地震勘探中的常见地震干扰波及压制方法

地震勘探中的常见地震干扰波及压制方法
地震勘探中的常见地震干扰波及压制方法

地震勘探中的常见地震干扰波及压制方法

论文提要

在地震勘探中激发地震波时,由于激发、接收条件,自然环境和地表条件的影响,我们所采集到的地震数据中,既有有效波也有干扰波。根据干扰波的物理特征、形成机理和形态,常把地震数据上的噪声分为规则噪声和随机噪声两大类。规则噪声具有明显的运动学特征 ,如:面波、线性干扰、平行折射、声波、多次波干扰等,可以根据其运动学特征选择针对性的衰减方法;随机噪声是一种无规律的噪音,如:自然界风吹草动所产生的猝发脉冲、野值等。为了提高地震勘探的精度,完成在各种复杂地区的勘探任务,使地震资料能更真实地反映地下的地质情况,如何突出有效波,压制干扰波就成为一个极其重要的问题。通过暑假的实践,本论文中针对地震勘探中的常见地震干扰波进行总结、分类、衰减,并在国产软件GRISYS平台上,针对不同的干扰波进行分析,总结针对不同噪音的衰减方法。

正文

一、规则干扰波

规则干扰波是指有一定的主频和一定视速度的干扰波。例如面波、声波、线性干扰波、多次波等。下面就规则干扰波中的面波、声波、多次波和50Hz交流电干扰进行介绍。

(一)面波

图1 面波的形成机理及实际地震记录上的面波

从震源发出的波动分为两种: 一种是质点振动方向与传播方向一致的波,称为纵波。另一种是质点振动方向与传播方向垂直的波,称为横波。纵波的传播速度较快,在远离震源的地方这两种波动就分开,纵波先到,横波次之。因此纵波又称P波,横波又称S波。在没有边界的均匀无限介质中,只能有P波和S波存在,它们可以在三维空间中向任何方向传播,所以叫做体波。但地球是有限的,有边界的,在界面附近,体波衍生出另一种形式的波,它们只能沿着界面传播,只要离开界面即很快衰减,这种波称为面波。面波实际上是体波在地表衍生而成的次生波, 面波是一种很强并广泛存在的规则干扰波 ,在炮集上呈线性分布 ,其特征为低频、低速且振动延续时间长 ,严重影响中深层有效反射 ,大大降低地震资料的信噪比,如图1所示。

1.面波的特点

面波是地震勘探中常见的噪声,分为三种:分布在自由界面附近的瑞雷面波。在表面介质和覆盖层之间存在的SH型的勒夫面波;以及在深部两个均匀弹性层之间存在的类似瑞雷面波型的史东尼面波。在地震勘探中观测的面波,主要是沿地表传播的瑞雷面波,如图1的作图所示,其特点为:

(1)低频,一般在15Hz以内。

(2)低速,其速度为纵波的0.5倍,横波的0.9倍,视速度一般为100~1200 m/ s ,以200~600m/s的视速度最为常见。

(3)面波速度随频率变化而变化。面波随着传播距离的增大,振动延续时间也越长,形成“扫帚状”,即深层频散。

(4)能量强,衰减慢,这也是低频波的特点。面波能量的强弱与激发岩性、激发深度以及表层地震地质条件有关。

(5)面波时距曲线是直线,因此在近炮点排列(100~150米)的波形记录上面波同相轴是直的,其视速度与真速度相近。

2.面波压制

要得到高信噪比的地震记录 ,面波的压制是一项重要的环节。常见的面波压制方法有以下几种 :

(1) 通过分析相邻道的频率差异 ,结合面波速度和频率资料 ,应用频率空间域 f - k 滤波方法 ,对面波进行衰减。但 f-k滤波要求有规则的空间采样间隔 ,适用于地层倾角较缓的地区 ,对于复杂条件下的面波去除效果不佳 ,混波现象很严重。

(2) 低截滤波或高通滤波:这种方法会严重损失中深层的低频有效信号。

(3) 内切除:该方法在切除面波的同时,也将包含在面波中的有效信息切除掉 ,不可恢复。

(4) τ-p变换:τ-p 变换是依据有效波和干扰波的视速度符号和大小的不同来达到压制干扰波的目的,面波虽然是一种规则的线性干扰 ,但它在地震记录上的分布从浅到深会出现严重的扫帚装特征 ,它的速度和频率从浅到深都有可能变化 ,将含有面波的地震数据变换到τ-p 域 ,面波并不是一个点 ,从而也很难完全去除面波。

(5) 小波变换:小波变换是基于在较低频率外面波的能量强于反射波、在小频率范围和小空间范围内面波能量变化缓慢的假设条件下 ,先用面波的视速度对面波做线性时移 ,使面波逐道相干 ,再利用 KL 分解或沿 x 方向进行小波变换的方法来提取面波 ,并将其从原始资料中减去 ,由于面波的扫帚装特征 ,将面波作线性时移时不可能完全对齐 ,也很难达到完全去除面波的目的。

在GRISYS平台上,有两种面波衰减方法,一种为局域滤波去面波,适应于低频、低速、规律性较强的面波;另一种为自适应面波衰减,利用时频分析的方法,根据面波和反射波在频率分布特征、空间分布范围、能量等方面的差异,检测出面波在时间和空间上的分布特征,再根据面波固有特征对确定的面波进行二次分析,以确定面波能量的频率分布特征,并根据这种特征对其进行加权压制,适应于有效波与面波有一定频率差

异的资料,两种方法对面波的压制效果如图2-3所示。

图2 局域滤波去面波方法

图3自适应面波衰减方法

针对该地震数据,两种方法都能很好的去除面波,达到压制面波,突出有效波的目的,在面波压制后的炮记录上看,由于没有选择面波压制后的振幅补偿选件,出现了能量不均。

(二)声波

声源体发生振动会引起四周空气振荡,这种振荡方式就是声波。声以波的形式传播着,我们把它叫做声波.声波借助空气向四面八方传播。除了空气,水、金属、木头等也都能够传递声波,它们都是声波的良好媒质。在坑中、河中、浅水池中、干井中激发时,容易出现较强的声波。

1.声波的特点

声波是空气中传播的弹性波 ,速度为 340 m/ s 左右 ,比较稳定,频率较高 ,一般大于100 Hz ,延续时间较短 ,在地震记录上形成尖锐的强初至 ,呈窄带出现。采用井中注水、埋井、多坑、深坑、减少单坑的炸药量、大偏移距接收等方法可以避开声

波干扰。

2.声波的压制

声波的压制方法一般有以下几种:

(1)反褶积:在以往的地震资料处理流程中 ,由于处理手段和设备限制 ,主要通过反褶积技术对声波进行压制。在声波主频较高时 ,此压制方法往往不是很理想。

(2)切除法:使用内切除法将声波完全剔除 ,虽能从根本上消除声波对地震数据的影响 ,可更好的提高信噪比 ,但湮没在强噪声干扰中的有效信号也会损失掉。

(3)分频自适应检测与压制:该方法不仅可有效的压制声波干扰 ,而且可以保证有效信号不受太多畸变。

(三)多次波

多次波一直是常规地震资料处理中常见的干扰波 ,由于地表及地下结构的变化 ,多次波的周期、频率、分布规律等具有多变性 ,多次波和一次波在频谱和视速度上都相近,多次波的主频和视速度偏低,但差异不大。多次波的传播速度比同时到达的一次反射波的传播速度较低。多次波比反射波多了一个或多个上行反射界面,因且多次波常常和一次有效反射波相干涉 ,使地震剖面出现假的地质现象进而影响对剖面的解释。为了解决多次波的识别、压制问题,就要分析多次波产生的条件、特点,找出它与一次反射波之间的差异。

