深基坑支护设计计算

深基坑支护设计计算
深基坑支护设计计算

一、排桩支护

[ 基本信息 ]

[ 超载信息 ]

[ 土层信息 ]

[ 土层参数 ]

[ 土压力模型及系数调整 ]

弹性法土压力模型: 经典法土压力模型:

[ 设计结果 ] [ 结构计算 ]

各工况:

内力位移包络图:

地表沉降图:

[ 冠梁选筋结果 ]

[ 截面计算 ]

二、整体稳定验算

计算方法:瑞典条分法

应力状态:总应力法

条分法中的土条宽度: 0.40m

滑裂面数据

整体稳定安全系数 = 4.022

圆弧半径(m) R = 12.550

圆心坐标X(m) X = -2.417

圆心坐标Y(m) Y = 5.630

[ 抗倾覆稳定性验算 ]

:

, 对于内支撑支点力由内支撑抗压力决定;对于锚杆或锚索,支点力为锚杆或锚索的锚固力和抗拉力的较小值。

;

= 1.374 >= 1.200, 满足规范要求。

[ 抗隆起验算 ]

(普朗德尔)公式( >= 1.1~1.2),注:安全系数取自《建筑基坑工程技术规范》

D

(H

(tan)e tan

(N

tan

50.000

2

tan

(太沙基)公式( >= 1.15~1.25),注:安全系数取自《建筑基坑工程技术规范》D

(H

1

2[)-342tan)45o tan

[ 隆起量的计算 ]

tan =i h 6.37c)

式中δ———基坑底面向上位移();

n———从基坑顶面到基坑底面处的土层层数;

———第i层土的重度(3);

地下水位以上取土的天然重度(3);地下水位以下取土的饱和重度(3);

———第i层土的厚度(m);

q———基坑顶面的地面超载();

D———桩(墙)的嵌入长度(m);

H———基坑的开挖深度(m);

c———桩(墙)底面处土层的粘聚力();

φ———桩(墙)底面处土层的内摩擦角(度);

r———桩(墙)顶面到底处各土层的加权平均重度(3);

=

基坑支护结构的计算

第二部分 基坑支护结构的计算 支护结构的设计和施工,影响因素众多,不少高层建筑的支护结构费用已超过工程桩基的费用。为此,对待支护结构的设计和施工均应采取极慎重的态度,在保证施工安全的前提下,尽量做到经济合理和便于施工。 一、支护结构承受的荷载 支护结构承受的荷载一般包括 –土压力 –水压力 –墙后地面荷载引起的附加荷载。 1 土压力 ⑴主动土压力: 若挡墙在墙后土压力作用下向前位移时随位移增大,墙后土压力渐减小。当位移达某一数值时,土体内出现滑裂面,墙后土达极限平衡状态,此时土压力称为主动土压力,以Ea表示。 ⑵静止土压力: 若挡墙在土压力作用下墙本身不发生变形和任何位移(移动或滑动),墙后填土处于弹性平衡状态,则此时作用在挡墙上的土压力成为静止土压力。以E0表示。 (3)被动土压力: 若挡墙在外力作用下墙向墙背向移动,随位移增大,墙所受土的反作用力渐增大,当位移达一定数值时,土体内出现滑裂面,墙后土处被动极限平衡状态,此时土压力称为被动土压力,以Ep表示。

主动土压力计算 ?主动土压力强度 ?无粘性土 粘性土 土压力分布 对于粘性土按计算公式计算时,主动土压力在土层顶部(H=0处)为负值,即 表明出现拉力区,这在实际上是不可能发生的。只计算临界高度以下的主动土压力。土压力分布 可计算此种情况下的临界高度Zc,进而计算临界高度以下的主动土压力。

被动土压力计算 被动土压力强度 ?无粘性土 粘性土 计算土压力时应注意 ?不同深度处土的内聚力C不是一个常数,它与土的上覆荷重有关,一般随深度的加大而增大,对于暴露时间长的基坑,土的内聚力可由于土体含水量的变化和氧化等因素的影响而减小甚至消失。 ?、C 值是计算侧向土压力的主要参数,但在工程桩打设前后的、C值是不同的。 在粘性土中打设工程桩时,产生挤土现象,孔隙水压力急剧升高,对、C值产生影响。另外,降低地下水位也会使、C值产生变化。 水压力

基坑支护设计计算——土压力.

基坑支护设计计算 1基坑支护设计的主要内容 2设计计算 根据地质条件的土层参数如图所示,根据设计要求,基坑开挖深度暂定为9m,按规范设定桩长为16.8m ,桩直径设定为0.8m ,嵌固深度站定为7.8m,插入全风化岩3.0m 。 2.1水平荷载的计算 按照超载作用下水土压力计算的方法,根据朗肯土压力计算理论计算土的侧向压力,计算时不考虑支护桩与土体的摩擦作用。地下水以上的土体不考虑水的作用,地下水以下的土层根据土层的性质差异需考虑地下水的作用。 土层水平荷载计算依据《建筑基坑支护技术规程》JGJ 120-99 1.计算依据和计算公式 主动土压力系数:) 2 45(tan 2i ai K ?-=ο 被动土压力系数:) 2 45(tan 2i pi K ?+?= (1)支护结构水平荷载标准值e ajk 按下列规定计算: 1)对于碎石土及沙土: a)当计算点深度位于地下水位以上时: ai ik ai ajk ajk K C K e 2-=σ b)当计算点深度位于地下水位以下时: w ai wa wa j wa j ai ik ai ajk ajk K h m h z K C K e γησ])()[(2---+-= 式中ai K —第i 层土的主动土压力系数;

