射流曝气器设计计算问题的探讨

射流曝气器设计计算问题的探讨
射流曝气器设计计算问题的探讨

射流曝气器调研报告

射流曝气器 一射流曝气技术简介 1.射流器的结构 射流曝气系统的核心设备是射流器。射流器是利用射流紊动扩散作用来传递能量和质量的流体机械和混合反应设备,它由喷嘴、吸气室、喉管及扩散管等部件构成。图1是一个典型的单喷嘴射流器结构,也是废水生化处理中常用的曝气用射流器。 2.射流曝气的基本原理 射流器采用文丘里喷嘴,工作水泵出水通过射流器的喷嘴,随着喷嘴直径变小,液体以极高的速度从喷嘴喷射出来,高速流动的液体穿过吸气室进入喉管,在喉管形成局部真空,通过导气管吸入(或压入)的大量空气进人喉管后,在喷水压力的作用下被分割成大量微小的气泡,与水形成混合体。气液混合体通过扩散管向外排出,其速度减慢,压力增强,形成强力喷射流,对废水搅拌充氧。气泡经多次切割,喷射扰动后,变成无数的细小气泡,其表面积很大,使空气中的氧更易快速溶解于水中。由于气泡直径小,上升速度缓慢,从而延长了大气中氧气溶解于水的时间,促使废水和氧气充分混合接触,氧化废水中的还原性物质,杀灭大部分还原菌和其它一些厌氧菌,进而达到处理废水的目的。 3.射流曝气技术的主要性能特点 射流曝气法的优点: (1)射流曝气器混合搅拌作用强,具有较高的的充氧能力、氧利用率和氧动力转移效率。 (2)构造简单、工作可靠、运转灵活、便于调节、不易堵塞、易维修管理。 (3)当采用自吸式射流曝气器时,可取消鼓风机,消除噪音污染。 (4)在射流曝气器喉管内,由于射流的紊动及能量交换作用,形成了剧烈的混掺现象,不仅在瞬间(10-2s)完成氧从气相向液相中的转移,而且射流曝气的工作水流是进水和回流污泥的混合液或曝气池混合液,因此在混合液内迅速地进行着泥(微生物)一水(有机物)一气(溶解氧)三者间的传质与生化反应,这是一个在特定条件下发生的快速生物反应与三相间传质的综合过程。 (5)提高了污泥的活性,基质降解常数较其它活性污泥法高。

曝气器设计

XX建设标准化协会标准 鼓风曝气系统设计规程Design standard of aeration blowing system CECS 97 : 97 主编单位:XX建筑工程学院 审查单位:XX建设标准化协会工业给水排水委员会批准日期:1997年12月30日

前言 现标准《鼓风曝气系统设计规程》CECS 97 :97为XX建设标准化协会标准,推荐给有关单位使用。在使用过程中,请将意见及有关资料寄交XX和平街北口中国XX工程公司XX建设标准化协会工业给水排水委员会(邮编:100029),以便修订时参考。 本规程主编单位:XX建筑工程学院 主要起草人:XX、XX XX建设标准化协会 1997年12月30日

1 总则 1.0.1 为使生物处理曝气系统设计满足工程建设需要,特制定本规程。 1.0.2 本规程包括曝气器、供风管道、风机的选型及机房设计。 1.0.3 本规程适用于新建、扩建、改建的城市污水处理工程或工业污水处理工 程中的生物处理鼓风曝气系统的设计计算。 1.0.4 鼓风曝气系统设计除按本规程执行外,尚应符合现行有关的国家标准的规 定。 2 术语 2.0.1 曝气器aerator 用于水中充氧兼搅拌的基本器具或设备。 2.0.2 微孔曝气器fine bubble aerator 空气通过多孔介质,在水中产生气泡直径小于3mm的高效曝气器。 2.0.3 中大气泡曝气器middle and large air bubble aerator 空气通过曝气器在水中产生气泡直径大于3mm以上的曝气器。 2.0.4 可张中、微孔曝气器openable middle and fine bubble aerator 空气通过具有弹性材质的微孔曝气器或软管时,其上孔缝张开,停止供气时孔缝闭合的一种曝气器。 2.0.5 双环伞型曝气器double rings umbrella aerator 一种具有双环类似伞状的,在水中产生中大气泡的曝气器。 2.0.6 曝气器标准状态充氧性能oxygenc transfer performance 指单个曝气器在大气压力为0.1Mpa、水温为20℃时,对清水的充氧性能。 2.0.7 鼓风曝气系统aeration blowing system 指由风机、管路、曝气器、除尘器为主组成的系统。 3 鼓风曝气器 3.1 一般规定 3.1.1 根据污水性质、环境要求、管理水平、经济核算,工程设计中可选用鼓 风曝气、机械表面曝气、射流曝气等方式,一般宜选用鼓风曝气式。 3.1.2 选用鼓风曝气系统时曝气器应符合下列要求: 1、在某一特定曝气条件下,既能满足曝气池污水需氧要求,又能达到混 合搅拌,池内无沉淀的要求; 2、曝气器既要有较高充氧性能,又应有较强混合搅拌能力。同时还应有 不易堵塞、耐腐蚀、坚固、布气均匀、操作管理及维修简便,成本低、 阻力小和寿命长等性能; 3、选用曝气器所组成的鼓风曝气系统,从整体上应具有节约能量、组成 简单、安装及维修管理方便,易于排除故障等优点。 3.1.3 鼓风曝气器分为微孔曝气器及中大气泡曝气器。大、中型城市污水处理

污水处理厂的工艺流程设计

目录 设计任务书 2 第一章环境条件 4 第二章设计说明书 5 第三章污水厂工艺设计及计算 7 第一节格栅 7 第二节推流式曝气池 9 第三节沉淀池 11 第四节混凝絮凝池 14 第五节气浮池 15 第六节污泥浓缩池 17 第七节脱水机房 19 第八节其他 19 第四章水头损失 21 第五章总结与参考文献 22

