路由器天线增益发射功率与信号关系

路由器天线增益发射功率与信号关系
路由器天线增益发射功率与信号关系

路由器天线增益发射功率与信号关系

一、路由器无线天线增益对信号的影响

我们在无线路由器参数中,常常可以看到天线的增益是3dBi、5dBi或者7dBi类似这样的标注,以dBi单位为结尾的就表明了无线天线的增益大小。从理论上来说,天线增益越大能够将无线信号传的更远。可以说,天线的增益对于无线路由器发射的无线信号起着放大的作用,并且与无线信号的发射方向有着密切的联系。在日常生活中,我们常见的无线路由器天线增益一般为3dBi和5dBi,一些主打穿墙能力突出的产品则采用了7dBi增益的无线天线。

二、发射功率对信号的影响

首先,各国对无线路由器的发射功率都有规定,一般不得超过100mW,也就是20dBm(2.4GHz频段)。所以我们可以看到,其实按照国家标准,发射端的信号强度是固定的。而决定无线信号强弱的另一方面就在用户的接收设备上。它的接收灵敏度若是不高,那么用户就会觉得无线信号不好,上网的实际体验就会很差。这样一来,消费者很容易被厂商忽悠,甚至浪费钱财买来了“多余”的天线。

“MIMO”技术。使用MIMO发射技术,需要有多天线的支持,路由器可以将数据分成多份从不同天线发出,在接收端在进行整合。以2x2MIMO为例,就像两个人同时干活,将原来的工作效率变为两倍,提高了无线速率并且明显改善了通信质量。

发射功率基本确定,只能靠电线的多少来确定信号的强度,天线越多信号越强,天线增益越大发射半径越大,但是发射信号波具有集束型,例如5DBI的信号是椭圆的,当你在椭圆的信号范围内时,手机接收信号很强,当在椭圆信号之外时,信号会锐减,所以出现了一种,全方向天线信号发射路由器,这样就能解决信号的集束问题。

一般路由器的覆盖半径是30-100米,但是在家中的话,就会出现当路由器穿过3堵墙之后信号就会变得很小,所以选择路由器是应该选择正规厂商的产品,并且选择多天线的,高DBI的路由器。

抛物面天线的工作原理

抛物面天线的工作原理 普通抛物面天线的结构如图3-1所示。馈源是一种弱方向性天线,安装在抛物面前方的焦点位置上,故普通抛物面天线又称为前馈天线。由馈源辐射出来的球面波被抛物面往一个方向(天线轴向)反射,形成尖锐的波束,这种情况与探照灯极为相似。 图 3-1 普通抛物面天线的结构图图 3-2 普通抛物面天线的几何关系图 抛物面是由抛物线绕它的轴线(z轴)旋转而成的,如图3-2所示。在yoz平面上,以F为焦点,O 为顶点的抛物线方程为: 相应的立体坐标方程为: 为了便于分析,也可引入极坐标。令极坐标系(ρ,ψ) 的原点与焦点F重合,则相应的旋转抛物面的方程可表示为: 设D为抛物面口径的直径,为口径对焦点所张的角(简称口径张角),由上述关系式可导出决定抛物面口径张角的抛物面焦径比: 焦径比的大小表征了抛物面的结构特征,f/D越大,口径张角越小,抛物面越浅,加工就容易,但馈源离主反射面越远,天线的抗干扰能力就越差,反之亦然。 抛物面具有如下重要的几何光学特性:由焦点发出的各光线经抛物面反射,其反射线都平行于z轴;反之,当平行光线沿z轴入射时,则被抛物面反射而聚焦于F点。其原因是,由焦点发出的各光线经抛物面反射后到达口径面的行程相等(这一结论可利用抛物线的以下性质来证明:从抛物线任一点到焦点的距离等于该点到准线的距离)。

