数字滤波

数字滤波
数字滤波

§4-1克服随机误差的数字滤波算法

一、教学目的

理解克服大脉冲干扰和抑制高频噪声数字滤波原理,掌握算法流程,能够合理应用复合滤波算法。

二、主要内容

§4.1.1 随机误差和数字滤波算法的优点§4.1.2 克服大脉冲干扰的数字滤波法

§4.1.3 抑制小幅度高频噪声的平均滤波法

§4.1.4 复合滤波法

三、学习指导

认识脉冲干扰和高频噪声的随机性及其统计规律,认识被测信号的幅度大小、频带范围等特征,是选择滤波算

法的依据。确定算法后,只有滤波参数设置合理,才能取得处理效果。否则有可能在滤除干扰或噪声的同时,

损失信号。所以,要深刻理解原理,重视对算法进行必要的仿真实验和实际验证。

§4.1.1 随机误差和数字滤波算法的优点

随机误差的概念:由串入仪表的随机干扰、仪器内部器件噪声和A/D量化噪声等引起的,在相同条件下测量同一量时,其大小和符号作无规则变化而无法预测,但在多次测量中符合统计规律的误差。

数字滤波算法的优点:

(1)数字滤波只是一个计算过程,无需硬件,因此可靠性高,并且不存在阻抗匹配、特性波动、非一致性等

问题。模拟滤波器在频率很低时较难实现的问题,不会出现在数字滤波器的实现过程中。

(2)只要适当改变数字滤波程序有关参数,就能方便的改变滤波特性,因此数字滤波使用时方便灵活。

§4.1.2 克服大脉冲干扰的数字滤波法

克服由仪器外部环境偶然因素引起的突变性扰动或仪器内部不稳定引起误码等造成的尖脉冲干扰,是仪器数据

处理的第一步。通常采用简单的非线性滤波法。

1.限幅滤波法

限幅滤波法(又称程序判别法)通过程序判断被测信号的变化幅度,从而消除缓变信号中的尖脉冲干扰。具体方法是,依赖已有的时域采样结果,将本次采样值与上次采样值进行比较,若它们的差值超出允许范围,则认为本次采样值受到了干扰,应予易除。

滤波的采样结果

若本次采样值为yn,则本次滤波的结果由下式确定:a是相邻两个采样值的最大允许增量,其数值可根据y的最大变化速率Vmax及采样周期T确定,即 a = Vmax T

实现本算法的关键是设定被测参量相邻两次采样值的最大允许误差a.要求准确估计Vmax和采样周期T。

2.中值滤波法

中值滤波是一种典型的非线性滤波器,它运算简单,在滤除脉冲噪声的同时可以很好地保护信号的细节信息。对某一被测参数连续采样n次(一般n应为奇数),然后将这些采样值进行排序,选取中间值为本次采样值。对温度、液位等缓慢变化的被测参数,采用中值滤波法一般能收到良好的滤波效果。

对不同宽度脉冲滤波效果

3.基于拉依达准则的奇异数据滤波法

(剔除粗大误差)拉依达准则:当测量次数N足够多且测量服从正态分布时,在各次测量值中,若某次测量值

Xi所对应的剩余误差Vi>3σ,则认为该Xi为坏值,予以剔除。

拉依达准则法实施步骤

(1)求N次测量值X1至XN的算术平均值

(2)求各项的剩余误差Vi

(3)计算标准偏差σ

(4)判断并剔除奇异项Vi>3σ,则认为该Xi为坏值,予以剔除。

依据拉依达准则净化数据的局限性

(1)该准则在样本值少于10个时不能判别任何奇异数据;

(2)3σ准则是建立在正态分布的等精度重复测量基础上,而造成奇异数据的干扰或噪声难以满足正态分布。

4. 基于中值数绝对偏差的决策滤波器

中值绝对偏差估计的决策滤波器能够判别出奇异数据,并以有效性的数值来取代。

采用一个移动窗口:

利用m个数据来确定的有效性。如果滤波器判定该数据有效,则输出,否则,如果判定该数据为奇异数据,

用中值来取代。

(1)确定当前数据有效性的判别准则

用中值绝对偏差构造一个尺度序列,设{Xi(K)}中值为Z,则

给出了每个数据点偏离参照值的尺度令{d(k)}的中值为D,著名的统计学家FR.Hampel提出并证明了中值数绝对偏差MAD=1.4826*D,MAD可以代替标准偏差σ。对3σ法则的这一修正有时称为“Hampel标识符”。(2).实现基于L*MAD准则的滤波算法

建立移动数据窗口

计算出窗口序列的中值Z(排序法)

计算尺度序列的中值d(排序法)

令 Q=1.4826*d =MAD

计算

如果则,否则

可以用窗口宽度 m和门限L这两个参数调整滤波器的特性。m影响滤波器的总一致性,m值至少为7。门限参数

L直接决定滤波器主动进取程度,L值增大,将判定为奇异数据并用值中取代的可能性减少。当L=0时,

滤波器始终是确定的,满足不了选择判据q

线性滤波器具有比例不变性、因果性、算法快捷等特点,实时地完成数据净化。

§ 4.1.3 抑制小幅度高频噪声的平均滤波法

小幅度高频电子噪声:电子器件热噪声、 A/D量化噪声等。

通常采用具有低通特性的线性滤波器:算数平均滤波法、加权平均滤波法、滑动加权平均滤波法等。

1.算数平均滤波

算术平均滤波就是把 N个连续采样值(分别为X 1 至X N )相加,然后取其算术平均值作为本次测量的滤

波值。即

式中, S i 为采样值中的有用部分;n i 为随机误差。

而按统计规律,随机噪声的统计平均值为零,故有

滤波效果主要取决于采样次数 N , N 越大,滤波效果越好,但系统的灵敏度要下降。因此这种方法只适用于

直流或慢变信号。

2.滑动平均滤波

滑动平均滤波法把 N个测量数据看成一个队列,队列的长度固定为N,每进行一次新的采样,把测量结果放入队尾,而去掉原来队首的一个数据,这样在队列中始终有N个“最新”的数据。只要把队列中的数据进行算术平均,就可得到新的滤波值。这样每进行一次测量,就可算得新的滤波值。这种滤波算法称为滑动平均滤波法,其数学

