脉宽调制技术外文翻译

脉宽调制技术外文翻译
脉宽调制技术外文翻译

附录A 译文

脉宽调制技术

前面讨论的三相6阶梯逆变器既有其优点也有其局限性。由于在基波频率的每个周期仅开关六次,因此逆变器的控制简单而且开关损耗低。但是6阶梯波电压中的低次谐波会导致电流波形产生极大的畸变,除非使用笨重庞大的不经济的低通滤波器滤波。另外,输出电压靠整流器控制,也不可避免的带有整流器所具有的通常的缺点[16]。 脉宽调制(PWM )工作原理

由于逆变器中电子开关的存在,在恒定的直流输入电压d V 作用下,逆变器可以通过自

身的多次开关控制输出电压并优化输出谐波。图5-18解释了通过PWM 控制输出电压的工作原理。基波电压1v 在方波工作模式下具有最大的幅值(4d v / )。如图示,通过产生俩个凹口,1v 的幅值可以被减小,随着凹口宽度的增加,基波电压将随之减小。

图5-18 PWM 控制输出电压的工作原理

PWM 分类

在过去的文献中已提出了很多的PWM 技术,下面是对这些PWM 技术的分类。

1)正弦PWM (SPWM );

2)特定谐波消除PWM (SHEPWM );

3)最小纹波电流PWM ;

4)空间矢量PWM (SVW );

5)随机PWM ;

6)滞环电流控制PWM ;

7) 瞬时电流控制正弦PWM ;

8)Delta 调制PWM ;

9)Sigma Delta 调制PWM

通常PWM 技术可以按电压控制或电流控制来分类,或按前馈方式或反馈方式来分类,也可以按基于斩波或不基于斩波来分类。注意,前面讨论的移相控制PWM 也是一种PWM 技术。在这一节中,将对主要的PWM 技术做一简单的回顾。

5.5.1正弦PWM

正弦PWM 技术在实际的工业变流器的应用中非常普及。这项技术在文献中已经得到了广泛的讨论。图5-19解释了SPWM 的基本工作原理。图中频率为c f 的等腰三角载波与频率f 的正弦调制波相比较,两者的焦点确定了电力电子器件的开关时刻。例如,图中给出了开关半桥逆变器中的14Q Q 构成的a0v 波形,为防止14Q Q 的同时导通而设计的14Q Q 之间的死区时间在图中被忽略了。上述方法也被称为三角波法,次谐波法或次震荡法。a0v 波形的脉冲及凹口宽度按正弦规律变化,从而使其基波成分的频率等于f 且幅值正比于指令调制电压。如图5-20给出了负载无中线连接的典型的线电压的相电压波形。a0v 波形的傅立叶分析可以由下式给出:

)高频成分()(w w wt sin m 5.0v c d 0a N M V ±++=? (5-33)

图5-19 三相桥式逆变器正弦PWM 的工作原理

式中,m 为调制指数;w 为基波频率(rad/s ),(与调制频率相同);?为输出相位移,

取决于调制波的实际位置。

图5-20 PWM 逆变器的线电压和相电压的波形

a )线电压

b )相电压

调制指数m 被定义T P m V V =

(5-34)

式中,P V 为调制波的峰值;T V 为载波的峰值。理想情况下,m 可以从0变化到1,并且调制波与输出波形之间将保持着线性关系。逆变器基本上可以被看作是一个线性放大器,根据(5-33)和式(5-34)可以得出这个放大器的增益G 为:

T V V V V G d P d 5.0m 5.0== (5-35) 当m=1时,可以得到最大的基波电压峰值0.5d V ,这个数值是方波电压输出时基波电压峰值(4d v /2π)的78.55%。事实上,通过将某些三次谐波成分加入到调制波中,线性工作范围的最大输出基波电压峰值可以增加到方波输出时的90.7%。当m=0时,a0v 是一个频率与载波频率相同,脉冲和凹口宽度上下对称的方波。PWM 输出波形中,含有与载波频率相关且边(频)带与调制波频率相关的谐波成分。这些频率成分可以表示为w w c N M ±,如式(5-33)所示。式中,M 和N 均为整数;M+N 为一个奇整数。表5-1给