ajk σ—作用于深度z j 处的竖向应力标准值; C ik —三轴实验确定的第i 层土固结不排水(快)剪粘聚 力标准值; z j —计算点深度; m j —计算参数,当h z j π时,取z j ,当h z j ≥时,取h ; h wa —基坑外侧水位深度; wa η—计算系数,当h h wa ≤时,取1,当h h wa φ时,取零; w γ—水的重度。 2)对于粉土及粘性土: ai ik ai ajk ajk K C K e 2-=σ (2)基坑外侧竖向应力标准值ajk σ按下列规定计算: ok rk ajk σσσ+= (3)计算点深度z j 处自重应力竖向应力rk σ 1)计算点位于基坑开挖面以上时: j mj rk z γσ= 式中mj γ—深度z j 以上土的加权平均天然重度。 2)计算点位于基坑开挖面以上时: h mh rk γσ= 式中mh γ—开挖面以上土的加权平均天然重度。 (4)第i 层土的主动土压力系数K ai 应按下式计算 )245(tan 2ik ai K ?- =ο 式中ik ?—三轴实验确定的第i 层土固结不排水(快)剪摩擦角标准值。

浅谈双排灌注桩深基坑支护结构计算

浅谈双排灌注桩深基坑支护结构计算 摘要:深基坑双排灌注桩支护是在单排悬臂桩支护技术基础上新开发的一项技术。它仍属于悬臂式支护结构类型。工程实践证明:在稳定性较好的一般粘性土和砂土层中采用这种支护型式,与单排悬臂桩相比具有刚度大、位移小、支护高度大、节约投资等特点。 关键词:基坑支护;土压力;内力计算 0前言 单排悬臂桩支护已有较成熟的设计计算方法,而双排桩支护结构的设计计算则还处于研讨中,本文中依据作者近年来的工程施工设计实践经验,提出一套设计分析方法,供类似工程参考。 1 双排桩支护的受力特性 双排桩支护型式简单,前后排桩按一定排距布置成三角形或矩形平面,桩顶用现浇钢筋混凝土连梁或板连接起来,形成桩脚嵌固的刚架型式。它虽属于悬臂支护型式,但受力机理与单排悬臂桩有本质的区别。即桩间土对双排桩有土压力作用,而且作用力的大小与桩的排距大小有关,故双排桩支护结构可看成前后排桩都受到大小不等土压力作用的平面刚架。把土视为弹性体,并取矩形平面单元,把桩视为梁单元,利用有限元法分析得后排桩失去挡土作用的距离b max 为: 式中:h—桩的挡土高度;t—桩的理论埋深;μ—土 的波松比,μ≤0.5; 偏保守地取μ=0.5,t=0.2h代入式(1)得:b max≈1.6 h;同理,经分析得:后排桩受力超过前排桩的临界点满足: 因此,可将双排桩土压力分布大致分为三种情况: (1)当b ≤.125h时,后排桩承受全部土压力,前排桩通过横梁受到桩顶推力;双排桩土压力分布如图1(a);按库仑强度理论,图1中滑楔与水平面夹角为45°+ 。 (2)当1.6h>b>0.125h时,前、后排桩同时受到土压力作用,横梁可能受

基坑支护设计计算书

桩 锚 设 计 计 算 书 一、计算原理 1.1 土压力计算 土压力采用库仑理论计算 1.1.1 主动土压力系数 ()2 sin sin cos cos ??????? ?++=φδφδφa K 1.1.2 被动土压力系数 ()2 sin sin cos cos ??? ?????+-=φδφδφp K 1.1.3 主动土压力强度 a a ajk K C hK e 2-=γ 1.1.4 被动土压力强度 p p pjk K C hK e 2+=γ 1.2 桩锚设计计算 1.2.1单排锚杆嵌固深度按照下式设计计算: 02.1)(011≥-++∑∑ai a d T c pj p E h h h T E h γ 式中,h p 为合力∑E pj 作用点至桩底的距离,∑E pj 为桩底以上基坑内侧各土层水平抗力 标准值的合力之和,T c1为锚杆拉力,h T1为锚杆至基坑底面距离,h d 为桩身嵌固深度, γ0为基坑侧壁重要性系数,h a 为合力∑E ai 作用点至桩底的距离,∑E ai 为桩底以上基坑外侧各土层水平荷载标准值的合力之和。 1.2.2 多排锚杆采用分段等值梁法设计计算,对每一段开挖,将该段状上的上部支点 和插入段弯矩零点之间的桩作为简支梁进行计算,上一段梁中计算出的支点反力假定不变,作为外力来计算下一段梁中的支点反力,该设计方法考虑了实际施工情况。 1.3 配筋计算公式为:钢筋笼配筋采用圆形截面常规配筋,并根据桩体实际受力情况,适当减少受压面的配筋数。 s y cm cm s y A f A f A f A f 32/2sin 25.1++=π παα ()t s y cm s r f Ar f KSM A παπαπ ππαsin sin sin 323+-= αα225.1-=t 式中,K 为配筋安全系数,S 为桩距,M 为最大弯矩,r 为桩半径,f cm 和fy 分别为混 凝土和钢筋的抗弯强度,As 为配筋面积,A 为桩截面面积,α对应于受压区混凝土截面面积的圆心角与2π的比值,用叠代法计算As 。 1.4 锚杆计算