表达式为

式中,为第n次采样经滤波后的输出。

3.加权滑动平均滤波

它是前面介绍的滑动平均法的一种改进,即对不同时刻的数据加以不同的权。通常越接近现时刻的数据,权取

得越大。

加权滑动平均滤波算法为

式中, N为滑动平均项数;为第n次采样值经滤波后的输出;为未经滤波的第n-i次采样值;C i 为常数,且满足

常数 C 0 , C 1 ,…, C N-1 的选取方法有多种,通常采用 MATLAB 等工具设计 FIR 滤波系数。

§ 4.1.4 复合滤波法

●在实际应用中,有时既要消除大幅度的脉冲干扰,有要做数据平滑。因此常把前面介绍的两种以上的方法结合起来使用,形成复合滤波。

●去极值平均滤波算法:先用中值滤波算法滤除采样值中的脉冲性干扰,然后把剩余的各采样值进行平均滤波。连续采样 N次,剔除其最大值和最小值,再求余下N-2个采样的平均值。显然,这种方法既能抑制随机干扰,又能滤除明显的脉冲干扰。

§4.2.1 系统误差分析

§4.2.2 仪器零位误差和增益误差的校正方法

§4.2.3 系统非线性校正

§4.2.4 系统误差的标准数据校正法

§4.2.5 传感器温度误差的校正方法

三、学习指导

认识系统误差产生原因,重点和难点是系统非线性校正。关键是建立误差模型,无法预先知道误差模型,只能

通过测量获得一组反映被测值的离散数据,利用这些离散数据建立起一个反应被测量值变化的近似数学模型(即校正模型)。有时即使有了数学模型,例如n次多项式,但其次数过高,计算太复杂、太费时,常常要从系统的实际精度要求出发,用逼近法来降低一个已知非线性特性函数的次数,以简化数学模型,便于计算和处理。因此,误差校正模型的建立,包括了由离散数据建立模型和由复杂模型建立简化模型这两层含义。

§4.2.1 系统误差分析

系统误差:是指在相同条件下,多次测量同一量时其大小和符号保持不变或按一定规律变化的误差。

恒定系统误差:校验仪表时标准表存在的固有误差、仪表的基准误差等;

变化系统误差:仪表的零点和放大倍数的漂移、温度变化而引入的误差等;

非线性系统误差:传感器及检测电路(如电桥)被测量与输出量之间的非线性关系。

常用有效的测量校准方法,这些方法可消除或消弱系统误差对测量结果的影响。

§4.2.2 仪器零位误差和增益误差的校正方法

由于传感器、测量电路、放大器等不可避免地存在温度漂移和时间漂移,所以会给仪器引入零位误差和增益误差。需要输入增加一个多路开关电路。开关的状态由计算机控制。

1.零位误差的校正方法

在每一个测量周期或中断正常的测量过程中,把输入接地(即使输入为零),此时整个测量输入通道的输出即为

零位输出(一般其值不为零)N0;再把输入接基准电压Vr测得数据Nr,并将N0和Nr存于内存;然后输入接Vx,测得Nx,则

测量结果可用上式计算出来。

2.增益误差的自动校正方法

其基本思想是测量基准参数,建立误差校正模型,确定并存储校正模型参数。在正式测量时,根据测量结果和

校正模型求取校正值,从而消除误差。

需要校正时,先将开关接地,所测数据为X0,然后把开关接到Vr,所测数据为X1,存储X0和X1,得到校正方程:Y=A1X+A0

A1=Vr/(X1-X0)

A0=Vr X0/(X0-X1)

这种校正方法测得信号与放大器的漂移和增益变化无关,降低了对电路器件的要求,达到与Vr等同的测量精度。但增加了测量时间。

§4.2.3 系统非线性校正

1.校正函数法

如果确切知道传感器或检测电路的非线性特性的解析式 y=f(x),则就有可能利用基于此解析式的校正函数(反函数)来进行非线性校正。

例:某测温热敏电阻的阻值与温度之间的关系为

RT为热敏电阻在温度为T的阻值;α和β为常数,当温度在0~50℃之间分别约为1.44×10-6和4016K。

2、建模方法之一:代数插值法?

代数插值:设有

n + 1组离散点:(x0, y0),(x1, y1),…,(xn, yn),x∈[a,b]和未知函数f(x),就是用n次多项式去逼近f(x),使Pn(x)在节点xi处满足

系数an,…,a1,a0应满足方程组

用已知的(xi, yi)(i = 0, 1, …, n)去求解方程组,即可求得ai(i = 0, 1, …, n),从而得到Pn(x)。

此即为求出插值多项式的最基本的方法。对于每一个信号的测量数值xi就可近似地实时计算出被测量

yi = f(xi)≈Pn(xi)。

最常用的多项式插值有:线性插值和抛物线(二次)插值。提高插值多项式的次数可以提高校正准确度可

采用提高校正精度的另一种方法—分段插值法:等距节点分段插值和不等距节点分段插值两类。

3.建模方法之二:曲线拟合法

●曲线拟合,就是通过实验获得有限对测试数据(xi, yi),利用这些数据来求取近似函数y=f(x)。式中x为输出量,y为被测物理量。与插值不同的是,曲线拟合并不要求y=f(x)的曲线通过所有离散点(xi,yi),只要求

y= f(x)反映这些离散点的一般趋势,不出现局部波动。

最小二乘法连续函数拟合自变量x与因变量y之间的单值非线性关系可以用自变量x的高次多项式来逼近

对于n个实验数据对(xi,yi)(i =1,2,…,n),则可得如下n个方程

●拟合多项式的次数越高,拟合结果的精度也就越高,但计算量相应地也增加。若取m = 1,则被拟合的曲线

为直线方程 y = a0 + a1x

n个实验数据对(xi,yi)(i = 1,2,…,n)

§4.2.4 系统误差的标准数据查表校正法

当难以进行恰当的理论分析时,未必能建立合适的误差校正模型。但此时可以通过实验,获得校正数据,然后

把校正数据以表格形式存入内存。实时测量中,通过查表来求得修正的测量结果。

?实测值介于两个校正点之间时,若仅是直接查表,则只能按其最接近查找,这显然会引入一定的误差。

?可进行如下误差估计,设两校正点间的校正曲线为一直线段,其斜率S=△X/△Y(注意,校正时Y是自变量,

X是函数值),并设最大斜率为Sm,可能的最大误差为△Xm=Sm△Y,设Y的量程为Ym,校正时取等间隔的N个校正点,则△Xm=SmY/N

点数越多,字长越长,则精度越高,但是点数增多和字节变长都将增加存储器容量。

§4.2.5 传感器温度误差的校正方法

在高精度仪器仪表中,传感器的温度误差已成为提高仪器性能的严重障碍,对于环境温度变化较大的应用场合

更是如此。仅依靠传感器本身附加的一些简单的电路或其他装置来实现完善的传感器温度误差校正是困难且不

便的。但只要能建立起较精确的温度误差模型,就可能实现完善的校正。

温度本身就是一个需要检测的量,或在传感器内靠近敏感元件处附加一个测温元件(PN二极管、热敏电阻)等。

它们的某些特性随温度而变化,经测温电路、ADC后可转换为与温度有关的数字量,设为θ。

温度误差数学模型的建立,可采用前面已介绍的代数插值法或曲线拟合法等。

可采用如下较简单的温度误差校正模型:

y为未经温度校正的测量值;yc为经温度校正的测量值;Δθ为实际工作环境与标准温度之差;a0和a1为温度变化系数(a1用于校正由于温度变化引起的传感器零位漂移,a0用于校正由于温度变化引起的传感器标度的变化)。§4-3 标度变换