出了当载波频率与调制波频率的比值c w /w 15P ==时的输出谐波。

表5-1 SPWM 在15w /w c =时的输出谐波

由上述的输出谐波成分可以推导出,其幅值与载波比P 无关,并将随着M 和N 的增大而减小。随着载波比的P 的增大,逆变器输出线电流谐波将通过电机的漏电感得到更好的滤波,并接近于正弦波。选择载波频率需要折中考虑逆变器损耗和点击损耗。高的载波频率(与开关频率相同)将使逆变的开关损耗增加,但会减少电机的谐波损耗。最有的载波频率选择应使系统的总损耗减小。PWM 开关频率的一个重要影响是当逆变器向电机提供功率时由磁滞效应产生的噪声(也称为磁噪声)。这种噪声可以通过随机的改变PWM 开关频率而减轻(随机SPWM ),通过吧开关频率增加到高于音频范围,也可以把这种噪声完全消除。现代高速IGBT 可以很容易的实现这种无音频噪声的变频传动。逆变器输出端的低通滤波器也可以消除这种噪声。

1.过调制区操作 当调制指数m 接近于1时,在正,负半周期中间位置附近的凹口和脉冲将趋于消失。为了使器件能有一个完整的开关操作,应保持一个最小的凹口和脉冲宽度。当这个最小脉宽的凹口和脉冲消失时,负载电流会有一个瞬态跳变。对IGBT 逆变

器,这个跳变可能是比较小的;但对于电力GTO晶闸管逆变器,由于器件变速的开关,这个跳变会很大。m的数值可以增加到大于1进入准PWM区域,图5-21所示为正半周期操作。图中

a0

v在正半周期中间附近脉冲向下的凹口不见了,从而给出了一个具有较高的基波成分的准方波输出。如图5-22所示,在过调区,传递特性是非线性的,波形中重新出现了5次和7次谐波成分。随着m数值的增加,即调制信号的增大,最终逆变器将给出一个方波输出,器件在方波的上升沿开关一次,在下降沿开关一次。在这种情况下,输出基波相电压峰值达到4(0.5d V)/ ,即达到100%的输出,如图5-22所示。

图5-21 过调制区的波形图5-22 SPWM过调制输出传递特性

2.载波与调制波频率的关系对于变速传动,逆变器输出电压和频率应按图2-14所示关系变化。在恒功率区,逆变器以方波模式工作从而可以获得最大电压。在恒转矩区,逆变器输出电压可以采用PWM控制。通常希望逆变器工作时载波与调制波频率比P为一整数,即在整个工作范围内调制波与载波保持同步。但当P保持为一定值,在基波频率下降时,会使载波频率也随之变得很低,就电机的谐波损耗而言,这通常是不希望的。图5-23给出了一个GTO晶闸管逆变器实际的载波与基波频率的关系。当基波频率很低时,载波频率保持恒定。逆变器以自由运行方式或称一部模式工作。在这个区域,载波比P可以是一个非整数,相位可能连续的移动,这将会产生谐波问题以及变化的直流偏移(差拍效应)。

随着

f/

f

c数值的下降,这个问题会变得越发的严重。在这里应该提及的是,与基波频率变

化范围相比,现代IGBT器件的开关频率是非常高的,这使得PWM逆变器可以在整个异步范围内得到满意的操作。如图5-23所示,在异步运行区后是同步区,在这个区,P以一种

阶梯的方式变化,这使得最大和最小频率保持在设定边界值内的一个特定区域。P 的数值总是保持为三的倍数,这是因为对无中线连接的负载,三的倍数次谐波是不需要考虑的。当调制波频率接近于额定频率(f/f b =1)时,逆变器转换到方波模式工作,这里假设这是载波频率与基波频率相等。在整个工作范围,控制策略应该仔细的设计,使在载波频率跳变的时刻,不产生电压的跳变,并且为了避免相邻P 值之间的抖动,在跳变点应设置一个窄的滞环带。

5-23 载波频率f/f b 的关系

3.死区时间效应及补偿 由于死区(或封锁)效应,实际的PWM 逆变器的相电压(0a v )波形会在某种程度上偏离5-19所示的理想波形。这种效应可以用图5-24中三相逆变桥中的a 相桥臂来解释。电压源型逆变器的一个基本控制原则是要导通的器件应滞后于要关断的器件一个死区时间t d (典型值为几微妙)以防止峭壁的直通。这是因为器件的导通是非常快的,而相对来说关断是比较慢的。死区效应会导致输出电压的畸变并减小其幅值。