设计任务书 1 设计任务: 某化工区2.5万m3/d污水处理厂设计 2 任务的提出及目的,要求: 2.1 任务的提出及目的: 随着经济飞速发展,人民生活水平的提高,对生态环境的要求日益提高,要求越来越多的污水处理后达标排放。在全国乃至世界范围内,正在兴建及待建的污水厂也日益增多。有学者曾根据日处理污水量将污水处理厂分为大、中、小三种规模:日处理量大于10万m3为大型处理厂,1-10m3万为中型污水处理厂,小于1万m3的为小型污水处理厂。近年来,大型污水处理厂建设数量相对减少,而中小型污水厂则越来越多。如何搞好中、小型污水处理厂,特别是小型污水厂,是近几年许多专家和工程技术人员比较关注的问题。 根据所确定的工艺和计算结果,绘制污水处理厂总平面布置图,高程图,工艺流程图。 2.2 要求: 2.2.1 方案选择合理,确保污水经处理后的排放水质达到国家排放标准 2.2.2 所选厂址必须符合当地的规划要求,参数选取与计算准确 2.2.3 全图布置分区合理,功能明确;厂前区,污水处理区污泥处理区条块分割清楚。延流程方向依次布置处理构筑物,水流创通。厂前区布置在上风向并用绿化隔离带与生产区隔离,以尽量减少对厂前区的影响,改善厂前区的工作环境。 2.2.4 构筑物的布置应给厂区工艺管线和其他管线设有余地,一般情况下,构筑物外墙距道路边不小于6米。 2.2.5 厂区设置地坪标高尽量考虑土方平衡,减少工程造价,同时满足防洪排涝要求。 2.2.6 水力高程设计一般考虑一次提升,利用重力依次流经各个构筑物,配水管的设计需优化,以尽量减少水头损失,节约运行费用, 2.2.7 设计中应该避免磷的再次产生,一般不主张采用重力浓缩池,而是采用机械浓缩脱水的方式,随时将排出的污泥进行处理。 2.2.8 所选设备质优、可靠、易于操作。并且设计必须考虑到方便以后厂区的改造。 2.2.7 附有平面图,高程图各一份。 3 设计基础资料: 该区为A市重要的工业及化工区,化工业门类比较齐全,主要为石油化工类,并规模较大,具有的化工厂目前为十多家,每天排出生活污水量8000m3左右,工业废水量为18000m3,污水BOD、COD、SS、酸、碱、硫化物、石油、苯等浓度较高,若未经处理处理直接排海,将会对生态环境造成重大影响,根据化工区规划,必须建设一座污水处理厂。 3.1 水量 最大时水量:1042m3/h 总设计规模为25000m3/d。(远期设计规模为:100000 m3/d)

射流曝气技术简介

射流曝气技术简介 1. 1射流器的结构 射流曝气系统的核心设备是射流器。射流器是利用射流紊动扩散作用来传递能量和质量的流体机械和混合反应设备, 它由喷嘴、吸气室、喉管及扩散管等部件构成[ 2 ] 。图1 是一个典型的单喷嘴射流器结构,也是废水生化处理中常用的曝气用射流器。 图1射流器结构 1. 喷嘴; 2. 吸气室; 3. 喉管; 4. 扩散管; 5. 尾管 1. 2射流曝气的基本原理 射流器采用文丘里喷嘴, 工作水泵出水通过射流器的喷嘴,随着喷嘴直径变小,液体以极高的速度从喷嘴喷射出来,高速流动的液体穿过吸气室进入喉管,在喉管形成局部真空,通过导气管吸入(或压入)的大量空气进入喉管后, 在喷水压力的作用下被分割成大量微小的气泡, 与水形成混合体。气液混合体通过扩散管向外排出, 其速度减慢, 压力增强,形成强力喷射流,对废水搅拌充氧。气泡经多次切割,喷射扰动后, 变成无数的细小气泡, 其表面积很大,使空气中的氧更易快速溶解于水中。由于气泡直径小,上升速度缓慢,从而延长了大气中氧气溶解于水的时间,促使废水和氧气充分混合接触,氧化废水中的还原性物质,杀灭大部分还原菌和其它一些厌氧菌,进而达到处理废水的目的[ 3 ] 。 1. 3废水生物处理中射流曝气的独特作用 射流曝气作为一种曝气充氧方法, 它的作用不仅仅是作为一种气泡扩散充氧装置(如鼓风曝气中的各种空气扩散装置) , 也不能单纯看作是一种机械曝气设备,而是介于两者之间,利用气泡扩散和水力剪切两个作用达到曝气和混合的目的[ 4 ] 。实际上,在活性污泥法废水处理系统中,由于通常采用废水与活性污泥的混合物作为工作介质, 当吸入(或压入)空气后在射流器的喉管内发生相当剧烈的混合作用。这一混合作用一方面进行着气- 液- 固(活性污泥) 之间的紊动扩散与能量交换及气-液- 固三相间的转移过程, 还有更加突出的是发生在被高速剧烈紊动“切割”得非常细微的气泡、活性污泥的微小颗粒以及废水(液相)中有机物这三者之间的生物学上的作用。因此, 要评价射流曝气用于活性污泥法的作用,如果仅仅作为曝气充氧装置来理解就没有充分反映这一综合过程的全部机理。 这一综合过程的机理应当理解为在活性污泥微生物存在的条件下,发生在射流器喉管部分的高速紊动过程中的生物学特性与三相间物理力学特性的综合过程。气体经高速水流吸入后经喉管压缩,气、液相剧烈混合,此时气泡刚形成, 吸氧率高; 气泡进一步在管道中受剧烈揽动,粉碎成细微气泡, 使气、液接触面积增大,也提高吸氧率。尤其是当工作介质为废水与活性污泥混合物时, 喉管的紊动搅拌作用不只限于微小气泡对废水的充氧作用, 同时还发生气- 固、液- 固间等多方面的作用,特别是当活性污泥被“切割”成非常细小的颗粒,无疑将大大增加活性污泥的表面更新率与吸附表面积,从而使活性污泥的细小絮状体能与气泡中的氧及废水中的有机物有充分的接触吸附作用, 使吸附能力大大提高。这是其它类型曝气设备所不能达到的[ 4 ] 。 1. 4射流曝气技术的主要性能特点