1.多次波的产生

产生多次反射波要有良好的反射界面。因为一般反射界面的反射系数较小,一次反射波的强度比较弱,经过多次反射后,多次波就很微弱了。只有在反射系数较大的反射界面上发生的多次反射波,才比较强且能被记录下来、属于这类界面的有基岩面、不整合面、火成岩(如玄武岩)和其它强反射界面(如石膏层、岩盐、石灰岩等)。例如 :当地震波经过地下界面反射后传播到地面时 ,由于地面与空气的分界面是一个波阻抗差别很明显的界面 ,所以是一个良好的反射界面 ,地下界面反射波有可能从这个界面反射向下传播 ;当遇到地下反射界面时 ,又可以在此发生反射返回地面。如此往复就形成了多次波。如果浅、中层存在良好的反射界面并产生了多次波 ,就有可能掩盖中深层的一次反射波。

2.多次波的类型

按照其反射方式的不同 , 多次波一般分为以下几类 :

(1) 全程多次反射波

在某一深层界面发生反射的波在地面又发生反射 ,向下在同一界面发生反射 ,来回多次。又称简单多次波 (如图 4 ) 。

图4全程多次波模型图

(2)短程多次波

地震波从某一深部界面反射回来后 ,再在地面向下反射 ,然后又在某一个较浅的界面发生反射。又称局部多次波 (如图 5 ) 。

图5短程多次波模型图

(3)微屈多次波

在几个界面上发生多次反射 ,多次反射的路径是不对称的 ,或在一个薄层内受到多次反射。(如图 6)。(2)和(3)两类多次波并没有很严格的差别。

图6微屈多次波模型图

(4)虚反射

进行井中爆炸激发时 ,激发能量的一部分向上传播 ,遇到地面再反射向下 ,这个波称为虚反射。它与直接由激发点向下传播的地震波相差一个延迟时间τ;τ等于波从井底到地面的双程传播时间 (如图7) 。

图7虚反射模型

3.多次波的压制

多次波衰减一直是地震数据处理中的难题,随着地震勘探向岩性勘探与油藏描述等的深入,多次波问题越来越引起人们重视。

(1) 预测反褶积技术

预测反褶积的作用:是压缩地震子波 ,提高时间分辨率;是消除虚反射、回响和其

他类型多次波,提高资料信噪比。对于周期性的多次波的压制,该方法的最大优点是不受

一次波和多次波速度的影响。理论上,预测距离的长度为一次波与所要滤掉的多次波之

间的时间间隔 ,算子长度至少应为多次波的一个周期。在实际处理中,由于多次波的多

样性和无规律性,需要反复谨慎的试验这两个参数,并结合地震剖面 ,根据地质构造形

态来判断是否精确合理到位。

(2) F-K域多次波衰减技术

该技术主要作用是压制CMP道集中能量强的多次波,出弱的有效反射能量团 ,提高

速度拾取精度,而提高叠加剖面的品质。利用F-K滤波压制多次波的基本思路为:在CMP

道集上进行速度分析 ,并对数据进行NMO校正,校正速度介于一次波与多次波之间, 这

时一次波同相轴校过头 ,而多次波校正不足 ,校正后的记录在时空域中表现为一次波

向上翘 ,多次波仍向下弯;校正后的数据进行二维傅里叶变换 ,由于一次波与多次波

视速度不同 ,在 F - K空间它们分别位于零波数轴的两侧 ,设计 F -K 滤波器,多次波

进行切除;进行二维傅里叶逆变换 ,把数据返回到时空域 ,用相同的动校正速度进行反

动校 ,这样就可得到压制多次波处理后的 CM P 道集。F - K 滤波压制多次波的优点: 凡是低于所选 NMO速度的多次波均能得到压制 ,这对于多次波速度具有一定区间的资

料 ,其效果是明显的。F - K 滤波压制多次波的关键环节是拾取介于一次波与多次

波之间的校正速度。在实际资料处理中 ,应遵守多次波速度变化较平缓的规则 ,在

时间方向上考虑反射同相轴能量的强弱 ,在空间方向考虑构造的横向变化 ,避免校正

速度在空间上大幅度的跳跃。否则 ,将会造成压制多次波的同时也会损失有效的反

射信息 ,降低原始资料的信噪比。

(3) 近道内切法多次波衰减技术

通过分析认为 , 当反射界面水平 ,地下介质为分区均匀介质时 ,动校正量的大

小随着炮检距的变化而变化 ,当炮检距较小时 ,动校正量相对较小 ,这时有效波和多

次波的动校正量时差也较小 ,所以很难用动校正方法分离有效波和多次波。这时可

采用中深层近道内切法限制近道对叠加剖面的影响。

图8 减去法多次波衰减前(左)后(右)的叠加效果

(四) 50Hz交流电干扰

这种噪声是通过感应或电缆漏电耦合到电路 ,同地震信号一起被送到地震仪而被记录下来。频率恒定为 50 Hz 。是野外施工中常见的不可避免的干扰。

1.50Hz交流电干扰的特点

(1)频率稳定 ,一般都在50 Hz ±3 Hz 左右。

(2)在输电线下面的一道或几道上的交流电干扰特别强 ,其它道较弱 ,而被干扰的道从头至尾都有 50 Hz 干扰信号。

(3)随排列的移动而移动。

2.50Hz交流电干扰的压制

(1)提高仪器、组合线、大线和检波器的绝缘度。

(2)设计滤掉 50 Hz 的滤波因子进行数字滤波,即陷波。

(3)由于50Hz的单频干扰,在实际记录中是50HZ左右,为此我们为了提高单频波压制的精度,设计在单频波较强的深层统计其主频,模拟单频波的噪音,然后从记录中减去,这样会有效提高去噪精度,如图9所示,为目前在GRISYS平台上针对单频波压制的效果。

图9 单频波压制前后的炮记录效果

二、无规则干扰波

地震勘探中经常遇到一类特殊的干扰,既没有一定的频率,也没有一定的速度,称为随机干扰或无规则干扰。

(一)随机干扰的种类

(1)地面的微震。如风吹草动及人为噪声。它来自地表的各个方向 ,频谱很宽 ,振幅大小变化无规律。

(2) 井中激发的微震干扰。当采用井中爆炸时,爆炸产生的高频高压气体和泥浆在井中翻腾,冲击井壁,在井口附近几个记录道上造成杂乱的干扰波。通常 ,在砂层中激发易产生气泡干扰 ,在粘土层中激发易产生喷出物的杂乱干扰,在坚硬的老地层中激发易产

生锯齿状的高频干扰。

(3) 大气电离层的噪声。由于空间电场的扰动,感应到大地产生电流 ,通过电缆和检波器被传输到地震仪器的数据采集系统记录下来的干扰波。它的频谱很宽 ,在时间域上是一个很常见的经典脉冲。

(4) 仪器噪声。任何电子系统在没有输入的情况下 ,在输出端都可以观测到其自身的最小输出电压 ,即系统自身存在的噪声。

(二)随机干扰的压制

(1)f - x域随机噪声衰减 :该方法是对叠后地震剖面上的线性同相轴 (包括有效信号和线性噪声) 进行预测 , 分离信号与噪声 , 压制剖面上的随机噪声 , 以增强有效信号,如图10-11所示。在 f - x 域进行随机噪声衰减时 , 选择去噪参数应注意计算时窗和混波比两个关键参数。其中混波比给得太大 , 去噪效果不明显 ; 混波比给得太小 , 会使资料太呆板。

图10 随机噪音衰减前(左)后(右)的炮记录效果

图11 随机噪音衰减前(左)后(右)的叠加效果

三、GRISYS处理系统的去噪总结

叠前多域迭代去噪:针对噪音的能量、频率特征和在炮域、共检波点域、共炮检距域、CMP域的分布,进行分频、分域来实现不同域的迭代去噪方法。

噪音是多种多样的,在一张记录上,往往存在多种噪音的叠合,因此在室内处理中我们不可能使用一种方法就可以解决问题,而要根据实际情况,使用不同的方法组成一个处理流程,对地震资料中不同的噪音进行针对性的压制,从而达到压制干扰波,突出有效波,提高信噪比的目的。

在方法选择和处理流程的制定上,必须注意模块使用的先后顺序,不能随意安排。要根据模块设计的前提条件及噪音的强度和分布特征,科学地选择去噪顺序。原始资料分析,尤其是各种干扰波的分析工作要细致,搞清楚干扰波的生成的机理、分布范围以及特征,在对原始资料充分分析和试验的基础上,选择不同的模块组合,组织科学合理的去噪流程。噪音衰减要遵循能量优先的原则,即先强后弱、频率由低到高;先压制规则干扰、后压制随机噪音。下面是在实践中的一个迭代多域去噪流程及效果。

图12 去噪流程

图13 原始炮记录原始叠加剖面

图14炮域线性干扰压制后的炮记录(左)和叠加剖面(右)

图15检波点域线性干扰压制后的炮记录(左)和叠加剖面(右)

图16面波衰减及高能干扰压制后的炮记录(左)和叠加剖面(右)该资料是一条山前带、低信噪比测线,通过原始资料分析得知,原始炮记录上以线性干扰为主,能量最强,几乎见不到有效的反射波,所以,首先在炮域进行了线性干扰压制,之后又在共检波点域进行了线性干扰压制,通过分频扫描,合理的选取了面波衰减和高能干扰压制参数,最后通过自适应面波衰减和高能干扰压制,达到了逐步突出有

效波,压制干扰波的目的。

致谢

感谢指导老师朱颖红在毕业设计中对我的关心、支持和帮助!感谢同学王功峰在学习及毕业设计中对我的关心、支持和帮助!

