地图投影复习资料

地图投影复习资料
地图投影复习资料

名词解释:(20分)

地图的基本概念

地图是根据一定的数学法则,经过制图综合,运用符号和注记,将地球(或星球)表面缩绘在平面上的图象。它能反映地表各种自然和社会环境的空间分布、联系、变化和发展。 地图投影:

地图投影就是将地球椭球面(或球面)上确定的点,通过一定的数学法则表示到投影面上,建立两面之间点的一一对应关系。 大地水准面:

设想当海水面完全处于静止状态下,并延伸到大陆内部,使它成为一个处处与铅垂线(重力线)正交的连续的闭合曲面,这个曲面叫做大地水准面。

子午圈 (名词解释)

通过地面任一点的法线可以有无数法截弧,它们与椭球面相交 则形成无数法截弧,其中有一对互相垂直的法截弧,称为主法截弧。

主法截弧都是椭圆,其中一个是子午圈。 卯酉圈(名词解释) 与子午圈垂直的另一个圈称为卯酉圈。地球椭球面上的子午圈 始终代表南北方向;卯酉圈除了两个极点外,代表东西方向。

方位角:过A 点的垂直圈与过新极点的经线圈的交角,为方位角。从

形式上来看,方位角相当于λ

天顶距:A 点至新极点Q 的垂直圈弧长,即天顶距。从形式上来看,天顶距相当于90?-?。

高斯克吕格:假想用一个椭圆柱套在地球椭球体外面,并与某一子午线相切,椭圆柱的中心轴位于椭球的赤道面上,再按高斯-克吕格投影所规定的条件,将中央经线东、西各一定的经差范围内的经纬线交点投影到椭圆柱面上,并将此椭圆柱面展为平面,即得本投影。

航海图:采用墨卡托投影。是正轴等角圆柱投影,假想一个与地轴方向一致的圆柱切或割于地球,按等角条件,将经纬网投影到圆柱面上,将圆柱面展为平面后,即得本投影。

【参考】:

地图投影的基本方法:

几何透视法:利用透视线的关系,将地球面上点描写到投影面上。 数学分析法在原面与投影面之间建立点与点的函数关系。

一般表达式:

主比例尺:通常在地图上注出的比例尺叫主比例尺,由于投影的长度变形,不仅随着不同的点位不同,而且在

同一点的不同方向线也不一样,因此地图上的比例尺不可能处处相等,只有在无变形点和无变形线上才能保持投影长度比为1,即与主比例尺保持一致。

局部比例尺:大于或小于主比例尺者,则称为局部比例尺。 长度比

地面上的一微分线段投影后的长度(ds ')

与它原有的长度(ds )之比,以 μ 特点:

一点上的长度比,不仅随点的位置(经、纬度)而变化,而且也随着线段的方向而发生变化。也就是说,不同点上长度比都不相同,同一点上不同方向的长度比也不相同。

面积比

地面上的一微分面积投影后的大小(dF ')与它原有的面积(dF ) 之比,以 P 表示,即

P 1

子午圈(PEP 1E 1) 和卯酉圈(AQW) )

,(),(21λ?λ?f y f x ==

在椭球面上相互垂直的两个方向线,在投影面上也是互相垂直的。即一个方向线的方位角是'α0 ,另一个方向线的方位角为'α0+90?='α01。 主方向的特点

在椭球面上相互垂直,投影到平面上仍保持垂直。

? 主方向线与经纬线的关系

地球表面上的经纬线投影到平面上不一定保持正交。 若保持正交('θ=90?),则经纬线方向为主方向。

等角、等面积、等距离的比较(基础知识) 等角投影:

等角投影的概念:在地球椭球面上任两方向的微分线段所夹的角投影到平面上后保持不变。 等角投影条件:m=n 或a=b(m 是经线长度比,n 是纬线长度比)

等面积投影:

等面积投影:

定义为某一微分面积投影前后保持相等,即面积比为1。 等面积投影条件:P=a*b=1或 等距离投影:

等距离投影:凡不能满足等角或等面积条件的投影,称为任意投影。

在任意投影中,最常用的是等距离投影。即指沿某一特定方向投影后长度保持不变。在多数情况下,是指定沿经线为等距离。根据经线长度比定义,则 等距离投影条件:m=1 变形椭圆:

对于不同性质的投影,微分椭圆表现为不同的形状,并且随区域位置不同而变化。由于它能显示出变形特征,所以称为变形椭圆。

变形椭圆不仅在性质不同的投影中表现为不同的形状和大小,而且在同一性质投影的不同点上,也表现为不同的形状和大小。

等积投影 等距离投影

等角投影

变形的近似式:

? 长度变形

则 对等式两边取对数后并将右边按级数展开:?

sin 1

m n θ'??=1v μμ=+

最大角度变形的近似表达式: 或

面积变形

面积变形表达式:

面积变形的近似表达式: 不同性质投影的变形特征:

等角投影:

等面积投影: 等距离投影:

球面极坐标系

把地球作为球体时,地理坐标也是一种球面坐标,即由通过南北地极的经圈和平行于赤道的纬圈来确定地面上任一点的位置。

现在采用另一种确定地面点位的球面坐标,为了区别起见,称之为球面极坐标。

最大角度变形为: 【参考】

在正轴投影中,m 、n 仅是纬度的函数,等变形线与纬圈一致;

在横轴或斜轴投影中,沿垂直圈或等高圈的长度比(μ1

、μ2)仅是天顶距Z 的函数,等变形线与等高圈一致。

方位投影适宜于圆形轮廓的地区。两极地区适宜用正轴投影,赤道附近地区适宜用横轴投影,其它地区用斜轴投影。

等角方位投影:常用于两极地区的航空图或海图;在UTM 投影中,规定在南北纬80?至两极地区采用的UPS 投影(通用极球面投影)就是等角方位投影。

等面积方位投影:常用于东、西半球、水陆半球地图或各大洲图。 等距离方位投影:常用于南北极图、东、西半球图等。

几种方位投影的比较:

a b v v ω=-11

(1)(1)1p

a b a b a b v P ab v v v v v v =-=-=++-=++b

a p v v v +≈v v v v v p

b a 2,0,====ω0

,2,===-=p

b a v v v v v ω0,

,b a p v v v v v v ω====,

选择或填空:

? 地图分类 (1)按地图内容

? 普通地图:地形图、地理图

? 专题地图:自然地图、社会经济地图 (2)按地图比例尺

? 大比例尺地图(大于或等于1:10万的地图)

? 中比例尺地图(小于1:10万而大于1:100万的地图) ? 小比例尺地图(小于或等于1:100万的地图)

我国采用的椭球体:

1952年以前采用海福特椭球体 1953年起采用克拉索夫斯基椭球体

1980年国家大地坐标系采用的地球椭球体(1975年大地坐标系)的参数:ae = 6378140,扁率为1:298.257 2008年7月1日起启用2000国家大地坐标系,具体参数为:ae = 6378137,be =6356752.31414 , 扁率为1:298.257222101

我国采用的坐标系: :(选择或填空)

1954年北京坐标系: 采用克拉索夫斯基椭球参数,又称北京坐标系.