树脂塔设计计算

树脂塔设计计算 一、树脂用量的计算: 1. 罐体直径的确定 D=(4A/π)1/2 A=Q/v 式中: D——罐体直径,m; A——罐体截面面积,m2; Q——处理水量,m3/h; v——过流速度,一般取值:钠型树脂20-30m/h,磺化煤10-20m/h,混床40-60m/h; 2. 树脂装填量计算 V=1.2×1000QTc/(q/2) 式中: V——树脂装填体积,L; 1.2——安全系数 Q——处理水量,m3/h; T——树脂塔再生周期,h; c——需去除的硬度,mmol/L; q——树脂工作交换容量※,mmol/L; 3. 树脂填装高度计算 H=4V/(1000πD2) 式中: H——树脂装填高度,m; 二、再生剂耗量计算: 1. 再生水耗量 a 反洗用水量: V f=v f·T f·πD2/240 式中: V f——反洗用水量,m3; v f——反洗流速,m/h,阳离子交换树脂为10-15m/h,阴离子交换树脂为8-10m/h; T f——反洗时间,min,通常为20-30min; b 置换用水量: V H=v H·T H·πD2/240 式中: V H——置换用水量,m3; V H——置换流速,m/h,一般<5m/h; T H——置换时间,min,通常为20-30min; c 正洗水量: V Z=a·V 式中: V Z——正洗用水量,m3;

a ——正洗水耗,m3/ m3树脂,正洗流速一般为10-15m/h,正洗时间为5-15min; ※计算过程中需注意单位的统一。由于离子交换树脂自身所能交换的离子(Na+、H+、O H-)化合价通常为一价,而处理水中需要被交换的离子(Ca2+、Mg2+)通常为二价,即两个树脂单元方能交换掉一个二价离子。此处按照需要被交换的离子为二价离子计,这是在计算过程中需注意的地方。

射流曝气说明书

宜兴市荣盛达环保有限公司位于风景秀丽的太湖之滨、世界闻名的陶都——宜兴市。公司专业从事水处理环保设备的制造、安装、调试和运行管理,致力于环保领域新工艺、新产品、新材料的开发、设计与应用。公司创立于1995年05月,前身为宜兴市盛达环保成套设备厂(1979年)和宜兴市荣盛达环保成套设备有限公司(1987年) 。公司在天津、重庆、广州、南京、西安、厦门、九江、株州等地设立了11处办事机构,并于2002年在上海成立上海荣盛达环保工程有限公司,从而初步实现了公司的规模化经营和跳跃式发展。 公司占地约36000m2(总部20000m2),建筑面积4700m2(总部3000m2)。公司拥有标准化厂房3座,配套了先进、完善的加工、检测设备。目前在职员工123名,中专以上学历的占67.65%,本科以上学历的有27名。高级工程师3名(另有7名外聘),工程师19名,助工5名,管理人员34名,技术工人42名,销售人员27人。经过20多年的艰苦奋斗,公司总资产已从30万元积累至2004年的2886万。公司成立至今已累计上缴国家利税4500多万元,从而确立了在宜兴地区的明星企业地位。 在全体员工共同努力下,公司于1999年11月首次通过ISO9002质量体系认证,2002年4月通过ISO9001。公司产品函盖水处理各领域,主要有三十多个品种三百多种规格,TWZ综合污水处理装置、QF气浮净化设备、QCS上流式厌氧污泥床等设备和装置在1995年通过江苏省科委技术鉴定,1998年成为江苏省环境保护推荐产品,1999年获得国家环保认定证书,最新研制的具有国际领先水平的DJAM型碟式射流曝气器于2004年4月通过国家环保总局科技标准司的科技成果鉴定和新产品鉴定,2005年获得国家重点新产品称号。公司还于2001年获得江苏省环境保护设施运行资质证书。 公司的质量方针是:科学管理、优质高效、不断改进、满足顾客! 质量目标是:产品一次合格率大于95%,今后三年每年递增1%;顾客意见处理率100%,处理满意率力争100%! 公司一贯以高标准、严要求组织设计、生产、安装和服务,今后仍将严格按照ISO9001质量管理体系的要求进行设备的设计、制作和服务,为用户提供质量上乘、性能可靠、服务完善、价格便宜的产品。

臭氧技术及配套技术

臭氧技术及配套技术 臭氧用于水处理的浓度单位一般是按mg/L计算,这与空气型常用mg/m3差了一千倍,由此可知,水处理需要高浓度、大发生量的臭氧才能应用,臭氧发生量/小时,负载功率电耗,气源干燥度,产品寿命等是其主要指标。 气水混合装置是臭氧用于水处理必不可少的配套技术,虽然臭氧易溶于水,溶解度比氧气高十几倍,但必须采用一种技术手段使臭氧与水充分接触,接触面积、时间、臭氧浓度、压力等都是混合效率的决定因素。目前,臭氧与水的混合主要有以下几种: 气法:这是一种传统的简便方法,是靠臭氧气经压缩后利用某种泡化器件,让臭氧形成气泡与水充分接触,不难看出,气泡越小、越多、深度越大,效果越好。 射流法:也称文丘里法,是利用水在管道中流动时通过装置变径加快流速形成负压吸气,通入臭氧与水在管路中混合。这种装置在安装时,一是射流器须与管路配套(以管径为准),二是射流器中的水流向不能存在逆压,避免水进入臭氧发生罐,三是射流器延出管路必须在2.5m 以上,越长效率越高,四是流速要达到一定量,保证负吸形成,五是器件与管路必须用不锈钢或塑料材质,杜绝用钢、铁以免消耗臭氧与氧化腐蚀。射流法效率较高,但安装设计与要求应相当严格。 涡轮负吸法:这种方式是通过水泵吸程加装气路,在供水时形成负吸将臭氧带入水中,效率较高。