参考文献

《GRISYS系统编码手册》

《地震勘探原理》陆基孟著

《地震数据处理方法系统思维》熊翥著

《高分辨率地震勘探》俞寿朋著

地震勘探的一些基础知识.doc

接收条件received condition:指地震勘探中接收地震波的仪器的工作状态和条件。广义地说, 接收条件包括地震检波器的安置情况、组合个数与方式,以及地震仪的各种因素等。但通常将接收条件狭义地指地震检波器的安置情况。地震资料的质量与接收条件有密切关系。陆地工作中埋置检波器,海洋工作中使检波器处于水面下一定深度,都是为了避免风、浪等影响而改善接收条件。 界面速度interface velocity:指折射波沿折射界面滑行的速度。界面速度主要反映折射界面以下地层中岩石的物理性质。由于组成地层的岩石颗粒排列有方向性,通常界而速度大于层速度。界面速度可通过折射波测得。 加速度检波器accelerometer:即“压电地震检波器”。 激发条件excited condition:地震勘探中将震源种类、能最、周围介质的情况总称为激发条件。对于炸药震源来说,激发条件一般包括炸药量大小、药包形状,个数,分布方式及埋置岩性和沉放深度等。对于非炸药震源,激发条件则包括装置的种类、能量、参数选择及安置情况等。激发条件的选择是否适当,对地震勘探原始资料质量的影响很大。一般认为,陆地工作中, 风化层下的含水可塑性岩层是有利的激发条件,因此往往采用井中爆炸,在海洋工作小,主要是以减小气泡影响作为合适的激发条件。 海洋地震勘探marine seismic survey:是利用勘探船在海洋上进行地震勘探的方法°其特点是在水中激发,水中接收,激发,接收条件均一;可进行不停船的连续观测。震源多使用非炸药震源,接收常用压电地震检波器,工作时,将检波器及电缆拖曳于船后一定深度的海水中由于上述特点,使海洋地震勘探具有比陆地地震勘探高得多的生产效率,更需要用数字电子计算机处理资料。海洋地震勘探中常遇到一些特殊的干扰波,如鸣震和交混问响,以及与海底有关的底波干扰。海洋地震勘探的原理,使用的仪器,以及处理资料的方法都和陆地地震勘探基本相同。由于在大陆架地区发现大量的石汕和天然气,因此.海洋地震勘探有极为广阔的前景。 高频地震high frequency seismic survey:在水文地质、工程地质调杏和金属矿床勘探中,勘测深度只在儿米到儿百米之间,需要精细分层和精确地测定波的传播时间。为了提高仪器的分辨能力,要用专门的高频地震仪,记录震波的高频分量。高频地震仪的通频带?般在60-350周 /秒之间,专门测定岩石波速时需提高到500-600周/秒。为了压制低频干扰,仪器频率特性的低频一边应有较大的陡度。 干扰波noise:地震勘探中妨碍分辨有效波的振动都属于干扰波。干扰波大体上可分为两种:其中具有明显传播规律的称为规则干扰或干扰波,如声波、面波,多次波等等;没有明显传播规律性的振动称为随机干扰,或简称干扰,如微震等。抗干扰的问题是关系到地震勘探中提高勘探的质量和能力的极其重要的问题。因此,在野外工作和资料处理上采用多种措施,以提高有效波而压制干扰波。干扰波有时也是相对的概念,如在反射法中,折射波就常

地震勘探在海洋石油勘探中的基本原理

地震勘探在海洋石油勘探中的基本原理

————————————————————————————————作者: ————————————————————————————————日期:

本科生课外研学任务书及成绩评定表 题目__地震勘探在海洋石油勘探中的基本原理学生姓名____ 黄邦毅________________ 指导教师____ 严家斌____________ 学院____ 地信院________________ 专业班级___地科0901_______________

地震勘探在海洋石油勘探中的基本原理 一、引言 国内外的勘探实践表明,没有物探技术的进步,就没有更多圈闭的发现,就没有钻探成功率的提高,也就更不会有油田和储产量的快速增长。宏观看,物探的作用在勘探阶段是客观的目标评价,在开发阶段是精细的油藏描述。因此,油气勘探开发离不开地震技术和地震技术的进步与发展。如果说勘探技术是石油工业的第一生产力,那么物探技术就是获得油气储量的第一直接生产力。 纵观近些年的勘探技术的具体运用,最常见的莫过于地震勘探,所谓地震勘探就是通过人工方法激发地震波,研究地震波在地层中传播的情形,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法! 21世纪是海洋的世纪,海洋蕴藏着很多宝贵的资源,随着生产技术的日趋进步,世界各国(包括中国在内)目前都在积极寻求开发海洋资源,在海洋的勘探开发中离不开物探,而且运用最广泛也最有效的是地震勘探。 二、海洋地震勘探 在茫茫大海里寻找石油最有效的技术方法是地球物理方法,其中主要是地震勘探方法。近几十年来,随着电子计算机的广泛应用,海洋地震勘探的数据采集和装备得到了极大的改进,数据处理技术和解释方法也得到迅速的发展。在油气勘探中,利用地震资料不仅能确定地下的构造形态、断裂分布,而且能了解地层岩性、储层厚度、储层参数甚至能直接指示地下油气的存在。在油气开发中,地震资料同测井、岩芯资料以及其它地下地质资料相结合能对油藏进行描述和监测。地震技术远远超出了石油勘探领域,已向石油开发和生产领域渗透。 用于寻找海上石油的地震反射法,和陆地的地震反射法相比,在方法基本原理、资料处理和解释方法等方面基本上是一样的。其中, 测量原理 在这类方法中,地震波在介质中传播的物理模型如图1所示。从震源O激发出的弹性波投射到反射界面上产生反射波,其条件是:入射角α等于反射角β。能

论地震勘探中几种主要地震波

论地震勘探中的几种主要地震波 论文提要 地震勘探,就是通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下地质构造,为寻找油气田或其它勘探目的服务的一种方法。也可以理解为就是利用地震子波从地下地层界面反射回地面时带回来的旅行时间和形状变化的信息,用以推断地下的底层构造和岩性。地震勘探在勘探已有的各种物探方法中,是最有效地方法。在地震勘探中用炸药激发时,一声炮响之后会产生各种各样的地震波。按波在传播过程中质点震动的方向来区分,可以纵波和横波;根据波动所能传播的空间范围而言,地震波又可以分为体波和面波;按照波在传播过程中的传播路径的特点,又可以把地震波分为直达波、反射波、透射波、折射波,等等。地震勘探在石油勘探中除了能产生来自地层界面有用的反射波外,还会产生各种各样的干扰波。因此,我们要更好的了解各种波的产生、特点、用途,等等。下面简单介绍几种地震勘探中产生的地震波。 正文 一、反射波 (一)反射波的形成 1、几何地震学的观点 当炸药在井中爆炸激发地震波时,在雷管引爆几百微妙之内爆炸便完成了,在接近爆炸点的压强是一个延续时间很短的尖脉冲,爆炸脉冲向外传播,压强逐渐减少,地层开始产生弹性形变,形成地震波。地震波继续传播,由于介质对高频的吸收,地震波信号减小。当波入射到两种介质的分界面时(当上层介质波阻抗与下层介质波阻抗不等时,弹性地震波才会发生反射;上层介质波阻抗与下层介质波阻抗差别越大,反射波越强——反射波条件),一部分波回到第一种介质中,这就是所谓的反射波。如图所示 2、物理地震学观点 地震波从震源出发以球面波的方式向下传播,到达反射界面S,S可以就看成有许多

