继电保护中英文翻译

继电保护中英文翻译
继电保护中英文翻译

Fundamentals of protection practice

The purpose of an electrical power system is to generate and supply electrical energy to consumers. The system should be designed and managed to deliver this energy to the utilization points with both reliability and economy. As these two requirements are largely opposed, it is instructive to look at the reliability of a system and its cost and value to the consumer.

One hand ,The diagram mast make sure the reliability in system design,. On the other hand, high reliability should not be pursued as an end in itself, regardless of cost, but should rather be balanced against economy,taking.

Security of supply can be bettered by improving plant design, increasing the spare capacity margin and arranging alternative circuits to supply loads. Sub-division of the system into zones. each controlled by switchgear in association with protective gear. provides flexibility during normal operation and ensures a minimum of dislocation following a breakdown.

The greatest threat to the security of a supply system is the short circuit,which imposes a sudden and sometimes violent change on system operation. The large current which then flows, accompanied by the localized release of a considerable quantity of energy, can cause fire at the fault location, and mechanical damage throughout the system, particularly to machine and transformer windings. Rapid isolation of the fault by the nearest switchgear will minimize the damage and disruption caused to the system.

A power system represents a very large capital investment. To maximize the return on this outlay. the system must be loaded as much as possible. For this reason it is necessary not only to provide a supply of energy which is attractive to prospective users by operating the system ,but also to keep the system in full operation as far as possible continuously, so that it may give the best service to the consumer, and earn the most revenue for the supply authority. Absolute freedom from failure of the plant and system network cannot be guaran- teed. The risk of a fault occurring, however slight for each item, is multiplied by the number of such items which are closely associated in an extensive system, as any fault produces repercussions throughout the network. When the system is large, the chance of a fault occurring and the disturbance that a fault would bring are both so great that without

equipment to remove faults the system will become, in practical terms, inoperable. The object of the system will be defeated if adequate provision for fault clearance is not made. Nor is the installation of switchgear alone sufficient; discriminative protective gear, designed according to the characteristics and requirements of the power system. must be provided to control the switchgear. A system is not properly designed and managed if it is not adequately protected.

Protective gear

This is a collective term which covers all the equipment used for detecting,locating and initiating the removal of a fault from the power system. Relays are extensively used for major protective functions, but the term also covers direct-acting a.c.trips and fuses.

In addition to relays the term includes all accessories such as current and voltage transformers, shunts, d.c.and a.c. wiring and any other devices relating to the protective relays.

In general, the main switchgear, although fundamentally protective in its function, is excluded from the term protective gear, as are also common services, such as the station battery and any other equipment required to secure opera- tion of the circuit breaker. Reliablity

The performance of the protection applied to large power systems is frequently assessed numerically. For this purpose each system fault is classed as an incident and those which are cleared by the tripping of the correct circuit breakers and only those, are classed as 'correct'. The percentage of correct clearances can then be determined.

This principle of assessment gives an accurate evaluation of the protection of the system as a whole, but it is severe in its judgement of relay performance, in that many relays are called into operation for each system fault, and all must behave correctly for a correct clearance to be recorded. On this basis, a performance of 94% is obtainable by standard techniques.

Complete reliability is unlikely ever to be achieved by further improvements in construction. A very big step, however, can be taken by providing duplication of equipment or 'redundancy'. Two complete sets of equipment are provided, and arranged so that either by itself can carry out the required function. If the risk of an equipment failing is x/unit. the resultant risk, allowing for redundancy, is x2. Where x is small the resultant risk (x2) may

be negligible.

It has long been the practice to apply duplicate protective systems to busbars, both being required to operate to complete a tripping operation, that is, a 'two-out-of-two' arrangement. In other cases, important circuits have been provided with duplicate main protection schemes, either being able to trip independently, that is, a 'one-out-of- two' arrangement. The former arrangement guards against unwanted operation, the latter against failure to operate.

These two features can be obtained together by adopting a 'two-out-of-three' arrangement in which three basic systems are used and are interconnected so that the operation of any two will complete the tripping function. Such schemes have already been used to a limited extent and application of the principle will undoubtedly increase. Probability theory suggests that if a power network were protected throughout on this basis, a protection performance of 99.98% should be attainable. This performance figure requires that the separate protection systems be completely independent; any common factors, such as common current transformers or tripping batteries, will reduce the overall performance. SELECTIVITY

Protection is arranged in zones, which should cover the power system completely, leaving no part unprotected. When a fault occurs the protection is required to select and trip only the neareat circuit breakers. This property of selective tripping is also called 'discrimination' and is achieved by two general methods:

a Time graded systems

Protective systems in successive zones are arranged to operate in times which are graded through the sequence of equipments so that upon the occurrence of a fault, although a number of protective equipments respond, only those relevant to the faulty zone complete the tripping functiopn. The others make incomplete operations and then reset.

b Unit systems

It is possible to design protective systems which respond only to fault conditions lying within a clearly defined zone. This 'unit protection' or 'restricted protection' can be applied throughout a power system and, since it does not involve time grading, can be relatively fast in operation.

Unit protection is usually achieved by means of a comparison of quantities at the

boundaries of the zone. Certain protective systems derive their 'restricted' property from the configuration of the power system and may also be classed as unit protection. Whichever method is used, it must be kept in mind that selectivity is not merely a matter of relay design. It also depends on the correct co-ordination of current transformers and relays with a suitable choice of relay settings, taking into account the possible range of such variables as fault currents. maximum load current, system impedances and other related factors, where appropriate.

STABILITY

This term, applied to protection as distinct from power networks, refers to the ability of the system to remain inert to all load conditions and faults external to the relevant zone. It is essentially a term which is applicable to unit systems; the term 'discrimination' is the equivalent expression applicable to non-unit systems.

SPEED

The function of automatic protection is to isolate faults from the power system in a very much shorter time than could be achieved manually, even with a great deal of personal supervision. The object is to safeguard continuity of supply by removing each disturbance before it leads to widespread loss of synchronism, which would necessitate the shutting down of plant.

Loading the system produces phase displacements between the voltages at different points and therefore increases the probability that synchronism will be lost when the system is disturbed by a fault. The shorter the time a fault is allowed to remain in the system, the greater can be the loading of the system. Figure 1.5 shows typical relations between system loading and fault clearance times for various types of fault. It will be noted that phase faults have a more marked effect on the stability of the system than does a simple earth fault and therefore require faster clearance.