其原理与文丘里法基本相同,也广为采用。其安装要求与文丘里法也大致相同,需要特别注意的是,其气量控制,气量大时会影响水泵供水。 混合塔法:这种方法是通过一个较高的装置塔,将水由高处喷下形成雾状,将臭氧气自下方通入并使之与水流形成逆行,使臭氧气与水充分接触形成臭氧水。此方式有无填料和有填料两种,材质是十分讲究的,效果也很好,只是成本造价较高。 电控是水处理臭氧发生器必不可少的部分,直接关系到设备的开停及使用,一般分为、自动、数控三种模式,目前使用闭环控制的还较少,电控的设计是根据单机发生要求而定的,不一而足。 结构系统除将以上技术组装到一起外,还要考虑高浓度臭氧气的密封问题,避免泄漏伤及人体,必要时还要具备对剩余排除臭氧气的催化处理技术,要求都是很严格的。

软水器设计计算

反洗流量=罐体面积×单位面积反洗流量 例如:现有一台离子交换器直径为1000mm(39.37英寸),确定其反洗流量。 设:单位面积反洗流量为 5 gpm/ft2 反洗流量=/4×(39.37/12)2×5=42.24gpm (1英尺=12英寸) (2)再生剂耗量确定: 为了确保出水水质,美国通常低压蒸气锅炉选用240gClNa/L再生树脂或查阅树脂公司提供的资料根据出水要求及进水水质来确定再生盐耗。 (3)再生剂浓度 全自动软水器的进盐是通过射流器将盐箱中的饱和溶液吸入软水器,盐液的浓度是由注入射流器的水流量及被吸入的饱和盐液量的比例来决定,在设计射流器时已通过计算使得在一定期的工作压力(20-60psi)下,其注入软水器的盐液浓度在8%-12%之间。 (4)再生液流速 全自动软水器的再生液流速是通过选择合适的射流器来加以控制。 例如:上例中的软水器放入了660L(23.3 ft3)阳离子交换树脂,根据标准, 设:单位树脂的再生液流量为0.5 gpm/ft3 交换器再生液流量=23.3×0.5=11.6gpm (1ft3=28.3L) (5)再生液耗量 全自动软水器的再生剂量是通过控制盐补水量来达到控制再生剂量。 例如:上例中通过查阅树脂资料及进、出水质确定:再生盐耗为每升树脂使用160克盐,再生总盐耗量=单位树脂再生盐耗×树脂量=160×660=105600g=105.6kg,根据饱和盐液浓度为26%左右,由溶液浓度计算公式得到:溶液浓度(%)=溶质/(溶质+溶剂)×100%,溶剂=溶质×[100%-溶液浓度(%)]/溶液浓度(%),盐箱补水量=[100.5× (100-26)]/26=298.8kg=298.8L=78.8加仑。 另:英制简易算法: 设:饱和盐液每一加仑水溶解1.35kg盐

曝气系统设计计算

曝气系统设计计算 方法一 (1)设计需氧量AOR AOR二去除BOD5需氧量-剩余污泥中BODu氧当量+NHi -N消化需氧量-反消化产氧量 碳化需氧量: 9 =役二亠)-1.42幷=440000.003)_j 42x4399 = 9607(畑Q/〃) ^=YQ(S0-S c)-K d xVxX N1LVSS =X44000X () X4X15=4399kg/d 消化需氧量: D2 = 4.57(?(N()- NJ-4.57 x 12.4%x P A = 4.57x44OOOx(56-2)x—1—-4.57x12.4% x 4399 ' 7 1000 =8365畑Q / d Di 碳化霊氧量(kgO2 /d) D:--- 消化霊氧量(kgQ / d) P x---- 剩余污泥产量kg/d Y一一污泥增值系数,取。 k d一一污泥自身氧化率,。 S“ - 总进水BOD5 (kg/m3) 0.68

S c ——二沉出水 BOD 5 (kg/m 3 ) X MLVSS 一一挥发性悬浮固体(kg/m 3) --- 总进水氨氮 M ——二沉出水氨氮 Q---- 总进水水量m 3/d 每氧化lmgNHQN 需消耗碱度;每还原lmgNO 3 -N 产生碱度;去除 lmgBODs 产生碱度。 剩余碱度S ALK F 进水碱度-消化消耗碱度+反消化产生碱度+去除BOD5产 生碱度 假设生物污泥中含氮量以%计,则: 每日用于合成的总氮二*4399二545 即,进水总氮中有 545*1000/44000二L 被用于合成被氧化的NH1N 。 用于合成被氧化的NH 「-N :=(进水氨氮量一出水氨氮量)-用于合成的总氮量 =L 所需脱硝量二(进水总氮-出水总氮)-28二二L 需还原的硝酸盐氮量: 因此,反消化脱氮产生的氧量: D 5 = 2.86弘=2.86x545.6 = \560kgOJd 总需氧量: 44000x12.4 1000 = 545.6〃//乙