地震勘探在海洋石油勘探中的基本原理

本科生课外研学任务书及成绩评定表 题目__地震勘探在海洋石油勘探中的基本原理学生姓名____ 黄邦毅________________ 指导教师____ 严家斌____________ 学院____ 地信院________________ 专业班级___ 地科0901_______________

地震勘探在海洋石油勘探中的基本原理 一、引言 国内外的勘探实践表明,没有物探技术的进步,就没有更多圈闭的发现,就没有钻探成功率的提高,也就更不会有油田和储产量的快速增长。宏观看,物探的作用在勘探阶段是客观的目标评价,在开发阶段是精细的油藏描述。因此,油气勘探开发离不开地震技术和地震技术的进步与发展。如果说勘探技术是石油工业的第一生产力,那么物探技术就是获得油气储量的第一直接生产力。 纵观近些年的勘探技术的具体运用,最常见的莫过于地震勘探,所谓地震勘探就是通过人工方法激发地震波,研究地震波在地层中传播的情形,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法! 21世纪是海洋的世纪,海洋蕴藏着很多宝贵的资源,随着生产技术的日趋进步,世界各国(包括中国在内)目前都在积极寻求开发海洋资源,在海洋的勘探开发中离不开物探,而且运用最广泛也最有效的是地震勘探。 二、海洋地震勘探 在茫茫大海里寻找石油最有效的技术方法是地球物理方法,其中主要是地震勘探方法。近几十年来,随着电子计算机的广泛应用,海洋地震勘探的数据采集和装备得到了极大的改进,数据处理技术和解释方法也得到迅速的发展。在油气勘探中,利用地震资料不仅能确定地下的构造形态、断裂分布,而且能了解地层岩性、储层厚度、储层参数甚至能直接指示地下油气的存在。在油气开发中,地震资料同测井、岩芯资料以及其它地下地质资料相结合能对油藏进行描述和监测。地震技术远远超出了石油勘探领域,已向石油开发和生产领域渗透。 用于寻找海上石油的地震反射法,和陆地的地震反射法相比,在方法基本原理、资料处理和解释方法等方面基本上是一样的。其中, 测量原理 在这类方法中,地震波在介质中传播的物理模型如图1所示。从震源O激发出的弹性波投射到反射界面上产生反射波,其条件是:入射角α等于反射角β。

复杂地区浅层地震勘探采集方法探析

复杂地区浅层地震勘探采集方法探析 发表时间:2015-01-26T13:59:08.377Z 来源:《防护工程》2014年第11期供稿作者:徐光发 [导读] 地震勘探,就是利用地下介质弹性和密度的差异,通过观测和分析大地对人工激发地震波的响应。 徐光发贵州地矿局第二工程勘察院贵州遵义 563000 摘要:随着社会经济的发展,地震勘探技术有着广泛的应用。在复杂地区的浅层地震勘探中,勘探的精度和准度往往会受到常规因素的影响,同时还会受到自然环境、地质地形及浅层地表性质的影响。本文主要探讨了复杂地区浅层地质勘探采集技术,以期为实际的勘探提高一定的参考。 关键词:复杂地区;浅层地震;勘探采集 引言 地震勘探,就是利用地下介质弹性和密度的差异,通过观测和分析大地对人工激发地震波的响应,推断地下岩层的性质和形态的地球物理勘探方法。地震勘探是钻探前勘测石油与天然气资源的重要手段,在煤田和工程地质勘查、区域地质研究和地壳研究等方面,也得到广泛应用[1]。 1 地震勘探采集设备概述 1.1 基本构造在实际的地震勘探中,应该根据具体的勘探任务和目标,选择合适的采集设备。不同的采集设备其性能和完备性存在一定的差异[2]。 比如石油、天然气勘探中,为实现2D 或3D 的地震勘探,通常需要超过200 道的大中型采集系统;对于浅层区的地震勘探,则大多采用96道以下,且性能和完备性较小的采集系统。同时,系统采集模式的差异也体现在分布式数字传输和集中式模拟传输之上,并且A/D 位数等性能也存在较大差异。地震勘探设备的基本构造大体体制。 1.2 基本特点目前,我国大多引进国外的大中型勘探采集设备,以分布式采集系统为主,主要的特点是:(1)应用24 位A/D 转换器,提升了采集信号的质量和保真性;(2)噪声和波形畸变变较小,并具有低噪音和微畸变的特点;(2)较高的采样率和较快的频带;(4)系统性能更为完备,适应性较强。 2 地震勘探观测系统的类型 2.1 2D 地震观测2D 地震观测系统一般应用中间式放炮或者端点式放炮的覆盖观测系统[3] [4]。观测系统的选择以有效波的覆盖追踪范围及干扰波较少的区域为主。具体而言:(1)端点式放炮,适用于深度较大、道数较多的地震勘探、道数少但未保证一定的炮检距及地下层角度偏大等几种情况的勘探;(2)中间式放炮:适用于深度较小、提高效率和降低费用等情况的勘探。要注意的是,采取端点式放炮观察系统时,要确保在下倾向放炮;而中间式放炮分为对称和不对称两种。 2.2 3D 地震观测对于复杂地区浅层地震勘探而言,通常采用规则或非规则线束状3D 观测系统。在3D 操作较为困难的区域勘探观测,可采取宽线观测系统。3D 地震勘探系统选择,主要按照:(1)覆盖的次数:复杂地区浅层地震勘探一般在15 到25 次,相对简单的地区勘探一般一般在15 次以下;(2)面元的大小:空间产生假频、勘探目标大小及横向分辨率等因素都会影响勘探观测面元的大小。对于一些较小的、特殊的勘探目标,其面元的大小的要求是至少确保目标范围内有2 到4 个叠加道,在切片方面则要有4 到10 个道。为避免产生空间假频,在1个周期内至少有2 个及以上的采样点;同一波长内也应保持2 个及以上采样点;(3)炮间距的分布:最低炮检距的设定应为最浅勘探层的1 到1.2 倍,对于最高炮检距的设定会受到诸多因素的影响,但是一般要超过勘探层的深度,还应充分考虑多次波识别、速度分析等要求;(4)偏移的孔径大小;(5)斜坡带的情况:通常情况下,在水平层介质中,斜坡带约为勘探层深度的25%左右;(6)长度的记录:应记录下最深测量层位的绕射情况。 2.3 复杂地区浅层数据采集的设计对于复杂地区浅层数据采集的设计,包括:(1)复杂地区浅层3D地震勘探,应按照先测量、后设计、再施工的过程。采取此过程可根据测量出的地表变化情况设计出最优的方案。进而最大限度的实现CMP 面元中的各个炮检距的均匀性分布;(2)不规则3D 勘探采集技术,是当前收集复杂地区浅层地质3D 采集的有效方式,其可根据勘探区内的地表特征,设计出不同的观测系统,以避开障碍物体,在规制3D 不可采集区进行勘探;(3)障碍区内接收点及炮点的定位,充分掌握障碍区内及其附近区域的各个接收点和炮点的初始时间,并利用好初始时间,采取分段线性拟合方法,创建各个控制点的标准初始曲线,再根据实际初始时间与标准初始曲线间的差值,应用交汇法对各接收点和炮点的地理坐标进行计算和校正。 3 浅层地表结构的调查 对于复杂区浅层地表结构的调查方法主要有:(1)微小地震测井法:主要通过地到井的观测模式,以测定浅层速度,再划分速度层的方法。可准确、有效的确定速度的界面、计算出各层次的速度;(2)小折射法:是对低降速带调查的一种方法,可对浅层速度的界面进行有效的划分,以达到确定低俗带的厚度和速度。此方法如果持续观测,可把连续变化的浅层剖面显示出来。该方法具有操作方便、运行灵活、速度快及成本较低的特点,其不足就是不适合地形复杂、陡的地表;(3)雷达测深法:就是把声纳技术应用到地震勘探中,以测量浅层低降速带的方法。该方法科根据具体的地质、地貌情况,选取采集点分布,具有速度快、成本较低且不受地质地形的影响。 4 采集信息资料的控制及相关评价 对于复杂地区浅层地震勘探采集信息资料的控制的内容主要有三个方面:(1)勘探采集设备的检查:也就是相关采集设备的性能检测,主要按照年月日三种形式检测,检测的内容包括:噪声、波形畸变、脉冲等,检测形式不同则内容也不同;(2)质量现场控制:对于野外数据的采集多采取现场质量控制,软件多以CRISYS 和PROMAX等软件;硬件则以计算机服务器或工作站点为主;(3)采集信息的评价:根据实际勘探地区的特征,选取相应的地震勘探流程为评价标准。 5 结语 对于复杂地区浅层地的地震勘探,因目标区域的地质、地震条件较为复杂,还应地下构造不同,岩层的变化较大。所以,不但会给野外作业带来一定的困难,还会使信息的处理和分析更加复杂化。在这种情况下的地震勘探作业,主要表现是波长吸收的减退较为严重,有效波的分辨率和信噪比都不高,所以说,在投入和资源较为充分时,可适当提高道数、覆盖数等,对于观测方法,则可选择弯线勘探或宽线勘探,要根据实际选择合适的方法。 参考文献[1]沈阳,张涛,赵民等.复杂地区浅层地震勘探采集方法探讨[J].煤炭技术.2011,30(6):252-254[2]李华科,巍艳.