微波的传播特性与光相似,因此,位于焦点F的馈源所辐射的电磁波经抛物面反射后,在抛物面口径上得到同相波阵面,使电磁波沿天线轴向传播。如果抛物面口径尺寸为无限大,那么抛物面就把球面波变为理想平面波,能量只沿z轴正方向传播,其它方向辐射为零。但实际上抛物面的口径是有限的,这时天线的辐射是波源发出的电磁波通过口径面的绕射,它类似于透过屏上小孔的绕射,因而得到的是与口径大小及口径场分布有关的窄波波束。 3.2.2 偏馈天线 前馈抛物面天线的馈源位于天线的主波束内,因而对所接收的电磁波形成了遮挡,其结果降低了天线的增益,增大了旁瓣。将馈源移出天线反射面的口径,可消除馈源及其支撑物对电磁波的遮挡。图3-3示出了偏馈反射面天线的结构示意图。 实际上,偏馈反射面是在旋转抛物反射面上截取一部分而构成的。它同样可将焦点发出的球面波转换成沿轴向传播的平面波。馈源的相位中心仍放在原抛物面的焦点上,但馈源的最大辐射须指向偏馈反射面的中心。尽管反射面的轮廓呈椭圆型,但它的口径仍是一个圆。此外,对于偏馈天线而言,电磁波的最大辐射方向并不在偏馈反射面的法向,而是与法向成一定的夹角。这一特点也是偏馈天线的另一特 色,如图3-4所示。对于偏馈天线有式中,ψo是抛物面轴线与焦点到反面中心联线的夹角。反射面在这条中心两旁张成2ψe的角度。 图 3-3 偏馈天线的结构图 图 3-4 偏馈反射面天线的几何关系图

无线WiFi天线增益计算公式

无线WiFi-天线增益计算公式 附1:天线口径和2.4G频率的增益 0.3M 15.7DBi 0.6M 21.8DBi 0.9M 25.3DBi 1.2M 27.8DBi 1.6M 30.3DBi 1.8M 31.3DBi 2.4M 3 3.8DBi 3.6M 37.3DBi 4.8M 39.8DBi 附2:空间损耗计算公式 Ls=92.4+20Logf+20Logd 附3:接收场强计算公式 Po-Co+Ao-92.4-20logF-20logD+Ar-Cr=Rr 其中Po为发射功率,单位为dbm. Co为发射端天线馈线损耗.单位为db. Ao为天线增益.单位为dbi. F为频率.单位为GHz. D为距离,单位为KM. Ar为接收天线增益.单位为dbi. Cr为接收端天线馈线损耗.单位为db. Rr为接收端信号电平.单位为dbm. 例如:AP发射功率为17dbm(50MW).忽略馈线损耗.天线增益为10dbi.距离为2KM.接收天线增益为10dbi.到达接收端电平为

17+10-92.4-7.6-6+10=-69dbm

附4: 802.11b 接收灵敏度 22 Mbps (PBCC): -80dBm 11 Mbps (CCK): -84dBm 5.5 Mbps (CCK): -87dBm 2 Mbps (DQPSK): -90dBm 1 Mbps (DBPSK): -92dBm (典型的测试环境:包错误率PER < 8% 包大小:1024 测试温度:25ºC + 5ºC) 附5: 802.11g 接收灵敏度 54Mbps (OFDM) -66 dBm 8Mbps (OFDM) -64 dBm 36Mbps (OFDM) -70 dBm 24Mbps (OFDM) -72 dBm bps (OFDM) -80 dBm 2Mbps (OFDM) -84 dBm 9Mbps (OFDM) -86 dBm 6Mbps (OFDM) -88 dBm --------------------------------------------------------------- 发一个计算抛物面半径的公式,不少人拿到抛物面可以一下子计算不出来焦点。 r=(4*h*h+l*l)/8*h 式中r是抛物面半径,l是抛物面开口口径,也就是弦长,h是弦长中点到抛物面顶点的距离,抛物面的深度,也就是弦高。直径D=2r. 对于增益天线工作原理较为通俗的说法就是:在现有天线周围放置规则的金属抛物面,使天线位于抛物面的内反射焦点处,通过电磁波反射在焦点处形成能量集中,从而增强电磁信号的收发,实现在特定方向增强信号。 制作简单的增益天线的关键就在于找到比较规则的金属抛物面和计算抛物面的焦点位置。金属抛物面并不一定要求用金属板,也可以是