一、教学目的

通过本节的学习,建立标度变换的概念,掌握线性和非线性标度变换的方法,能够与实际应用结合。

二、教学内容

§4.3.1 标度变换的概念

§4.3.2 线性标度变换

§4.3.3、非线性参数的标度变换

§4.3.1 标度变换的概念

?仪器采集的数据并不等于原来带有量纲的参数值,它仅仅对应于参数的大小,必须把它转换成带有量纲的数

值后才能显示、打印输出和应用,这种转换就是工程量变换,又称标度变换。

?例:测量机械压力时,当压力变化为0--100N时,压力传感器输出的电压为0--10mV,放大为0--5V后进行A/D

IIR数字滤波器设计原理

IIR 数字滤波器设计原理 利用双线性变换设计IIR 滤波器(只介绍巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数)(s H a ,然后由)(s H a 通过双线性变换可得所要设计的IIR 滤波器的系统函数)(z H 。 如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率 s p w w 和的转换,对s p αα和指标不作变化。边界频率的转换关系为)21tan(2w T =Ω。接着,按照模拟低通滤波器的技术指标根据相应 设计公式求出滤波器的阶数N 和dB 3截止频率c Ω;根据阶数N 查巴特沃斯归一 化低通滤波器参数表,得到归一化传输函数 )(p H a ;最后,将c s p Ω=代入)(p H a 去归一,得到实际的模拟滤波器传输函数)(s H a 。之后,通过双线性变换法转换公式 11 112--+-=z z T s ,得到所要设计的IIR 滤波器的系统函数)(z H 。 步骤及内容 1) 用双线性变换法设计一个巴特沃斯IIR 低通数字滤波器。设计指标参数为: 在通带内频率低于π2.0时,最大衰减小于dB 1;在阻带内[]ππ,3.0频率区间上,最小衰减大于dB 15。 2) 以π02.0为采样间隔,绘制出数字滤波器在频率区间[]2/,0π上的幅频响应特 性曲线。 3) 程序及图形 程序及实验结果如下: %%%%%%%%%%%%%%%%%%

%iir_1.m %lskyp %%%%%%%%%%%%%%%%%% rp=1;rs=15; wp=.2*pi;ws=.3*pi; wap=tan(wp/2);was=tan(ws/2); [n,wn]=buttord(wap,was,rp,rs,'s'); [z,p,k]=buttap(n); [bp,ap]=zp2tf(z,p,k); [bs,as]=lp2lp(bp,ap,wap); [bz,az]=bilinear(bs,as,.5); [h,f]=freqz(bz,az,256,1); plot(f,abs(h)); title('双线性z 变换法获得数字低通滤波器,归一化频率轴'); xlabel('\omega/2\pi'); ylabel('低通滤波器的幅频相应');grid; figure; [h,f]=freqz(bz,az,256,100); ff=2*pi*f/100; absh=abs(h); plot(ff(1:128),absh(1:128)); title('双线性z 变换法获得数字低通滤波器,频率轴取[0,\pi/2]'); xlabel('\omega'); ylabel('低通滤波器的幅频相应');grid on; 运行结果: 00.050.10.150.20.25 0.30.350.40.450.500.1 0.2 0.3 0.40.50.60.70.8 0.9 1 双线性z 变换法获得数字低通滤波器,归一化频率轴 ω/2π低通滤波器的幅频相应

数字滤波算法

几种简单的数字滤波 假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad(); 1、限副滤波 /* A值可根据实际情况调整 value为有效值,new_value为当前采样值 滤波程序返回有效的实际值*/ #define A 10 char value; char filter() { char new_value; new_value = get_ad(); if ( ( new_value - value > A ) || ( value - new_value > A ) return value; return new_value; } 2、中位值滤波法 /* N值可根据实际情况调整 排序采用冒泡法*/ #define N 11 char filter() { char value_buf[N]; char count,i,j,temp; for ( count=0;countvalue_buf[i+1] ) { temp = value_buf[i]; value_buf[i] = value_buf[i+1]; value_buf[i+1] = temp; } } }

return value_buf[(N-1)/2]; } 3、算术平均滤波法 /* */ #define N 12 char filter() { int sum = 0; for ( count=0;count

数字滤波器总结

1数字滤波器的应用领域 在信号处理过程中,所处理的信号往往混有噪音,从接收到的信号中消除或减弱噪音是信号传输和处理中十分重要的问题。根据有用信号和噪音的不同特性,提取有用信号的过程称为滤波,实现滤波功能的系统称为滤波器。在近代电信设备和各类控制系统中,数字滤波器应用极为广泛,这里只列举部分应用最成功的领域。 (1) 语音处理 语音处理是最早应用数字滤波器的领域之一,也是最早推动数字信号处理理论发展的领域之一。该领域主要包括5个方面的内容:第一,语音信号分析。即对语音信号的波形特征、统计特性、模型参数等进行分析计算;第二,语音合成。即利用专用数字硬件或在通用计算机上运行软件来产生语音;第三,语音识别。即用专用硬件或计算机识别人讲的话,或者识别说话的人;第四,语音增强。即从噪音或干扰中提取被掩盖的语音信号。第五,语音编码。主要用于语音数据压缩,目前已经建立了一系列语音编码的国际标准,大量用于通信和音频处理。近年来,这5个方面都取得了不少研究成果,并且,在市场上已出现了一些相关的软件和硬件产品,例如,盲人阅读机、哑人语音合成器、口授打印机、语音应答机,各种会说话的仪器和玩具,以及通信和视听产品大量使用的音频压缩编码技术。 (2) 图像处理 数字滤波技术以成功地应用于静止图像和活动图像的恢复和增强、数据压缩、去噪音和干扰、图像识别以及层析X射线摄影,还成功地应用于雷达、声纳、超声波和红外信号的可见图像成像。 (3) 通信 在现代通信技术领域内,几乎没有一个分支不受到数字滤波技术的影响。信源编码、信道编码、调制、多路复用、数据压缩以及自适应信道均衡等,都广泛地采用数字滤波器,特别是在数字通信、网络通信、图像通信、多媒体通信等应用中,离开了数字滤波器,几乎是寸步难行。其中,被认为是通信技术未来发展方向的软件无线电技术,更是以数字滤波技术为基础。 (4) 电视 数字电视取代模拟电视已是必然趋势。高清晰度电视的普及指日可待,与之配套的视频光盘技术已形成具有巨大市场的产业;可视电话和会议电视产品不断更新换代。视频压缩和音频压缩技术所取得的成就和标准化工作,促成了电视领域产业的蓬勃发展,而数字滤波器及其相关技术是视频压缩和音频压缩技术的重要基础。 (5) 雷达 雷达信号占有的频带非常宽,数据传输速率也非常高,因而压缩数据量和降低数据传输速率是雷达信号数字处理面临的首要问题。高速数字器件的出现促进了雷达信号处理技术的进步。在现代雷达系统中,数字信号处理部分是不可缺少的,因为从信号的产生、滤波、加工到目标参数的估计和目标成像显示都离不开数字滤波技术。雷达信号的数字滤波器是当今十分活跃的研究领域之一。 (6) 声纳