(完整word版)深基坑支护设计计算书详解

苏州新港(扬州)置业有限公司 名泽园地下室 基坑支护设计计算书 (设计编号:勘2014-92) 批准: 审核: 校对: 设计: 扬州大学工程设计研究院 2014.12.18

东侧放坡(4.2m~5.1m) ---------------------------------------------------------------------- [ 支护方案 ] ---------------------------------------------------------------------- 天然放坡支护 ---------------------------------------------------------------------- [ 基本信息 ] ---------------------------------------------------------------------- 规范与规程《建筑基坑支护技术规程》 JGJ 120-2012支护结构安全等级三级 支护结构重要性系数γ00.90 基坑深度H(m) 5.100 放坡级数2 超载个数1 ---------------------------------------------------------------------- [ 放坡信息 ] ---------------------------------------------------------------------- 坡号台宽(m)坡高(m)坡度系数 10.500 2.5000.750 2 1.000 2.6000.750 ---------------------------------------------------------------------- [ 超载信息 ] ---------------------------------------------------------------------- 超载类型超载值作用深度作用宽度距坑边距形式长度序号(kPa,kN/m)(m)(m)(m)(m) 120.000---------------

钢板桩基坑支护计算书

钢板桩基坑支护计算书

一、结构计算依据 1、国家现行的建筑结构设计规范、规程行业标准以及广东省建筑行 业强制性标准规范、规程。 2、提供的地质勘察报告。 3、工程性质为管线构筑物,管道埋深4.8~4.7米。 4、本工程设计,抗震设防烈度为六度。 5、管顶地面荷载取值为:城-A级。 6、本工程地下水位最小埋深为2.0m。 7、本工程基坑计算采用理正深基坑支护结构计算软件。

(1)内支撑计算 内支撑采用25H 型钢 A=92.18cm 2 i x =10.8cm i y =6.29cm Ix=10800cm 4 Iy=3650cm 4 Wx=864cm 3 ][126.11529 .6725][13.678 .10725λλλλ=== <===y y x i l i l x 查得464 .0768.0==y x ?? 内支撑N=468.80kN ,考虑自重作用,M x =8.04N ·m MPa f A N fy y 215][6.1091018.92464.01080.4682 3 =<=???=?=? MPa f Wx Mx A N fx x 215][05.58107.1361004.810117768.01080.4684 6 23=<=??+???=+?=? (2)围檩计算 取第二道围檩计算,按2跨连续梁计算,采用30H 型钢 A=94.5cm 2 i x =13.1cm i y =7.49cm Ix=20500cm 4 Iy=6750cm 4 Wx=1370cm 3 [ 计算结果 ] 挡土侧支座负弯距为:M max =0.85×243.3kN ·m=206.8kN ·m ,跨中弯矩为M max =183.4kN ·m 支座处: MPa cm m kN Wx M 9.15013708.206max 13 =?==σ,考虑钢板桩结构自身的抗弯作用,可满足安全要求。 跨中:][87.13313704.183max 23 σσ<=?== MPa cm m kN Wx M

最新基坑设计计算9453090

基坑设计计算9453090

前言 基坑支护工程伴随着现代建筑事业的告诉发展,其越来越重要。现代城市建筑物中,尤其是高层和超高层建筑中往往伴随有很大的基坑,故在修筑过程中需要设计支护方案对其支护。 在本设计支护过程中,主要涉及到软土地区的基坑支护形式和防水、降水方案。本基坑支护的两个主要方案有:排桩加内撑、地下连续墙加内撑。在本基坑支护内力计算中采用的方法主要有等值梁法和山肩帮男法。另外,支撑主要采用钢支撑。降水采用电渗法加喷射井点进行降水。在支护结构设计中,我们还要对支护结构进行抗隆起,抗渗验算。另外,在开挖过程中时时对基坑边缘和基坑周围的建筑物进行观察,以防止其过大变形。支护结构设计中最突出的为结构内力计算、配筋、基坑的稳定性验算、内撑的设计。熟悉了常见的内力计算方法及南方软土地区常见的支护形式,了解了各种各样的基坑支护形式

本基坑支护深度10m,周围环境较复杂。我们选取排桩加内撑和地下连续墙加内撑两种不同的支护型式。其中,排桩内力计算我们采用等值梁法进行计算。地下连续墙采用山肩邦男法进行内力计算。在等值梁法进行计算时,我们将内撑简化为铰支座,使其变成一个一次超静定结构,然后计算出内力并进行配筋。山肩邦男法进行计算时,采用分层开挖的方式。在第一次开挖后,根据力矩平衡、内力平衡计算,得出第一道内撑所受的力和墙体所受到的弯矩。这样依次直至最后一次开挖,得出墙体所受的最大弯矩与内撑所受到的力。内力计算完成后对基坑进行抗隆起、抗渗稳定性验算。在最后,对基坑采用理正软件进行复核计算结果。