目前石油行业海底勘探手段有哪些

目前石油行业海底勘探手段有哪些 目前石油行业海底勘探手段有哪些? 知乎 世界能源发展的趋势表明,储量在1000亿吨至2000亿吨的海洋石油和天然气将是各大石油公司未来能源领域争夺的重点,其资源量约占全球石油资源总量的34%,探明率30%左右,尚处于勘探早期阶段。全球深海石油生产能力自2000年以来增长三倍多,根据剑桥能源的统计,全球深海(超过2000英尺,即610米)石油生产能力2000年为150万桶/日,2009年超过500万桶/日,2015年可能增至1000万桶/日。 各大有实力的石油公司竞相加大海上投资,用资金和技术实力争夺海洋资源。加上海洋中最重要的替代能源--天然气水合物储量中的甲烷总量达到1.8×1016立方米,也十分惊人。由此可以断定:掌握了尖端深海勘探和生产技术的石油公司将会在未来能源市场中占据主导地位。基于上述认识,中国石油正在加快进军深海石油勘探,或在2015年后开始相关深海油气田的勘探开发,计划未来形成海上300万吨以上产能规模。 但是,目前我国三大石油公司深海石油勘探和生产的能力有限,中国海洋勘探技术还局限于水深200米以内的浅海,而水深900米到1200米甚至更深的深海石油勘探和开发则仍处于探讨阶段。我国的海上地震勘探技术起步晚,技术力量薄弱,加上这种技术自身的局限性,决定了即使我国石油公司慢慢掌握了海洋地震勘探技术,也注定远远落后于西方油公司。 正如电信行业目前正在大力发展3G技术的应用,但是同时4G技术的标准也正在制定和开发中。中国移动公司在3G这一市场中的技术远远处在一个劣势地位,因此也就不难理解为何要跳过3G技术开发而转向大力推进4G技术的发展和应用。同样,如果说海洋地震勘探是目前的3G技术,那么,电磁波勘探将会是未来流行的4G技术。 海洋地震是目前海洋石油勘探的主流技术,它可以精细地描绘可能的油气构造,但是这项技术也有自身的局限和技术上无法逾越的瓶颈。因此,地震勘探固有的弱点驱动着科学家们探寻更好的勘探方法。随着科学理论的发展和人类对电磁波认识的深入,人们正在逐渐地掌握利用电磁波进行勘探的技术。 20世纪80年代,电磁波在液体中的传导还被看做是天方夜谭,但在如今,已有使用超低频电磁波而非传统的地震机械波的勘探技术出现。与传统方式相比,电磁波勘探具有天然的技术优势,代表了海洋石油勘探技术的潮流。 使用瞬变电磁场进行海洋石油勘探的研究与应用已经流行了一段时间。瞬变电磁场法是利用敷设在地面的不接地回线通以脉冲电流发 射一次脉冲磁场,使地下低阻介质在此脉冲磁场激励下产生感应涡流,感应涡流产生二次磁场。当一次磁场切断后,感应二次场将持续一段时间,用灵敏度极高的接收机可以接收到这一随断电时间而衰减的二次磁场。 瞬变电磁场方法开创了利用电磁波进行勘探的先河,但是这种技术的局限性决定它在深海石

地震勘探原理及方法

、地震勘探基本原理 1. 地震地质模型基本分类 2?均匀、理想弹性介质中的三维波动方程 3.无限大均匀各向同性介质中的弹性波场及特征 4.地震波的反射、透射和折射 5.多层黏弹性介质中的弹性波场及特征 6.几何地震学原理 7.地震波速度及地震地质条件 1.1地震地质模型基本分类 1.地震地质模型 2.固体成为弹性介质的条件 3.人工激发震源与岩层的弹性 4.常用的弹性介质模型 1.3无限大均匀各向同性介质中的弹性波场及特征 1.3.1无限大均匀各向同性介质中的平面波 1.3.2无限大均匀各向同性介质中的球面波 1.3.3地震波的动力学特征 1.3.4地震波的运动学特征 小结: 1、动力学特征(动力学参数) 2、运动学特征(运动学参数) 3、动力学特征的体现:远近震源处的位移波形变化 球面扩散、振动图和波剖面谱分析 4、运动学的原理和定理:Huygens、Fermat、Snell 5、时间场和射线的关系

6、基本概念:射线、视速度、频波关系、波数、波长动力学信息(反映动力学特征的信息)振幅、频率、波形、吸收衰减、极化特点、连续性等特征。 运动学信息(反映运动学特征的信息) 传播时间(旅行时间)、传播时间-空间距离的关系、波的传播路径、地震速度等特征 1.4地震波的反射、透射和折射 1.平面波的反射和透射 2.弹性分界面上的波型转换和能量分配 3?球面波的反射、透射和折射 4.地震面波 小结 1、斯奈尔定理(包括反射定理、透射定理) 2、波的转换(同类波、转换波) 3、能量分配Zoeppritz方程 (法线入射、入射自由表面、反射产生条件) 4、倾斜入射及折射波的产生(产生条件、原因) 5、折射波的特点 (波前为圆锥台、射线为直线、能量扩散比反射波慢、折射盲区、屏蔽现象) 6、AVA曲线 (临界入射前、临界入射、过临界入射) 7、面波的特点 (传播速度、质点位移、频散现象) 1.5多层黏弹性介质中的弹性波场及特征 1.黏弹性介质中弹性波的传播和大地滤波作用 2.多层介质中弹性波的传播特性 3.地震波的簿层效应 4.地震绕射波 5.地震波的波导效应 6.反射波地震记录道形成的物理机制 黏弹性介质中弹性波的传播基本概念