FIR数字滤波器设计与使用

实验报告 课程名称:数字信号处理指导老师:刘英成绩:_________________实验名称: FIR数字滤波器设计与使用同组学生姓名:__________ 一、实验目的和要求 设计和应用FIR低通滤波器。掌握FIR数字滤波器的窗函数设计法,了解设计参数(窗型、窗长)的影响。 二、实验内容和步骤 编写MATLAB程序,完成以下工作。 2-1 设计两个FIR低通滤波器,截止频率 C =0.5。 (1)用矩形窗,窗长N=41。得出第一个滤波器的单位抽样响应序列h 1(n)。记下h 1 (n) 的各个抽样值,显示h 1 (n)的图形(用stem(.))。求出该滤波器的频率响应(的N 个抽样)H 1(k),显示|H 1 (k)|的图形(用plot(.))。 (2)用汉明窗,窗长N=41。得出第二个滤波器的单位抽样响应序列h 2(n)。记下h 2 (n) 的各个抽样值,显示h 2(n)的图形。求出滤波器的频率响应H 2 (k),显示|H 2 (k)|的 图形。 (3)由图形,比较h 1(n)与h 2 (n)的差异,|H 1 (k)|与|H 2 (k)|的差异。 2-2 产生长度为200点、均值为零的随机信号序列x(n)(用rand(1,200)0.5)。显示x(n)。 求出并显示其幅度谱|X(k)|,观察特征。 2-3 滤波 (1)将x(n)作为输入,经过第一个滤波器后的输出序列记为y 1(n),其幅度谱记为|Y 1 (k)|。 显示|X(k)|与|Y 1 (k)|,讨论滤波前后信号的频谱特征。 (2)将x(n)作为输入,经过第二个滤波器后的输出序列记为y 2(n),其幅度谱记为|Y 2 (k)|。 比较|Y 1(k)|与|Y 2 (k)|的图形,讨论不同的窗函数设计出的滤波器的滤波效果。 2-4 设计第三个FIR低通滤波器,截止频率 C =0.5。用矩形窗,窗长N=127。用它对x(n)进行滤波。显示输出信号y

常用的8种数字滤波算法

常用的8种数字滤波算法 摘要:分析了采用数字滤波消除随机干扰的优点,详细论述了微机控制系统中常用的8种数字滤波算法,并讨论了各种数字滤波算法的适用范围。 关键词:数字滤波;控制系统;随机干扰;数字滤波算法 1 引言 在微机控制系统的模拟输入信号中,一般均含有各种噪声和干扰,他们来自被测信号源本身、传感器、外界干扰等。为了进行准确测量和控制,必须消除被测信号中的噪声和干扰。噪声有2大类:一类为周期性的,其典型代表为50 Hz 的工频干扰,对于这类信号,采用积分时间等于20 ms整倍数的双积分A/D转换器,可有效地消除其影响;另一类为非周期的不规则随机信号,对于随机干扰,可以用数字滤波方法予以削弱或滤除。所谓数字滤波,就是通过一定的计算或判断程序减少干扰信号在有用信号中的比重,因此他实际上是一个程序滤波。 数字滤波器克服了模拟滤波器的许多不足,他与模拟滤波器相比有以下优点: (1)数字滤波器是用软件实现的,不需要增加硬设备,因而可靠性高、稳定性好,不存在阻抗匹配问题。 (2)模拟滤波器通常是各通道专用,而数字滤波器则可多通道共享,从而降低了成本。 (3)数字滤波器可以对频率很低(如0.01 Hz)的信号进行滤波,而模拟滤波器由于受电容容量的限制,频率不可能太低。 (4)数字滤波器可以根据信号的不同,采用不同的滤波方法或滤波参数,具有灵活、方便、功能强的特点。 2 常用数字滤波算法 数字滤波器是将一组输入数字序列进行一定的运算而转换成另一组输出数字序列的装置。设数字滤波器的输入为X(n),输出为Y(n),则输入序列和输出序列之间的关系可用差分方程式表示为: 其中:输入信号X(n)可以是模拟信号经采样和A/D变换后得到的数字序列,也

十种数字滤波方法

1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 自动化科协 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点: 适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果

N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 自动化科协 测量速度较慢,和算术平均滤波法一样 比较浪费RAM 6、限幅平均滤波法 A、方法: 相当于“限幅滤波法”+“递推平均滤波法” 每次采样到的新数据先进行限幅处理, 再送入队列进行递推平均滤波处理 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 比较浪费RAM 7、一阶滞后滤波法 A、方法: 取a=0~1 本次滤波结果=(1-a)*本次采样值+a*上次滤波结果 B、优点: 对周期性干扰具有良好的抑制作用 适用于波动频率较高的场合 C、缺点:

用脉冲响应不变法设计数字滤波器.

皖西学院 《数字信号处理》课程设计报告题目用脉冲响应不变法设计数字滤波器 学院信息工程学院 专业通信工程专业 班级(*** )班 学生姓名陈* 孙** 指导教师吴** 二0一二年十二月

《数字信号处理》课程设计是在学生完成数字信号处理和MATLAB结合后的基本实验后开设的,本课程设计的目的是为了让学生综合数字信号处理和MATLAB并实现一个较为完整的小型滤波系统。这一点与验证性的基本实验有本质性的区别。开设课程设计环节的主要目的是通过系统设计、软件仿真、程序安排与调试、写实习报告等步骤,使学生初步掌握工程设计的具体步骤和方法,提高分析问题和解决问题的能力,提高实际应用水平。 IIR数字滤波器具有无限宽的冲激响应,与模拟滤波器相匹配,所以IIR滤波器的设计可以采用在模拟滤波器设计的基础上进一步变换的方法。其设计方法主要有间接设计法、直接设计法和最大平滑滤波器设计方法。间接法是借助于模拟滤波器的设计方法进行的。其设计步骤是:先设计过度模拟滤波器得到系统函数,然后将其按某种方法转换成数字滤波器的系统函数。这是因为模拟滤波器的设计方法已经成熟,不仅有完整的设计公式,还有完善的图表和曲线供查阅;另外还有一些优良的滤波器可供我们使用。直接法直接在频域或者时域中设计数字滤波器,由于要解联立方程,设计时需要计算机辅助设计。FIR数字滤波器的单位脉冲响应应是有限长序列。它的设计问题实质上是确定能满足要求的转移序列或脉冲响应的常数问题,它不能采用间接法,设计方法主要有窗函数法、频率采样法和等波纹最佳逼近法等。