大型抛物面天线的FEKO仿真计算概要

馈源方向图可以作为激励引入。 大型抛物面天线的FEKO仿真计算 发表时间:2009-8-8 作者: 陈鑫*余川来源: 安世亚太 关键字: FEKO 仿真抛物面天线方向图 本文利用FEKO 软件仿真计算得到了抛物面天线的方向图。在仿真过程中将喇叭馈源生成的方向图做为激励加入, FEKO 软件的这一特点不但提高了计算速度、节约了所需要的系统资源,也为进一步对抛物面天线阵的仿真打下了基础。 1 前言 在电子对抗、跟踪遥测等工程应用领域内,由于抛物面天线具有发射功率大、副瓣较低、结构简单易加工、相关技术较成熟等优点,常常被选做发射天线或者阵列单元。 在频率较高频段,特别是C 波段以上的频段,其波长已经在10 厘米以内,对于直径在一米以上的大型抛物面天线或者天线阵列来说,市面上其他电磁场仿真软件在对于电大天线的仿真计算能力很弱,有些根本无法计算,而FEKO 软件恰恰弥补了这一空白。 本文利用FEKO 软件仿真计算得到了直径为110 厘米的抛物面天线方向图(X 波段),在仿真过程中将喇叭馈源生成的方向图数据文件做为激励加入,抛物面表面采用PO 算法,大大提高了计算效率,节省了所需硬件资源,为进一步对抛物面天线阵的仿真打下了基础。 2 馈源仿真计算 对于传统前馈抛物面的仿真,一般都是将喇叭馈源和抛物面整体建模、整体计算的方法。在计算机硬件资源和时间允许的情况下,其优点是操作简单,直接得出计算结果;但是如果需要计算天线阵列或者更大的抛物面天线,也许对于计算机资源要求就太高,往往无法满足需要。因此,我们首先用SABOR 软件快速设计喇叭几何尺寸,计算喇叭的大致远场方向图和增益(图1)。在FEKO 中用MLFMM 计算该尺寸的喇叭方向图,如图2 所示,计算结果与设计一致,满足下一步计算要求。

天线增益的计算公式.doc

天线增益的计算公式 天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。 可以这样来理解增益的物理含义--一为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W 的输入功率,而用增益为G = 13dB = 20的某定向天线作为发射天线时,输入功率只需100 / 20 = 5W。换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。 半波对称振子的增益为G=2.15dBi o4个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为G=8.15dBi(dBi这个单位表示比较对象是各向均匀辐射的理想点源)o 如果以半波对称振子作比较对象,其增益的单位是dBd o 半波对称振子的增益为G=0dBd (因为是自己跟自己比,比值为1 , 取对数得零值。)垂直四元阵,其增益约为G=8.15 - 2.15=6dBd。 天线增益的若干计算公式 1)天线主瓣宽度越窄,增益越高。对于一般天线,可用下式估算其增益:G (dBi) =10Lg{32000/ (2。3dB,EX2。3dB,H) } 式中,2。3dB,E与2 0 3dB,H分别为天线在两个主平面上的波瓣宽度; 32000是统计出来的经验数据。

2)对于抛物面天线,可用下式近似计算其增益: G (dBi) =10Lg(4.5X (D/XO) 2} 式中,D为抛物面直径; 入0为中心工作波长; 4.5是统计出来的经验数据。 3)对于直立全向天线,有近似计算式 G (dBi) =10Lg(2L/X0) 式中,L为天线长度; 入0为中心工作波长; 天线的增益的考量 在无线通讯的实际应用中,为有效提高通讯效果,减少天线输入功率,天线会做成各种带有辐射方向性的结构以集中辐射功率,由此就引申出“天线增益”的概念。简单说,天线增益就是指一个天线把输入的射频功率集中辐射的程度,显然,天线的增益与其方向图的关系很大,主瓣越窄、副瓣越小的天线其增益就越高,而不同结构的天线,其方向图的差别是很大的。 在通讯技术领域,与其它考量功率、电平等参数的量值同样,天线增益也采用相对比较并取对数的简化法来表示,具体计算方法为:在某一方向向某一位置产生相同辐射场强的时,对无损耗理想基准天线的输入功率与待考量天线的输入功率的比值取对数后乘以10 (G = 10lg(基准Pin/ 考量

