂窝载体和碳化硅陶瓷载体的应用,使性能更为优越的车用催化剂开发成为可能。与堇青石蜂窝陶瓷相比,金属蜂窝载体具有更高的机强度、更好的抗热震能力和更低的热容,并且其孔密度要比陶瓷载体高得多,可用于开发应对超低排放标准和零排放标准的车用催化剂;碳化硅陶瓷具有很好的导电性能和优异的耐高温性能,非常适用于歧管催化剂和电加热再生壁流式微粒捕集器的开发。因此近几年来,金属蜂窝载体和碳化硅蜂窝载体的应用越来越受重视。 美国1980年实施的排放法规开始对机动车氮氧化物NO x的排量进行严格限制,单靠机内净化无法满足对NO x的限值要求,而氧化型催化剂对NO x 基本无催化净化作用。起初的解决办法是采用双床(Double bed)催化剂,双床车用催化剂的工作原理如图1所示。发动机在富燃(Rich Burning)条件下工作,排气气氛为还原性,前 图1 双床催化剂示意图

相关文档
最新文档