第1章绪论 (3) 1.1课程设计的目的及意义 (3) 1.2课程设计题目描述及要求 (3) 1.3数字滤波器的概述 (3) 1.4数字滤波器的分类 (3) 1.5数字滤波器的技术指标 (4) 1.6数字滤波器的设计原理 (5) 第2章MATLAB介绍 (6) 2.1 MATLAB的简介 (6) 2.2 MATLAB的优势和特点 (6) 第3章IIR数字滤波器的设计 (7) 3.1 IIR数字滤波器的设计概述 (7) 3.2 IIR数字滤波器的设计思想: (7) 3.3脉冲响应不变法设计数字滤波器 (7) 3.4 巴特沃斯滤波器的设计原理 (11) 第4章利用脉冲响应不变法设计数字滤波器的过程 (16) 4.1课程设计的解题思路及过程 (16) 4.2 MATLAB程序及仿真 (17) 第5章总结 (20) 参考文献 (21)

数字滤波器课程设计

课程设计 课程设计名称:数字信号处理课程设计 专业班级:电信1203 学生姓名:刘海峰 学号: 201216020307 指导教师:乔丽红 课程设计时间:2015/07/01-2015/07/06 电子信息工程专业课程设计任务书

说明:本表由指导教师填写,由教研室主任审核后下达给选题学生,装订在设计(论文)首页

一. 技术要求 ?双线性变换法设计切比雪夫II型数字IIR低通滤波器, ?要求通带边界频率为400Hz, ?阻带边界频率分别为500Hz, ?通带最大衰减1dB, ?阻带最小衰减40dB, ?抽样频率为2000Hz, 二. 设计原理 IIR滤波器的设计包括三个步骤:①给出所需要的滤波器的技术指标; ②设计一个H(z)使其逼近所需要的技术指标:③实现所设计的H(z),IIR数字滤波器设计的最通用的方法是借助于模拟滤波器的设计方法。所以IIR数字低通滤波器的设计步骤是:①按一定规则将给出的数字滤波器的技术指标转换为模拟低通滤波器的技术指标;②根据转换后的技术指标设计模拟低通滤波器G(s):③再按一定规则将G(s)转换成H(z)。 在此过程中,我们用到了很多MATLAB中的函数,如设计切比雪夫低通滤波器的函数afd_chebl、由直接型转换为级联型的函数dir2cas、双线性变换的函数bilinear等。其中afd _chebl用于实现用模拟指标设计一个低通模拟滤波器,bilinear用于利用双线性变换法将模拟低通滤波器转换为数字低通滤波器。

三.程序流程图

四:源代码(完美版) %归一化低通滤波器技术指标 clc; clear all; Ap=1; %最大通带衰减 As=40; %最小阻带衰减 W=2000; %抽样周期 Wp=400; %通带边界频率 Ws=500; %阻带边界频率 wp=2*pi*Wp/W; %归一化通带边界频率 ws=2*pi*Ws/W; %归一化阻带边界频率 Wp1=tan(wp/2); %模拟低通滤波器通带边界频率 Ws1=tan(ws/2); %模拟低通滤波器阻带边界频率 %归一化切比雪夫II型低通模拟滤波器 [N,Wn]=cheb2ord(Wp1,Ws1,Ap,As,'s'); %确定滤波器阶数和频率尺度缩放因子 [BT,AT]=cheby2(N,As,Wn,'s');%传输函数的系数 [Z,P,K]=cheb2ap(N,As);%最小阻带衰减为As(DB)的N阶归一化模拟切比雪夫2型低通滤波器的零点、极点和增益因子 [H,W]=zp2tf(Z,P,K);%传输函数有理化形式 figure; [P,Q]=freqs(H,W);

十一种软件数字滤波算法

1 数字滤波 1.1 概述 在单片机进行数据采集时,会遇到数据的随机误差,随机误差是由随机干扰引起的,其特点是在相同条件下测量同一量时,其大小和符号会现无规则的变化而无法预测,但多次测量的结果符合统计规律。为克服随机干扰引起的误差,硬件上可采用滤波技术,软件上可采用软件算法实现数字滤波。滤波算法往往是系统测控算法的一个重要组成部分,实时性很强。 采用数字滤波算法克服随机干扰的误差具有以下优点: 1、数字滤波无需其他的硬件成本,只用一个计算过程,可靠性高,不存在阻 抗匹配问题。尤其是数字滤波可以对频率很低的信号进行滤波,这是模拟滤波器做不到的。 2、数字滤波使用软件算法实现,多输入通道可共用一个滤波程序,降低系统 开支。 3、只要适当改变滤波器的滤波程序或运算,就能方便地改变其滤波特性,这 对于滤除低频干扰和随机信号会有较大的效果。 4、在单片机系统中常用的滤波算法有限幅滤波法、中值滤波法、算术平均滤 波法、加权平均滤波法、滑动平均滤波等。 1.2 限幅滤波算法 原理:该运算的过程中将两次相邻的采样相减,求出其增量,然后将增量的绝对值,与两次采样允许的最大差值A进行比较。A的大小由被测对象的具体情况而定,如果小于或等于允许的最大差值,则本次采样有效;否则放弃本次值取上次采样值作为本次数据的样本。 优点:能有效克服因偶然因素引起的脉冲干扰。 缺点:无法抑制那种周期性的干扰,平滑度差。 说明:限幅滤波法主要用于处理变化较为缓慢的数据,如温度、物体的位置等。使用时,关键要选取合适的门限制A。通常这可由经验数据获得,必要时可通过实验得到。 1.3 中值滤波算法 原理:该运算的过程是对某一参数连续采样N次(N一般为奇数),然后把N次采样的值按从小到大排列,再取中间值作为本次采样值,整个过程实际上是一个序列排序的过程。