考虑图5-24所示PWM 操作,如图示,a 相电流i a 的方向为正。初始状态Q 1为导通,0a v 的幅值为+0.5V d 。Q 1在理想的开关点关断后,在Q 4导通前有一个时间间隔t d ,在这个间隔,Q 1和Q 4都处于关断状态,但+ i a 的流通使得0a v 在理想开关点自然的切换到-0.5 V d 。现在考虑在理想开关点从Q 4到Q 1的带有延迟时间t d 的开关转换。当Q 4Q 1两个器件都关断时,+i a 继续通过D 4流通,从而造成了如图所示阴影面积的脉冲伏-秒(V d t d )面积损失。下面再考虑电流i a 的极性为负时的情况。仔细的观察图示波形可以看到Q 4导通的前沿有一个类似的伏-秒面积的增加。注意,上述伏-秒面积的损失或增加仅仅取决于电流的极性,

而与电流的幅值无关。图5-25给出了在每一个载波周期T c 分别对应于+i a 和-i a 的伏-秒面

图5-24 半桥逆变器死区效应的波形 积(V d t d )损失和增加的积累效应对基波电压波形的影响。图中基波电流i a 滞后于基波电压0a v 一个相位角?。图5-25中最下面的图解释了死区效应。把由V d t d 构成的这些面积累加起来并在基波频率的半周期内加以平均可得出方波偏移电压V ε为

d d c d d t f f 22

t V V P V ==))((ε (5-36) 式中,P=f /f c ,f 为基波频率,图5-25中最上端的波形给出了V ε波对理想0a v 波的影响。在较低的基波频率下,这种基波电压的损失以及低频谐波畸变会变得很严重。死区效应可以很容易的通过电流反馈或电压反馈方法进行补偿。对于点一种方法,通过对相电流极性的检测,将一个固定量的补偿偏移电压加到调制波上;对后一种方法,将检测的输出相电压与PWM 电压参数信号相对比,延后把偏差用于补偿PWM 参考调制波。

5.5.2 特定谐波消除PWM (SHEPWM )

Tc=1/fc

Q1Q1

Q4

td +0.5Vd

+0.5Vd

-0.5Vd

-0.5Vd

Vao

Vao

+ia -ia

应用特定谐波消除PWM(SHEPWM)可以将方波中不希望有的低次谐波消除,并控制输出基波电压的大小,如图5-26所示。在这种方法中,要在方波电压中开出一些预先确

图5-25输出相电压波形的死区效应

定好角度的凹槽。图中所示为四分之一波对称的正半周波形,可以通过控制图中四个凹槽角1α,2α,3α和4α消除三个特定的谐波成分,同时控制输出基波电压。如果图示波形中有更多的凹槽角,责可以消除更多的谐波成分。

图5-26 特定谐波消除PWM的相电压波形

任何波形均可用如下傅立叶级数展开形似表示:

v(t)=∑∞

=+

1 n

n

n

sinwt

b cosnwt

a)

((5-37)式中

?=

ππ20n cosntdwt t v 1a )( (5-38) ?=π

π20n s i n n t d w t t v 1

b )( (5-39)

对于四分之一周期对称的波形,波形中将只含有正弦项,并且只含有几次谐波成分。因此有

a n =0 (5-40)

v (t )=sinwt b 1n n ∑∞

= (5-41)

式中

?=2

0n sinntdwt t v 4b π

π)( (5-42)

假设图示波形具有单位幅值,即v (t )=1±,则b n 可以求出如下:

???++++-++=11211

320n sinnwtdwt 1sinnwtdwt 1sinnwtdwt 14b αααααπ )()()(( ))()(??--++-k 1k k 1k 2sinnwtdwt 1sinnwtdwt 1ααπ

α (5-43) 根据表达式

)(21cosn -cosn n 1sinwtdwt 21θθθθ

=? (5-44) 可以得出式(5-43)中的第一项和最后一项为 )()(10c o n n 1n 1s i n n w t d w t 11

αα-=+? (5-45) k 2c o s n n 1s i n n w t d w t 1k απ

α=+?)( (5-46) 将式(5-45),式(5-46)代入式(5-43)并求出式中其它的积分项,可得 [])(k 21n cosn -cosn cosn 21n 4b αααπ

++-+= ??????-+=∑=k 1i i i c o s n 121n 4απ

)( (5-47) 注意在(5-47)中有k 个变量(即1α,2α,3α,…,k α),因此需要有k 个方程式去解出这k 个变量的数值。通过求解出这k 个α角度,可以使基波电压得到控制并且消除k-1个频率的特定谐波。

图5-37 消除5次和6次谐波时凹槽角与基波输出电压关系

考虑下面的例子,消除5次和7次谐波(最低次的特定谐波)并控制基波电压,3次谐波以及三的倍数次谐波在无中线连接的电机负载中不可以不考虑。在这种情况下,k=3.根据式(5-47),可以得到如下方程:

基波: )cos 2cos 2cos 21(4

3211αααπ-+-=b (5-48)

5次谐波: 0)5cos 25cos 25cos 21(543215=-+-=

αααπ

b (5-49) 7次谐波: 0)7cos 27cos 27cos 21(543217=-+-=αααπb (5-50) 对于一个指定的基波电压幅值,可以通过计算机程序用数值算法求解上面这组非线性超越方程组,算出1α、2α和3α的数值,如图5-27所示。例如,给定50%的基波电压(1b =0.5),可得到α数值为

1α=20.9°

2α=35.8° 3α=51.2° 从图5-27还可以看到由于低次谐波的消除,较低次的其他特定谐波(如11次和13次)被显著的增加了,但由于这些特定谐波的频率比基波频率高出很多,因此他们的影响不大。从图5-27还可以看出,在输出基波电压幅值从0变化到93.34%时(100%对应于方波电压输出),5次和7次谐波都可以完全消除。在输出电压为93.34%时,1α=0后,在半周期外侧的单一凹槽可以通过减小2α角度而对称的变窄,最后跳变为完整的方波。表5-2给出了输出基波电压以1%步距变化时的α角度的变化。图5-28给出了输出电压为98%时的典型波形。注意,基波电压的方向与α角的整个变化范围无关,输出基波电压在93.3%~100%

的范围内变化时,会有某种程度的5次和7次谐波成分重新出现,但与限制电压跳变所得的益处相比这是微不足道的。

表5-2电压在93.3%~100%范围内变化时的α角变化

通过预先设置凹槽角的查寻表格,特定的谐波消除法可以很方便的用微机实现。图5-29

V,可以在查寻表所示简单框图给出了这种方法的而实现策略。对于一个给定的指令电压*

格中得到相应的凹槽角度,然后在时域里应用一个减法计算器就可以产生相应的电压脉冲宽度。这里,计算器的脉冲为kf

f

=。例如,k=360,则可以产生分辨率为1的波形。

ck

图5-28 输出电压为98%时的典型波形

随着基波频率的下降,可以使凹槽的数量增多,这样就可以消除更多的特定谐波,但是如前所述,每周期凹槽角的数量或者开关频率本身是受到逆变器的开关损耗限制的。这种方法的一个明显缺点就是当基波频率比较低时,查寻表会变得非常的大,因此,一种混合PWM方法成为一种非常具有吸引力的选择,在这种方法中,在低频、低电压区域中使用

SPWM 方法;而在高频区,使用特定谐波消除法。

图5-29 特定谐波消除法的实现框图

最小纹波电流PWM

特定谐波消除PWM 法的一个明显缺点是当较低次的谐波被消除时,与其相邻的下一个较高次的谐波却被增值了,如图5-27所示。由于电机中谐波损耗是由纹波电流的有效值确定的,因此,应该减小的是纹波电流有效值而不是某些个别的谐波。在前面已指出,与各次谐波电压相对应的谐波电压值本质上取决于断崖的有效漏电感。因此纹波电流有效值可以表示如下:

=???+++=???+++=∧∧∧22221127252112725I I I I I I I ripple ∑∞

=∧,...11,7,52)(21n n l n V ω (5-51) 式中,5I ,7I …为谐波电流有效值;L 为电机每相的等效漏感,5∧I ,7∧I …为谐波电流的峰

值;n 为谐波次数;∧

n V 为n 次谐波电压峰值;ω为基波频率。

相应的谐波铜损为 R I P riple L 23= (5-52) 式中,R 为电机每相的有效电阻。

对于一组确定的凹槽角,从式(5-47)可以得到∧

n V 的表达式,将此式代入到式(5-51)中,

就可以得到作为α角函数的2riple I 。对于一个确定基波幅值,通过计算机程序对α角迭代运算可以求出最小化的riple I 。与谐波消除法相比,基于谐波损耗最小化修改的α角查寻表是一种更理想的选择。

附录B 外文文献

5.5 PULSE WIDTH MODULATION TECHNIQUES The three-phase, six-step inverter discussed before has several advantages and limitations. The inverter control is simple and the switching loss is low because there are only six switching per cycle of fundamental frequency .Unfortunately, the lower order harmonics of the six-step voltage wave will cause large distortions of the current wave unless filtered by bulky and uneconomical low-pass filters. Besides, the voltage control by the line-side rectifier has the usual disadvantages [17].