SENSITIVITY

Sensitivity is a term frequently used when referring to the minimum operating current of a complete protective system. A protective system is said to be sensitive if the primary operating current is low.

When the term is applied to an individual relay, it does not reter to a current or voltage setting but to the volt-ampere consumption at the minimum operating current.

A given type of relay element can usually be wound for a wide range of setting currents; the coil will have an impedance which is inversely proportional to the square of the setting current value, so that the volt-ampere product at any setting is constant. This is the true measure of the input requirements of the relay, and so also of the sensitivity. Relay power factor has some significance in the matter of transient performance .For d.c. relays the VA input also represents power consumption, and the burden is therefore frequently quoted in watts.

PRIMARY AND BACK-UP PROTECTION

The reliability of a power system has been discussed in earlier sections. Many factors may cause protection failure and there is always some possibility of a circuit breaker failure. For this reason, it is usual to supplement primary protection with other systems to 'back-up' the operation of the main system and to minimize the possibility of failure to clear a fault from the system.

Back-up protection may be obtained automatically as an inherent feature of the main protection scheme, or separately by means of additional equipment. Time graded schemes such as overcurrent or distance protection schemes are examples of those providing inherent back-up protection; the faulty section is normally isolated discriminatively by the time grading, but if the appropriate relay fails or the circuit breaker fails to trip, the next relay in the grading sequence will complete its operation and trip the associated circuit breaker, thereby interrupting the fault circuit one section further back. In this way complete back- up cover is obtained; one more section is isolated than is desirable but this is inevitable in the event of the failure of circuit breaker. Where the system interconnection is more complex, the above operation will be repeated so that all parallel infeeds are tripped. If the power system is protected mainly by unit schemes, automatic back-up protection is not obtained, and it is then normal to supplement the main protection with time graded overcurrent protection, which will provide local back-up cover if the main protective relays have failed, and will trip further back in the event of circuit breaker failure.

Such back-up protection is inherently slower than the main protection and, depending on the power system con- figuration, may be less discriminative. For the most important circuits the performance may not be good enouugh, even as a back-up protection, or, in some cases, not even possible, owing to the effect of multiple infeeds. In these cases

duplicate high speed protective systems may be installed. These provide excellent mutual back-up cover against failure of the protective equipment, but either no remote back-up protection against circuit breaker failure or, at best, time delayed cover.

Breaker fail protection can be obtained by checkina that fault current ceases within a brief time interval from the operation of the main protection. If this does not occur, all other connections to the busbar section are interrupted, the condition being necessarily treated as a busdar fault. This provides the required back-up protection with the minimum of time delay, and confines the tripping operation to the one station, as compared with the alternative of tripping the remote ends of all the relevant circults.

The extent and type of back-up protection which is applied will naturally be related to the failure risks and relative economic importance of the system. For distribution systems where fault clearance times are not critical, time delayed remote back-up protection is adequate but for EHV systems, where system stability is at risk unless a fault is cleared quickly, local back-up, as described above, should be chosen.

Ideal back-up protection would be completely indepen_ dent of the main protection. Current transformers, voltage transformers, auxiliary tripping relays, trip coils and d.c. supplies would be duplicated. This ideal is rarely attained in practice. The following compromises are typical:

a. Separate current transformers (cores and secondary windings only) are used for each protective system, as this involves little extra cost or accommodation compared with the use of common current transformers which would have to be larger because of the combined burden.

b. Common voltage transformers are used because duplication would involve a considerable increase in cost, because of the voltage transformers themselves, and also because of the increased accommodation which would have to be provided. Since security of the VT output is vital, it is desirable that the supply to each protection should be separately fused and also continuously supervised by a relay which wil1 give an alarm on failure of the supply and, where appropriate, prevent an unwanted operation of the protection.

c. Trip supplies to the two protections should be separately fuse

d. Duplication of tripping batteries and of tripplng coils on circuit breakers is sometimes provided. Trip circuits

should be continuously supervised.

d. It is desirable that the main and back-up protections (or duplicate main protections) should operate on different princlples, so that unusual events that may cause failure of the one will be less likely to affect the other.

https://www.360docs.net/doc/5f9357378.html,/viewforum.php?f=20

继电保护原理

发电并将电力供应给用户这就是电力系统的作用。系统要通过设计、组织,以使电力能够可靠、经济地送到用户2端。由于可靠和经济是两个相互对立的要求,因此系统的可靠性和其所花费用要综合考虑,

一方面,系统设计时必须保证可靠性。而另一方面,不应该不计费用的盲目追求高可靠性,应该结合各方面因素综合考虑。

改进设备设计可以更好地提高供电可靠性,比如增加备用容量裕度和安排多回路供电。将系统分段,有带保护装置的开关控制,这样可以在正常运行时有多种运行方式可供选择,而在故障时可将损失减少到最低程度。

对供电系统最大的威胁就是短路,它往往使系统运行发生突然巨大的变化,巨大能量的局部释放产生的大电流,可导致故障点起火和贯穿系统的机械损伤,特别是对于电机和变压器线圈绕组。迅速断开离故障点最近的开关可减少损失并防止系统瓦解。

一个电力系统就意味着非常巨大的投资。为最大限度地收回成本,系统应尽可能多带负荷。因此不仅要使系统在AB范围内(图1.1〕运行以吸引潜在的用户,还要尽可能保证系统持续地满负荷运行,只有这样才能给用户带来最好的服务,供电方才能获得最大收益。不能保证设备和电网绝对不发生故障。虽然故障的危害对于单一元件是轻微的,但经过大电网中密切相关的众多元件,故障的危害就扩大了,这就是说任何一个故障有可能影响到整个电网。对于一个大电网,故障发生的几率和故障带来的扰动是相当大的,如果没有切除故障的设施,电网是不允许运行的。没有相应的故障切除装置,就算安装了很多开关,电网的作用也不能实现,还必须根据电力系统的特性和要求配备不同的保护装置来控制开关。一个电力系统如果没有相应的保护,它就不能算是合理的设计和组织。

保护装置

保护装置是一个集合术语,它包括了所有用来检测、定位和触发切除电力系统故障的设备。继电器作为主要的保护功能元件而广泛使用。但保护装置还包括直接动作的交流脱扣器和熔丝。