单片机数字滤波算法

单片机主要作用是控制外围的器件,并实现一定的通信和数据处理。 但在某些特定场合,不可避免地要用到数学运算,尽管单片机并不擅长实现算法和进行复杂的运算。下面主要是介绍如何用单片机实现数字滤波。 在单片机进行数据采集时,会遇到数据的随机误差,随机误差是由随机干扰引起的,其特点是在相同条件下测量同一量时,其大小和符号会现无规则的变化而无法预测,但多次测量的结果符合统计规律。为克服随机干扰引起的误差,硬件上可采用滤波技术,软件上可采用软件算法实现数字滤波。滤波算法往往是系统测控算法的一个重要组成部分,实时性很强。 1采用数字滤波算法克服随机干扰的误差具有以下优点: 1.数字滤波无需其他的硬件成本,只用一个计算过程,可靠性高,不存在阻 抗匹配问题。尤其是数字滤波可以对频率很低的信号进行滤波,这是模拟滤波器做不到的。 2.数字滤波使用软件算法实现,多输入通道可共用一个滤波程序,降低系统 开支。 3.只要适当改变滤波器的滤波程序或运算,就能方便地改变其滤波特性,这 对于滤除低频干扰和随机信号会有较大的效果。 4.在单片机系统中常用的滤波算法有限幅滤波法、中值滤波法、算术平均滤 波法、加权平均滤波法、滑动平均滤波等。 2限幅滤波算法 该运算的过程中将两次相邻的采样相减,求出其增量,然后将增量的绝对值,与两次采样允许的最大差值A进行比较。A的大小由被测对象的具体情况而定,如果小于或等于允许的最大差值,则本次采样有效;否则取上次采样值作为本次数据的样本。 算法的程序代码如下: #define A //允许的最大差值 char data; //上一次的数据 char filter() { char datanew; //新数据变量 datanew=get_data(); //获得新数据变量 if((datanew-data)>A||(data-datanew>A)) return data; else return datanew; }

数字滤波器原理

4.2经典数字滤波器原理 数字滤波是数字信号分析中最重要的组成部分之一,与模拟滤波相比,它具有精度和稳定性高、系统函数容易改变、灵活性强、便于大规模集成和可实现多维滤波等优点。在信号的过滤、检测和参数的估计等方面,经典数字滤波器是使用最广泛的一种线性系统。 数字滤波器的作用是利用离散时间系统的特性对输入信号波形(或频谱)进行加工处理,或者说利用数字方法按预定的要求对信号进行变换。 4.2.1数字滤波器的概念 若滤波器的输入、输出都是离散时间信号,那么该滤波器的单位冲激响应h(n)也必然是离散的,这种滤波器称为数字滤波器。当用硬件实现一个DF时,所需的元件是乘法器、延时器和相加器;而用MATLAB软件实现时,它仅仅需要线性卷积程序就可以实现。众所周知,模拟滤波器(Analog Filter,AF)只能用硬件来实现,其元件有电阻R,电感L,电容C及运算放大器等。因此,DF的实现要比AF容易得多,并且更容易获得较理想的滤波性能。 数字滤波器的作用是对输入信号进行滤波,就如同信号通过系统一样。对于线性时不变系统,其时域输入输出关系是: (4-1)若y(n)、x(n)的傅里叶变化存在,则输入输出的频域关系是: (4-2) 当输入信号x(n)通过滤波器h(n)后,其输出y(n)中不再含有的频率成分,仅使的信号成分通过,其中是滤波器的转折频率。 4.2.2经典数字滤波器的分类 经典数字滤波器按照单位取样响应h(n)的时域特性可分为无限冲激响应(IIR,I nfinite Impulse Response)系统和有限冲激响应(FIR,Finite Impulse Respo nse)系统。如果单位取样响应是时宽无限的h(n),则称之为IIR系统;而如果单位取样响应是时宽有限的h(n),,则称之为FIR系统。

数字滤波器的设计

实验报告 课程名称:数字信号与信息处理 实验名称:数字滤波器的设计 院(系): 专业班级: 姓名: 学号: 指导教师:李家星 2012年12月14日

一、实验目的: (1)实验类型:设计性实验。 (2)掌握通过零、极点设计低阶数字滤波器的设计方法。 (3)掌握IIR 和FIR 数字滤波器的设计方法,并利用所设计滤波器解决实际问题。 (4)通过分析滤波前后信号频谱的变化,使学生能深刻理解滤波的概念。 (5)对两种滤波器设计方法的进行比较。 二、实验主要仪器设备,软件 (1)硬件准备:PC 机 (2)软件准备:Matlab 语言环境 三、实验的基本原理与内容: 1)实验原理: 数字滤波器是具有某种特定频率特性的线性时不变系统。广义上,任何线性时不变离散系统都是一个数字滤波器。设计数字滤波器的任务就是需求一个因果稳定的线性是不变系统,并使系统函数H(z)具有指定的频率特性。 ()() ()n j 0 n e z j e n h z H e H j ωω ω ∑∞ ==== 低阶数字滤波器一般指一阶或二阶滤波器。因其阶次较低,可用零极点的分布来调控其频率特性;其好处处理速度快,硬件简单。另外,高阶滤波器在许多情况下由多个低阶滤波器组合来实现。 LTI 系统可在z 域中用零极点图的形式来描述。这在设计简单的滤波器时很重要,利用其可进行谱分析,只要正确地配置零极点就可达到一定的设计要求。那么,建立零极点与频率特性的关系规律:1)设计滤波器时,一定要保证结构的稳定,因此所有极点应该位于单位圆之内;2)负相位越大引起系统的延时越大,为了减少系统时延,所设计的系统零点最好也在单位圆内(或上);3)极点在单位圆附近,对应频率幅度会出现波峰;零点在单位圆上,对应频率幅度会出现波谷。 基于零极点的低阶数据滤波器模型: 低通:()111121--?-+?-=z a z a z H LP 高通:()1 1 1121--?--?+=z z z H HP αα

10种简单的数字滤波算法(C语言源程序)

假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad(); 1、限副滤波 /* A值可根据实际情况调整 value为有效值,new_value为当前采样值 滤波程序返回有效的实际值*/ #define A 10 char value; char filter() { char new_value; new_value = get_ad(); if ( ( new_value - value > A ) || ( value - new_value > A ) return value; return new_value; } 2、中位值滤波法 /* N值可根据实际情况调整 排序采用冒泡法*/ #define N 11 char filter() { char value_buf[N]; char count,i,j,temp; for ( count=0;countvalue_buf[i+1] ) { temp = value_buf[i]; value_buf[i] = value_buf[i+1]; value_buf[i+1] = temp; } } } return value_buf[(N-1)/2]; } 3、算术平均滤波法