The Foundation Supporting’s depth is 10m, the surrounding environment is complex. We select two different types that are piles adding the support and underground continuous wall adding the support . We use the Equivalent Beam method to calculate the pile internal forces. But we use the Shanjianbangnan method to calculate the underground continuo us wall’s internal forces.We simplify the internal supports into hinged supports and calculate by the equivalent beam method. we turn out to be a statically indeterminate structure,we can calculate the internal forces and reinforcement. When we calculate by the Shanjianbangnan method, we make slicing excavation. After the first excavation, the first wall’s force and bending moments that the wall will be calculated by torque balance and internal forces balance calculations. We get the biggest bending moment and the biggest force until the last excavation by upper step one by one. After the completion of the internal force calculation ,anti-uplift and the impermeability stability checking should be taken. In the end, we verify the correctness of the results for excavation by using Lizheng software.

基坑支护结构设计(全套图纸CAD)

第一章设计方案综合说明 1.1 概述 1.1.1 工程概况 拟建南京新城科技园 B 地块深基坑位于河西香山路和嘉陵江东街交会处 东南隅,北侧为规四路(隔马路为A地块基坑),东侧为青石路。B地块±0. 00m 相当于绝对标高+7.40m。基坑挖深为 6.1 ~8.0m。拟建场地属Ⅱ级复杂场地。 2,包括 3 幢地上建筑和一层地下室。建筑物采用 该基坑用地面积约20000 m 框架结构,最大单柱荷载标准值为23000KN,拟采用钻孔灌注桩基础设计方案。 有关拟建物层数、结构型式、柱网和室内外地坪设计标高具体见表 1.1 。 表1.1 栋号建筑物层数 结构型 式 室内地坪 设计标高 (m) 室外地坪 设计标高 (m) 01 办公楼19 框架结 构 7.3 7.0-7.2 02 国家实验 室 1、10、11 框架结 构 7.3 7.0-7.2 03 会议楼、 商务楼 2、18 框架结 构 7.5 7.2 南、北地下 室 -1 框架~抗 震墙结 构 04 1.9 7.0-7.2 注:表 1.1 内建筑物室内外地坪设计标高系吴淞高程。 本工程重要性等级为二级,抗震设防类别为丙类。根据该工程重要性等级、场地复杂程度和地基复杂程度,按《岩土工程勘察规范》(GB50021-2001)3.1 节,划分该工程岩土工程勘察等级为乙级。 1.1.2 基坑周边环境条件 基坑四面均为马路,下设通讯电缆、煤气管线等设施。北侧隔马路为基坑(A地块)

第一章设计方案综合说明 1.1.3 工程水文地质条件 拟建场地地形总体较为平坦,地面高程在 4.87~8.78m(吴淞高程系)之间。对照场地地形图看,场内原有沟塘已被填埋整平。场地地貌单元属长江 漫滩。 在基坑支护影响范围内,自上而下有下列土层: ①~1 杂填土:杂色,松散,由粉质粘土混碎砖、碎石和砼块等建筑垃圾 填积,其中2.7~4.5m 填料为粉细砂,填龄不足 2 年。层厚0.3~4.9m; ①~2 素填土:黄灰~灰色,可~软塑,由粉质粘土、粘土混少量碎砖石填积,含少量腐植物,填龄在10 年以上。埋深0.8~5.3m,层厚0.2~2.6m; ①~2a 淤泥、淤泥质填土:黑灰色,流塑,含腐植物,分布于暗塘底部, 填龄不足10年。埋深0.2~2.9m,层厚0.6~4.0m; ②~1 粉质粘土、粘土:灰黄色~灰色,软~可塑,切面有光泽,韧性、干 强度较高。埋深0.3~4.7m,层厚0.3~2.1m; ②~2 淤泥质粉质粘土:灰色,流塑,含腐植物,夹薄层粉土,切面稍有 光泽,韧性、干强度中等。埋深 1.1~6.2m,层厚11.2~12.4m; ②~2a 粉质粘土与粉土互层:灰色,粉质粘土为流塑,粉土呈稍密,局 部为流塑淤泥质粉质粘土,具水平层理。切面光泽反应弱,摇震反应中等, 韧性、干强度低。埋深 1.6~5.7m,层厚0.4~3.3m; ②~3粉质粘土、淤泥质粉质粘土:灰色,流塑,夹薄层(局部为层状) 粉土、粉砂,具水平层理。切面稍有光泽,有轻微摇震出水反应,韧性、干 强度中等偏低。埋深10.5~15.6m,层厚1.2~7.7m; ②~4粉质粘土、淤泥质粉质粘土夹粉土、粉砂:灰色,粉质粘土、淤泥 质粉质粘土为流塑,粉土、粉砂为稍~中密,局部为互层状,具水平层理。光泽反应弱,摇震反应中等,韧性、干强度较低。埋深14.2~21.5m,层厚1.2~8.8m; ②~5 粉细砂:青灰~灰色,中密,砂颗粒成分以石英质为主,含少量腐 植物及云母碎片。埋深20.0~25.6m,层厚10.3~12.3m; ②~5a 粉质粘土、淤泥质粉质粘土:灰色,流塑,切面稍有光泽,韧性、 干强度中等。呈透镜体状分布于②~5 层中。埋深23.6~25.0m,层厚0.4~0.5m; ②~6细砂:青灰色,密实,局部为粉砂,砂颗粒成分以石英质为主,含 云母碎片。层底部局部地段含少量卵砾石。埋深29.2~33.5m,层厚14.2~22.1m; ②~6a淤泥质粉质粘土、粉质粘土,灰色,流~ 软塑,切面稍有光泽,韧性、干强度中等。呈透镜体状分布于②~6 层中。埋深35.9~45.5m,层厚 0.3~1.4m。 ⑤~1 强风化泥岩、泥质粉砂岩:棕红~棕褐色,风化强烈,呈土状,遇水极易软化,属极软岩,岩体基质本量等级分类属Ⅴ级。埋深47.0~52.3m,层厚0.6~5.8m。 ⑤~2 中风化粉砂质泥岩、泥质粉砂岩:紫红~棕褐色,泥质胶结,夹层状泥岩,属极软岩~软岩,岩体较为完整,有少量裂隙发育,充填有石膏,遇水易软化,岩体基本质量等级分类属Ⅴ级。埋深48.0~57.9m,未钻穿。 ⑤~2a 中风化泥质粉砂岩、细砂岩:紫红~棕褐色,泥质胶结,属软岩~ 较软岩,岩体较为完整,有少量裂隙发育,基本质量等级分类属Ⅳ级。该层 呈透镜体状分布于⑤~2 层中。埋深52.5~59.5m,层厚0.3~0.4m。 2