天线增益的计算及单位转换

天线增益的计算及单位转换 增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。 可以这样来理解增益的物理含义 ------ 为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要 100W 的输入功率,而用增益为 G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需100 / 20 = 5W 。换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。 半波对称振子的增益为 G=2.15dBi。4 个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为 G=8.15dBi( dBi 这个单位表示比较对象是各向均匀辐射的理想点源 )。 如果以半波对称振子作比较对象,其增益的单位是 dBd 。 半波对称振子的增益为 G=0dBd (因为是自己跟自己比,比值为 1 ,取对数得零值。)垂直四元阵,其增益约为 G=8.15 – 2.15=6dBd 。 天线增益的若干计算公式 1)天线主瓣宽度越窄,增益越高。对于一般天线,可用下式估算其增益: G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)} 式中, 2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度; 32000 是统计出来的经验数据。 2)对于抛物面天线,可用下式近似计算其增益: G(dBi)=10Lg{4.5×(D/λ0)2} 式中, D 为抛物面直径; λ0为中心工作波长; 4.5 是统计出来的经验数据。 3)对于直立全向天线,有近似计算式 G(dBi)=10Lg{2L/λ0} 式中, L 为天线长度; λ0 为中心工作波长; 关于天线的db, dBi,dBd等单位 有些朋友往往比较容易混淆这些单位,dB取的都是以对数值为基础的。

天线增益及计算

天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。 可以这样来理解增益的物理含义 ------ 为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要 100W 的输入功率,而用增益为 G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需 100 / 20 = 5W 。换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。 半波对称振子的增益为 G=2.15dBi。4 个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为 G=8.15dBi( dBi 这个单位表示比较对象是各向均匀辐射的理想点 源 )。 如果以半波对称振子作比较对象,其增益的单位是 dBd 。 半波对称振子的增益为 G=0dBd (因为是自己跟自己比,比值为 1 ,取对数得零值。)垂直四元阵,其增益约为 G=8.15 – 2.15=6dBd 。 天线增益的若干计算公式 1)天线主瓣宽度越窄,增益越高。对于一般天线,可用下式估算其增益: G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)} 式中, 2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度; 32000 是统计出来的经验数据。 2)对于抛物面天线,可用下式近似计算其增益: G(dBi)=10Lg{4.5×(D/λ0)2} 式中, D 为抛物面直径; λ0为中心工作波长; 4.5 是统计出来的经验数据。 3)对于直立全向天线,有近似计算式 G(dBi)=10Lg{2L/λ0} 式中, L 为天线长度; λ0 为中心工作波长;

天线增益的计算公式

天线增益的计算公式 骆驼发表于 2008-01-09 02:34 | 来源: | 阅读 2,179 views 天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。 可以这样来理解增益的物理含义 ------ 为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要 100W 的输入功率,而用增益为 G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需 100 / 20 = 5W 。换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。 半波对称振子的增益为 G=2.15dBi。4 个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为 G=8.15dBi( dBi 这个单位表示比较对象是各向均匀辐射的理想点源 )。 如果以半波对称振子作比较对象,其增益的单位是 dBd 。 半波对称振子的增益为 G=0dBd (因为是自己跟自己比,比值为 1 ,取对数得零值。)垂直四元阵,其增益约为 G=8.15 – 2.15=6dBd 。 天线增益的若干计算公式 1)天线主瓣宽度越窄,增益越高。对于一般天线,可用下式估算其增益: G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)} 式中, 2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度; 32000 是统计出来的经验数据。 2)对于抛物面天线,可用下式近似计算其增益: G(dBi)=10Lg{4.5×(D/λ0)2} 式中, D 为抛物面直径; λ0为中心工作波长; 4.5 是统计出来的经验数据。 3)对于直立全向天线,有近似计算式 G(dBi)=10Lg{2L/λ0} 式中, L 为天线长度; λ0 为中心工作波长; 天线的增益的考量

天线增益的计算

天线增益的计算 增益是指: 在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。 可以这样来理解增益的物理含义------为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W的输入功率,而用增益为G=13dB=20的某定向天线作为发射天线时,输入功率只需 100/20=5W。换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。 半波对称振子的增益为G= 2.15dBi。4个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为G= 8.15dBi(dBi这个单位表示比较对象是各向均匀辐射的理想点源)。 如果以半波对称振子作比较对象,其增益的单位是dBd。 半波对称振子的增益为G=0dBd(因为是自己跟自己比,比值为1,取对数得零值。)垂直四元阵,其增益约为G= 8.15– 2.15=6dBd。 天线增益的若干计算公式 1)天线主瓣宽度越窄,增益越高。对于一般天线,可用下式估算其增益:G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)} 式中,2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度;