*/ #define N 12 char filter() { int sum = 0; for ( count=0;count

数字滤波器的一般概念

数字滤波器的一般概念 滤波器可广义地理解为一个信号选择系统。它让某些信号成分通过又阻止或衰减另一些成分。在更多地情况下,被窄义地理解为选频系统,如低通、高通、带通、带阻。频域与时域均衡器也是一种滤波器,通信系统的传输媒介如明线、电缆等从特性看也是滤波器。滤波器如系统一样可分为三类:模拟滤波器、采样滤波器和数字滤波器.模拟滤波器(AF)可以是由RLC构成的无源滤波器,也可以是加上运放的有源滤波器,它们是连续时间系统。采样滤波器(SF)由电阻、电容、电荷转移器件、运放等组成,属于离散时间系统,其幅度是连续的。开关电容滤波器、电荷耦合滤波器军属这类滤波器。数字滤波器(DF)由加法器、乘法器、存储延迟单元、时钟脉冲滤波器及逻辑单元等数字电路构成。它精度高,稳定性好,不存在阻抗匹配问题,可以时分复用,能够完成一些模拟滤波器完成不了的滤波任务。其缺点是需要抽样、量化、编码,以及手时钟频率所限,所能处理的信号最高频率还不够高。另外,由于有限字长效应会造成域设计值的频率偏差、量化和运算噪声及极限环振荡。 本章讨论的是数字滤波器。 5.1.1 数字滤波器的分类 下面从各种不同角度对数字滤波器分类: 1.按冲激响应h(n)的长度分类 分为有限冲激响应(FIR)DF和无限冲激响应(IIR)DF两种。冲 激响应本来是用于模拟系统,指系统对冲激函数δ(t)的响应。 发展到数字滤波器后,工程上仍沿用这个名称,与单位抽样响应和 单位脉冲响应的说法通用。 FFR DF的冲激响应h(n)为有限长序列,其差分方程为 y(n)= (5.1) 系统函数为 H(z)= (5.2) IIR DF 的冲激响应h(n)为无限长序列,其差分方程为

实验四(IIR数字滤波器设计及软件实现)讲解学习

实验四(I I R数字滤波器设计及软件实现)

10.4实验四IIR数字滤波器设计及软件实现 10.4.1 实验指导 1.实验目的 (1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法; (2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。 (3)掌握IIR数字滤波器的MATLAB实现方法。 (4)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。 2.实验原理 设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。本实验要求读者调用如上函数直接设计IIR数字滤波器。 本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。 3. 实验内容及步骤 (1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图

10.4.1所示。由图可见,三路信号时域混叠无法在时域分离。但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。 图10.4.1 三路调幅信号st 的时域波形和幅频特性曲线 (2)要求将st 中三路调幅信号分离,通过观察st 的幅频特性曲线,分别确定可以分离st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB 。 提示:抑制载波单频调幅信号的数学表示式为 0001()cos(2)cos(2)[cos(2())cos(2())]2 c c c s t f t f t f f t f f t ππππ==-++ 其中,cos(2)c f t π称为载波,f c 为载波频率,0cos(2)f t π称为单频调制信号,f 0为调制正弦波信号频率,且满足0c f f >。由上式可见,所谓抑制载波单频调幅信号,就是2个正弦信号相乘,它有2个频率成分:和频0c f f +和差频0c f f -,这2个频率成分关于载波频率f c 对称。所以,1路抑制载波单频调幅 信号的频谱图是关于载波频率f c 对称的2根谱线,其中没有载频成分,故取名 为抑制载波单频调幅信号。容易看出,图10.4.1中三路调幅信号的载波频率分

数据处理中的几种常用数字滤波算法

数据处理中的几种常用数字滤波算法 王庆河王庆山 (济钢集团计量管理处,济南250101) (济钢集团中厚板厂,济南250101) 摘要随着数字化技术的发展,数字滤波技术成为数字化仪表和计算机在数据采集中的关键性技术,本文对常用的几种数字滤波算法的原理进行描述,并给出必要的数学模型。 关键词:数据采样噪声滤波移动滤波 一、引言 在仪表自动化工作中,经常需要对大量的数据进行处理,这些数据往往是一个时间序列或空间序列,这时常会用到数字滤波技术对数据进行预处理。数字滤波是指利用数学的方法对原始数据进行处理,去掉原始数据中掺杂的噪声数据,获得最具有代表性的数据集合。 数据采样是一种通过间接方法取得事物状态的技术如将事物的温度、压力、流量等属性通过一定的转换技术将其转换为电信号,然后再将电信号转换为数字化的数据。在多次转换中由于转换技术客观原因或主观原因造成采样数据中掺杂少量的噪声数据,影响了最终数据的准确性。 为了防止噪声对数据结果的影响,除了采用更加科学的采样技术外,我们还要采用一些必要的技术手段对原始数据进行整理、统计,数字滤波技术是最基本的处理方法,它可以剔除数据中的噪声,提高数据的代表性。 二、几种常用的数据处理方法 在实际应用中我们所用的数据滤波方法很多,在计算机应用高度普及的今天更有许多新的方法出现,如逻辑判断滤波、中值滤波、均值滤波、加权平均 2中值滤波 中值滤波是对采样序列按大小排滤波、众数滤波、一阶滞后滤波、移动滤波、复合滤波 等。 假设我们采用前端仪表采集了一组采样周期为1s的温度数据的时间序列 T0为第0s 采集的温度值,Ti为第is采集的温度值。下面介绍如何应用几种不同滤波算法来计算结果温度T。 1.程序判断滤波 当采样信号由于随机干扰、误检测或变送器不稳定引起严重失真时,可采用程序判断滤波算法,该算法的基本原理是根据生产经验,确定出相邻采样输入信号可能的最大偏差△T,若超过此偏差值,则表明该输入信号是干扰信号,应该去掉,若小于偏差值则作为此次采样值。 (1)限幅滤波 限幅滤波是把两次相邻的采集值进行相减,取其差值的绝对值△T作为比较依据,如果小于或等于△T,则取此次采样值,如果大于△T,则取前次采样值,如式(1)所示:

数字滤波器设计论文

数字滤波器设计论文 目录 摘要 (1) 第1章绪论 (2) 1.1 数字滤波器的研究背景与意义 (2) 1.2 数字滤波器的应用现状与发展趋势 (2) 1.3 数字滤波器的实现方法分析 (4) 1.4 本章小结 (4) 第2章数字滤波器的概述 (5) 2.1 数字滤波器的基本结构 (5) 2.1.1 IIR滤波器的基本结构 (5) 2.1.2 FIR滤波器的基本结构 (7) 2.2 数字滤波器的设计原理 (8) 2.2.1 滤波器的性能指标 (8) 2.2.2 IIR数字滤波器的设计方法 (9) 2.2.3 FIR数字滤波器的设计方法 (10) 2.3 IIR滤波器与FIR滤波器的分析比较 (12) 2.4 本章小节 (13) 第3章数字滤波器的算法设计及仿真 (14) 3.1 由模拟滤波器设计IIR数字滤波器 (14) 3.1.1 巴特奥兹滤波器 (14) 3.1.2 切比雪夫滤波器 (15) 3.1.3 椭圆滤波器 (17) 3.2 用MATLAB设计数字滤波器 (18) 3.2.1 FDATool界面 (18) 3.2.2 用Fdatool进行带通滤波器设计 (20) 3.3 将系统函数由直接型化成级联型 (22) 3.3.1 二阶节系数的确定 (22) 3.3.2 系数转换成二进制码 (23)