某综合楼深基坑支护设计(手算)

某综合楼深基坑支护设计 一、工程概况 1.环境条件概况 某综合楼是集购物、商住、办公于一体的综合性建筑,建筑面积70000m2。工程占地面积144×40m2。上部结构由三幢19~20层的塔楼组成,最大高度达81.5m,其中1号、2号楼带三层裙楼,三幢楼的裙房连在一起。塔楼群房采用框架剪力墙结构,钻孔灌注桩箱形基础,设两层地下室,挖深为8.9m,电梯井局部挖深达11.6m。该建筑物西侧剧长宁街仅5m,且在路面下埋有电缆线、煤气管道、自来水管道及污水管道等市政公用设施。南边是新华联施工现场,其围墙局开挖最小距离为4m,青春小区土方开挖时,新华联施工现场正处于打钻孔灌注桩阶段。东侧大部分为一片已完成拆迁的空地,其中有一幢友谊服装厂的四层厂房,间距约13m,北侧距长庆街约12m。 该场地为原住宅及厂房等拆除后整平,场地基本平坦。根据地质勘测勘料,地下水位埋藏较浅,平均深度为1.15m,其中上部土层透水性较好。 该场地30m深范围内土层的主要物理力学指标如下: 二、降水设计 根据本地的工程地质水文条件以及周围环境,设计采用喷射井点降水系统。由于上部透水性较好,采用环圈形式布置井点,并配抽水设备。方案为潜水完整井。 1.井点系统布置 井点管呈长方形布置,总管距沉井边缘1.5m。沉井平面尺寸为144×40m2,水力坡度取1/10。 1)井点系统总长度 [(144+1.50*2)+(40+1.50*2)]*2=380m 2)喷射井点管埋深 H=11.6+IL1=11.6+1/10*43/2=13.75m 取喷射井点管长度为14m 3)虑水管长度取L=1.5m ,φ38mm 4)在埋设喷射井点时冲孔直径为600mm,冲孔深度比滤水管深1米. 即:14.50+1.50+1.00=17.00m 井点管与滤水管和孔壁间用粗砂填实作为砂滤层,距地表1.00m处用粘土封实以

2016基坑支护设计计算书模板(1)讲解

第一章工程概要 1.1 工程概况 工程概况,附上基坑周边环境平面图 1.2场区工程地质条件 附上典型的地质剖面图 1.3 水文地质条件 1.4 主要设计内容 分析评价了场地的岩土工程条件。 根据场地的工程地质条件、水文地质条件,充分考虑到周边地层条件,选择技术上可行,经济上合理,并且具有整体性好、水平位移小,同时便于基坑开挖及后续施工的可靠支护措施,通过分析论证选择合适的基坑支护方案。 对基坑支护结构进行了具体设计计算,其中包括土压力计算、钻孔灌注桩的设计计算及锚杆的设计计算、稳定性验算(根据具体选择的支护方式,按照规范的要求进行设计,计算,和验算)。当不能满足稳定性要求的时候,需要重新设计计算或者做必要的处理,直至达到稳定性的安全要求。 选择经济、实效、合理的基坑降水与止水方案。 基坑支护工程的施工组织设计与工程监测设计。 1.5 设计依据 (1)甲方提供资料,岩土工程勘察报告(列出详细的清单) (2)现行规范、标准、图集等(按照规定的格式列出详细的清单,必须是现行规范)