32000是统计出来的经验数据。 2)对于抛物面天线,可用下式近似计算其增益: G(dBi)=10Lg{ 4.5×(D/λ0)2} 式中,D为抛物面直径; λ0为中心工作波长; 4.5是统计出来的经验数据。 3)对于直立全向天线,有近似计算式 G(dBi)=10Lg{2L/λ0} 式中,L为天线xx; λ0为中心工作波长; 关于天线的db,dBi,dBd等单位 有些朋友往往比较容易混淆这些单位,dB取的都是以对数值为基础的。 (1)dB,这单纯是一个相对值,也就是说A比B的值的对数。常常用于说A 比B高或低多少dB,但是单独说A的增益是多少dB,是不合理的,因为我们不知道B是什么。只是我们许多同好有时为了简省就口头说多少dB了,但这样是不够确切的,不过常常也就将错就错,默认理解为dBi吧,要么您就再问问清楚。 (2)dBd,这是有标准参考值的,即B规定为自由空间的半波偶极子天线,这样A与B的值比起来就有来统一的参照物,您告诉同好这个天线10dBd,他就明白您的天线比半波偶极子天线在主辐射方向上能聚集10倍的能量,即好10倍。

短波天线尺寸计算

短波天线尺寸计算 计算方法:用电磁波的速度(光速)30万公里除以频率等于该频率的波长,再除以4就是1/4波长为单边振子长度,再去93--97%的缩短率: 比如:频率7.05兆的单边振子长度为:10.64米,加上0.3米作为修剪余量; 频率14.22兆的单边振子长度为:5.3米,加上0.3米的修剪余量; 频率21.26兆的单边振子长度为:3.53米,加上0.2米的修剪余量即可; 再用天线测试仪测定每对振子的谐振频率,开始频率低,慢慢修剪到相应谐振频率为止。 主干高度如果在8米,阻抗应该差不多50欧姆,驻波会低于1.3。 倒V天线单边振子长度数据及计算方式如下: 水平、倒V天线计算公式 /4波长水平、倒V天线长度的计算公式:光速/频率/4*95%=(单臂)长度 21.400MHz天线的计算长度300000/21.4/4*95%=3330mm 14.270MHz天线的计算长度300000/14.27/4*95%=4993mm 7.05MHz天线的计算长度300000/7.05/4*95%=10107mm 29.60MHz天线的计算长度300000/29.60/4*95%=2667mm 以上仅仅是按照公式计算所得的长度,每个波段的天线最好是预长300mm左右,固定好位置后,用驻波表监测着逐步裁剪到最理想驻波的长度。 或者使用发信机结合驻波表,监测每对振子的谐振频率(驻波低于1.2的频点),边测边剪(随着谐振频率的升高,振子也在缩短,直到达到您所要的中心频点都低于等于1.2即可)。 例如:假设我们的目标频率是21.400MHz上述天线SWR最小值时候的频率读数是19.896MHz。 读数差=21.400MHz-19.896MHz=1.504MHz=1504KHz 计算得知15米波段每KHz对应修剪长度为0.025cm: 15米波段半波振子总修剪值=1504X0.025=37.6(cm) 振子两边对称剪去37.6/2=18.8(cm) 修剪振子要留有余地,差别越小越要细心,防止修剪过多。还要注意测试人员尽量远离天线振子,或站在偶极天线中间馈电点附近测试,减少人体干扰。 另外,使用天线测试仪时,可以指示天线振子谐振时的阻抗,不断调整天线的夹角和高度可以改变阻抗,尽量调整阻抗接近50欧姆即可。 水平偶极天线角度与阻抗的关系如下: 水平偶极天线给电部角度为180度时的阻抗是73欧姆;从180度角度开始变窄,它的阻抗也会随之渐渐地下降。150度时是68欧姆,120度时是58欧姆,105时刚好是50欧姆,更窄的角度90度时是42欧姆,60度时刚降列23欧姆。

天线增益原理

天线增益原理 一、什么是增益天线 作为增益天线的基本属性,在一般情况下,增益的强弱将影响到天线辐射或接收无线信号的能力。也就是说,在同等条件下,增益越高,无线信号传播距离就越远。增益的单位为dBi,室内天线大多为4dBi~5dBi,室外天线大多为8.5dBi~14dBi。 通常情况下,由于增益的大小与无线带宽成反比,即增益越大,其带宽就越窄;增益越小,带宽则较大。因此,较大增益的天线主要用于远距离传输,而小增益天线则更适合于无线信号大覆盖范围的应用环境。目前在无线网络应用中,天线分为点对点应用、点对多点应用两种,用户可根据不同的应用范围选择不同类型的无线天线,使无线信号能够顺利地被各个无线设备接收和发送。 二、天线增益的作用 天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。天线增益对移动通信系统的运行质量极为重要,因为它决定蜂窝边缘的信号电平。增加增益就可以在一确定方向上增大网络的覆盖范围,或者在确定范围内增大增益余量。任何蜂窝系统都是一个双向过程,增加天线的增益能同时减少双向系统增益预算余量。