最新地震勘探基础知识

1. 有关地震勘探的一些基本概念 1.1 地震勘探是勘探石油的有效方法 勘探石油的方法和技术,按其勘探手段划分,可分为地质法、物探法和钻探法三种基本类型。 地球物理勘探法(物探法)运用物理学的原理和方法,即利用地壳中岩石的物理性质(如岩石的弹性、密度、磁性和电性)上的差异来研究地球,了解地下岩层的起伏情况和组成情况,从而达到寻找储油构造以勘探石油的一种勘探方法。 依据研究对象的不同,物探法主要分为以下几种: ?地震勘探(利用岩石的弹性差异) ?重力勘探(利用岩石的密度差异) ?磁法勘探(利用岩石的磁性差异) ?电法勘探(利用岩石的电性差异) 在石油勘探中,最经济的方法是物探法。首先用物探法对工区的含油气远景作出评价,为钻探提供探井井位。然后钻探法通过实际钻进,以对物探法进行验证。如果构造含油,又可根据物探资料和探边井计算出含油面积和地质储量。 在我国,陆上是广大的地表松散沉积(如松辽平原、华北平原等)和沙漠覆盖区(如塔什拉玛干大沙漠),海上是被辽阔的海水所覆盖的“一片汪洋”,已看不到岩层的地面露头的出露。而钻井法成本高、效率低。如何解决这些地区的地质构造和地质储量问题呢?在这时就充分显示了物探法应用的威力。 在各种物探方法中,地震勘探具有精度高的突出优点,而其它物探方法都不可能象地震勘探那样详细而准确地了解地下由浅至深一整套地层的构造特点。因此,地震勘探已成为石油勘探中一种最有效的方法。 1.2 地震勘探基本原理 地震勘探是利用人工激发地震波的方法引起地壳的振动,并用仪器把来自地下各个地层分界面的反射波引起地面上各点的振动情况记录下来。利用记录下来的数据,对其进行过处理分析,从而推断地下地质构造和地层岩性的特点。 地震勘探查明地下地质构造特点的原理并不难理解。利用声波反射现象可测定障碍物离开声源的距离,是我们都知道的物理原则。 其计算公式为:

降低沙漠地区地震勘探空废炮率方法探讨

降低沙漠地区地震勘探空废炮率方法探讨 发表时间:2019-03-05T10:17:30.993Z 来源:《知识-力量》2019年5月上《知识-力量》2019年5月中作者:叶宗华 [导读] 随着地震勘探技术的发展,在竞争日益激烈的国际环境中,如何提高施工效率,降低地震勘探空炮率,为甲方提供较高品质的地震勘探资料成为我们亟待解决的重要问题。 (中石化石油工程地球物理公司国际业务发展中心) 摘要:随着地震勘探技术的发展,在竞争日益激烈的国际环境中,如何提高施工效率,降低地震勘探空炮率,为甲方提供较高品质的地震勘探资料成为我们亟待解决的重要问题。本文主要针对在沙漠地区进行地震勘探施工,使用基于法国Sercel公司设计开发的428XL一体化仪器与可控震源数字控制系统VE464,探讨在地震数据采集施工中降低地震勘探空炮率的方法及实践。 关键词:428XL仪器;地震勘探;空炮率 1.地震勘探炮点偏移 针对Shaybah Ramlah工区,阿美公司发布了一套炮点偏移标准,简单概括为: 1、在面元内偏移,不超过面元大小的一半(本工区面元大小12.5*12.5m); 2、面元内无法偏移,可以沿测线方向偏移8个道距; 3、沿测线方向无法偏移,可沿垂直于测线方向偏移1个束线距,然后可再沿测线方向偏移8个道距。如图1所示。 本工区开工初期,我们沿用这套偏移标准。但是由于本工区沙丘太大且陡,尽管有推土机修路,但是还是有许多沙丘震源车根本爬不上去。用推土机把沙丘推平,这不现实,而根据这套偏移标准,这些沙丘上的炮点又无法偏移出去。开工初期,施工进度较慢,空炮率比较高。 2.地震勘探中面临的空炮问题 根据施工中的统计数据,在一周的施工中,共计生产14703炮,空炮56炮,废炮16炮,空废炮总数为72炮,空炮率为0.49%。 另外,对这72个空废炮的原因做了进一步调查分析,发现震源无法到位引起的空炮和偏移超限引起的废炮分别占到了总空废炮的73.61%和22.22%,而偏移超限的根本原因也是因为震源没有到达正点位置,因此震源无法到位为引起空废炮的主要因素。 2.1推土机施工方法不够合理 推土机在工作过程中,在提高工作效率的同时,没有兼顾到推路的质量要求,推路的质量达不到标准,路面宽度仅为2个推铲的宽度,在上下沙丘时此宽度无法保证震源车顺利通行。如图2所示。 图2 震源道路 2.2二次偏移导致炮点偏移超限 在遇到较大沙丘等障碍物时,前期测量组放样时对炮点进行了偏移,在此基础上,后期震源组放炮时由于无法到达沙漠道路崎岖等原因无法到达指定位置,只能偏离测量桩号放炮,由此产生二次偏移。二次偏移导致炮点偏移超限而产生废炮。如图3所示。

地震勘探新方法作业题

地震勘探新方法作业题 01综述 1、写出5种与常规地面采集(地面激发、地面接收,主频20-40Hz)不同的地震勘探新方法新技术。 VSP:地面激发、井中接收(零偏、非零偏、Walkway、三维) 井间地震:井中激发、井中接收 时移地震/四维地震:多次采集 随钻VSP:钻头激发 多波多分量:纵波、横波激发 (山地地震高分辨率采集高密度采集) 2、写出地震勘探中5种解释新方法。 属性分析、地质统计学、反演:叠后反演、叠前反演(EI)、 AVO、裂缝预测、信息融合技术、神经网络 3、写出5种地震勘探基础理论新方法。 反演理论、小波变换、神经网络、模糊聚类、图形图像学、 地震波模拟(数值模拟;物理模拟)、各向异性 02 VSP 1、什么是VSP VSP:垂直地震剖面,是一种井中地震观测技术。也即在地面激发、井中放置检波器接收地震信号的一种地震观测技术。 2、VSP的采集方式 (VSP的采集方式是指激发点、接收点的排列特点和空间分布特征) 地面多次激发,井中三分量接收,激发-检波器提升-再激发-再提升。 3、VSP分为哪几种采集方式(三种) 按激发点、接收点的分布特征可以将VSP的采集方式分为 ①常规VSP采集;②长排列资料采集;③三维VSP与三维地震联合采集 4、零偏移距VSP有哪些应用 求取各种速度、识别地面地震剖面上的多次波、标定地质层位、计算井旁的Q衰减因子等。 5、偏移距(非零偏)VSP有哪些应用 查明井旁的地层构造细节、其作为二维观测可以作出一小段局部地震剖面,具有很高的垂向和横向分辨率描述井旁一定距离内的构造和岩性变化。 附:VSP应用: 提取准确的速度及时深关系(零偏) 标定地震地质层位(零偏)

地震勘探原理的基本问题剖析

地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法. 水平叠加:将不同接收点收到的来自地下同一反射点的不同激发点的信号,经动校正后叠加起来,这种方法可以提高信噪比,改善地震记录的质量,特别是压制一种规则干扰波效果最好 波形曲线:选定一个时刻t1,我们用纵坐标表示各质点离开平衡位置的距离,就得到一条曲线,这条曲线就叫做波在t1时刻沿x方向的波形曲线. 动校正:在水平界面情况下,从观测到的波的旅行时中减去正常时差Δt1得到x/2处的t0时间,这一过程叫动校正或正常时差校正. 多次覆盖:对被追踪的界面进行多次观测. 剖面闭合:是检查对比质量,连接层位,保证解工作正确进行的有效办法,他包括测线交点闭合,测线网的闭合,时间闭合等. 几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学. 水平分辨率:指沿水平方向能分辨多大的地质体,其值为根号下0.5λh. 时距曲线:从地震源出发,传播主观测点的时间t与观测中点相对于激发点的距离x之间的关系 剩余时差:把某个波按水平界面一次反射波作动校正后的反射波时间与共中心点处的时间tom之差. 绕射波:地震波在传播过程中,如遇到一些岩性的突变点,这些突变点就会成为新震源,再次发出球面波,想四周传播,这就叫绕射波. 三维地震:就是在一个观测面上进行观测,对所得资料进行三维偏移叠加处理,以获得地下地质体构造在三维空间的特征. 水平切片:就是用一个水平面去切三维数据体得出某一时刻tk各道的信息,更便于了解地下构造形态个查明某些特殊地质现象. 同相轴:一串套合很好的波峰或波谷. 相位:一个完整波形的第i个波峰或波谷. 纵波:传播方向与质点振动方向一致的波. 转换波:当一入射波入射到反射界面时,会产生与其类型相同的反射波或透射波,也会产生类型不同的,与其类型不同的称为转换波. 反射定律:入射波与反射波分居法线两侧,反射角等于入射角,条件为:上下界面波阻抗存在差异,入射波与反射波类型相同. 地震子波:震源产生的信号传播一段时间后,波形趋于稳定,我们称这时的地震波为地震子波。 爆炸时产生的尖脉冲,在爆炸点附近的介质中以冲击波的形式传播,当传播到一的距离后,波形逐渐稳定,我们称这时的地震波为地震子波。 正常时差的定义第一种定义:界面水平情况下,对界面上某点以炮检距x进行观测得到的反射波旅行时同以零炮检距(自激自收)进行观测得到的反射波旅行时之差,这纯粹是因为炮检距不为零引起的时差. 第二种定义:在水平界面情况下,各观测点相对于爆炸点纯粹是由于炮检距不同而引起的反射波旅行时间差. 1.简述地震勘探原理 地震勘探根据岩石的弹性差别进行工作的,波遇到障碍物会发生反射和透射,折射.通过测反射波和透射波的性质,可以确定障碍物的距离.地震勘探是人工激发地震波.通过在地面布置测线,接收反射波,然后进行一些处理,从而来反映地下构造情况,为寻找油气和其他勘探目的的服务,生产工作包括三个环节:1野外数据采集2室内数据处理3地震资料解释,与其他方法