第二章基坑支护方案设计 2.1 设计原则(摘自规范) 2.1.1 基坑支护结构应采用以分项系数表示的极限状态设计表达式进行设计 2.1.2 基坑支护结构极限状态可分为下列两类: a. 承载能力极限状态:对应于支护结构达到最大承载能力或土体失稳、过大变形导致支护结构或基坑周边环境破坏; b.正常使用极限状态:对应于支护结构的变形已妨碍地下结构施工或影响基坑周边环境的正常使用功能。 2.1.3 基坑支护结构设计应根据表3选用相应的侧壁安全等级及重要性系数。 表2.1 基坑侧壁安全等级及重要性系数 安全等级破坏后果 1.10 一级支护结构破坏,土体失稳或过大变形对基坑周边环境及地 下结构施工影响很严重 1.00 二级支护结构破坏,土体失稳或过大变形对基坑周边环境及地 下结构施工影响一般 0.90 三级支护结构破坏,土体失稳或过大变形对基坑周边环境及地 下结构施工影响不严重 注:有特殊要求的建筑基坑侧壁安全等级可根据具体情况另行决定 2.1.4 支护结构设计应考虑其结构水平变形、地下水的变化对周边环境的水平与竖向变形的影响,对于安全等级为一级和对周边环境变形有限定要求的二级建筑基坑侧壁,应根据周边环境的重要性、对变形的适应能力及土的性质等因素确定支护结构的水平变形限值。 2.1.5 当场地内有地下水时,应根据场地及周边区域的工程地质条件、水文地质条件、周边环境情况和支护结构与基础型式等因素,确定地下水控制方法。当场地周围有地表水汇流、排泻或地下水管渗漏时,应对基坑采取保护措施。 2.1.6 根据承载能力极限状态和正常使用极限状态的设计要求,基坑支护应按下列规定进行计算和验算:

深基坑支护设计计算书

嘉荷银座深基坑支护设计计算书 工程概况 嘉荷银座工程,地上17层,地下1层,框架剪力墙结构,地下室为整体筏板基础,深基坑开挖至地下 5.8m,基坑开挖支 护平面如图,工程地质情况如表所示,冬季施工不考虑地下水位的影响。 各土层主要物理,力学指标值 基坑形状如图: 39400 32000 地质情况 根据现场勘察资料,拟建场区地形基本平坦,本工程所涉及的地层从上至下分述如下: 1、杂填土:地表2.7m厚 2、粉质砂土:1.7m厚 3、粘土层:1.4m厚

4、其中地下水位在自然地坪下12n处一CFG桩设计1.计算主动土压力强度: 计算第一层土的土压力强度;层顶处和层底处分别为: 二a。= ' i z tan 2(45 - 1/ 2) 二0 匚ai = i h i tan 2(45 一:i / 2 ) 2 O 0 =i5 .5 2 tan 2(45 - i6 / 2 ) =i7 .6 KPa 第二层土的土压力 强度层顶处和层底处分别为: r仃i h i tan2(45 - 2/2)- 2ctan(45 - 2/2) — 15.5 2 tan 2(45 - 17 .2 /2) - 2 10

tan( 45 - 17 .2 /2) =1 .94 KPa 二 2 =(恂2h2)tan2(45 - 2/2)- 2c?tan(45 - 2/2) = (15.5 2 18.5 3) tan2(45 -17.2/2)-2 10 tan(45 -17.2 /2) 二31.9KPa 第三层土的土压力强度层顶处和层底处分别为: -^(忤2h2)tan2(45 - 3/2) - 2c s tan(45 - 3/2) = (15.5 2 18.5 3) tan2(45 - 21/2)-2 12 tan( 45-21/2) = 24.1KPa 「日3=(巾1 2h2 3h3)tan2(45 - 3/2)- .2. 2c3tan(45 - 3/2) o O -(15.5 2 18.5 3 20.5 3) tan 2(45 - 21 /2)- 2 12 tan(45 - 21 /2) 二53 KPa 计算被动土压力强度: 5 二3h3tan2(45 - 3/2)2c3tan(45 3/2) 二20.5 3 tan2(45 - 21 /2) 2 12 tan(45 21 /2) 二36KPa 二p2 3h d tan 2(45 - 3/2) 2c3 tan( 45 3/2) =20 .5 3 tan 2(45 - 21 /2) 2 12 tan( 45 21 /2) =36 43 .1h d 3.计算嵌固深度: A.基坑底面以下,支护结构设定弯矩零点位置至基坑底面的距h cl

深基坑支护设计计算

一、排桩支护 ----------------------------------------------------------------------[ 基本信息 ]

[ 超载信息 ] [ 土层信息 ] [ 土层参数 ] [ 土压力模型及系数调整 ] ----------------------------------------------------------------------弹性法土压力模型: 经典法土压力模型:

[ 设计结果 ] --------------------------------------------------------------------------------------------------------------------------------------------[ 结构计算 ] ----------------------------------------------------------------------各工况: 内力位移包络图:

地表沉降图: ---------------------------------------------------------------------- [ 冠梁选筋结果 ] ----------------------------------------------------------------------

[ 截面计算 ] ---------------------------------------------------------------------- 二、整体稳定验算 ----------------------------------------------------------------------