1980西安坐标系: 采用国际地理联合会(IGU )第十六届大会推荐的椭球参数,大地坐标原点在陕西省泾阳县永乐镇的大地坐标系,又称西安坐标系。 2000国家大地坐标系 :采用地心坐标系。

等角航线在墨卡托投影中的表象:

地球面上的等角航线在墨卡托投影中为直线。 高斯-克吕格投影条件:

Rtgz

=

ρz

R sin =ρRz

即球面投影

1.中央经线和赤道投影后为互相垂直的直线,且为投影的对称轴;

2.投影具有等角性质;

3.中央经线投影后保持长度不变。

[参考]:{

扁 率

第一偏心率

第二偏心率

简述题: 要求:

要判别投影的类型、投影的选择、公式描述(变形情况、经纬网

{系统、性质、方式}、已知公式)

主要考察方位投影和圆柱投影。 方位投影:

概念:假想一平面切(割)地球,然后按一定的数学方法将地球面经纬网投影在平面上,即得到方位投影。 特征:由投影中心到任何一点的方位角保持与实地相等(无变形)。 分类:

? 等面积方位投影的变形公式:

?

圆柱投影:

? 圆柱投影的概念

圆柱投影是以圆柱面为投影面,按照某种投影条件,将地球椭球面上的经纬线投影于圆柱面上,并沿圆柱的一条母线切开展成平面的一种投影。

圆柱投影是圆锥投影的一种特殊情况,即设想圆锥顶点移到无穷远时,圆锥面成了圆柱面。

E 1

? 圆柱投影的分类

? 按变形性质:等角投影、等面积投影和任意投影

? 按圆柱面与地球椭球体之间的关系:切圆柱投影、割圆柱投影 ? 按圆柱面与地球椭球体所处的不同位置; 正轴圆柱投影、横轴圆柱投影、斜轴圆柱投影

? 按视点位置: 正射、外心、球面、球心等透视圆柱投影

正轴圆柱投影的一般公式:

正轴圆柱投影的经纬线长度比、面积比和最大角度变形:

对于球体:

改写为:

K = 0。于是上式为:

此时仍有一个常数 c 需要确定,令纬度?k 上长度比nk =1,则

若?k = 0,切圆柱投影常数为:c=a e

λ

??==c )(y f x ln x c U =cos k

k

c r N ?==

该投影是16世纪荷兰地图学家墨卡托(Gerardus Mercator, 1512-1594)所创造,并于1569年首先用于编制海图,故又称墨卡托投影.

PS:1海里≈1.854公里

正轴等面积圆柱投影

等面积投影保持面积不变,即P=ab =mn =1,

式中K 为积分常数,S 为椭球面上经差为1弧度和纬差为0

?到??的梯形面积。当横坐标与赤道重合时,K =0。

正轴等面积圆柱投影的一般公式:

横轴与斜轴圆柱投影的一般公式:

在球面上: 在投影面上:

()x f Z y c α==?RdZ

AD rd AB ==αdx D A dy

B A ==''''

沿垂直圈的长度比μ1、沿等高圈的长度比μ2和面积比P 的表达式:

在横轴切圆柱投影中,圆柱面切于通过制图区域的中央经线(λc )上,在此经线上长度比μc =1,新极Q 的纬度为0?,经度为λ0=λc +90?。

根据球面三角形公式,可以得出Z ,α和?,λ之间的关系式如下: 套用正轴等角切圆柱投影公式,并以α 相当于λ,90?-Z 相当于?,以及x ,y 互换,则得到横轴条件下的投影公式:

α

α

αd +dz

z +z A

B

C

D

α

d y

图4.8 球面坐标系及及其在圆柱投影中的表象

λ

?αλ?sec sin cos cos tg ctg Z ==

将上式展成级数的公式为: 长度比为:

将上式展成级数的公式为:

【参考】确定新极点Q

——新极点在制图区域的中心点上

斜方位投影:取制图区域边界上的若干点的经纬度,求其算术平均值; 横方位投影:新极点位于赤道上,只需确定λ0。 ——新极点为通过制图区域中部的大圆的极 斜轴或横轴圆柱投影

——新极点为通过制图区域中部小圆的极

计算题(15~20分)

要求:基本步骤要写全,要求长度比,面积比和投影性质。 例 题1

已知某一投影的方程式为: 试求:(1)投影性质;

(2)投影后经纬线夹角及其所在象限; (3)沿经、纬线长度比; (4)面积比; (5)经纬线形状。

解:先求各系数E 、F 、G 和H

?λ?cos ,R y R x ==λ?λ?λ?sin cos 1sin cos 1ln 2 )sec (-+==R y tg Rarctg x ++-+-+=+-++=)4185(5cos 120)1(cos 6cos )5(cos sin 24cos sin 24252332342???λ??λ?λ???λ??λ?tg tg R tg R R y tg R R R x λ?μ22sin cos 11csc -==Z +-++=)45(cos 24cos 212442

2?λ?λμtg

(1)确定投影的性质

未满足等角的任一条件,故非等角投影

再按等面积条件进行验算: 满足等面积条件,故此投影为等面积投影。 (2)确定经纬线夹角的大小

(4)求面积比

(5)确定经纬线方程及其形状

本投影的第一方程式 x =R ?,不含λ,故此式即为纬线方程,而且是平行于y 轴的直线。 将?=x /

R 代入y 式,得: 这是经线方程,由此知经线为正弦曲线 例2:(同例1相似)

已知某一投影的方程式为:

试求:(1)投影性质;

(2)投影后经纬线夹角及其所在象限;

(3)沿经、纬线长度比; (4)极值长度比;

?cos 2R H =λ?R y Rtg x ==,

(1)确定投影的性质

按等角条件进行验算:

由各系数知:

未满足等角投影条件,故非等角投影。

不满足等面积条件,故非等面积投影,而是一任意投影。

不满足等距离条件,故非等距离投影。 此投影是一个非等距离的任意投影。 (2)确定经纬线夹角的大小:

(3)求经纬线长度比

(4)求极值长度比

因经纬线投影后为正交,故经纬线方向为极值长度比所在的主方向。a 为经纬线长度比中的最大值,而b 为最小值。

(5)求面积比

(6)确定经纬线方程及其形状

本投影的第一个方程式 x =tg ?,不含λ,故此式即为纬线方程,而且是平行于y 轴的直线(间距不等,离开赤道愈远,间距愈大,两极不能显示)。

本投影的第二个方程式 y =R λ ,不含? ,故此式即为经线方程,而且是平行于x 轴的、等间距的平行直线。

且经纬线投影后仍保持垂直。

本投影是一透视性质的正轴任意圆柱投影。

附录:地图投影的识别方法:

1、 投影的种类:属方位投影、圆锥投影、圆柱投影或其他投影。

2、 变形性质:属等角、等面积、任意或等距离投影。

3、 投影方式:投影面与地球的关系位置,相切还是相割,中心点和标准线的位置。

0=F ???322sec cos /sec /===R R Mr H P ,0cos 1sin ='='θθ或????sec ,sec sec sec 22====>=n b m a n m =故因

上课的问题(不全):

1、 等角投影与位置无关。

2、 等距离方位投影中所有经线没有长度变形。

3、 正轴圆柱投影纬线长度相同。

4、 方位投影与圆锥投影在外貌上最大的不同是前者为同心圆,后者为同心圆弧。

5、 正轴圆柱投影的等变形线是平行于赤道的直线。

6、 正轴方位投影的等变形写是同心圆。

7、 正轴圆锥投影的等变形线是同心圆弧。

8、 航海图采用墨卡托投影。

9、 目前中国大于1:50万地形图采用高斯—克吕格投影 10、正轴等角圆柱投影适用于赤道附近地区编图。

11、在利用等角圆锥投影编制的地图上,面积变形近似于长度变形的2倍。 12、等角航线在墨卡托投影上表现为直线。

13、正轴等角圆锥投影钟,投影常数a 值通常小于1。

14、UTM 投影中央经线长度比为0.9996,高斯—克吕格投影中央经线长度比为1。

15、球心投影将大圆航线投影成直线,球面投影将等高圈投影为圆,这一性质说明了球面投影具有等角性质。

16、墨卡托投影钟纬线的间隔自赤道向两极显著增大。 17、正轴等角圆锥投影应满足m=n

18、在一个球的正圆柱投影中,所有经纬网格投影成大小相同的矩形,它的投影式等距离投影。 19、高斯—克吕格投影的最大变形位于6°带上。

k

?

地图投影的基本问题

3.地图投影的基本问题 3.1地图投影的概念 在数学中,投影(Project)的含义是指建立两个点集间一一对应的映射关系。同样,在地图学中,地图投影就是指建立地球表面上的点与投影平面上点之间的一一对应关系。地图投影的基本问题就是利用一定的数学法则把地球表面上的经纬线网表示到平面上。凡是地理信息系统就必然要考虑到地图投影,地图投影的使用保证了空间信息在地域上的联系和完整性,在各类地理信息系统的建立过程中,选择适当的地图投影系统是首先要考虑的问题。由于地球椭球体表面是曲面,而地图通常是要绘制在平面图纸上,因此制图时首先要把曲面展为平面,然而球面是个不可展的曲面,即把它直接展为平面时,不可能不发生破裂或褶皱。若用这种具有破裂或褶皱的平面绘制地图,显然是不实际的,所以必须采用特殊的方法将曲面展开,使其成为没有破裂或褶皱的平面。 3.2地图投影的变形 3.2.1变形的种类 地图投影的方法很多,用不同的投影方法得到的经纬线网形式不同。用地图投影的方法将球面展为平面,虽然可以保持图形的完整和连续,但它们与球面上的经纬线网形状并不完全相似。这表明投影之后,地图上的经纬线网发生了变形,因而根据地理坐标展绘在地图上的各种地面事物,也必然随之发生变形。这种变形使地面事物的几何特性(长度、方向、面积)受到破坏。把地图上的经纬线网与地球仪上的经纬线网进行比较,可以发现变形表现在长度、面积和角度三个方面,分别用长度比、面积比的变化显示投影中长度变形和面积变形。如果长度变形或面积变形为零,则没有长度变形或没有面积变形。角度变形即某一角度投影后角值与它在地球表面上固有角值之差。 1)长度变形 即地图上的经纬线长度与地球仪上的经纬线长度特点并不完全相同,地图上的经纬线长度并非都是按照同一比例缩小的,这表明地图上具有长度变形。 在地球仪上经纬线的长度具有下列特点:第一,纬线长度不等,其中赤道最长,纬度越高,纬线越短,极地的纬线长度为零;第二,在同一条纬线上,经差相同的纬线弧长相等;第三,所有的经线长度都相等。长度变形的情况因投影而异。在同一投影上,长度变形不仅随地点而改变,在同一点上还因方向不同而不同。 2)面积变形 即由于地图上经纬线网格面积与地球仪经纬线网格面积的特点不同,在地图上经纬线网格面积不是按照同一比例缩小的,这表明地图上具有面积变形。 在地球仪上经纬线网格的面积具有下列特点:第一,在同一纬度带内,经差相同的网络面积相等。第二,在同一经度带内,纬线越高,网络面积越小。然而地图上却并非完全如此。如在图4-9-a上,同一纬度带内,纬差相等的网格面积相等,这些面积不是按照同一比例缩

地图投影复习资料

地图投影复习资料 基本概念 地图投影是在平面上建立与地球曲面上相对应的经纬网的数学法则。 任务 (1)研究将地球面上的地理坐标描写到平面上,建立地图数学基础的各种可能的方法; (2)讨论这些方法的理论、变形规律、实用价值以及不同投影坐标的相互换算等问题。 大地水准面与大地体(Geoid ) 大地水准面设想当海水面完全处于静止状态下,并延伸到大陆内部,使它成为一个处处与铅垂线(重力线)正交的连续的闭合曲面,这个曲面叫做。由它所包围的球体,叫做大地体。 地球椭球面与地球椭球体(Ellipsoid) 地球椭球体选择一个大小和形状同大地水准面极为接近的,以椭圆短轴为旋转轴的旋转椭球面。这个旋转椭球面可代表地球的形状,又称为地球椭球面或参考椭球面(原面)。由它所围成的球体,称为或地球椭球。 地球椭球体的形状和大小 扁率(Flattening or Compression) 第一偏心率(First Eccentricity) 第二偏心率(Second Eccentricity) 地球椭球面的基本点、线、面和地理坐标 点 两极 (pole) 线 经线(meridian) 纬线(parallel) 面 平行圈(parallel) 子午圈(meridian) : 长半径为ae ,短半径为 be 的椭圆 地理坐标 地理纬度(latitude ) 地理经度(longitude) 子午圈:通过地面任一点的法线可以有无数法截弧,它们 与椭球面相交则形成无数法截弧,其中有一对互相垂直的法截弧,称为主法截弧。主法截弧都是椭圆,其中一个是子午圈。 卯酉圈:与子午圈垂直的另一个圈称为卯酉圈。地球椭球面上的子午圈始终代表南北方向;卯酉圈除了两个极点外,代表东西方向。 子午圈曲率半径:地球椭球体表面上某点法截弧曲率半径中最小的曲率半径