三、天线增益的原理 可以这样来理解增益的物理含义:在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W 的输入功率,而用增益为G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需100 / 20 = 5W 。换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。 半波对称振子的增益为G=2.15dBi。4 个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为G=8.15dBi( dBi 这个单位表示比较对象是各向均匀辐射的理想点源)。 如果以半波对称振子作比较对象,其增益的单位是dBd 。 半波对称振子的增益为G=0dBd (因为是自己跟自己比,比值为1 ,取对数得零值。)垂直四元阵,其增益约为G=8.15 –2.15=6dBd 。 四、天线增益分析 为了比较天线接收信号的能力优劣。把无方向性的半波振子天线(其方向为两个圆)的灵敏度定位0db,相比之下,灵敏度高方向性好的天线就出现了增益。 理想的全向天线的增益定义为1,实际上所谓理想的全向天线在现实世界是不存在的,但是在此理想的条件下,可以很容易计算出在空间的微波功率分布情况。与发射功率相同的一个实际的天线的最大辐射指向位置测得的功率相比,就可以得出天线的增益。 天线的增益和有源电路的增益是有根本区别的。 天线增益的测量. 测试设备为信号源,频谱仪或其他信号接收设备和点源辐射器。 1.先用理想(当然是近似理想)点源辐射天线,加入一功率;然后再距离天线一定的位置上,用频谱仪或接收设备测试接收功率。测得的接收功率为P1 2.换用被测天线,加入相同的功率,在同样的位置上重复上述测试,测得接收功率为P2;

抛物面天线

制造或安装抛物面天线的时候,都要首先找到该抛物线的焦点。一般可以从口径和深度下手,来计算其焦点位置。由于抛物线方程的口径/深度比和焦点之间有一个固定的方程 P=D^2/16c (1) 这个关系方程和具体的抛物线无关。下面通过简单的直角三角形计算来验证它。所有抛物线的标准方程为y^2=2Px.其中P为焦距,即焦点和顶点之间的距离。看下面抛物面的侧剖图,其中c为抛物面的深度,D为口径的直径。f为焦点,P为焦距长度。 根据勾股定理有 (D/2)^2+(P-c)^2=S (2) 由于抛物线到焦点的距离和抛物线到准线的距离相等,即 S=S'=P+c (3) 将(3)式代入(2) (D/2)^2+(P-c)^2=(P+c)^2 化简后得到 P=D^2/16c 该方程表明抛物线的口径/深度/焦点之间有固定的关系,和具体抛物线的形状无观。可以根据这个关系判断一个口径锅的和抛物线的具体匹配程度。应该注意由于偏馈抛物天线为了避免发射出电磁场干扰馈源的阻抗匹配,同时避免馈源本身和其支撑杆对方向图的干扰,只是使用了焦点上方的部分抛物面(Ku天线多数如此),这样避免了传统全抛物面天线的缺点,但我们这个简单的计算方程不能用在这里了。 我的想法是先通过光照法找到实际的焦点。(如果反射板表面不反光,可以考虑先使用铝箔

贴面)量出焦距,和实际用公式计算出的焦距比较一下,看看差距有多大。仔细观察一下抛物面,看问题出在哪里? ================================================================= 实践 在批发市场买的两个锅 口径32cm深度8的锅盖。如果按照公式计算理论的焦点 f=(32*32)/(16*8)=8 光照法的具体操作有些技巧。首先光线要足!看图,注意将光线集中在垂直的小纸板的中央

抛物面天线基础理论

抛物面天线基础理论

3.1.2 抛物面的几何尺寸及特性 一般用于面天线反射面的抛物面,都具有以剖面图6-6-1中的z轴为中心呈旋转对称式结构。在剖面图中,把o称为抛物面的顶点,F称为抛物面的焦点, ψ称为抛物面的张角,是从焦点F 到口面边沿射线与OF轴线的夹角;D=2R称为抛物面口面直径,R为口面半径;ρ为焦点F到反射面上任意点的距离。 由抛物面的定义可知: =+=+ 2cos(1cos) fρρψρψ 此关系式是以焦点F为极坐标原点得出的抛物线方程,由此可进一步得到:

21cos f ρψ=+ 由图 6-6-1还可得到: 2sin sin 21cos sin 1cos f y ftg tg ψρψψψ ψψψ===+=+ 把口面直径0 ,2D y R ψψ===代入6-6-3可得到: 222D ftg ψ=,或者0 1142f D tg ψ=? 3.1.3 抛物面天线的工作原理 根据抛物面的集合特性,可以得到抛物面的两个重要性质:

(1)由焦点F发出的射线,经旋转抛物面反射后,反射线互相平行,且都平行于其轴线OF,即//''// MN M N OF。反过来,平行于OF轴线的射线,经旋转抛物面的反射作用,其反射线均汇聚于其焦点处。 (2)由焦点发出的射线,经由旋转抛物面反射到达口面时,其长度相等,即: +=+6-6-3 ''' FM MN FM M N 这说明,由焦点F发出的射线,经旋转抛物面反射后,每条射线路程均相等。 根据以上两条可以得到,当把照射器置于焦点位置,并使照射器的相位中心与抛物面焦点重合,照射器辐射出的球面波经旋转抛物面反射后,在口面上将转变成平面波,使抛物面天线口面场形成均匀分布。由前面讨论结果得知,均匀口面场必将产生强方向性辐射场,这就是利用旋转抛物面产生强方向性辐射场的原理所在。 当然,如果把旋转抛物面天线用作接收,入射波又是平面波形式,经抛物面反射后,就会把平面波转换成球面波传送到位于焦点位置的照射器,形成聚集接收,增加照射器接收信号的强度。

关于天线增益

关于天线增益 天线对空间不同方向具有不同的辐射或接收能力,这就是天线的方向性。根据方向性的不同,天线有全向和定向两种。 全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。全向天线在通信系统中一般应用距离近,覆盖范围大,价格便宜。增益一般在9dB以下。 定向天线,在在水平方向图上表现为一定角度范围辐射,也就是平常所说的有方向性,在垂直方向图上表现为有一定宽度的波束,同全向天线一样,波瓣宽度越小,增益越大。定向天线在通信系统中一般应用于通信距离远,覆盖范围小,目标密度大,频率利用率高。有通过反射板的定向天线,也有通过阵列合成而成(成本太高,特别相控阵天线,一个移相器有上千块,一个T/R组件大概上万),增益可达到20dB以上。在卫星通信中用到高增益螺旋天线。 我们也可以这样子来思考全向天线和定向天线之间的关系:全向天线会向四面八方发射信号,前后左右都可以接受到信号,定向天线就好像在天线后面罩一个碗壮的反射面,信号只能向前面传递,射向后面的信号被反射面挡住并反射到前方,加强了前面的信号强度。 天线增益的测量. 测试设备为信号源,频谱仪或其他信号接收设备和点源辐射器。1.先用理想(当然是近似理想)点源辐射天线,加入一功率;然后再距离天线一定的位置上,用频谱仪或接收设备测试接收功率。测得的接收功率为P1 2.换用被测天线,加入相同的功率,在同样的位置上重复上述测试,测得接收功率为P2; 3.计算增益:G=10Log(P2/P1) 就这样,得到了天线的增益。编辑本段计算公式1)天线主瓣宽度越窄,增益越高。对于一般天线,可用下式估算其增益:G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)}式中,2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度;32000 是统计出来的经验数据。2)对于抛物面天线,可用下式近似计算其增益:G(dBi)=10Lg{4.5×(D/λ0)2} 式中,D 为抛物面直径;λ0为中心工作波长;4.5 是统计出来的经验数据。3)对于直立全向天线,有近似计算式G(dBi)=10Lg{2L/λ0} 式中,L 为天线长度;λ0 为中心工作波长; 天线增益的若干计算公式 1)天线主瓣宽度越窄,增益越高。对于一般天线,可用下式估算其增益:G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)} 式中,2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度; 32000 是统计出来的经验数据。 2)对于抛物面天线,可用下式近似计算其增益: G(dBi)=10Lg{4.5×(D/λ0)2}