增量法在深基坑支护结构计算中的应用

地下空间 UNDERGROUND SPACE 1999年第19卷第1期 Vol.19 No.1 1999 增量法在深基坑支护结构计算中的应用 周运斌 摘要:通过应用增量法的原理,用SAP84程序对深基坑支护结构进行内力分析,说明增量法的使用方法和其科学性、合理性、安全性,并希望该法的应用能编入《深基坑支护技术规程(送审稿)》和进入相关的应用程序,以期该法能够在更大的范围内推广应用。 关键词:深基坑支护增量法总量法 A Talk on Application of Incremental Method in Calculation of Support Structure of Deep Foundation Zhou Yunbin Abstract:Based on principles of increment with application of SAP 84 program,the analysis of internal forces for supporting structures of deep foundation was carried out.It demonstrates the scientific nature,rationality and safety of this method.It is hoped that this method can be included into“Technical Rules for Deep Foundation S upports” and related programs for its wider application. Keywords:Supporting for deep foundation, incremental method, totalizing method 1 引言 随着经济的发展,城市用地日渐紧张,城市上天(高层建筑)入地(地下空间开发)的发展逐渐加快,使建筑深基坑的应用也日益广泛。由于深基坑的位置大多是在城市中较繁华的地段,基坑失稳的危害较大,而深基坑的支护结构设计中的可变因素较多,往往是一个工程设计的难点,也往往成为一个工程成败的关键。我院从1992年起总承包广州地铁一号线工程的设计工作,并承担了其中芳村站、公园前站、陈家祠站、西门口站、农讲所站等工点的设计,在各车站的深基坑支护设计中,均采用了增量法的原理进行支护结构的内力分析,未发生一起因支护结构失稳或位移过大而造成的工程事故,取得了良好的社会效益和经济效益。在此,将我们应用的方法介绍如下。

某深基坑支护设计计算书

深基坑支护设计 3 设计单位:X X X 设计院 设计人:X X X 设计时间:2014-03-31 10:21:53 ---------------------------------------------------------------------- [ 支护方案 ] ---------------------------------------------------------------------- 排桩支护 ---------------------------------------------------------------------- ] 基本信息[ ----------------------------------------------------------------------

---------------------------------------------------------------------- [ 放坡信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 超载信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- ] 附加水平力信息[ ---------------------------------------------------------------------- 是否参与是否参与作用深度水平作用类型水平力值力整体稳定序号(kN)(m)倾覆稳定 ---------------------------------------------------------------------- ]

深基坑支护计算

1.深基坑支护类型选择 深基坑支护不仅要求确保边坡的稳定,而且要满足变形控制要求,以确保基坑周围的建筑物、地下管线、道路等的安全。如今支护结构日臻完善,出现了许多新的支护结构形式与稳定边坡的方法。 根据本地区实际情况,经比较采用钻孔灌注桩作为挡土结构,由于基坑开采区主要为粘性土,它具有一定自稳定结构的特性,因此护坡桩采用间隔式钢筋混凝土钻孔灌注桩挡土,土层锚杆支护的方案,挡土支护结构布置如下:(1)护坡桩桩径600mm,桩净距1000mm;(2)土层锚杆一排作单支撑,端部在地面以下2.00mm,下倾18°,间距1.6m;(3)腰梁一道,位于坡顶下2.00m处,通过腰梁,锚杆对护坡桩进行拉结;(4)桩间为粘性土不作处理。 2.深基坑支护土压力 深基坑支护是近些年来才发展起来的工程运用学科,新的完善的支护结构上的土压力理论还没有正式提出,要精确地加以确定是不可能的。而且由于土的土质比较复杂,土压力的计算还与支护结构的刚度和施工方法等有关,要精确地确定也是比较困难的。目前,土压力的计算,仍然是简化后按库仑公式或朗肯公式进行。常用的公式为: 主动土压力: Eα=1/2γH2tg2(45°-Φ/2)-2CHtg(45°-Φ/2)+2C2/γ 工中:Eα——主动土压力(KN),γ——土的容重,采用加权平均值。H——挡土桩长(m)。Φ——土的内摩擦角(°)。C——土的内聚力(KN)。 被动土压力:EP=1/2γt2KPCt 式中:EP——被动土压力(KN),t——挡土桩的入土深度(m),KP——被动土压力系数,一般取K2=tg2(45°-Φ/2)。 由于传统理论存在达些不足,在工程运用时就必须作经验修正,以便在一定程度上能够满足工程上的使用要求,这也就是从以下几个方面具体考虑: 2.1.土压力参数:尤其抗剪强度C/Φ的取值问题。抗剪强度指标的测定方法有总应力法和有效应办法,前者采用总应力C、Φ值和天然重度γ(或饱和容量)计算土压力,并认为水压力包括在内,后者采用有效应力C、Φ及浮容量γ计算土压力,另解水压力,即是水土分算。总应办法应用方便,适用于不透水或弱透水的粘土层。有效应力法应用于砂层。 2.2.朗肯理论假定墙背与填土之间无摩擦力。这种假设造成计算主动土压力偏大,而被动土压力偏小。主动土压力偏大则是偏安全的,而被动土压力偏小则是偏危险的。针对这一情况,在计算被动土压力时,采用修正后的被动土压力系数KP,因为库仑理论计算被动土压力偏大。因此采用库仑理论中的被动土压力系数擦角δ,克服了朗肯