曝气系统设计计算

曝气系统设计计算 方 法 一 (1)设计需氧量AOR AOR=去除BOD 5需氧量-剩余污泥中BOD u 氧当量+NH 4+-N 消化需氧量-反消化产氧量 碳化需氧量: ()0e d MLVSS =YQ S S -K V X x P -?? =0.6×44000×(0.248-0.003)-4434.1×4×1.75/15=4399kg/d 消化需氧量: D 1——碳化需氧量()2/kgO d D 2——消化需氧量()2/kgO d x P ——剩余污泥产量kg/d Y ——污泥增值系数,取0.6。 k d ——污泥自身氧化率,0.05。 0S ——总进水BOD 5(kg/m 3) e S ——二沉出水BOD 5(kg/m 3) MLVSS X ——挥发性悬浮固体(kg/m 3) 0N ——总进水氨氮 ( )()() 0e 12 440000.2480.0031.42 1.4243999607/0.68 0.68 x Q S S D P kgO d -?-=-=-?=()()002024.57 4.5712.41 4.5744000562 4.5712.4%43991000 8365/e x D Q N N P kgO d =--??=??-?-??=

e N ——二沉出水氨氮 Q ——总进水水量m 3 /d 每氧化 1mgNH 4+-N 需消耗碱度7.14mg ;每还原1mgNO 3—-N 产生碱度3.57mg ;去除1mgBOD 5产生碱度0.1mg 。 剩余碱度S ALK1=进水碱度-消化消耗碱度+反消化产生碱度+去除BOD 5产生碱度 假设生物污泥中含氮量以12.4%计,则: 每日用于合成的总氮=0.124*4399=545 即,进水总氮中有 545*1000/44000=12.4mg/L 被用于合成被氧化的NH 4+-N 。 用于合成被氧化的NH 4+-N : =56-2-12.4 =41.6mg/L 所需脱硝量 =(进水总氮-出水总氮)-28=68-12-12.4 =43.6mg/L 需还原的硝酸盐氮量: 因此,反消化脱氮产生的氧量 : 总需氧量: AOR =9607+8365-1560=164122/kgO d 最大需氧量与平均需氧量之比为1.4,则 去除每1kgBOD 5的需氧量 322.86 2.86545.61560/T D N kgO d ==?=123D D D =+-max 221.4 1.41641222977/957/AOR R kgO d kgO h ==?==() () 016412 440000.2480.003e AOR Q S S = -= -4400012.4 545.6/1000T N mg L ?===-(进水氨氮量—出水氨氮量)用于合成的总氮量

文丘里管射流器的主要性能

文丘里管射流器的主要性能参数研究

在研究文丘里管工作原理的基础上,提出了确定文丘里管射流器的主要性能参数:耗水量与吸风量的计算方法,并通过实验验证了该计算方法的正确性,有利于文丘里管射流器在煤矿降尘工作中的进一步推广。 关键词:引射;吸风量;水雾活塞 随着放顶煤工艺的逐渐推广,放煤口成为放顶煤综采工作面的最大产尘源之一。放煤时的瞬时粉尘浓度有时可高达万余mg/m3,对作业人员的身体健康危害性极大。喷雾方式控制煤矿粉尘是经济的,也是有效的。在适中的喷雾压力和较少耗水量的情况下,文丘里式喷雾降尘装置对煤矿粉尘,尤其是呼吸性粉尘的降尘效果非常明显[1]。

图1 文丘里管工作原理示意图 1 文丘里管射流器的工作原理 1.1 文丘里管的工作原理 如图1所示,高速水流经过文丘里管的变径后,速度急剧增大,压力减少,从喷嘴喷出的水雾锥体,在直径等于引射管内径后受管壁约束而变为圆柱体,此水雾圆柱称为水雾活塞,随着水雾从喷嘴喷出,水雾活塞沿引射管高速运动并从喷射出口高速射出,水雾锥的后部形成真空,外部空气源源不断地从吸气口吸入引射管,这些新吸进的气体在引射喷射管内与水雾锥碰撞混合,并随水雾从喷射口喷出,若吸入的是含尘气体,则粉尘被强制在水雾中运动湿润或粘结成较大颗粒被喷射出引射管后,很快失去在空气中的悬浮能力而降落下来,从而实现降尘的目的[2]。 1.2 文丘里管中流体流动特性分析 文丘里管是利用流体在变截面管道中流速、压

力和状态的变化来实现预期的能量转换的目的。因为高压喷雾并引射含尘空气,所以可根据稀颗粒群两相流动中的均相流动模型,可把流经文丘里管的雾流和含尘空气假定为均匀、理想的流体,流动过程也是可逆且绝热的[3]。 文丘里管中的混合流体经过管中变径后,马赫数会有突变,即速度会有很大的变化。在喷嘴结构参数确定的条件下,文丘里管中的水流速度直接影响整个装置的吸风能力,所以,有必要进一步研究文丘里管射流器在不同喷嘴开口条件下的吸风量与耗水量的大小。 2 耗水量及吸风量的理论计算 2.1 耗水量的计算[4] 根据薄壁孔口流量计算及管嘴流量计算公式:

曝气系统设计计算

( ) -1.42P = 44000 ? (0.248 - 0.003) -1.42 ? 4399 = 9607 (kgO / d ) 0.68 0.68 = 4.57 ? 44000 ? (56 - 2)? - 4.57 ?12.4% ? 4399 x x x 曝气系统设计计算 方法一 (1)设计需氧量 AOR AOR=去除 BOD 5 需氧量-剩余污泥中 BOD u 氧当量+NH 4+-N 消化需氧量-反消化 产氧量 碳化需氧量: D 1 = Q S 0 - S e x 2 P =YQ (S 0 - S e )-K d ? V ? X ML VSS =0.6×44000×(0.248-0.003)-4434.1×4×1.75/15=4399kg/d 消化需氧量: D 2 = 4.57Q (N 0 - N e )- 4.57 ?12.4 0 0 ? P 1 1000 = 8365kgO 2 / d D 1——碳化需氧量 (kgO 2 / d ) D 2——消化需氧量 (kgO 2 / d ) P ——剩余污泥产量 kg/d Y ——污泥增值系数,取 0.6。 k d ——污泥自身氧化率,0.05。 S 0 ——总进水 BOD 5(kg/m 3) S e ——二沉出水 BOD 5(kg/m 3) X MLVSS ——挥发性悬浮固体(kg/m 3) N 0 ——总进水氨氮