中国常用的地图投影

中国常用的地图投影举例 第三节中国常用的地图投影举例 科学事业的发展同社会制度和经济基础是密切相联系的,旧中国是一个半封建半殖民地的国家,测绘事业也濒于停顿,编制出版的少量地图质量也很差,更少考虑到采用自己设计及计算的地图投影。在解放前出版的几种地图中曾采用过的几种地图投影,也多半是因循国外陈旧的地图投影,很少自行设计新投影。解放后,在党和政府的领导下,非常重视测绘科学事业的发展,我国测绘工作者不仅在地图投影的理论上有了研究,同时结合我国具体情况,设计了一些适合于我国情况的新的地图投影。下面介绍我国出版的地图中常用的一些地图投影。 世界地图的投影 等差分纬线多圆锥投影 正切差分纬线多圆锥投影(1976年方案) 任意伪圆柱投影:a=0.87740,6=0.85 当φ=65°时P=1.20 正轴等角割圆柱投影 半球地图的投影 东半球图 横轴等面积方位投影φ0=0°,λ0=+70° 横轴等角方位投影φ0=0°,λ0=+70° 西半球图 横轴等面积方位投影φ0=0°,λ0=-110° 横轴等角方位投影φ0=0°,λ0=-110° 南、北半球地图 正轴等距离方位投影 正轴等角方位投影

正轴等面积方位投影 亚洲地图的投影斜轴等面积方位投影φ0=+40°,λ0=+90° φ0=+40°,λ0=+90° 彭纳投影标准纬线φ0=+40°,中央经线λ0=+80°标准纬线φ0=+40°,中央经线λ0=+80° 欧洲地图的投影斜轴等面积方位投影φ0=52°30′,λ0=20° 正轴等角圆锥投影φ1=40°30′,λ0=65°30′ 北美洲地图的投影斜轴等面积方位投影φ0=+45°,λ0=-100° 彭纳投影 南美洲地图的投影斜轴等面积方位投影φ0=0°,λ0=+20° 桑逊投影λ0=+20° 澳洲地图的投影斜轴等面积方位投影φ0=-25°,λ0=+135° 正轴等角圆锥投影φ1=34°30′,φ2=-15°20′ 拉丁美洲地图的投影斜轴等面积方位投影φ0=-10°,λ0=-60° 中国地图的投影中国全图 斜轴等面积方位投影

ARCGIS地图学实验四_投影变换

测绘工程专业 地图学实习报告 实习容:地图的符号化与投影转换 班级: 2012级(2)班 学号: 8 姓名:党莹 指导老师:华蓉 时间: 2014年10月18号

目录 一、实验名称 (1) 二、实验容 (1) 三、实验目的 (1) 四、实验步骤 (1) 4.1将e00格式地图转化为shape文件 (1) 4.1.1连接到文件夹 (1) 4.1.2转化为coverage (2) 4.1.3数据导出为shape文件 (4) 4.2给区域添加颜色属性 (5) 4.2.1建立颜色color属性 (5) 4.2.2给color属性赋值 (6) 4.2.2改变所有区域的color属性值 (7) 4.3添加标注 (8) 4.3.1打开标注 (8) 4.3.2取消重复标注标注 (8) 4.4边境线的编辑(两种方法) (10) 4.4.1 方法一:直接在边界图层上进行编辑 (10) 4.4.2 方法二:用区域创建边界 (13) 4.5 坐标投影(由兰伯特投影到高斯投影) (14) 4.5.1新建数据框 (14) 4.5.2原图层格网的建立 (14) 4.5.3 转化为高斯投影 (14)

五、实验过程中遇到的问题及解决方法 (16) 六、实验小结 (18)

一、实验名称 地图的符号化与投影转换 二、实验容 ●为地图上不同颜色的区域填充颜色,并添加注记 ●改变边境线的属性值,为不同类别的边境线添加不同的属性 ●地图投影 三、实验目的 ●通过对不同区域颜色的填充,在颜色上对不同的省份加以区分,以地图学的视角搭配颜色,使整个区域既具有统一性又具有差异性; ●学会地图符号分类的方法,学会运用属性表与符号属性改变不同类别要素的属性; ●掌握地图投影在Arcgis中的运用,以直观的方式去了解不同投影方式的区别,学会投影坐标系的转化 四、实验步骤 4.1将e00格式地图转化为shape文件 4.1.1连接到文件夹 打开ArcMap,在目录树中“文件夹连接”处右击点击“连接到文件夹”,选择待转换文件所在的文件夹(图4-1-1);

2.6地图投影的选择和变换

幻灯片1 地图投影的选择和变换幻灯片2 地图投影的选择和变换●本讲主要内容: ●一、地图投影的选择 二、地图投影的变换 幻灯片3 一、地图投影的选择 (一)投影选择的依据 1、制图区域的地理位置、形状和范围 制图区域的地理位置决定了所选择投影的种类 正轴方位投影 极地—— 赤道附近—— 横轴方位投影或正轴圆柱投影 正轴圆锥投影或斜轴方位投影 中纬地区—— 幻灯片4 制图区域形状直接制约地图投影的选择 中纬度地区: 沿纬线方向延伸的长形区域—— 单标准纬线正轴圆锥投影 沿经线方向略窄,沿纬线方向略宽的长形区域—— 双标准纬线正轴圆锥投影 沿经线方向南北延伸的长形区域—— 多圆锥投影 斜轴方位投影 南北、东西方向差别不大的圆形区域—— 低纬赤道附近: 沿赤道方向呈东西延伸的长条形区域—— 正轴圆柱投影 东西、南北方向长宽相差无几的圆形区域—— 横轴方位投影 幻灯片5 制图区域的范围大小也影响地图投影的选择 正轴圆柱、伪圆锥、广义多圆锥和某些派生的地图投影世界地图—— 东西半球:横轴等面积或等距离方位投影 水路半球:斜轴等距离或等面积方位投影 南北半球:正轴等角或等距离方位投影 半球地图—— 非洲:横轴等面积方位、横轴等角圆柱 其他洲:斜轴等面积方位投影