除了继电器,保护装置包括所有附件,诸如电流互感器、电压互感器、分流器、直流线圈、交流线圈以及其它与继电器有关的设备。

一般来说,虽然开关设备也能起到基本保护的作用,但它不算是保护装置。公用

设备,如电站蓄电池和其它用来保证开关动作的设备,也不属于保护装置。

为了满足许多不同配置、运行方式和建设性能的电力系统以最佳速度辨别保护的要求,必须开发多种类型的继电器以反映电力系统量。比如,在某些情况下,仅仅测量故障电流量就可以了,但在某些情况下,就有可能要测量功率和阻抗。继电器通常要测量许多复杂的系统量,这些量只有通过数学或图表方式才能方便地表达出来。可靠性

为使大型电力系统的继电保护装置动作能以数字来评价,每一个系统故障定义为一次事故,故障由且仅由正确的断路器来切除的,称为正确动作,由此可得到正确动作率。

评价的原则对于系统的整套保护给出了一个精确的公式,但它取决于继电器的动作,每一个系统故障需要许多继电器动作来切除,只有所有的继电器都正确动作才能算做一次正确动作。有基于此,标准的技术设备能达到94%的正确动作率。

即使在施工时做了进一步改进,要达到百分之百的可靠性也是不可能的。双重化配置可大大提高可靠性,两套装置中的任何一套均可达到所要求的功能。若一套装置的故障风险为x/套,采用双重化配置后,风险为x2,由于x很小,x2可忽略不计。

实际上母线保护早就采用了双重化配置。两套装置均动作以完成跳闸操作,这就是“2取2”配置。在另一些情况下,重要回路的主保护采用双重化配置,每一套装置能独立完成跳闸操作,这就是“2取1”配置。前一种配置是为了避免误动,后一种配置是为了避免拒动。

以上两个功能可以相互结合,生成“3取2”配置,也就是联合使用三套同样的装置,任何两套装置动作均可实现跳闸功能。这种设计方案已在一小范围内使用,而该原理的应用将日渐广泛。如果一个电网采取这种设计方案,用概率论可以得出这样一个结论,即保护正确动作率可达99.8%。这种正确动作率指标要求单独的保护装置完全独立,任何公用因素,如公用的电流互感器、跳闸用蓄电池,将降低正确动作率。选择性

保护是分区域布置的,这样整个电力系统都得到了保护,而不存在保护死区。当故障发生时,保护应有选择地动作,跳开距离故障点最近的开关。选择性跳闸也称为“鉴别”,一般可通过以下两种方法实现:

a分时限保护

按序分区的保护装置被设计成分时限动作,这样当故障发生时,虽然有多套装置响应,但只有那些与故障区域有关的装置实现跳闸功能,另一些不完全动作然后复归。

b单元保护

可以将保护装置设计成只响应某一特定区域的故障,这种“单元保护”或“限制保护”可在整个电力系统内使用。由于它不带延时,相对来说可快速响应动作。单元保护通常以比较区域边界量来实现。某些保护装置由于电力系统的布置而具有“限制”特性的,也可称为单元保护。

无论采取何种方法,必须注意选择性不仅仅依靠继电器设计,它还同时依靠适当整定的继电器与电流互感器的正确配合。要考虑到以下变量的变化范围:如故障电流、最大负荷电流、系统阻抗和其它相应的因素。

稳定性

保护装置的稳定性与电网的稳定性概念不同。它是指所有负荷状态和区外故障都不会使装置动作。它实际上是相对单元保护而言的,而对非单元保护则以“识别率”来表示。

速度

自动保护的作用就是在非常短的时间内切除电力系统故障,而该时间若使用人工手段则不可能实现,就算采用大量的人员监视也不能。其目的是使每一个扰动在导致失步扩散甚至造成设备停机前就消除它,以保证供电不中断。

系统负荷使不同点电压之间发生相位移,这使系统故障时增加了失步的可能性。一个故障在系统中允许存在的时间越短,系统可带的负荷越大。请注意,相对于单相接地故障,相间故障对系统稳定的影响更大,因此要求更快地切除。

灵敏性

灵敏性通常是指一套完整的保护装置的最小动作电流。如果一个装置的一次动作电流是低的,就称该装置是灵敏的。

对于一个单独的继电器,灵敏性与电流或电压的整定值无关,而是根据最低动作电流下的伏安消耗量来定的。

一个定型的继电器元件通常根据整定电流可大范围变化来绕制的,线圈阻抗与电流整定值的平方成正比,因此在任一整定值下伏安数是恒定的。这是继电器输入要求和灵敏度的真实尺度。继电器功率因数对于暂态性能有重要意义,这个问题将在第五章讨论。

对于直流继电器,输入伏安数以功率代替,所带负载量也以功率表示。

主保护和后备保护

前面章节已讨论了保护装置的可靠性,有许多因素可导致保护拒动,而断路器失

灵也时有发生。有基于此,除了装设主保护,还配备其它装置作为主保护的后备,而使切除系统故障失败的可能性降到最低程度。

后备保护可以作为主保护内部的一部分,也可以通过附加设备独立出来。过流保护或距离保护可作为前一种方案的例子,通常采用分时限区别来隔离故障段,如果相应的继电器拒动或断路器拒跳,按时限下一个继电器动作跳开有关的断路器,这样就断开了故障回路的下一段。采用这种方法就获得了完整的后备保护。虽然要多断开一段回路,但在断路器失灵的情况下这是不可避免的。当系统内部连接更复杂时,上述动作将重复执行以保证所有并联回路都跳开。

如果电力系统主要采用单元型保护,不能获得自动后备保护,后备保护通常以带时限过流保护作为主保护的补充,这样当主保护继电器拒动时,后备保护提供近后备,如果断路器失灵将跳开上一级开关。

这种后备保护速度要比主保护慢,而且根据系统布置,辨别力较弱。对于最重要的回路来说,就算是作为后备保护,这种性能也是不够好的,同时在某些情况下,由于并联回路的影响,还达不到这种性能。在这种情况下,可采用快速保护装置额定双重化配置,以使其一个装置故障时,两套装置能互为备用,但两者都不能实现断路器失灵的远后备保护,最好加上延时。

断路器失灵保护可通过检查主保护动作后一小段时间内故障电流是否依然存在而实现。如果失灵保护未起动而母线上其它所有断路器断开,这种情况应视为母线故障。

很显然,后备保护的范围和类型与故障危害和系统的经济价值有关。对于配电系统,由于对故障切除时间的要求不是十分苛刻,因此采用延时远后备保护就足够了,而对于超高压系统,故障若不能迅速切除将会影响系统稳定,因此应选择上述的近后备保护。