N T = = 545.6mg / L = - N e ——二沉出水氨氮 Q ——总进水水量 m 3/d 每氧化 1mgNH 4+-N 需消耗碱度 7.14mg ;每还原 1mgNO 3—-N 产生碱度 3.57mg ;去除 1mgBOD 5 产生碱度 0.1mg 。 剩余碱度 S ALK1=进水碱度-消化消耗碱度+反消化产生碱度+去除 BOD 5 产生碱 度 假设生物污泥中含氮量以 12.4%计,则: 每日用于合成的总氮=0.124*4399=545 即,进水总氮中有 545*1000/44000=12.4mg/L 被用于合成被氧化的 NH 4+-N 。 用于合成被氧化的 NH 4+-N : (进水氨氮量—出水氨氮量)用于合成的总氮量 =56-2-12.4 =41.6mg/L 所需脱硝量 =(进水总氮-出水总氮)-28=68-12-12.4 =43.6mg/L 需还原的硝酸盐氮量: 44000 ?12.4 1000 因此,反消化脱氮产生的氧量 : D 3 = 2.86N T = 2.86 ? 545.6 = 1560kgO 2 / d 总需氧量: AOR = D 1 + D 2 - D 3 =9607+8365-1560=16412 kgO 2 / d 最大需氧量与平均需氧量之比为 1.4,则 AOR max = 1.4R = 1.4 ?16412 = 22977kgO 2 / d = 957kgO 2 / h 去除每 1kgBOD 5 的需氧量 = = AOR Q (S 0 - S e ) 16412 44000 (0.248 - 0.003) = 1.5kgO 2 / kgBOD 5

文丘里管射流器的主要性能参数研究

文丘里管射流器的主要性能参数研究 在研究文丘里管工作原理的基础上,提出了确定文丘里管射流器的主要性能参数:耗水量与吸风量的计算方法,并通过实验验证了该计算方法的正确性,有利于文丘里管射流器在煤矿降尘工作中的进一步推广。 随着放顶煤工艺的逐渐推广,放煤口成为放顶煤综采工作面的最大产尘源之一。放煤时的瞬时粉尘浓度有时可高达万余 mg/m 3 ,对作业人员的身体健康危害性极大。喷雾方式控制煤矿粉尘是经济的,也是有效的。在适中的喷雾压力和较少耗水量的情况下,文丘里式喷雾降尘装置对煤矿粉尘,尤其是呼吸性粉尘的降尘效果非常明显 [1] 。 图 1 文丘里管工作原理示意图

1 文丘里管射流器的工作原理 1.1 文丘里管的工作原理 如图 1 所示,高速水流经过文丘里管的变径后,速度急剧增大,压力减少,从喷嘴喷出的水雾锥体,在直径等于引射管内径后受管壁约束而变为圆柱体,此水雾圆柱称为水雾活塞,随着水雾从喷嘴喷出,水雾活塞沿引射管高速运动并从喷射出口高速射出,水雾锥的后部形成真空,外部空气源源不断地从吸气口吸入引射管,这些新吸进的气体在引射喷射管内与水雾锥碰撞混合,并随水雾从喷射口喷出,若吸入的是含尘气体,则粉尘被强制在水雾中运动湿润或粘结成较大颗粒被喷射出引射管后,很快失去在空气中的悬浮能力而降落下来,从而实现降尘的目的 [2] 。 1.2 文丘里管中流体流动特性分析 文丘里管是利用流体在变截面管道中流速、压力和状态的变化来实现预期的能量转换的目的。因为高压喷雾并引射含尘空气,所以可根据稀颗粒群两相流动中的均相流动模型,可把流经文丘里管的雾流和含尘空气假定为均匀、理想的流体,流动过程也是可逆且绝热的 [3] 。 文丘里管中的混合流体经过管中变径后,马赫数会有突变,即速度会有很大的变化。在喷嘴结构参数确定的条件下,文丘里管中的水流速度直接影响整个装置的吸风能力,所以,有必要进一步研究文丘里

曝气池设计

曝气池设计计算..

第二部分:生化装置设计计算书 说明: 本装置污水原水为石油炼制污水、生活污水,要求脱氮。污水处理时经隔油、LPC除油、再进行生化处理,采用活性污泥工艺。根据处 曝气池设计计算备注 一、工艺计算(采用污泥负荷法计 算) 理要求选用前置反硝工艺——缺氧(A)、一级好氧(O1)、二级好氧(O2)三级串联方式,不设初沉池。 本设计的主要内容是一级好氧装置的曝气池、二沉池及污泥回流系统。 曝气池设计计算部分

曝气池设计计算部分 1.处理效率E %100%100?=?= La Lr La Lt La E - 式中 La ——进水BOD 5浓度,kg/m 3, La=0.2kg/m 3 Lt ——出水BOD 5 浓度,kg/m 3,Lt =0.02kg/m 3 Lr ——去除的BOD 5浓度,kg/m 3 Lr=0.2-0.02=0.18kg/m 3 %90%1002 .002.02.0=?-=E 2.污水负荷N S 的确定 选取N S =0.3 kgBOD 5/kgMLVSS ·d 3.污泥浓度的确定 (1)混合液污泥浓度(混合液悬浮物浓度)X (MLSS) ()SVI 110 3 R r R X +?= 式中 SVI ——污泥指数。根据N S 魏先勋 305页 BOD 去除率 E = 90% N S =0.3 三 废 523页