5.5.1 PWM Principle

Because an inverter contains electronic switches ,it is possible to control the output voltage as well as optimize the harmonics by performing multiple switching within the inverter with the constant dc input voltage d V .The PWM principle to control the output voltage is explained in Figure 5.18.The fundamental voltage 1v has the maximum amplitude (4d V / )at square wave, but by creating two notches as shown ,the magnitude can be reduced. If the notch widths are increased, the fundamental voltage will be reduced.

5.5.1.1 P WM Classification

There are many possible PWM techniques proposed in the literature. The classification of PWM techniques can be given as follows :

Sinusoidal PWM (SPMW)

Selected harmonic elimination (SHE )PWM

Minimum ripple current PWM

Space-Vector PWM (SVM )

Random PWM

Hysteresis band current control PWM

Sinusoidal PWM with instantaneous current control

Delta modulation

Sigma-delta modulation

Figure 5.17 PWM principle to control output voltage

Often, PWM techniques are classified on the basis of voltage or current control, feed-forward or feedback methods, carrier-or non-carrier-based control, etc. Note that the phase-shirt PWM discussed before can also be classified as a PWM technique. In this section, we will briefly review the principle PWM techniques.

5.5.1.1.1 S inusoidal PWM

The sinusoidal PWM technique is very popular for industrial converters and is discussed extensively in the literate. Figure 5.19 explains the general principle of SPWM, where an isosceles triangle carrier wave of frequency c f is compared with the fundamental frequency f sinusodal modulating wave, and the points of intersection determine the switching points of power devices. For example,0a v fabrication by switching 1Q and 4Q of half-bridge inverter, is shown in the figure. The lock-out time between 1Q and 4Q to prevent a shoot-through fault is ignored in the figure .This method is also known as the triangulation, subharmonic, or suboscillation method. The notch and pulse widths of 0a v wave vary in a sinusoidal manner so that the average or fundamental component frequency is the same as f and its amplitude is proportional to the command modulating voltage .The same carrier wave can be used for all three phases, as shown The typical wave shape of line and phase voltages for an isolated neutral load can be plotted graphically as shown to be of the following form:

()(w w frequency high wt sin m 5.0v c d 0a N M V ±-++=? (5-33) Where m=modulation index,ω=fundamental frequency in r/s (same as the modulating frequency )and φ=phase shift of output, depending on the position of the modulating wave. The modulating index m is defined as

T

P m V V = (5-34)

Figure 5.18 Principle of sinusoidal PWM for three-phase bridge inverter

Figure 5.19 Line and phase voltage waves of PWM inverter

Where P V =peck value of the modulating wave and T V = peck value of the carrier wave. Ideally, m can be varied between 0 and 1 to give a linear relation between the modulating and output wave. The inverter basically acts as a linear amplifier. Combining Equations (5.33)and (5.34),the amplifier gain G is given as

T

V V V V G d P d 5.0m 5.0== (5-35) At m=1,the maximum value of fundamental peak voltage is 0.5 d V ,which is 78.55

percent of the peak voltage (4d V /2π)of the square wave. In fact, the maximum value in the

linear range can be increased to 90.7 percent of that of the square wave by mixing the appropriate values of triplen harmonics with the modulating wave. At m=0,0a v is a square wave at carrier frequency with symmetrical pulse and notch widths. The PWM output wave contains carrier frequency-related harmonics with modulating frequency-related sidebands in the form w w c N M ±,which are shown in Equation (5.33),where M and N are integer and M+N=an odd integer. For a carrier-to-modulating frequency ratio 15w /w c ==P ,Table 5.1 gives a summary of output harmonics.

Table 5.1 Family of Output Harmonics for Sinusoidal PWM with 15w /w c =

It can be shown that the amplitude of the harmonics is independent of P and diminishes with higher values of M and N. With higher carrier frequency ratio P, the inverter line current harmonics will be well-filter by nominal leakage inductance of the machine and will practically approach a sine wave. The selection of a carrier frequency depends on the trade-off between the inverter loss and the machine loss. Higher carrier frequency (same as switching frequency )increases inverter switching loss but decrease machine harmonic loss. An optimal carrier

frequency should be selected such that the total system loss in minimal. An important effect of PWM switching frequency is the generation of acoustic noise(known as magnetic noise)by the magnetostriction effect when the inverter supplies power to machine. The effect can be alleviated by randomly varying the switching frequency(radom SPWM),or it can be completely eliminated by increasing the switching frequency above the audio range. Modern high-speed IGBTs easily permit such acoustically noise-free variable-frequency drives. Low-pass line filter can also eliminate this problem.