3.4 本章小结 (25) 第4章IIR带通滤波器的VHDL描述及仿真 (26) 4.1 IIR带通滤波器的VHDL描述 (26) 4.2 IIR带通滤波器的M ODELSIM仿真 (28) 4.2.1 仿真波形 (28) 4.2.2 仿真输出 (29) 4.3 本章小节 (29) 第5章总结 (30) 5.1 滤波器功能和性能总结 (30) 5.2 设计心得和体会 (30) 第6章结束语 (31) 参考文献 (32) 附录 (33) 译文 (37) 外文原文 (41)

FIR数字滤波器设计及软件实现

实验五:FIR数字滤波器设计及软件实现 一、实验目的: (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 二、实验内容及步骤: (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB 函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB 函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 友情提示: ○1MATLAB函数fir1和fftfilt的功能及其调用格式请查阅本课本;

○ 2采样频率Fs=1000Hz ,采样周期T=1/Fs ; ○ 3根据图10.6.1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz ,阻带截至频率fs=150Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率s 20.3s f ωπ=T =π,阻带最小衰为60dB 。] ○ 4实验程序框图如图2所示。 图2 实验程序框图 三、实验程序: 1、信号产生函数xtg 程序清单: %xt=xtg(N) 产生一个长度为N,有加性高频噪声的单频调幅信号xt,采样频率Fs=1000Hz %载波频率fc=Fs/10=100Hz,调制正弦波频率f0=fc/10=10Hz. function xt=xtg N=1000;Fs=1000;T=1/Fs;Tp=N*T; t=0:T:(N-1)*T; fc=Fs/10;f0=fc/10; %载波频率fc=Fs/10,单频调制信号频率为f0=Fc/10;

数字滤波 数据处理与控制策略

第4章数据处理与控制策略 ●本章的教学目的与要求 掌握各种数字滤波的原理、特点及使用场合,数控技术、数字PID及常规控制系统,了解先进控制系统。 ●授课主要内容 ●数字滤波和数据处理 ●数控技术 ●数字PID ●常规控制系统 ●先进控制系统 ●主要外语词汇 Digital Filter:数字滤波,Numerical Control(NC):数字控制, puterized Numerical Control(C):计算机数字控制 ●重点、难点及对学生的要求 说明:带“***”表示要掌握的重点内容,带“**”表示要求理解的内容,带“*”表示要求了解的内容,带“☆”表示难点内容,无任何符号的表示要求自学的内容 ●常用的数字滤波的原理、特点及使用场合*** ●常用的数据处理方法*** ●数字PID及改进算法***☆ ●常规控制方法*** ●先进控制方法* ●辅助教学情况 多媒体教学课件(POWERPOINT) ●复习思考题 ●常用的数字滤波的原理、特点及使用场合 ●常用的数据处理方法 ●数字PID及改进算法 ●常规控制方法 ●先进控制方法 ●参考资料 X川来,胡乃平,计算机控制技术,XX科技大学讲义 1 / 14

计算机系统的抗干扰不可能完全依靠硬件解决,一般需要进行数字滤波。另外在计算机控制系统中,根据实际需要经常会用到数据处理技术对数据进行预处理。 数控技术和数控装备是制造工业现代化的重要基础。这个基础是否牢固直接影响到一个国家的经济发展和综合国力,关系到一个国家的战略地位。 计算机控制系统中的控制策略是指基于控制理论,在被控对象数学模型或操作人员的先验知识基础上设计并用计算机软件实现的数字控制器或某种控制算法。 4.1 数字滤波和数据处理 数字滤波是指在计算机中利用某种计算方法对原始输入数据进行数学处理,去掉原始数据中掺杂的噪声数据,提高信号的真实性,获得最具有代表性的数据集合。 通过数字滤波得到比较真实的被测参数,有时不能直接使用,还需要做某些处理。 一 数字滤波 我们这里所说的数字滤波技术是指在软件中对采集到的数据进行消除干扰的处理。 采用数字滤波优点一是不需要增加硬件设备,只需在计算机得到采样数据之后,执行一段根据预定滤波算法编制的程序即可达到滤波的目的;优点二是数字滤波稳定性好,一种滤波程序可以反复调用,使用方便灵活。 1. 平均值滤波法 (1)算术平均值滤波 对于一点数据连续采样多次,计算其算术平均值,以其平均值作为该点采样结果。这种方法可以减少系统的随机干扰对采集结果的影响。实质是对采样数据y(i)的m 次测量值进行算术平均,作为时刻kT 的有效输出采样值)(k y ,即 ∑-m i k y m y 1 ) (1)k (= (4.1) m 值决定了信号平滑度和灵敏度。 为提高运算速度,可以利用上次运算结果)1(-k y ,通过递推平均滤波算式 m m k y m k y y y ) 1()()1-k ()k (---+ = (4.2) 得到当前采样时刻的递推平均值。 算术平均值滤波和加权平均值滤波主要用于对压力、流量等周期性的采样值进行平滑加工,但对偶然出现的脉冲性干扰的平滑作用尚不理想,因而不适用于脉冲性干扰比较严重的场合。 (2)加权平均值滤波 由(4-1)式可以看出,算术平均值滤波法对每次采样值给出相同的加权系数,即1/m ,实际上有些场合需要增加新采样值在平均值中的比重,这时可采用加权平均值滤波法,其算式为 ∑--1 ) ()k (m i i k y a y = (4.3) 这种滤波方法可以根据需要突出信号的某一部分,抑制信号的另一部分。适用于纯滞后较大、采样周期短的过程。 2. 中值滤波法 所谓中值滤波是对某一参数连续采样n 次,然后把n 次的采样值从小到大或从大到小排队,再取中间值作为本次采样值。 中值滤波对于去掉由于偶然因素引起的波动或采样器不稳定造成的误差所引起的脉动干扰比较有效。若变量变化比较慢,则采用中值滤波效果比较好,但对快速变化的参数不宜采用。 如果将平均值滤波和中值滤波结合起来使用,滤波效果会更好。 3. 惯性滤波法 前面几种方法基本上属于静态滤波,主要适用于变化过程比较快的参数,如压力、流量等。对于慢速随机变量,则采用短时间内连续采样取平均值的方法,其滤波效果不够理想。 为提高滤波效果,可以仿照模拟系统RC 低通滤波器的方法,将普通硬件RC 低通滤波器的微分方程用差分方程来表示,用软件算法来模拟硬件滤波器的功能。 典型RC 低通滤波器的动态方程为 x y dt dy T f =+ (4.4)

相关文档
最新文档