无线电通信天线增益的计算

增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。 可以这样来理解增益的物理含义------ 为在一定的距离上的某点处产生一定大小的 信号,如果用理想的无方向性点源作为发射天线,需要100W 的输入功率,而用增益为G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需100 / 20 = 5W 。换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。 半波对称振子的增益为G=2.15dBi。4 个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为G=8.15dBi( dBi 这个单位表示比较对象是各向均匀辐射的理想点源)。 如果以半波对称振子作比较对象,其增益的单位是dBd 。 半波对称振子的增益为G=0dBd (因为是自己跟自己比,比值为1 ,取对数得零值。)垂直四元阵,其增益约为G=8.15 –2.15=6dBd 。 天线增益的若干计算公式 1)天线主瓣宽度越窄,增益越高。对于一般天线,可用下式估算其增益: G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)} 式中,2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度; 32000 是统计出来的经验数据。 2)对于抛物面天线,可用下式近似计算其增益: G(dBi)=10Lg{4.5×(D/λ0)2}

式中,D 为抛物面直径; λ0为中心工作波长; 4.5 是统计出来的经验数据。 3)对于直立全向天线,有近似计算式 G(dBi)=10Lg{2L/λ0} 式中,L 为天线长度; λ0 为中心工作波长; 关于天线的db, dBi,dBd等单位 有些朋友往往比较容易混淆这些单位,dB取的都是以对数值为基础的。 (1)dB,这单纯是一个相对值,也就是说A比B的值的对数。常常用于说A比B高或低多少dB, 但是单独说A的增益是多少dB,是不合理的,因为我们不知道B是什么。只是我们许多同好有时为了简省就口头说多少dB了,但这样是不够确切的,不过常常也就将错就错,默认理解为dBi吧,要么您就再问问清楚。 (2)dBd,这是有标准参考值的,即B规定为自由空间的半波偶极子天线,这样A与B的值比起来就有来统一的参照物,您告诉同好这个天线10dBd,他就明白您的天线比半波偶极子天线在主辐射方向上能聚集10倍的能量,即好10倍。 (3)dBi,这个单位的含义相对复杂了点,但是它最能表达实际环境情况的比值单位,这里参照物B是以点源振子(实际不存在此物,可以看作是相对波长很短的一小段振子,或叫微分段吧),在标准的定义中这个点源振子应该是理想球状的全方向性辐射,这时与dBd 就有一定的数学关系了,即1dBd=2.14dBi。然而实际上绝大多数的天线都会受安装高度

抛物面焦点计算公式

2.4G无线wifi关于天线增益的一些计算公式,可以大概计算出连接的速度附1:天线口径和2.4G频率的增益 0.3M 15.7DBi 0.6M 21.8DBi 0.9M 25.3DBi 1.2M 27.8DBi 1.6M 30.3DBi 1.8M 31.3DBi 2.4M 3 3.8DBi 3.6M 37.3DBi 4.8M 39.8DBi 附2:空间损耗计算公式 Ls=92.4+20Logf+20Logd 附3:接收场强计算公式 Po-Co+Ao-92.4-20logF-20logD+Ar-Cr=Rr 其中Po为发射功率,单位为dbm. Co为发射端天线馈线损耗.单位为db. Ao为天线增益.单位为dbi. F为频率.单位为GHz. D为距离,单位为KM.

Ar为接收天线增益.单位为dbi. Cr为接收端天线馈线损耗.单位为db. Rr为接收端信号电平.单位为dbm. 例如:AP发射功率为17dbm(50MW).忽略馈线损耗.天线增益为10dbi.距离为2KM.接收天线增益为10dbi.到达接收端电平为 17+10-92.4-7.6-6+10=-69dbm 附4: 802.11b 接收灵敏度 22 Mbps (PBCC): -80dBm 11 Mbps (CCK): -84dBm 5.5 Mbps (CCK): -87dBm 2 Mbps (DQPSK): -90dBm 1 Mbps (DBPSK): -92dBm (典型的测试环境:包错误率PER < 8% 包大小:1024 测试温度:25oC + 5oC) 附5: 802.11g 接收灵敏度 54Mbps (OFDM) -66 dBm 8Mbps (OFDM) -64 dBm 36Mbps (OFDM) -70 dBm 24Mbps (OFDM) -72 dBm bps (OFDM) -80 dBm 2Mbps (OFDM) -84 dBm 9Mbps (OFDM) -86 dBm 6Mbps (OFDM) -88 dBm --------------------------------------------------------------- 发一个计算抛物面半径的公式,不少人拿到抛物面可以一下子计算不出来焦点。 r=(4*h*h+l*l)/8*h

相关文档
最新文档