大洲地图—— 不同变形性质的正轴圆锥投影 大国地图—— 幻灯片6 2、比例尺 不同比例尺地图,对精度要求不同,投影选择不同。 大比例尺地形图,对精度要求高,宜采用变形小的投影,如分带投影。 中、小比例尺地图范围大,概括程度高,定位精度低,可有等角、等积、任意投影的多种选择。 幻灯片7 幻灯片8

幻灯片9

几种常见地图投影各自的特点及其分带方法

高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。 一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM 投影”、“兰勃特等角投影” 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种" 等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal

实验1地图投影及其变换

实验题目:地图投影及其变换 实验环境:ArcVier GIS 实验目的: 1.掌握地图投影变换的基本原理与方法 2.熟悉ArcView中投影的应用及投影变换的方法、技术 3.了解地图投影及其变换在实际中的应用 实验内容: 对于地面上的任何事物来讲,其空间位置是非常重要的信息。地理信息数据中一个重要部分就是地物的空间位置,包括空间相对位置和绝对位置。空间的相对位置空间拓扑关系来描述,而空间绝对位置则用空间某一坐标系中的坐标来表示,即(x,y,z)或是(λ,φ,r)。我们知道,地球是一个近似于椭球的星体。在地理信息系统中,我们通常把地球看作一个旋转椭球体,而研究球面或椭球面上的空间位置往往比较复杂,于是我们采用一定的数学法则将地球表面的事物的空间位置表示到平面上,这就是所谓的投影。 实际上,投影这门学科原本是地图学的一个重要的分支。对地理信息系统来讲,它也是地理信息系统的数学基础之一。常用的投影有方位、圆锥、圆柱、高斯-克吕格投影等。下面以ArcView为例,讲述一下投影在实际工作中的应用。 实验方法和步骤: a.运行ArcView,打开一个视图(view),并向视图中添加数据。(数据可以从ArcView的安装目录如D:\ESRI\ESRIDA TA中找到,比如我们打开一幅美国地图)。

b.从View菜单选择Properties菜单项 c.在出现的对话框中看是否已经为视图指定了投影(下图中红框标记的地方,如果有投影,则会出现投影名称,下图还没有设置投影)。 如没有设置投影,注意要将MapUnits设置为decimal degrees(十进制度小数)。如已设置投影,就不要将MapUnits设置为decimal degrees。 d.单击上图中的Projection按钮,将出现如下图对话框。

几种常用地图投影

一:等角正切方位投影(球面极地投影) 概念:以极为投影中心,纬线为同心圆,经线为辐射的 直线,纬距由中心向外扩大。 变形:投影中央部分的长度和面积变形小,向外变形逐渐增 大。 用途:主要用于编绘两极地区,国际1∶100万地形图。 二:等距正割圆锥投影 概念:圆锥体面割于球面两条纬线。 变形:纬线呈同心圆弧,经线呈辐射的直线束。 各经线和两标纬无长度变形,即其它纬线均有 长度变形,在两标纬间角度、长度和面积变形 为负,在两标纬外侧变形为正。离开标纬愈远, 变形的绝对值则愈大。 用途:用于编绘东西方向长,南北方向稍宽地区 的地图,如前苏联全图等。 三:等积正割圆锥投影 概念:满足mn=1条件,即在两标纬间经线长度放 大,纬线等倍缩小,两标纬外情况相反。 变形:在标纬上无变形,两标纬间经线长度变形为正, 纬线长度变形为负;在两标纬外侧情况相反。角度 变形在标纬附近很小,离标纬愈远,变形则愈大。 用途:编绘东西南北近乎等大的地区,以及要求面积 正确的各种自然和社会经济地图。

四:等角正割圆锥投影 概念:满足m=n条件,两标纬间经线长度与纬线长度 同程度的缩小,两标纬外同程度的放大。 变形:在标纬上无变形,两标纬间变形为负,标纬外变 形为正,离标纬愈远,变形绝对值则愈大。 用途:用于要求方向正确的自然地图、风向图、洋流图、 航空图,以及要求形状相似的区域地图;并广泛用于制 作各种比例尺的地形图的数学基础。 如我国在1949年前测制的1∶5万地形图,法国、比利 时、西班牙等国家亦曾用它作地形图数学基础,二次大 战后美国用它编制1∶100万航空图。 五:等角正切圆柱投影——墨卡托投影 概念:圆柱体面切于赤道,按等角条件,将经 纬线投影到圆柱体面上,沿某一母线将圆柱体 面剖开,展成平面而形成的投影。是由荷兰制 图学家墨卡托(生于今比利时)于1569年创拟 的,故又称(墨卡托投影)。 变形:经线为等间距的平行直线,纬线为非等 间距垂直于经线的平行直线。离赤道愈远,纬 线的间距愈大。纬度60°以上变形急剧增大, 极点处为无穷大,面积亦随之增大,且与纬线 长度增大倍数的平方成正比,致使原来只有南 美洲面积1/9的位于高纬度的格陵兰岛,在图 上比南美洲大。 用途:等角航线表现为直线,用于编制海图、印度尼西亚和赤道非洲等赤道附近国家和地区的地图、世界时区图和卫星轨迹图等。

地图投影及其变换

地图投影及其变换 一、实验目的 1.掌握地图投影变换的基本原理与方法 2.熟悉ArcView中投影的应用及投影变换的方法、技术 3.了解地图投影及其变换在实际中的应用 二、实验准备 1.软件准备: ARCVIEW 2.资料准备: 三、实验内容及步骤、方法 1投影的应用 a.运行ArcView,打开一个视图(view),并向视图中添加数据。(数据可以从ArcView的安装目录如D:\ESRI\ESRIDATA中找到,比如我们打开一幅美国地图)。 b.从View菜单选择Properties菜单项 c.在出现的对话框中看是否已经为视图指定了投影(如果有投影,则会出现投影名称)。 如没有设置投影,注意要将MapUnits设置为decimal degrees(十进制度小数)。如已设置投影,就不要将MapUnits设置为decimal degrees。 d.单击图中的Projection按钮,将出现如下图对话框。 图中上部有两个单选按钮,默认选择是Standard。这是ArcView预设的一些标准投影。可以在Categeory下拉框中选择投影区域或投影面,在Type下拉框中选择相应的投影类型。例如:在Categeoy中选择Projections