理想的后备保护完全独立于主保护,即电流互感器、电压互感器、辅助跳闸继电器、跳闸线圈和直流电源应双重配置。可在实际应用中很少采用,而往往采用以下几种方案:

a.每一套保护装置采用独立电流互感器(仅铁心和二次绕组),与要带很多负载的公用电流互感器相比,只增加了很少的费用。

b.由于电压互感器自身及相应配置的设备大大增加了双重化配置的费用,因此采用电压互感器公用的方式。由于电压互感器的输出可靠是极其重要的,因此每套保护的电压回路应装设独立的熔丝,并用一个继电器持续监视,当熔丝熔断时发信,以防

止保护误动。

c.两套保护的跳闸电源应装设独立熔丝。有时候跳闸蓄电池和跳闸线圈也采用双重化配置。跳闸回路应持续监视。

d.主保护和后备保护(或主保护双重化配置)应采用不同的动作原理,这样万一有情况导致一套保护故障时,不会影响到另一套保护。

https://www.360docs.net/doc/5f9357378.html,/viewforum.php?f=20

材质中英文对照表

一、材质中英文对照表 1.摇粒绒:Polar Fleece 2.珊瑚绒:coral fleece / soft terry 3.羊羔绒:Berber fleece / polyester faux sherpa 4.短毛绒:short plush 5.长毛绒:long plush 6.毛绒:fur 7.天鹅绒:velvet 8.拖把绒:cord velour 9.PV绒:PV plush 10.毛巾布:terry 11.灯芯绒:corduroy 12.双色毛绒:two-tone faux fur 13.毛线针织:knitting 14.麂皮绒:microfiber/microsuede 15.格利特:glitter 16.亮片:sequin 17.佳积布:nylex 18.尼龙布:nylon 19.汗衫布:jersey 20.沙丁布:satin 21.网布:mesh 22.帆布:canvas 23.斜纹棉布: cotton twill 24.PU 25.镜面PU:patent PU 26.平纹PU:smooth PU 27.EV A 28.点塑底:fabric with dot / skid free dot/non skid dot 29.TPR 30.PVC注塑:PVC injected 二、鞋子装饰物(ornament) 1.松紧带:elastic gore 2.魔术贴:velcro 3.电绣:embroidery 4.蝴蝶结:bow 5.爱心:heart 6.鞋带:lace 7.鞋眼:eyelet 8.人造钻石:rhinestone 9.搭带:strap 10.拉环:loop 11.毛球:POM 12.织唛标:Woven label 13.烫印:heat seal 14.贴片:patch 15.拉链:zipper 三、颜色 1. 豹纹:leopard/ cheetah 2. 斑马纹:zebra 3. 虎纹:tiger 4. 米黄色:beige 5. 桃红色:fuschia 6. 淡紫色:lilac 7. 海军蓝:Navy 8. 咖啡色:Brown 9. 迷彩:camo 10. 湖水蓝:blue atoll/ turq / lake blue 11. 格子:plaid / gingham 12. 紫色:purple 13. 灰色:grey/gray 14. 条纹:strip 15. 银光粉:neon pink 16. 金属色:metallic 17. 栗色:chestnut AI Artwork 设计稿

旅游服务贸易外文翻译文献

旅游服务贸易外文翻译文献(文档含英文原文和中文翻译)

旅游服务贸易的国际竞争力:罗马尼亚的案例 引言 旅游业是唯一的可以为任何发展水平的国家提供贸易机会的服务活动。然而,它也是一个很大程度因为国家的能力和在全球经济中的表现而又有明确的利益分配不均行业,而这又需要提高自己的竞争力。 自20世纪90年代初,罗马尼亚旅游业经历了出口量,生长速率和结构的重大变化。这些不同的波动都影响了罗马尼亚在国际旅游市场上相对的竞争地位并引起了其旅游贸易平衡的变化。同时,新的和更多的错杂的欧式建筑,引起了罗马尼亚的区域旅游竞争力的显著变化。 在此背景下,本文试图提出一个框架,以竞争力和旅游贸易表现之间的关系为重点,来评估罗马尼亚的旅游服务贸易的国际竞争力。 一、国际竞争力视角:国际竞争力之与国际旅游业的相关性 国际竞争力的概念,尽管有争议,难以捉摸,但现在已经得到认可,并继续吸引世界各地的学者和决策者的关注。 到目前为止,为提高国际竞争力已采取措施,都被认为是在经济层面进行的(加瑞利,2003)通常是指一个国家生产的商品和服务,以满足国际市场的考验,并同时保持和增加公民的收入的能力(欧洲委员会,2007)。 由于竞争力最终取决于一国企业在国内和国际的市场成功,所以对竞争力的注意力都集中在企业层面的竞争力上(波特,1990),对于此的普遍理解是指“……该公司保持,并更好的是,扩大其全球市场份额,增加和扩大利润的能力” (克拉克和盖,1998, 经济合作与发展组织,1993)。 因此,虽然广泛流传但是国际竞争力作为与国家经济和其国际贸易相关

的理论基础已经不太在学术文献进行分析。因此,一个国家国际竞争力的性质,效益和局限性仍然含糊不清(科尔德威尔,2000,克鲁格曼,1994, 1996)。 国际竞争力,是指一个国家在货物和服务贸易方面巩固和保持贸易优势相对于世界其他地区的贸易优势。 每当一个国家的经济福利通过贸易流量的增加,或通过从初始平衡状态的贸易条件的改变而增加,他的国际竞争力都会得到提高(科尔德威尔,2000)。 贸易理论表示,经济福利依赖于一个国家有比较优势的货物和服务的生产。这实际上意味着当生产符合一国的比较优势的情况时国际竞争力能得到保障。如果一国能在国际上表现良好并在出口市场竞争成功,这可能就是他们健全的国际竞争力的标志。 因此,在国际上,竞争力定义为一个经济体能够吸引其出口需求和投资供给需求的能力和在所有社会规范内提升公民生活水平的能力。这反过来又取决于宏观和微观经济政策,影响生产的经济生产率要素和经营成本的法规和制度。 一个可用的文献回顾和实证证据支持国际竞争力可以解释为在一定程度上,一个国家的出口能力这一观点(道乐和沃尔夫,1993, 格博格等. 2004)。还有就是,事实上,是出口表现和国际竞争力之间的循环关系。出口是国际竞争力的第一衡量指标。出口情况的改善会导致了一个国家的竞争力提升。这种效果是一个企业的技能,知识,创新和运用新技术并能够在一个成功的商业方式中利用技术机会等的结果。 另一方面,为了在竞争激烈的全球市场努力成功实现出口,一个国家被迫提高竞争力。更具竞争力的国家,它的经济更强大。因此,它更有能力在全球市场竞争,以吸引具有较高的知识,技能,水平人们去购买新技术等,