深海地震探测技术

浅析海洋深部高分辨率地震勘探技术 摘要:从国内外海洋油气资源的勘探开发来看,海洋深部地震勘探技术是海洋探测和油气勘探的一种支柱技术 ,也是获取海洋环境、资源、能源、权益信息的重要技术手段。文中阐述了海上深部高分辨率地震勘探数据采集和处理方面的若干关键技术。文中列举的若干重点技术 ,特别是在采集处理方面的相关问题也是国际上研究的重点和难点。发展海上中深部地震勘探技术,可以提高我国海上油气资源勘探和地质调查的整体水平 ,增加国际上的竞争实力。 关键词:海洋深部;油气资源;地震勘探;数据采集;数据处理 引言:我国有近 300万 km2的管辖海域,50年来,特别是一期海洋 863 计划实施以来,我国海洋地质调查和资源勘探水平有了长足进步,取得了许多有意义的成果。 基于海洋能源、环境、国家权益,本文结合国内外有关文献资料,围绕海洋区域构造与物质环境、基础地质调查,特别是我国海洋油气资源勘探现状及发展趋势 ,提出了发展我国海洋深部地震勘探技术的认识和观点。发展这一技术,会使我国海洋地震探测和资源勘探技术整体性、系统性臻于完善,有力促进我国海洋探测和资源勘探整体技术水平的提高。海洋深部地震勘探技术同常规海洋地震勘探技术是有区别的 ,有其自身的特殊性。文中提出了海洋深部地震勘探的主要技术要求 ,叙述了主要研究内容和关键问题。 1 海洋深部高分辨率地震勘探技术研究意义 深部地震勘探中的“深部”定位是一个“相对的动态”概念。我国海上主要沉积盆地厚度一般为4000~6000 m ,盆地沉积基底最厚可达8000~12000 m 。鉴于上述情况及阶段性的发展需要,目前海洋深部地震勘探技术现状是穿透能力一般为4000~6000 m(大约3.5s)的海上地震资料采集、处理、解释技术。实现勘探盆地目标是区域沉积底界面反射同相轴在时空位置正确前提下能够辨认, 较为清楚或清楚。 发展海洋深部地震勘探技术主要有两个目的:(1)带动并促进我国海洋基础地质调查与研究事业的发展。这里包含海洋区域地质构造与物质环境、生态环境、周边海域海洋岩石圈、上地幔等地质问题的调查和研究。(2)完善我国海洋油气

探讨地球物理勘探中的地震勘探方式

龙源期刊网 https://www.360docs.net/doc/6017853685.html, 探讨地球物理勘探中的地震勘探方式 作者:张超张春毅 来源:《地球》2014年第01期 [摘要]无论是对地层界进行判断还是地质的构造以及岩土性质的探索分析等等一切基于地球物理勘探方法上,地震勘探所采用的专业仪器,主要是负责仪器检测、记录地震反射波、折射波的传播时间、振幅以及波形等方面的工作。通常这种多以区域地质研究和地壳研究的性质作业,大多用于煤田和工程开发前期有所准备的一些地质勘探上。 [关键词]地震勘探地质结构地层界面研究探讨 [中图分类号] P631.4 [文献码] B [文章编号] 1000-405X(2014)-1-96-1 0引言 地震勘探的主要工作性质就是借助专业的仪器,对人工激发而引起的地震反射波以及反射波传播的时间、振幅以及波形等信息给以详实的检测和精确的记录,并对地下矿藏位置等具体信息进行确定。专门负责地层界面、岩土性质和地质构造三大项的判断和分析工作,英文名叫seismic prospecting。抛开这些不算,除了煤田和工程地质勘查、区域地质研究和地壳研究等方面的广泛应用上,另外在固体资源、地质找矿以及石油、天然气等资源的钻探前的勘测上也之主要采取措施手段。 1地震勘探的过程 1.1采集地震数据 为了适应地震勘探的各种不同要求,中间放炮排列和末端放炮排列在检波器组之间的排列方式自然也会有所不同。 通过对将多个检测器布置到地震测线等间距上来获取地震波信号,是野外作业中主要实施形式。检波器组(每个)与改组位于中心上的单个检波器是等效的。且最后得到的一道地震波形记录,是通过放大器和记录器将检波器组接收到的信号“过滤”而来的。也就是专业术语中所提的“记录道”。 一维、二维、三维是地震勘探工作中的三个主要勘探分类。所谓的一维勘探即是观测某个点的地下情况时,对井中各个不同深度的各个位置,由深至浅地投放检波器。每改变一次深度的时候,此时就要在进口放一炮,而炮点直接传到检波器的时间,刚好就是对地震波的信息记录情况。专业上就称这种只在一口井中观测的方法,叫做地震一维勘探。在一定规则的遵循下,沿着一条直线将多个检波器和炮点排列起来。然后再根据测线来打井、放炮以及最后的信息接收。

胜利油田滩浅海地区地震勘探技术

胜利油田滩浅海地区地震勘探技术 崔汝国,王燕春,曹国滨 (胜利石油管理局物探公司,山东东营257100) 摘要:滩浅海地区由于特殊的地表条件和复杂多变的表层结构,既不同于陆上勘探也不同于海上勘探,尤其在两栖地带存在海陆两种施工方式。本文对滩浅海地区地震勘探的激发震源、检波器和观测系统等野外采集各环节的进行了系统研究,提出解决滩浅海地区野外难以采集到高品质地震资料问题的方法;以滩浅海复杂表层结构中地震波场传播理论为基础,进行了地震记录上的干扰波压制、差异校正等方面的深入研究,提出解决滩浅海地区地震资料处理品质过低和成像精度不足问题的方法,形成一整套适用于滩浅海地区油气资源探查的高精度实用性的特色技术主题词:滩浅海;表层结构;激发;接收;观测系统;二次定位;差异校正;干扰波压制 1、概述 滩浅海是指包括滩涂、潮间带至10米水平以内浅海区域,胜利油田滩浅海地区的勘探范围较为广泛,西起四女寺河口,东至潍河口,有利勘探面积约为5500km2。从1974年开始,经过近三十年的滩浅海地震勘探,开辟了以埕岛构造带为主的海上勘探阵地,发现了十四个油田,为胜利油田增储上产和可持续发展做出了巨大的贡献。 滩浅海地区有丰富的油气资源,由于滩浅海地区地表条件复杂、勘探难度大,不适宜采用常规陆上地震勘探设备和技术,也无法采用海上采集技术,造成滩浅海地区勘探程度相对于陆上勘探程度低,是胜利油田未来增加储量的主要阵地,发展前景十分广阔。经过多年的滩浅海地震勘探技术研究,形成了专门应用于滩浅海施工的地震勘探技术。通过应用这些技术,使滩浅海地区地震资料的品质有了很大的改进和提高,具备滩海、潮间带和极浅海环境下全方位地震勘探的能力,可以很好地完成滩浅海地区地震勘探任务。 2、滩浅海地震勘探特点及难点 2.1滩浅海地震勘探特点 胜利滩浅海地区内,极浅海近海水域底部平缓,水深一般分布在数米范围内,但由于黄河入海的影响,还在黄河口形成了沿海滩涂和潮间带。 由于黄河入海的影响,淤泥分布较广,为黄河泥沙最新淤积而成,烂泥较深,厚度大约在0.2-1m不等,激发、接收条件很差,随着黄河的延伸,其地表与沼泽地带无异。 另外大大小小的潮沟纵横交错,随着潮汐的变化,潮间带水深变化在0-1.5m。潮间带水深受潮汐变化影响,施工因素必须根据潮涨潮落来作出调整。 2.2滩浅海地震勘探难点 由以上环境特点给滩浅海施工带来很多难点,具体表现如下: 1