of the Unites States(美国区域的投影),而在Type中选择Lambert Conformal Conic(North America),(适于北美地区的兰伯特等角圆锥投影),就可以得到结果。 也可以选择自己定义投影参数,这时要选择Custom单选按钮,此时我们就可以在projection下拉框中指定投影类型,在Spheroid下拉框中指定椭球,并根据所选的投影修改投影参数。需要指出的是,这样的自定义投影只是在ArcView提供的投影类型中修改相应的参数,而并不是定义新的投影方式。尽管ArcView提供了许多投影方式和椭球,但并不是所有的投影类型和椭球都有,像我国常用的高斯-克吕格投影及80坐标系所使用的IAG-75椭球就没有。 e.上述的做法只是为视图(View)指定了投影,而数据并没有发生改 变。也就是说数据是在被添加到视图时才被投影,显示在屏幕上,当你关掉当前视图,重新建立一个视图,并将原来的数据添加进来时,你会发现它们并没有被投影,也就是说刚才的操作对数据并没有影响。如果你要将数据真正进行投影变换,就必须将数据重新存储,使新数据保有投影变换后的投影信息。这时可以这样做:选中要存储的数据层(单击窗口左边数据目录中的该层,使其处于激活状态);单击Theme菜单,选取Convert to shapeFile菜单项。将数据重新保存。 2 ArcView中的数据格式转换: 在ArcView中数据格式转换是依靠ArcView提供的一些工具软件和菜单命令来完成的。主要有以下一些: 在开始菜单中选取“程序/ESRI/ArcView Gis 3.2a”。

地图投影实验报告

淮海工学院 现代地图学A 实验报告 实验名称:专题地图制作 班级:测绘122 姓名:苏红飞 实验地点:测绘楼307 实验时间: 2013-12-02 实验成绩: 测绘工程学院测绘工程系

实验一地图投影 一、实验目的与要求 1.学会MapInfo的最基本操作,如表、工作空间、图层等的操作。 2.掌握有关高斯-克吕格投影的知识。 3.学会根据地图上不同经纬网形态识别不同的投影类型。 二、实验步骤 (一)掌握MapInfo中地图投影的操作过程。

(二)绘制武汉市所在地区的高斯—克吕格投影6度带经纬网和方里网,绘图范围:东西范围由武汉市所在投影带决定,南北范围:北纬25o—35o。经线线距1,纬线线距1o。 1、打开MapInfo,出现如图1所示的对话框,点击ok键。 图 1

2、如图2-1所示,在File选项中选中open点击,打开“实验素材”(图2-2)。 图2-1 图2-2 3、再依次打开CHINA.TAB、CHINCAP.TAB、PROVINCE.TAB,打开后如图3所示。

图3 4、点击Layer Control,如图4-1所示。在Tools选项中单击Tool Manger...出现下图4-3中所示的对话框,选中Coordinate Extractor,将它后面的两个 小框打钩。 图4-1 图4-2 图4-3

5、在Tools菜单中单击Coordinate Extractor中的Extract Coordinates...选项出现如图5-2所示的对话框,在table name一栏中选择CHINCAPS,然后点击ok出现如图5-3所示的对话框,选择continue,即可看见如图5-4所示的窗口,在上面找到并记下武汉的地理坐标。 图5-1 图5-2 图5-3

常用地图投影转换公式

常用地图投影转换公式 作者:青岛海洋地质研究所戴勤奋  投影计算公式往往表达方式不止一种,有时很难分辨谁对谁错,我只把“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影”(1:100万地形图规范中称作正轴等角圆锥投影,GB/T 14512-93)的正反转换公式列出,因为我基本能保证这些公式的正确性。1.约定 本文中所列的转换公式都基于椭球体 a -- 椭球体长半轴 b -- 椭球体短半轴 f -- 扁率 e -- 第一偏心率 e’ -- 第二偏心率 N -- 卯酉圈曲率半径 R -- 子午圈曲率半径 B -- 纬度,L -- 经度,单位弧度(RAD) -- 纵直角坐标, -- 横直角坐标,单位米(M) 2.椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T

界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。 3.墨卡托(Mercator)投影 3.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 3.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 3.3 墨卡托投影正反解公式 墨卡托投影正解公式:(B,L)→(X,Y),标准纬度B0,原点纬度 0,原点经度L0

常用地图投影公式

常用地图投影公式 1.约定 本文中所列的转换公式都基于椭球体 a -- 椭球体长半轴 b -- 椭球体短半轴 f -- 扁率 e -- 第一偏心率 e’-- 第二偏心率 N -- 卯酉圈曲率半径 R -- 子午圈曲率半径 B -- 纬度,L -- 经度,单位弧度(RAD) -- 纵直角坐标, -- 横直角坐标,单位米(M) 2.椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范GB/T 18314-2001”): 椭球体长半轴a(米)短半轴b(米) Krassovsky (北京54采用)6378245 6356863.0188 IAG 75(西安80采用)6378140 6356755.2882

WGS 84 6378137 6356752.3142 需要说明的是,在“海洋地质制图常用地图投影系列小程序”中,程序界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。 3.墨卡托(Mercator)投影 3.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确

实习一——地图投影变换

实习一、地图投影及其变换 一、目的 1.掌握地图投影变换的基本原理与方法 2.熟悉ArcView、ARC/INFO中投影的应用及投影变换的方法 3.了解地图投影及其变换在实际中的应用 二、实验准备 1.软件准备:ARC/INFO, ARCVIEW3.3 2.数据准备: (1)stationsll.shp(美国爱达荷州轮廓图) (2)idll.shp(美国爱达荷州滑雪场资料) 以上两个数据是以十进制表示经纬度数值的shapefile (3)snow.txt(美国爱达荷州40个滑雪场的经纬度值) (4)stations.shp,一个已投影的shapefile,用于检验习作2的投影结果 (5)idoutl.shp,基于爱达荷横轴墨卡托坐标系的爱达荷州轮廓图,用于检验习作3投影的正确性 三、试验要求 习作1、利用ARCVIEW软件View properties 中的Projection ,将stationsll.shp 和idll.shp投影成爱达荷横轴墨卡托投影(IDTM)。IDTM参数如下:投影:横轴墨卡托 基准面:NAD27(基于克拉克1866) 单位:M 参数: (1)比例系数:0.9996 (2)中央经线:-114.0 (3)参考纬度:42.0 (4)横坐标东移假定值:500 000 (5)纵坐标北移假定值:100 000 投影前: 投影后:

习作2、利用文本文件snow.txt创建shapefile(存为trial.shp),并利用ARCVIEW3.3中的Projection Utility将其转为兰勃特等角圆锥投影,投影后的文件名存为trial2.shp,然后用stations.shp检验投影后的结果。所用参数如下:投影:兰勃特 单位:M 基准面:NAD27 中央经线:-114.0 原点纬度:42.0 第一标准纬线:33.0 第二标准纬线:45.0