电力系统继电保护外文翻译

附录 1 电力系统继电保护 1.1方向保护基础 日期,对于远离发电站的用户,为改善其供电可靠性提出了双回线供电的设想。当然,也可以架设不同的两回线给用户供电。在系统发生故障后,把用户切换至任一条正常的线路。但更好的连续供电方式是正常以双回线同时供电。当发生故障时,只断开故障线。图14-1所示为一个单电源、单负载、双回输电线系统。对该系统配置合适的断路器后,当一回线发生故障时,仍可对负载供电。为使这种供电方式更为有效,还需配置合适的继电保护系统,否则,昂贵的电力设备不能发挥其预期的作用。可以考虑在四个断路器上装设瞬时和延时起动继电器。显然,这种类型的继电器无法对所有线路故障进行协调配合。例如,故障点在靠近断路器D的线路端,D跳闸应比B快,反之,B应比D快。显然,如果要想使继电器配合协调,继电保护工程师必须寻求除了延时以外的其他途径。 无论故障点靠近断路器B或D的哪一端,流过断路器B和D的故障电流大小是相同的。因此继电保护的配合必须以此为基础,而不是放在从故障开始启动的延时上。我们观察通过断路器B或D的电流方向是随故障点发生在哪一条线路上变化的。对于A和B之间的线路上的故障,通过断路器B的电流方向为从负载母线流向故障点。对于断路器D,电流通过断路器流向负载母线。在这种情况下,断路器B应跳闸,D不应跳闸。要达到这个目的,我们可在断路器B和D上装设方向继电器,该方向继电器的联接应保证只有当通过它们的电流方向为离开负载母线时才起动。 对于图14-1所示的系统,在断路器B和D装设了方向过流延时继电器后,继电器的配合才能实现。断路器A和C装设无方向的过流延时继电器及瞬时动作的电流继电器。各个继电器整定配合如下:方向继电器不能设置延时,它们只有本身固有的动作时间。A和C的延时过流继电器通过电流整定使它们作为负载母线或负载设备故障的后备保护。断路器A和C的瞬时动作元件通过电流整定使它们在负载母线故障时不动作。于是快速保护可以保护发电机和负载之间线路长度

常用单位的中英文对照翻译

常用单位的中英文对照翻译 单位 Unit. 单位制 system of units 米 meter (m) 毫米 millimeter (mm) 英尺 foot (ft) 英寸 inch (in) 弧度 radian (rad) 度degree (°) 摄氏 Celsius. (C) 华氏 Fahrenheit (F) 磅/平方英寸 pounds per square inch (psi) 百万帕斯卡 million pascal (MPa) 巴 bar 千克(公斤) kilogram (kg) 克 gram (g) 牛顿 newton (N) 吨 ton (t) 千磅 kilopound (kip) 平方米 square meter (m 2) 方毫米 square millimeter (mm2 ) 立方米 cubic meter (m3 ) 升 liter; litre (L) 转/分 revolutions per minute (rpm) 百万分之一 parts per million (ppm) 焦(耳) Joule (J) 千瓦 kilowatt (kW) 伏(特) volt (V) 安(培) ampere (A) 欧(姆)ohm (Ω) (小)时 hour (h) 分 minute (min) 秒 second (s)

管道组成件专业英语(中英文对照) 1 管道组成件 Piping component 1.1 管子 Pipe 管子(按照配管标准规格制造的) pipe 管子(不按配管标准规格制造的其他用管) tube 钢管 steel pipe 铸铁管 cast iron pipe 衬里管 lined pipe 复合管 clad pipe 碳钢管 carbon steel pipe 合金钢管 alloy steel pipe 不锈钢 stainless steel pipe 奥氏体不锈钢管 austenitic stainless steel pipe 铁合金钢管 ferritic alloy steel pipe 轧制钢管 wrought-steel pipe 锻铁管 wrought-iron pipe 无缝钢管 seamless (SMLS) steel pipe 焊接钢管 welded steel pipe 电阻焊钢管 electric-resistance welded steel pipe 电熔(弧)焊钢板卷管 electric-fusion (arc)-welded steel-plate pipe 螺旋焊接钢管 spiral welded steel pipe 镀锌钢管 galvanized steel pipe 热轧无缝钢管 hot-rolling seamless pipe 冷拔无缝钢管 cold-drawing seamless pipe 水煤气钢管 water-gas steel pipe 塑料管 plastic pipe 玻璃管 glass tube 橡胶管 rubber tube 直管 run pipe; straight pipe 1.2 管件 Fitting 弯头 elbow 异径弯头 reducing elbow 带支座弯头 base elbow k半径弯头 long radius elbow 短半径弯头 short radius elbow

大数据文献综述

信息资源管理文献综述 题目:大数据背景下的信息资源管理 系别:信息与工程学院 班级:2015级信本1班 姓名: 学号:1506101015 任课教师: 2017年6月 大数据背景下的信息资源管理 摘要:随着网络信息化时代的日益普遍,我们正处在一个数据爆炸性增长的“大数据”时代,在我们的各个方面都产生了深远的影响。大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力就是大数据技术,这也是一个企业所需要必备的技术。“大数据”一词越来越地别提及与使用,我们用它来描述和定义信息爆炸时代产生的海量数据。就拿百度地图来说,我们在享受它带来的便利的同时,无偿的贡献了我们的“行踪”,比如说我们的上班地点,我们的家庭住址,甚至是我们的出行方式他们也可以知道,但我们不得不接受这个现实,我们每个人在互联网进入大数据时代,都将是透明性的存在。各种数据都在迅速膨胀并变大,所以我们需要对这些数据进行有效的管理并加以合理的运用。

关键词:大数据信息资源管理与利用 目录 大数据概念.......................................................... 大数据定义...................................................... 大数据来源...................................................... 传统数据库和大数据的比较........................................ 大数据技术.......................................................... 大数据的存储与管理.............................................. 大数据隐私与安全................................................ 大数据在信息管理层面的应用.......................................... 大数据在宏观信息管理层面的应用.................................. 大数据在中观信息管理层面的应用.................................. 大数据在微观信息管理层面的应用.................................. 大数据背景下我国信息资源管理现状分析................................ 前言:大数据泛指大规模、超大规模的数据集,因可从中挖掘出有价值 的信息而倍受关注,但传统方法无法进行有效分析和处理.《华尔街日