值,取SVI=120 r——二沉池中污泥综合 指数,取r=1.2 R——污泥回流比。取 R=50% 曝气池设计计算备注 曝气池设计计算部分

曝气池设计计算部分 () 3 .35.01120102.15.03=+???=X kg/m 3 (2)混合液挥发性悬浮物浓度X ' (MLVSS) X '=f X 式中 f ——系数,MLVSS/MLSS , 取f =0.7 X '=0.7×3.3=2.3 kg/m 3 (3)污泥回流浓度Xr 3 33 kg/m 102.1120 10 10=?=?=r SVI Xr 4.核算污泥回流比R ()R R X Xr += 1 R R )1(3.310+?= R =49%,取50% 5.容积负荷Nv Nv =X 'Ns =2.3×0.3=0.69 X = 3.3kg/ m 3 魏先勋 305页 X ' =3.3kg /m 3 高俊发 137页 Xr =10 kg/m 3

文丘里管射流器的主要性能参数研究

在研究文丘里管工作原理的基础上,提出了确定文丘里管射流器的主要性能参数:耗水量与吸风量的计算方法,并通过实验验证了该计算方法的正确性,有利于文丘里管射流器在煤矿降尘工作中的进一步推广。 关键词:引射;吸风量;水雾活塞 随着放顶煤工艺的逐渐推广,放煤口成为放顶煤综采工作面的最大产尘源之一。放煤时的瞬时粉尘浓度有时可高达万余mg/m3,对作业人员的身体健康危害性极大。喷雾方式控制煤矿粉尘是经济的,也是有效的。在适中的喷雾压力和较少耗水量的情况下,文丘里式喷雾降尘装置对煤矿粉尘,尤其是呼吸性粉尘的降尘效果非常明显[1]。 图1 文丘里管工作原理示意图 1 文丘里管射流器的工作原理 1.1 文丘里管的工作原理 如图1所示,高速水流经过文丘里管的变径后,速度急剧增大,压力减少,从喷嘴喷出的水雾锥体,在直径等于引射管内径后受管壁约束而变为圆柱体,此水雾圆柱称为水雾活塞,随着水雾从喷嘴喷出,水雾活塞沿引射管高速运动并从喷射出口高速射出,水雾锥的后部形成真空,外部空气源源不断地从吸气口吸入引射管,这些新吸进的气体在引射喷射管内与水雾锥碰撞混合,并随水雾从喷射口喷出,若吸入的是含尘气体,则粉尘被强制在水雾中运动湿润或粘结成较大颗粒被喷射出引射管后,很快失去在空气中的悬浮能力而降落下来,从而实现降尘的目的[2]。 1.2 文丘里管中流体流动特性分析 文丘里管是利用流体在变截面管道中流速、压力和状态的变化来实现预期的能量转换的目的。因为高压喷雾并引射含尘空气,所以可根据稀颗粒群两相流动中的均相流动模型,可把流经文丘里管的雾流和含尘空气假定为均匀、理想的流体,流动过程也是可逆且绝热的[3]。 文丘里管中的混合流体经过管中变径后,马赫数会有突变,即速度会有很大的变化。在喷嘴结构参数确定的条件下,文丘里管中的水流速度直接影响整个装置的吸风能力,所以,有必要进一步研究文丘里管射流器在不同喷嘴开口条件下的吸风量与耗水量的大小。

全自动固定床顺流再生钠离子交换器计算示例

全自动固定床顺流再生钠离子交换器计算示例 序号名称符号单位计算公式数值附注或控制要求原始参数 1产水量Q m3/h由用户提供60 2原水总硬度Hi mol/m3由用户提供4 3软化水硬度Ho mmol/L由用户提供0.03 4原水钾钠含量K+Na ppm由用户提供50 5工作温度T o C由用户提供10 6进水压力P MPa由用户提供0.42 7要求连续供水时间Sct hr由用户提供24 交换器计算 8离子交换树脂R 选用001*7型树脂(PUROLITE) 9单位树脂再生耗盐量 Spr g/L160查阅相关资料 10树脂工作交换容量Rc mol/L 1.1查资料考虑安全余量得 11运行流速Sv m/h25根据国家标准*确定 标准为20-30m/h 12所需交换面积F m2Q/Sv 2.4流量/运行流速,结果是总的面积 13交换器同时工作台数n台2 14交换器选用台数台n或n+13一台再生备用 15单台交换器流量Qe m3/h Q/n30总流量/交换器台数 16单台交换器直径De mm√(F/n/3.14)×20001236(总交换面积/台数/3.14)开方后*2*1000 17选用交换器直径Dt mm1250根据玻璃钢罐体资料 18实际交换器截面积Fe m2 3.14×(Dt/2)2 1.2 19单罐连续运行时间St hr8流量控制再生一般连续运行时间不少于6小时20要求的单罐交换容量Ce mol Qe×St×Hi960流量×运行时间×原水硬度 21最少树脂装载量R min L Ce/Rc873时间控制再生其树脂量必须满足一天的总产水要求22核算树脂层高度Hcr mm Rmin/Fe×1000712树脂层高度最低不低于762mm 23选用交换器高度H mm2000根据玻璃钢罐体资料 24反洗流速Bcv m/h1515根据国家标准*确定 标准为15m/h 25反洗膨胀率Bh%树脂粒径(0.45-1.25)50 查PUROLITE-C-100E型树脂资料得 26交换器折损高度h mm500查阅相关资料 27实际树脂层高度Hr mm(H-h)/(1+Bh)1000 28实际运行流速V m/h Qe/Fe24.46 29实际树脂装载量Rv L Fe×Hr1227 30实际单罐运行时间St hr(Rv×Rc)/(Qe×Hi)11.24 反洗计算 31反洗流量Bq m3/h Fe×Bcv181m3/h=4.4gpm 32反洗流量控制器 D.L.F.C gpm Bq×4.481查阅反洗流量控制器资料 80实际流量 33实际反洗流速Bv m/h DLFC×0.227/Fe14.98 34反洗时间Bt min15按国家标准*再生计算 35再生一次盐耗量Sd kg Rv×Spr/1000196当饱和盐液浓度为26.3%时,一加仑水溶解1.35kg盐36配制饱和盐液耗水量Sw gallon Sd/1.351451gallon=3.785L 37盐箱注水孔板流量 B.L.F.C.gpm Sw/159.69盐箱注水时间一般设定在 10-20 分钟;查资料确认 9.00注水实际流量 38盐箱注水时间Rt min Sw/BLFC15.0 39实际盐箱注水量Rw gallon BLFC×Rt135.00 L511 40实际再生一次盐耗量Spt kg Rw×1.35182.25 41饱和盐液量Dv gallon{(Rw×3.785+Spt)/1.2}/3.7851531gallon=3.785L;饱和盐液比重为1.2