地理信息系统常用的地图投影

地理信息系统常用的地图投影 1、高斯-克吕格投影--------实质上是横轴切圆柱正形投影 该投影是等角横切椭圆柱投影。想象有一椭圆柱面横套在地球椭球体外面,并与某一条子午线(称中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定的投影方法将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。 高斯平面直角坐标系以中央经线和赤道投影后为坐标轴,中央经线和赤道交点为坐标原点,纵坐标由坐标原点向北为正,向南为负,规定为 X轴,横坐标从中央经线起算,向东为正,向西为负,规定为Y轴。所以,高斯-克吕格坐标系的X、Y轴正好对应一般GIS 软件坐标系中的Y和X。 高斯投影的条件和特点 ★中央经线和赤道投影后为互相垂直的直线,且为投影的对称轴 高斯投影的条件★投影具有等角性质 ★中央经线投影后保持长度不变 ★中央子午线长度变形比为1,其他任何点长度比均大于1 ★在同一条经线上,长度变形随纬度的降低而增大,在赤道处为最大 高斯投影的特点★在同一条纬线上,离中央经线越远,变形越大,最大值位于投影带边缘★投影属于等角性质,没有角度变形,面积比为长度比的平方 ★长度比的变形线平行于中央子午线 高斯投影6°和3 为了控制变形,我国地图采用分带方法。我国1:1.25万—1:50万地形图均采用6度分带,1:1万及更大比例尺地形图采用3度分带,以保证必要的精度。 6度分带从格林威治零度经线起,每6度分为一个投影带,该投影将地区划分为60个投影带,已被许多国家作为地形图的数字基础。一般从南纬度80到北纬度84度的范围内使用该投影。 3度分带法从东经1度30分算起,每3度为一带。这样分带的方法在于使6度带的中央经线均为3度带的中央经线;在高斯克吕格6度分带中中国处于第13 带到23带共12个带之间;在3度分带中,中国处于24带到45带共22带之间。 高斯--克吕格投影的优点:★等角性别适合系列比例尺地图的使用与编制; ★径纬网和直角坐标的偏差小,便于阅读使用; ★计算工作量小,直角坐标和子午收敛角值只需计算一个带。 ★由于高斯-克吕格投影采用分带投影,各带的投影完全相同,所以各投影带的直角坐标值也完全一样,所不同的仅是中央经线或投影带号不同。为了确切表示某点的位置,需要在Y坐标值前面冠以带号。如表示某点的横坐标为米,前面两位数字“20”即表示该点所处的投影带号。 2、墨卡托投影---------- 等角正切圆柱投影 定义:假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 特性:墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。 墨卡托投影的用途 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和

地图学几种投影的主要参数

几种投影的主要参数 Gauss Kruger(高斯-克吕格投影):除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。该投影没有角度变形,在长度和面积上变形也很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带赤道的两端。限制长度变形最有效的方法是将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。经差6度为六度带,经差3度为三度带。六度带自0度子午线起自西向东分带,带号为1—60带。三度带基于六度带,自 1.5度子午线起每隔经差3度自西向东分带,带号为1—120带。我国经度围73W—135E,十一个六度带。各带中央经线:75,75+6n。三度带为二十二个。 主要参数:投影代号(Type),基准面(Datum),单位(Unit),中央经度(OriginLongitude),原点纬度(OriginLatitude),比例系数(ScaleFactor),东伪偏移(FalseEasting),北纬偏移(FalseNorthing) Transverse Mercator(横轴墨卡托投影):墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 主要参数有:投影代号(Type),基准面(Datum),单位(Unit),原点经度(Origin Longitude),原点纬度(Origin Latitude),标准纬度(Standard ParallelOne)。 UTM(通用横轴墨卡托投影):是一种“等角横轴割圆柱投影”,椭圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条相割的经线上没有变形,而中央经线上长度比0.9996,是为了保证离中央经线左右约330km处有两条不失真的标准经线。该投影角度没有变形,中央经线为直线,且为投影的对称轴。UTM投影分带方法是自西经180起每隔经差6度自西向东分带,将地球划分为60个投影带。 主要的参数有:单位(unit),中央子午线(central meridian),中央子午线比例系数(central meridian Scale Factor),基准面(datum),原点纬度(origin laititude),纵坐标北移假定值(False_northing),横坐标东移假定值(False_easting)。 Lamber Conformal Conic(兰勃特等角圆锥投影):兰勃特等角圆锥投影采用双标准纬线相割,与采用单标准纬线相切比较,其投影变形小而均匀,兰勃托投影的变形分布规律是:a) 角度没有变形;b) 两条标准纬线上没有任何变形;c) 等变形线和纬线一致,即同一条纬线上的变形处处相等; d) 在同一经线上,两标准纬线外侧为正变形(长度比大于1),而两标准纬线之间为负变形(长度比小于1)。变形比较均匀,变形绝对值也比较小;e) 同一纬线上等经差的线段长度相等,两条纬线间的经纬线长度处处相等。 其主要投影参数用:投影代号(Type),基准面(Datum),单位(Unit), 中央经度(OriginLongitude),原点纬度(OriginLatitude), 标准纬度1(StandardParallelOne),标准纬度2(StandardParallelTwo), 东移假定值(FalseEasting),北移假定值(FalseNorthing) 从伪圆柱(pseudocylindrical)投影的变形情况来看,往往离中央经线愈远变形愈大.为了减小远离中央经线部分的变形,美国地理学家古德(J.Paul Goode)于1923年提出一种分瓣方法,就是在整个制图区域的几个主要部分中央都设置一条中央经线,分别进行投影,则全图就

世界地图常用地图投影知识大全

世界地图常用地图投影知识大全 2009-09-30 13:20 在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等 角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。 一、世界地图常用投影 1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval o nSame Parallel Decrease AwayFrom Central Meridian by E qual Difference) 普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。 等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。 通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。我国绝大部分地区的面积变形在10%以内。中央经线和±44o纬线的交点处没有角度变形,随远离该点变形愈大。全国大部分地区的最大角度变形在10o以内。等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。

地图投影分类与变换.