中文姓氏的英文翻译对照表

中文姓氏的英文翻译对照表 中文姓氏的英文翻译对照表.txt我们用一只眼睛看见现实的灰墙,却用另一只眼睛勇敢飞翔,接近梦想。男人喜欢听话的女人,但男人若是喜欢一个女人,就会不知不觉听她的话。在互联网上混的都时兴起个英文名字,一是方便注册用户名,二是有个好英文名容易显得自己比较Cool。但是起英文名时,中文姓氏还是要保留的,并且姓氏一般都有专门的英文翻译,比如“刘德华”的英文名是Andy,刘姓对应的英文翻译是Lau,所以全称便是“Andy Lau”。当然了,我们一般人直接用汉语拼音作为姓氏的英文翻译也可以,但在比较正式的场合下,最好还是用相应的英文翻译。 姓氏的英文翻译跟汉语拼音是有一些细微差别的,这主要由中西方人发音的不同特点来决定的。比如,从声母上来看,D开头的姓,英文翻译对应的是T,G对应的是K,X对应的是HS,Z、J 一般对应的是C,韵母也会有一些细微差别。详细的,请参考如下中文姓氏的英文翻译对照表,正在起英文名的朋友可以看看。 A: 艾--Ai 安--Ann/An 敖--Ao B: 巴--Pa 白--Pai 包/鲍--Paul/Pao 班--Pan 贝--Pei 毕--Pih 卞--Bein 卜/薄--Po/Pu 步--Poo 百里--Pai-li C: 蔡/柴--Tsia/Choi/Tsai 曹/晁/巢--Chao/Chiao/Tsao 岑--Cheng 崔--Tsui 查--Cha

常--Chiong 车--Che 陈--Chen/Chan/Tan 成/程--Cheng 池--Chi 褚/楚--Chu 淳于--Chwen-yu D: 戴/代--Day/Tai 邓--Teng/Tang/Tung 狄--Ti 刁--Tiao 丁--Ting/T 董/东--Tung/Tong 窦--Tou 杜--To/Du/Too 段--Tuan 端木--Duan-mu 东郭--Tung-kuo 东方--Tung-fang E: F: 范/樊--Fan/Van 房/方--Fang 费--Fei 冯/凤/封--Fung/Fong 符/傅--Fu/Foo G: 盖--Kai 甘--Kan 高/郜--Gao/Kao 葛--Keh 耿--Keng 弓/宫/龚/恭--Kung 勾--Kou 古/谷/顾--Ku/Koo 桂--Kwei

电力系统继电保护技术中英文对照外文翻译文献

中英文对照外文翻译文献 (文档含英文原文和中文翻译) 原文: Relay protection development present situation Abstract: Reviewed our country electrical power system relay protection technological development process, has outlined the microcomputer relay protection technology achievement, propose the future relay protection technological development tendency will be: Computerizes, networked, protects, the control, the survey, the data communication integration and the artificial intellectualization. Key word: relay protection, present situation development, future development 1 relay protection development present situation - 1 -

The electrical power system rapid development to the relay protection propose unceasingly the new request, the electronic technology, computer technology and the communication rapid development unceasingly has poured into the new vigor for the relay protection technology development, therefore, the relay protection technology is advantageous, has completed the development 4 historical stage in more than 40 years time. After the founding of the nation, our country relay protection discipline, the relay protection design, the relay manufacture industry and the relay protection technical team grows out of nothing, has passed through the path in about 10 years which advanced countries half century passes through. The 50's, our country engineers and technicians creatively absorption, the digestion, have grasped the overseas advanced relay protection equipment performance and the movement technology , completed to have the deep relay protection theory attainments and the rich movement experience relay protection technical team, and grew the instruction function to the national relay protection technical team's establishment. The relay factory introduction has digested at that time the overseas advanced relay manufacture technology, has established our country relay manufacturing industry. Thus our country has completed the relay protection research, the design, the manufacture, the movement and the teaching complete system in the 60's. This is a time which the mechanical and electrical relay protection prospers, was our countries relay protection technology development has laid the solid foundation. From the end of the 50's, the transistor relay protection was starting to study. In the 60's to the 80's,it is the times which the transistor relay protection vigorous development and widely used. Tianjin University and the Nanjing electric power automation plant cooperation research 500kV transistor direction high frequency protection the transistor high frequency block system which develops with the Nanjing electric power automation research institute is away from the protection, moves on the Gezhou Dam 500kV line , finished the 500kV line protection to depend upon completely from the overseas import time. - 2 -

段落翻译 中英文对照

1. The Dragon Boat Festival, also called the Duanwu Festival, is celebrated on the fifth day of the fifth month according to the Chinese calendar. For thousands of years, the festival has been marked by eating Tzung Tzu and racing dragon boats. The most important activities of this festival are the dragon boat races. Competing teams drive their colorful dragon boats forward to the rhythm(节奏,韵律) of beating drums. These exciting races were inspired by the villager's attempts to rescue Chu Yuan from the Mi Lo River. This tradition has remained unbroken for centuries. A very popular dish during the Dragon Boat festival is tzung tzu. This tasty dish consists of rice dumplings with meat, peanut, egg yolk(蛋黄), or other fillings wrapped in bamboo leaves. The tradition of tzung tzu is meant to remind us of the village fishermen scattering rice across the water of the Mi Low River in order to appease the river dragons so that they would not devour Chu Yuan. 一,端午节 龙舟节也叫做端午节,它位于每年农历的五月初五,经过几千年的时间,划龙舟和吃粽子已经成为这个节日的标志。 端午节最重要的活动是龙舟竞赛,比赛的队伍在热烈的鼓声中划著他

企业数据建模外文翻译文献

企业数据建模外文翻译文献 (文档含中英文对照即英文原文和中文翻译) 翻译: 信息系统开发和数据库开发 在许多组织中,数据库开发是从企业数据建模开始的,企业数据建模确定了组织数据库的范围和一般内容。这一步骤通常发生在一个组织进行信息系统规划的过程中,它的目的是为组织数据创建一个整体的描述或解释,而不是设计一个特定的数据库。一个特定的数据库为一个或多个信息系统提供数据,而企业数据模型(可能包含许多数据库)描述了由组织维护的数据的范围。在企业数据建模时,你审查当前的系统,分析需要支持的业务领域的本质,描述需要进一步抽象的数据,并且规划一个或多个数据库开发项目。图1显示松谷家具公司的企业数据模型的一个部分。 1.1 信息系统体系结构 如图1所示,高级的数据模型仅仅是总体信息系统体系结构(ISA)一个部分或一个组