碧普射流曝气样本(2016)

碧普(北京)环保技术有限公司BLUEPRO (Beijing) Environmental Technology Co., Ltd. Bp射流曝气系统 bp Jet Aeration Systems

公司简介 碧普(北京)环保技术有限公司是一家专业射流曝气供应商,秉承欧美先进技术和服务理念,得益于长期客户服务对客户需求的悉心洞察,立足于国内市场,致力于为工业污水处理提供射流曝气系统的设计、生产、安装和启动等专业化服务。 公司团队核心成员有近10年国外射流曝气从业经验,在切实掌握国外先进技术并践行对质量不懈 追求的基础上,加入了本地化的优势,以期更好地满足客户对技术、质量、成本和服务的综合需求。射流曝气产品在技术、质量、成本和服务上具有综合最大优势和竞争力,是我们的立身之本,和 孜孜不倦的追求。

产品简介 射流曝气起源于国外,最早是为克服传统曝气方式效率低故障率高而诞生,目前在国内外均有采用,其材料上有不锈钢材质、铸铁材质、塑料材质、FRP材质等,形式上有文丘里管式、自吸式(无鼓风机)、主歧管式、圆盘 辐射式。bp射流曝气系统为FRP材质主歧管型低压供风式。自吸式效率很低工程上已经少有采用,低压供风式 则是经理论研究和长期的实践证明效率最佳的形式;文丘里管式属于一种通用型工业混合管件,bp射流曝气是 针对污水曝气专门研发设计的专业设备。材质方面,金属材质在耐腐蚀性和疲劳损坏方面不如FRP,塑料材质 在强度和耐老化性方面逊于FRP。bp射流曝气喷嘴等关键部件经特殊工艺强化处理,具有超凡的耐磨性和使用 寿命。我们对从设计开始到启动的各个环节实行全面的质量控制,以保证为客户提供性能优良、质量过硬的产品。实践证明射流曝气系统在降低生化处理成本方面有显著的优势。 用途 主要用于好氧池供氧。广泛地应用于皮革、制浆造纸、化工、医药、石化及食品加工等领域的污水处理,如各种活性污泥法、氧化沟、氧化塘或SBR;以及市政污水处理及污泥好氧消化;并且可通过控制供风量实现脱氮、硝化的作用。 也可用于混合搅拌。如均质池、调节池、选择池、快混池、胶羽池、中和池、化学氧化池、消毒池、污泥贮存槽、脱氮池、化学反应池,以及气提系统及热交换系统等搅拌。

曝气池计算

目录 1 总论 (2) 1.1曝气分类 (2) 1.1.1鼓风曝气 (2) 1.1.2机械曝气 (2) 1.1.3深井曝气 (3) 1.1.4纯氧曝气 (3) 1.2曝气设备 (3) 1.3 曝气原理 (3) 二曝气池设计计算 (4) 2.1 工艺计算 (4)

某城市14×104m3/d污水处理厂设计 曝气池设计 1 总论 曝气池(aeration tank)利用活性污泥法进行污水处理的构筑物。池内提供一定污水停留时间,满足好氧微生物所需要的氧量以及污水与活性污泥充分接触的混合条件。曝气池主要由池体、曝气系统和进出水口三个部分组成。池体一般用钢筋混凝土筑成,平面形状有长方形、方形和圆形等。 1.1曝气分类 1.1.1鼓风曝气 又称压缩空气曝气,主要由曝气风机及专用曝气器组成。采用这种方法的曝气池,多为长方形混凝土池,池内用隔墙分为几个单独进水的隔间,每一隔间又分成几条廊道。污水入池后顺次在廊道内流动,至另一端排出。空气是用空气压缩机通过管道输送到设在池底的空气扩散装置,成为气泡弥散逸出,在气液界面把氧气溶入水中。扩散装置有多孔管、固定螺旋曝气器、水射器和微孔扩散板等四种不同型式。 1.1.2机械曝气 一般是利用装在曝气池内的机械叶轮转动,剧烈搅动池内废水,使空气中的氧溶入水中。叶轮装在池内废水表面进行曝气的,称为表面曝气。这种装置通过叶轮的提水作用,促使池内废水不断循环流动,不断更新气液接触面以增大吸氧量。叶轮旋转时在周缘形成水跃,可有效地裹入空气;叶片后侧产生负压,可吸入空气,所以充气效果较好。叶轮浸水深度和转速可以调节,以保证最佳效果。典型的机械曝气池有圆形表面加速曝气池、标准型加速曝气池、IO型加速曝气池和方形加速曝气池等。鼓风曝气和机械曝气两种方法有时也可联用,以提高充氧能力,这适用于有机物浓度较高的污水。

相关文档
最新文档