地图投影分类与变换 1.地图投影的分类 投影的种类很多,分类方法不尽相同,通常采用的分类方法有两种:一是按变形的性质进行分类:二是按承影面不同(或正轴投影的经纬网形状)进行分类。 (1)按变形性质分类 按地图投影的变形性质地图投影一般分为:等角投影、等(面)积投影和任意投影三种。 等角投影:没有角度变形的投影叫等角投影。等角投影地图上两微分线段的夹角与地面上的相应两线段的夹角相等,能保持无限小图形的相似,但面积变化很大。要求角度正确的投影常采用此类投影。这类投影又叫正形投影。 等积投影:是一种保持面积大小不变的投影,这种投影使梯形的经纬线网变成正方形、矩形、四边形等形状,虽然角度和形状变形较大,但都保持投影面积与实地相等,在该类型投影上便于进行面积的比较和量算。因此自然地图和经济地图常用此类投影。 任意投影:是指长度、面积和角度都存在变形的投影,但角度变形小于等积投影,面积变形小于等角投影。要求面积、角度变形都较小的地图,常采用任意投影。 (2)按承影面不同分类 按承影面不同,地图投影分为圆柱投影、圆锥投影和方位投影等(图1)。 图1 方位投影、圆锥投影和圆柱投影示意图 ①圆柱投影 它是以圆柱作为投影面,将经纬线投影到圆柱面上,然后将圆柱面切开展成平面。根据圆柱轴与地轴的位置关系,可分为正轴、横轴和斜轴三种不同的圆柱投影,圆柱面与地球椭球体面可以相切,也可以相割(图2a)。其中,广泛使用的是正轴、横轴切或割圆柱投影。正轴圆柱投影中,经线表现为等间隔的平行直线(与经差相应),纬线为垂直于经线的另一组平行直线(图2b)。

图2 圆柱投影的类型及其投影图形 ②圆锥投影 它以圆锥面作为投影面,将圆锥面与地球相切或相割,将其经纬线投影到圆锥面上,然后把圆锥面展开成平面而成。这时圆锥面又有正位、横位及斜位几种不同位置的区别,制图中广泛采用正轴圆锥投影(图3)。 在正轴圆锥投影中,纬线为同心圆圆弧,经线为相交于一点的直线束,经线间的夹角与经差成正比。 在正轴切圆锥投影中,切线无变形,相切的那一条纬线,叫标准纬线,或叫单标准纬线(图3a);在割圆锥投影中,割线无变形,两条相割的纬线叫双标准纬线(图3b)。 a.正轴切圆锥投影示意图

《地图投影与变换》自测题(附:参考答案)

一.单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在题干前面的括号内。答案选错或未选者,该题不得分。每小题1分,共15分) ()1.在球心投影中 A.大圆投影为直线 B.经线投影为圆 C.小圆投影为圆 D.等高圈投影为直线 ()2.在墨卡托投影中,满足 A. n=1 B.等角性质 C.m=1 D.经线为椭圆经线 ()3.在彭纳投影中,满足 A.极点投影为点 B.等距离 C.经线为直线 D.纬线投影为同心圆 ()4.在等面积圆柱投影中 A.极点投影为圆弧 B.经线投影为直线 C.等角航行投影为直线 D.纬线投影为圆 ()5.高斯-克吕格投影用于地图投影。 A.世界地图 B.沿纬线延伸区域 C.1:5千至1:50万地形图系列 D.亚洲地图 ()6.在球面投影中,满足 A.等高圈投影为直线 B.大圆投影为直线 C.大圆、小圆投影直线 D.等角性质 ()7.伪方位投影存在性质的投影 A.等距离 B.等角C.等面积 D.任意 ()8.爱凯特投影满足 A.等面积B.纬线投影为圆 C.经线投影为直线 D.经线投影为椭圆 ()9.等角投影条件可以表示为 A.a=b B.m*n=1 C.m=n D.m=1 ()10.等距离投影条件可以表示为 A.a=b B.θ=90°,m=n C.a=1 或 b=1 D.n=1

()11.墨卡托投影纬线线上的变形椭圆是 A.大小形状均相同的微分圆 B.大小不变、形状变化的微分椭圆 C.大小变化、形状不变的微分圆 D.m=1的圆或椭圆 ()12.高斯投影中央经线上的变形椭圆为 A.大小形状均相同的微分圆 B.大小不变、形状变化的微分椭圆 C.n=1的圆或椭圆 D.m=1的圆或椭圆 ()13.等角圆锥投影中央经线上变形椭圆是 A.大小形状均相同的微分圆 B.大小不变、形状变化的微分椭圆 C.大小变化、形状不变的微分圆 D.m=1的圆或椭圆 ()14.标准纬线上的变形椭圆是 A.大小形状均相同的微分圆 B.大小不变、形状变化的微分椭圆 C.大小变化、形状不变的微分圆 D.m=1的圆或椭圆 ()15.任意投影中的变形椭圆是 A.大小形状均相同的微分圆 B.大小不变、形状变化的微分椭圆 C.大小变化、形状不变的微分圆 D.大小形状均变化的微分椭圆 二.多项选择题(从下列各题四个备选答案中选出二至四个正确答案,并将其代号写在空白内处。每小题2分,共10分) 16.世界地图常采用 A.摩尔威德投影 B.等差分纬线多圆锥投影 C.正切差分纬线多圆锥投影 D.墨卡托投影 17.高斯-克吕格投影用于地图投影。 A.沿经线延伸区域 B.沿纬线延伸区域 C.1:5千至1:50万地形图系列 D.亚洲地图 18.在桑逊投影中,满足

我国常用的三种地图投影

椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范GB/T 18314-2001”)Krassovsky (北京54采用)(长轴a: 6378245, 短轴b: 6356863.0188) IAG 75(西安80采用)(长轴a: 6378140, 短轴b: 6356755.2882) WGS 84(长轴a: 6378137, 短轴b: 6356752.3142) 墨卡托(Mercator)投影 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影 高斯-克吕格投影与UTM投影异同 高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse Mercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把UTM投影当作高斯-克吕格投影的现象。从投影几何方式看,高斯-克吕格投影是“等角横切圆柱投影( transverse conformal cylinder projection)”,投影后中央经线保持长度不变,即比例系数为1;UTM投影是“等角横轴割圆柱投影”,圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经线上长度比0.9996。从计算结果看,两者主要差别在比例因子上,高斯-克吕格投影中央经线上的比例系数为1,UTM投影为0.9996,高斯-克吕格投影与UTM投影可近似采用X[UTM]=0.9996 * X[高斯],Y[UTM]=0.9996 * Y[高斯],进行坐标转换(注意:如坐标纵轴西移了500000米,转换时必须将Y值减去500000乘上比例因子后再加500000)。从分带方式看,两者的分带起点不同,高斯-克吕格投影自0度子午线起每隔经差6度自西向东分带,第1带的中央经度为3°;UTM投影自西经180°起每隔经差6度自西向东分带,第1带的中央经度为-177°,因此高斯-克吕格投影的第1带是UTM的第31带。此外,两投影的东伪偏移都是500公里,高斯-克吕格投影北伪偏移为零,UTM北半球投影北伪偏移为零,南半球则为10000公里。 高斯-克吕格投影简介 高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一1855)于十九世纪二十年代拟定,后经德国

相关文档
最新文档