织信息系统的蓝图。在信息系统规划期间,你可以建立一个企业数据模型作为整个信息系统体系结构的一部分。根据Zachman(1987)、Sowa和Zachman(1992)的观点,一个信息系统体系结构由以下6个关键部分组成: 数据(如图1所示,但是也有其他的表示方法)。 操纵数据的处理(着系可以用数据流图、带方法的对象模型或者其他符号表示)。 网络,它在组织内并在组织与它的主要业务伙伴之间传输数据(它可以通过网络连接和拓扑图来显示)。 人,人执行处理并且是数据和信息的来源和接收者(人在过程模型中显示为数据的发送者和接收者)。 执行过程的事件和时间点(它们可以用状态转换图和其他的方式来显示)。 事件的原因和数据处理的规则(经常以文本形式显示,但是也存在一些用于规划的图表工具,如决策表)。 1.2 信息工程 信息系统的规划者按照信息系统规划的特定方法开发出信息系统的体系结构。信息工程是一种正式的和流行的方法。信息工程是一种面向数据的创建和维护信息系统的方法。因为信息工程是面向数据的,所以当你开始理解数据库是怎样被标识和定义时,信息工程的一种简洁的解释是非常有帮助的。信息工程遵循自顶向下规划的方法,其中,特定的信息系统从对信息需求的广泛理解中推导出来(例如,我们需要关于顾客、产品、供应商、销售员和加工中心的数据),而不是合并许多详尽的信息请求(如一个订单输入屏幕或按照地域报告的销售汇总)。自顶向下规划可使开发人员更全面地规划信息系统,提供一种考虑系统组件集成的方法,增进对信息系统与业务目标的关系的理解,加深对信息系统在整个组织中的影响的理解。 信息工程包括四个步骤:规划、分析、设计和实现。信息工程的规划阶段产生信息系统体系结构,包括企业数据模型。 1.3 信息系统规划 信息系统规划的目标是使信息技术与组织的业务策略紧密结合,这种结合对于从信息系统和技术的投资中获取最大利益是非常重要的。正如表1所描述的那样,信息工程方法的规划阶段包括3个步骤,我们在后续的3个小节中讨论它们。 1.确定关键性的规划因素

中英文对照版合同翻译样本

1.Sales Agreement The agreement, (is) made in Beijing this eighth day of August 1993 by ABC Trading Co., Ltd., a Chinese Corporation having its registered office at Beijing, the People’ Repubic of China (hereinafter called “Seller”) and International Trading Co., Ltd., a New York Corporation having its registered office at New York, N.Y., U.S.A. (hereinafter called “Buyer”). 2.WITNESSETH WHEREAS, Seller is engaged in dealing of (product) and desires to sell (product)to Buyer, and WHEREAS, Buyer desires to purchase(product) from Sellers, Now, THEREFORE, it is agreed as follows: 3.Export Contract th This Contract is entered into this 5 day of August 1993 between ABC and Trading Co., Ltd. (hereinafter called “Seller”) who agrees to sell, and XYZ Trading Co., Ltd. (hereinafter called “Buyer”) who agrees to buy the following goods on the following terms and condition. 4.Non-Governmental Trading Agreement No. __ This Agreement was made on the_day of_ 19_, BETWEEN _(hereinafter referred to as the Seller) as the one Side and _ (hereinafter referred to as the Buyer) as the one other Side. WHEREAS, the

服务贸易自由化机制外文文献翻译2014年译文4000字

文献出处:Barattieri A. The mechanism of service trade liberalization[J]. Journal of International Economics, 2014, 92(1): 1-13. (声明:本译文归百度文库所有,完整译文请到百度文库。) 原文 The mechanism of service trade liberalization Barattieri A Abstract In this paper, Service trade liberalization is the key areas of the United States to promote the TPP negotiations, the United States in the negotiations are pushing mechanism of a high standard of service trade liberalization. In this paper the progress of the TPP negotiations and services trade issues important position, on the basis of the acceptance, architecture design, focus on services, regulatory consistency four aspects in the TPP uncovers the "high standards" service trade liberalization mechanism establishment. American "high standards" service trade liberalization mechanism is tailored to the interests of the United States, actually services in the service of the United States. These mechanisms are through to strengthen and promote the TPP platform, forming reversed transmission to other countries. Key words: the TPP; The United States; Service trade liberalization; High standards; Mechanism design America is the first largest exporter global trade in services, and for many years, continues to service trade surplus. Competitive advantage based on service industry and service industry The importance of promoting American exports, jobs and economic growth, the United States in the multilateral, bilateral and regional multiple layers jointly promoting service trade liberalization. In the Uruguay round negotiations, the United States has overcome many obstacles, for the first time to include the Service Trade in multilateral negotiations, contributed to the general Agreement on Trade in services (the Genre - al Agreement on Trade and Service,