Overmodulation Region

As the modulation index m approaches 1,the notch and pulse widths near the center of positive and negative half-cycles,respectively, tend to vanish. To complete switching operation of device, minimum notch and pulse widths must be maintained. When minimum-width notches and pulses are dropped, there will be some transient jump of load current. The jump may be small for IGBT inverters, but it is substantial for high-power GTO inverter because of the slow switching of the devices. The value of m can be increased beyond the value of 1 to enter into the

quasi-PWM region, shown in Figure 5.21 for positive half-cycle only. The

v wave indicates that

0a

the notches near the center part have disappeared, giving a quasi-square-wave out-put with a higher fundamental component. The transfer characteristics in the overmodulation region are nonlinear in Figure 5,th7,etc.reappear. Ultimately, with a high m value, that is, a large modulating 5.22,and the harmonics th

signal, there will be one switching at the leading edge and anther switching at the trailing edge, giving square-wave output. At this condition, the fundamental phase voltage peak value is 4(0.5

V)/ ,which is 100 percent, as indicated in Figure 5.22.

d

Frequency Relation

For variable-speed drive applications, the inverter output voltage and frequency are to be varied in the relation shown in Figure2.14.In the constant power region, the maximum voltage can be obtained by operating the inverter in square-wave mode, but in the constant torque region, the voltage can be controlled using the PWM principle. It is usually desirable to operate the inverter with an integral ratio P of carrier-to-modulating frequency, where the modulating wave remains synchronized with the carrier wave in entire region. A fixed value of P cause a low carrier frequency as the fundamental frequency goes down, which is not desirable from the

machine harmonic loss point of view. A practical carrier-to- fundamental frequency relation of a GTO inverter is shown in Figure 5.23.At a low fundamental frequency, the carrier frequency is maintained constant and the inverter operates in the freerunning, or asynchronous, mode. In this region, the ratio P may be nonintegral, and the phase may continually drift. This gives rise to a unharmonic problem with drifting dc offset (beating effect), which tends to be worse as the f f c ratio decreases. It could be mentioned here that the modern IGBT switching frequency is so large compared to the fundamental frequency range, the PWM inverter may operate satisfactorily in the entire asynchronous range. The free-running region is followed by the synchronized region, where P is varied in steps as shown so that maximum and minimum carrier frequencies remain bounded within a definite zone. The value of P is maintained as a multiple of three because triplen harmonics are of no concern in isolated neutral load. Near the base frequency (b

f f =1),transition occurs to the square-wave mode, where the carrier frequency id assumed

Figure 5.20 Waveforms in overmodulation region

to be the same as the fundamental frequency. The control should be designed carefully so that at the jump of carrier frequency, there is no voltage jump problem, and chattering between adjacent 'P s should be avoided by providing a narrow hysteresis band at the critical points.

Dead Time Effect and Compensation

The actual phase voltage (0a v ) wave in a PWM inverter deviates to some extent from the

ideal wave shown in Figure5.19 because of the dead-time (or lock-out ) effect. This effect is explained in Figure5.24 for the phase leg a of a three-phase bridge inverter. A fundamental control principle of a voltage-fed inverter is that the incoming device should be delayed by a

Figure 5.21 SPWM overmodulation output transfer characteristics

dead-time t

d

(typically a few s ) from the outgoing device to prevent a shoot-through fault. This is because the turn-on of a device is very fast, but the turn-off is slow. The dead-time effect causes distortion of the output voltage and reduces its magnitude.

Consider the sinusoidal PWM operation in Figure 5.24. The direction of phase a current

a

i

is positive, as shown. With Q

1conducting initially,

0a

v magnitude is +0.5V

d

,as indicated.

When Q

1is turned off at the ideal transition point, there is a time gap t

d

before Q

4

is turned

on. During this gap, this gap, both Q

1and Q

4

are off, but + i

a

causes switching of

0a

v to -0.5

V

d naturally at th

e ideal transition point. Consider the switching from Q

4

to Q

1

with a delay t

d from th

e ideal transition point. When both devices are off, + i

a

continues flowing through D

4,causing a loss of volt-sec area (V

d

t

d

) pulse given by the shade area. Consider now that the

polarity of current + i

a

is negative. Close examination of the waves shows that at the leading

edge of Q

4

turn-on, there is a gain of similar volt-sec, area. Note that the loss or gain of the area depends only on the polarity of current, but not its magnitude. The cumulative effect of these