地震勘探基础知识

地震勘探基础知识(总13页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

1. 有关地震勘探的一些基本概念 1.1 地震勘探是勘探石油的有效方法 勘探石油的方法和技术,按其勘探手段划分,可分为地质法、物探法和钻探法三种基本类型。 地球物理勘探法(物探法)运用物理学的原理和方法,即利用地壳中岩石的物理性质(如岩石的弹性、密度、磁性和电性)上的差异来研究地球,了解地下岩层的起伏情况和组成情况,从而达到寻找储油构造以勘探石油的一种勘探方法。 依据研究对象的不同,物探法主要分为以下几种: 地震勘探(利用岩石的弹性差异) 重力勘探(利用岩石的密度差异) 磁法勘探(利用岩石的磁性差异) 电法勘探(利用岩石的电性差异) 在石油勘探中,最经济的方法是物探法。首先用物探法对工区的含油气远景作出评价,为钻探提供探井井位。然后钻探法通过实际钻进,以对物探法进行验证。如果构造含油,又可根据物探资料和探边井计算出含油面积和地质储量。 在我国,陆上是广大的地表松散沉积(如松辽平原、华北平原等)和沙漠覆盖区(如塔什拉玛干大沙漠),海上是被辽阔的海水所覆盖的“一片汪洋”,已看不到岩层的地面露头的出露。而钻井法成本高、效率低。如何解决这些地区的地质构造和地质储量问题呢?在这时就充分显示了物探法应用的威力。 在各种物探方法中,地震勘探具有精度高的突出优点,而其它物探方法都不可能象地震勘探那样详细而准确地了解地下由浅至深一整套地层的构造特点。因此,地震勘探已成为石油勘探中一种最有效的方法。 1.2 地震勘探基本原理 地震勘探是利用人工激发地震波的方法引起地壳的振动,并用仪器把来自地下各个地层分界面的反射波引起地面上各点的振动情况记录下来。利用记录

前沿:海洋宽频带地震勘探新技术扫描

前沿:海洋宽频带地震勘探新技术扫描 文|吴志强 国土资源部海洋油气资源与环境地质重点实验室

1、概况 海洋地震勘探在海洋地质调查、油气藏勘探与开发中起到了无可替代的重要作用。随着勘探领域的不断拓展,地震勘探的难度越来越大。在深部地质调查和复杂构造、火山岩(或碳酸盐岩)屏蔽下的油气藏地震勘探中,为了获取目的层有效反射信号、实现精确成像,对地震数据采集的要求进一步提高,包括采集到低频、高频成分丰富的宽频带、高信噪比原始地震记录。地震信号中的低频信息具有穿透能力强、对深部目的层成像清晰的优势,同时也使地震反演处理结果更具稳定性。宽频带可产生更尖锐子波,为诸如薄层和地层圈闭等重要目标体的高分辨率成像提供全频带基础数据。 理论研究表明:当地震数据的频带宽度不低于两个倍频程时,才能保证获得较高精度的成像效果;频带越宽,地震成像处理的精度越高;增加低频分量的主要作用是减少子波旁瓣,降低地震资料解释的多解性,提高解释成果的精度。 图形象地展示了低频分量的重要性:高频分量丰富、但缺少低频分量的地震子波的主峰尖锐,却会产生子波旁瓣,使地震资料的精确解释变得困难且多解;高分辨率子波是在低频和高频两个方向都得到拓展的宽频带子波,这样子波的主峰尖锐、旁瓣少且能量低,能分辨厚度极小的薄层,地震解释的精度高。 现今地震资料反演处理大多是基于模型的地震反演,成功的关键是能否提取真实子波和建立精确的低频模型。常规地震数据中缺失低频信息,只能采用从测

井数据中提取低频分量再与地震数据反演的相对波阻抗合并处理方式得到绝对 波阻抗。 在目标地质体复杂、钻井少的探区,仅靠测井资料提取的低频分量难以反映复杂地质体横向变化,导致不精确或假的反演结果。为弥补该缺陷,一般采用从地震叠加速度提取低频分量方式,而叠加速度只能提供0~5Hz低频信息,无法弥补常规地震所缺少的0~10Hz低频分量。可见,地震数据中低频信息对保证地震岩性反演的精度意义重大。 然而,在海洋地震勘探中得到宽频带地震数据是比较困难的。 首先,在常规海洋地震数据采集中,电缆和气枪都要以固定深度沉放于海平面之下,以保证下传的激发能量最大化和降低接收环境噪声。 由于海平面是强反射界面,在激发和接收环节都会产生虚反射效应,从而压制了信号的低频和高频能量,并产生了陷波点,限制了地震勘探的频带宽度。例如,为了获得深部目的层有效反射信号,必须增加气枪阵列容量、加大沉放深度以得到穿透能力大、主频低的激发子波,并加大电缆沉放深度以减少对来自深部反射界面的低频反射信号的压制效应,由此带来的副作用是高频信号受到较大压制,降低了地震信号的频带宽度和分辨率。 在海洋高分辨率地震勘探中,一般采用较小气枪阵列容量和较浅沉放深度以得到高频成分丰富的激发子波,同时降低电缆沉放深度以降低接收环节对高频信号的压制效应,这样虽然提高了地震信号的频带宽度和视觉分辨率,但它是以牺牲低频信息和勘探深度为代价,处理后的成果数据缺少低频信息,给后续的反演处理带来较大困难。 勘探设备性能也限制海洋地震勘探获得宽频带地震数据的能力,电缆在移动时产生的机械和声波噪声掩盖了微弱的有效地震信号,降低了地震数据的频宽和信噪比,尤其是对高频段信号的影响幅度更大。到目前为止,常规海洋地震勘探中尚未找到完全有效压制虚反射效应的采集和处理方法。 近年来,针对海洋宽频带地震勘探面临的主要难题,在勘探设备方面进行了研发并取得重要进展。固体电缆的研制成功和工业化应用,有效地降低了电缆噪声,提高了对微弱高频信号的响应和记录能力;双检波器拖缆采集技术的发展与应用,压制了虚反射效应,拓宽了地震频带。 众所周知,气枪和电缆以一定深度沉放于海平面之下,海平面反射在上行波和下行波之间产生交互干涉的鬼波效应,对地震反射信号产生了压制和陷波作用,降低了原始地震资料的频带宽度。气枪和电缆沉放越深,对高频信号压制越大,越有利于低频信号;沉放越浅,对低频信号压制越大,越有利于高频信号。 为了压制虚反射效应,提高地震数据频带宽度,在海洋地震激发时借鉴陆上地震勘探压制虚反射的成功做法,开发了多层震源组合新技术代替传统的平面震源组合方式,激发地震子波的低频和高频分量都得到有效拓展和提升,因此其频带展宽、穿透能力增强。 在海洋地震信号接收环节,为有效削弱由海平面虚反射引起的陷波作用,利用电缆沉放深度的变化对不同频带的压制特性,采用上、下缆接收技术,既有效

相关文档
最新文档