深基坑支护结构设计与施工

深基坑支护结构设计与施工 本文结合某深基坑支护结构工程实例,简要地分析和探讨了深基坑支护结构的设计与施工措施。 标签深基坑;支护结构;设计;施工 一、工程概况 某商业综合用房工程位于该市南侧,地理位置优越,交通便利。基坑长77.85米,基坑宽度为38.74米,整个基坑落地面积为2700㎡左右,基坑形状基本规则,基坑开挖深度-6.250~-10.65米(坑中坑)。因此,如何加强该工程深基坑支护的设计与施工管理,并为今后我国深基坑工程提供借鉴与指导,是一项亟待研究解决的问题。 二、深基坑支护结构设计 2.1 基坑围护结构做法(SMW工法) 1)三轴水泥搅拌帷幕的止水性能是本基坑成败的关键,必须切实做好。本工程要求施工机具采用日本进口的搅拌头。 2)本工程止水帷幕采用Φ850@600三轴水泥搅拌桩,水泥搅拌桩采用全断面套打法施工。 3)水泥搅拌桩采用P42.5级硅酸盐水泥,水泥掺量为20%,水灰比1.5-1.8,水泥应干燥,无结块,水泥内掺1.5%生石膏和0.15%SN201-A型固化剂;拌制后的水泥浆液因故搁置2h以上的,应做废浆处理。 4)水泥搅拌桩28d无侧限抗压强度不低于0.8MPa,成桩过程中应控制钻具下沉及提升速度,并保持匀速下沉与匀速提升,避免形成孔内负压。一般下沉速度不大于1m/min,提升速度不大于1.5m/min;桩体施工应保持连续性,相邻桩施工间隔不得超过12h,如因特殊原因不能避免,应标记在案,并采取补强措施。施工过程中必须对基坑周边沉降及水平位移进行监测,根据监测资料合理控制搅拌头的压入阻力、注浆速度及注浆压力。 5)搅拌桩成桩应均匀、持续、无颈缩和断层,严禁在提升喷浆过程中断浆,特殊情况造成断浆应重新成桩施工。水泥搅拌桩和内插型钢垂直偏差不大于1/200,插入前须在型钢表面涂抹减摩剂,搅拌桩制作后应立即插入型钢,一般间隔不应超过1h,型钢定位误差不大于30㎜,底部标高误差不大于20㎝,垂直度偏差不大于1%。 6)内插型钢采用Q235B,采用整材,接头采用坡口焊接等强度焊接,焊缝

最新基坑支护设计计算书

基坑支护设计计算书

桩 锚 设 计 计 算 书 一、计算原理 1.1 土压力计算 土压力采用库仑理论计算 1.1.1 主动土压力系数 ()2 sin sin cos cos ??? ?????++=φδφδφa K 1.1.2 被动土压力系数 ()2 sin sin cos cos ??? ?????+-=φδφδφp K 1.1.3 主动土压力强度 a a ajk K C hK e 2-=γ 1.1.4 被动土压力强度 p p pjk K C hK e 2+=γ 1.2 桩锚设计计算 1.2.1单排锚杆嵌固深度按照下式设计计算: 02.1)(011≥-++∑∑ai a d T c pj p E h h h T E h γ 式中,h p 为合力∑E pj 作用点至桩底的距离,∑E pj 为桩底以上基坑内侧各土层水平抗力标准值的合力之和,T c1为锚杆拉力,h T1为锚杆至基坑底面距离,h d 为桩身嵌固深度, γ0为基坑侧壁重要性系数,h a 为合力∑E ai 作用点至桩底的距离,∑E ai 为桩底以上基坑外侧各土层水平荷载标准值的合力之和。 1.2.2 多排锚杆采用分段等值梁法设计计算,对每一段开挖,将该段状上的上部支点和插入段弯矩零点之间的桩作为简支梁进行计算,上一段梁中计算

出的支点反力假定不变,作为外力来计算下一段梁中的支点反力,该设计方法考虑了实际施工情况。 1.3 配筋计算公式为:钢筋笼配筋采用圆形截面常规配筋,并根据桩体实际受力情况,适当减少受压面的配筋数。 s y cm cm s y A f A f A f A f 32/2sin 25.1++= π παα () t s y cm s r f Ar f KSM A παπαπ ππα sin sin sin 323+-= αα225.1-=t 式中,K 为配筋安全系数,S 为桩距,M 为最大弯矩,r 为桩半径,f cm 和fy 分别为混凝土和钢筋的抗弯强度,As 为配筋面积,A 为桩截面面积,α对应于受压区混凝土截面面积的圆心角与2π的比值,用叠代法计算As 。 1.4 锚杆计算 1.4.1 锚杆截面积为: α δcos P D b b SR K A = 式中:K b 为锚杆面积安全系数,R D 为所需锚杆拉力,δP 为锚杆抗拉强度,α为锚杆与水平线之间的夹角,S 为桩距。 1.4.2 锚杆自由段长度为: () ? ?? ? ? --? ?? ?? +-+=2135sin 245cos φαφ G A H L f 式中: H 为开挖深度,A 为土压力零点距坑底距离,D 为桩如土深度,G 为锚杆深度。

相关文档
最新文档