“losses” and “gains” of volt -sec. area V d t d during every carrier frequency period T c for + i a

Figure5.22 Relation of carrier frequency with b f f

ratio

and -i a , respectively, on the fundamental voltage wave is explained in Figure 5.25. The fundamental current i a is shown to lag the fundamental voltage 0a v by phase angle ?. The dead-time effect is indicated in the lowest part of the figure. The areas contributed by V d t d can be accumulated and averaged in the half-circle of fundamental frequency to calculate the square-wave offset V ε as

d d c d d t f f 22

t V V P V ==))((ε (5-36) where , P=f /f c and f=fundamental frequency. The effect of the V εwave on the ideal 0a v wave is shown at the top of the figure. The loss of fundamental voltage and low-frequency harmonic distortion become serious at low fundamental frequency. The dead-time effect can be compensated easily by the current or voltage feedback method [20]. In the former method, the polarity of the phase current is detected and a fixed amount of compensating bias voltage is added with the modulating wave. In the latter method, the detected output phase voltage is compared with the PWM voltage reference signal and the deviation compensates the reference PWM modulating wave.

5.5.1.1.2 Selected Harmonic Elimination PWM

The undesirable lower order harmonics of a square wave can be eliminated and fundamental voltage can be controlled as well by what is known as selected harmonics

电子信息工程专业课程翻译中英文对照表

电子信息工程专业课程名称中英文翻译对照 (2009级培养计划)

实践环节翻译

高等数学Advanced Mathematics 大学物理College Physics 线性代数Linear Algebra 复变函数与积分变换Functions of Complex Variable and Integral Transforms 概率论与随机过程Probability and Random Process 物理实验Experiments of College Physics 数理方程Equations of Mathematical Physics 电子信息工程概论Introduction to Electronic and Information Engineering 计算机应用基础Fundamentals of Computer Application 电路原理Principles of Circuit 模拟电子技术基础Fundamentals of Analog Electronics 数字电子技术基础Fundamentals of Digital Electronics C语言程序设计The C Programming Language 信息论基础Fundamentals of Information Theory 信号与线性系统Signals and Linear Systems 微机原理与接口技术Microcomputer Principles and Interface Technology 马克思主义基本原理Fundamentals of Marxism 毛泽东思想、邓小平理论 和“三个代表”重要思想 概论 Thoughts of Mao and Deng 中国近现代史纲要Modern Chinese History 思想道德修养与法律基 础 Moral Education & Law Basis 形势与政策Situation and Policy 英语College English 体育Physical Education 当代世界经济与政治Modern Global Economy and Politics 卫生健康教育Health Education 心理健康知识讲座Psychological Health Knowledge Lecture 公共艺术课程Public Arts 文献检索Literature Retrieval 军事理论Military Theory 普通话语音常识及训练Mandarin Knowledge and Training 大学生职业生涯策划 (就业指导) Career Planning (Guidance of Employment ) 专题学术讲座Optional Course Lecture 科技文献写作Sci-tech Document Writing 高频电子线路High-Frequency Electronic Circuits 通信原理Communications Theory 数字信号处理Digital Signal Processing 计算机网络Computer Networks 电磁场与微波技术Electromagnetic Field and Microwave

ASP外文翻译原文

https://www.360docs.net/doc/608933558.html, https://www.360docs.net/doc/608933558.html, 是一个统一的 Web 开发模型,它包括您使用尽可能少的代码生成企业级 Web 应用程序所必需的各种服务。https://www.360docs.net/doc/608933558.html, 作为 .NET Framework 的一部分提供。当您编写 https://www.360docs.net/doc/608933558.html, 应用程序的代码时,可以访问 .NET Framework 中的类。您可以使用与公共语言运行库 (CLR) 兼容的任何语言来编写应用程序的代码,这些语言包括 Microsoft Visual Basic、C#、JScript .NET 和 J#。使用这些语言,可以开发利用公共语言运行库、类型安全、继承等方面的优点的https://www.360docs.net/doc/608933558.html, 应用程序。 https://www.360docs.net/doc/608933558.html, 包括: ?页和控件框架 ?https://www.360docs.net/doc/608933558.html, 编译器 ?安全基础结构 ?状态管理功能 ?应用程序配置 ?运行状况监视和性能功能 ?调试支持 ?XML Web services 框架 ?可扩展的宿主环境和应用程序生命周期管理 ?可扩展的设计器环境 https://www.360docs.net/doc/608933558.html, 页和控件框架是一种编程框架,它在 Web 服务器上运行,可以动态地生成和呈现 https://www.360docs.net/doc/608933558.html, 网页。可以从任何浏览器或客户端设备请求 https://www.360docs.net/doc/608933558.html, 网页,https://www.360docs.net/doc/608933558.html, 会向请求浏览器呈现标记(例如 HTML)。通常,您可以对多个浏览器使用相同的页,因为 https://www.360docs.net/doc/608933558.html, 会为发出请求的浏览器呈现适当的标记。但是,您可以针对诸如 Microsoft Internet Explorer 6 的特定浏览器设计https://www.360docs.net/doc/608933558.html, 网页,并利用该浏览器的功能。https://www.360docs.net/doc/608933558.html, 支持基于 Web 的设备(如移动电话、手持型计算机和个人数字助理 (PDA))的移动控件。