电网事故外文翻译

英文原文名Power grid intelligent prevention 中文译名电网安全智能防护

英文原文版出处:Electric & energy system T-Franc ISSN 0740-624X 2007(24) 译文成绩:指导教师(导师组长)签名: 译文: 在大型电力系统中,严重的局部故障可以导致电力系统的不稳定现象,如发电机组的不同步(失步)、电力供需不平衡、电力频率和电压等指标偏离额定范围等。这些现象的发展可能造成事故的扩大乃至全电网的崩溃,大范围的供电中断,造成严重的经济损失。在这种情况下,需要及时采取有效的紧急控制措施以避免电力系统的崩溃瓦解。解列是一种有效地避免电力系统异步运行甚至崩溃的控制措施,其基本的思想是通过主动地切断一些合理选择的输电线将整个电力网分解为若干个互相之间异步的电力孤岛,使全系统工作在一个“准正常”的状态,即各孤岛内部发电机组同步运行。电力供需平衡,满足其他必要的安全约束条件(相对于事故前正常运行的电力系统,某些约束条件和指标可相应放宽),这样,在其他紧急控制措施的配合下,各孤岛内的子电力系统仍能保持供电,从而避免电力系统崩溃而造成的巨大的经济损失。而在系统故障排除之后,通过恢复控制手段重新同步各个电力孤岛,可以恢复电网的完整性和全系统正常运行。因此,在某种意义上说,解列控制是在灾变事故发生的情况下保障电力系统安全运行的最后防线。本发明针对有可能造成电网异步甚至电网崩溃的事故,针对大规模电网,首次基于有序二元决策OBDD技术提出了合理的解列策略的方法,为灾变事故下避免电力系统的崩溃提供了一种方法。 对历史上所发生的一些知名的大型电力网崩溃事故(例如1965年美国东北部电力中断、1977年纽约电力崩溃、1996年美国西部电力系统崩溃、1999年巴西电力中断事故等)的研究表明:由于未能及时并正确地选择解列策略,即选择合理的解列点,以至于整个电力系统的崩溃,造成大区域的供电中断,造成了数以几十亿美元的经济损失。这就使得解列策略的问题成为国内外电力界一个重大的研究课题。目前,国内外对电力系统解列及相关领域的研究,主要集中在以下几个方面:(1)通过合理的紧急控制措施以避免系统被动的瓦解,保证电网的完整性;(2)检测和预测发电机组失步及电网被动分解的发生;(3)在事先确定的有限个解列点的情况下,研究系统的自动解列判据,如研究解列开始时刻、开始频率对解列效果及电力系统安全性的影响等,以及对继电保护装置、自动解列控制装置动作性质的研究;(4)对解列(主动或被动)后电力系统各电力孤岛内子系统的动态分析及稳定化控制。 电力系统的扩张和电力调度工作越来越重要。目前区域调度自动化拥有高水平、SCADA(监控和DataAcquisition监控和数据采集)系统可以提供电力正常和事故条件下大量

学历学位中英文翻译对照

美国学校提供的学位有很多种,依所学领域的不同,而有不同的学位。以下列出的是美国高等教育中较常见的学位: Ph.D.(Doctor of Philosophy): 博士学位。而有些领域的博士课程会有不同的学位名称,如D.A.(Doctor of Arts)、Ed.D.(Doctor of Education) M.B.A.(Master of Business Administration): 商学管理硕士。 M.A.(Master of Arts)硕士;B.A.(Bachelor of Arts)学士: 两者皆属于人文、艺术或社会科学的领域,如文学、教育、艺术、音乐。 M.S.(Master of Science)硕士;B.S.(Bachelor of Science)学士: 两者皆属于理工、科学的领域,如数学、物理、信息等。 Associate Degree(副学士学位): 读完两年制小区大学或职业技术学校所得到的学位。 Dual Degree(双学位): 是由两个不同学院分别授与,因此得到的是两个学位。 Joint Degree:为两个不同学院联合给予一个学位,如法律经济硕士。 major 主修 minor 辅修 大家要搜索自己的专业, 请按 ctrl + F 打开搜索窗口, 然后输入关键字查询 学士 Bachelor of Arts B.A. 文学士 Bachelor of Arts in Education B.A.Ed., B.A.E. 教育学文学士 Bachelor of Arts in Computer Science B.A.CS 计算机文学士 Bachelor of Arts in Music B.A.Mus,B.Mus 音乐艺术学士 Bachelor of Arts in Social Work B.A.S.W 社会工作学文学士 Bachelor of Engineering B.Eng., B.E 工学士 Bachelor of Engineering in Social Science B.Eng.Soc 社会工程学士 Bachelor of Engineering in Management B.Eng.Mgt 管理工程学士 Bachelor of Environmental Science/Studies B.E.Sc., B.E.S 环境科学学士 Bachelor of Science B.S 理学士 Bachelor of Science in Business B.S.B., B.S.Bus 商学理学士 Bachelor of Science in Business Administration B.S.B.A 工商管理学理学士 Bachelor of Science in Education B.S.Ed., B.S.E 教育学理学士 Bachelor of Science in Engineering B.S.Eng., B.S.E 工程学理学士 Bachelor of Science in Forestry B.S.cF 森林理学士 Bachelor of Science in Medicine B.S.Med 医学理学士 Bachelor of Science in Medical Technology B.S.M.T., B.S.Med.Tech 医技学理学士 Bachelor of Science in Nursing B.S.N., B.S.Nurs 护理学理学士 Bachelor of Science in Nutrition B.SN 营养学理学士 Bachelor of Science in Social Work B.S.S.W 社会工作学理学士 Bachelor of Science in Technology B.S.T 科技学理学士 Bachelor of Computer Science B.CS 计算机理学士 Bachelor of Computer Special Science B.CSS 计算机特殊理学士 Bachelor of Architecture B. Arch. 建筑学士 Bachelor of Administration B.Admin. 管理学士

大数据外文翻译参考文献综述

大数据外文翻译参考文献综述 (文档含中英文对照即英文原文和中文翻译) 原文: Data Mining and Data Publishing Data mining is the extraction of vast interesting patterns or knowledge from huge amount of data. The initial idea of privacy-preserving data mining PPDM was to extend traditional data mining techniques to work with the data modified to mask sensitive information. The key issues were how to modify the data and how to recover the data mining result from the modified data. Privacy-preserving data mining considers the problem of running data mining algorithms on confidential data that is not supposed to be revealed even to the party

running the algorithm. In contrast, privacy-preserving data publishing (PPDP) may not necessarily be tied to a specific data mining task, and the data mining task may be unknown at the time of data publishing. PPDP studies how to transform raw data into a version that is immunized against privacy attacks but that still supports effective data mining tasks. Privacy-preserving for both data mining (PPDM) and data publishing (PPDP) has become increasingly popular because it allows sharing of privacy sensitive data for analysis purposes. One well studied approach is the k-anonymity model [1] which in turn led to other models such as confidence bounding, l-diversity, t-closeness, (α,k)-anonymity, etc. In particular, all known mechanisms try to minimize information loss and such an attempt provides a loophole for attacks. The aim of this paper is to present a survey for most of the common attacks techniques for anonymization-based PPDM & PPDP and explain their effects on Data Privacy. Although data mining is potentially useful, many data holders are reluctant to provide their data for data mining for the fear of violating individual privacy. In recent years, study has been made to ensure that the sensitive information of individuals cannot be identified easily. Anonymity Models, k-anonymization techniques have been the focus of intense research in the last few years. In order to ensure anonymization of data while at the same time minimizing the information

相关文档
最新文档