毕业设计外文翻译原文.

Optimum blank design of an automobile sub-frame Jong-Yop Kim a ,Naksoo Kim a,*,Man-Sung Huh b a Department of Mechanical Engineering,Sogang University,Shinsu-dong 1,Mapo-ku,Seoul 121-742,South Korea b Hwa-shin Corporation,Young-chun,Kyung-buk,770-140,South Korea Received 17July 1998 Abstract A roll-back method is proposed to predict the optimum initial blank shape in the sheet metal forming process.The method takes the difference between the ?nal deformed shape and the target contour shape into account.Based on the method,a computer program composed of a blank design module,an FE-analysis program and a mesh generation module is developed.The roll-back method is applied to the drawing of a square cup with the ˉange of uniform size around its periphery,to con?rm its validity.Good agreement is recognized between the numerical results and the published results for initial blank shape and thickness strain distribution.The optimum blank shapes for two parts of an automobile sub-frame are designed.Both the thickness distribution and the level of punch load are improved with the designed blank.Also,the method is applied to design the weld line in a tailor-welded blank.It is concluded that the roll-back method is an effective and convenient method for an optimum blank shape design.#2000Elsevier Science S.A.All rights reserved. Keywords:Blank design;Sheet metal forming;Finite element method;Roll-back method

基于模糊控制的移动机器人的外文翻译

1998年的IEEE 国际会议上机器人及自动化 Leuven ,比利时1998年5月 一种实用的办法--带拖车移动机器人的反馈控制 F. Lamiraux and J.P. Laumond 拉斯,法国国家科学研究中心 法国图卢兹 {florent ,jpl}@laas.fr 摘要 本文提出了一种有效的方法来控制带拖车移动机器人。轨迹跟踪和路径跟踪这两个问题已经得到解决。接下来的问题是解决迭代轨迹跟踪。并且把扰动考虑到路径跟踪内。移动机器人Hilare的实验结果说明了我们方法的有效性。 1引言 过去的8年,人们对非完整系统的运动控制做了大量的工作。布洛基[2]提出了关于这种系统的一项具有挑战性的任务,配置的稳定性,证明它不能由一个简单的连续状态反馈。作为替代办法随时间变化的反馈[10,4,11,13,14,15,18]或间断反馈[3]也随之被提出。从[5]移动机器人的运动控制的一项调查可以看到。另一方面,非完整系统的轨迹跟踪不符合布洛基的条件,从而使其这一个任务更为轻松。许多著作也已经给出了移动机器人的特殊情况的这一问题[6,7,8,12,16]。 所有这些控制律都是工作在相同的假设下:系统的演变是完全已知和没有扰动使得系统偏离其轨迹。很少有文章在处理移动机器人的控制时考虑到扰动的运动学方程。但是[1]提出了一种有关稳定汽车的配置,有效的矢量控制扰动领域,并且建立在迭代轨迹跟踪的基础上。 存在的障碍使得达到规定路径的任务变得更加困难,因此在执行任务的任何动作之前都需要有一个路径规划。 在本文中,我们在迭代轨迹跟踪的基础上提出了一个健全的方案,使得带拖车的

机器人按照规定路径行走。该轨迹计算由规划的议案所描述[17],从而避免已经提交了输入的障碍物。在下面,我们将不会给出任何有关规划的发展,我们提及这个参考的细节。而且,我们认为,在某一特定轨迹的执行屈服于扰动。我们选择的这些扰动模型是非常简单,非常一般。它存在一些共同点[1]。 本文安排如下:第2节介绍我们的实验系统Hilare及其拖车:两个连接系统将被视为(图1)。第3节处理控制方案及分析的稳定性和鲁棒性。在第4节,我们介绍本实验结果。 图1带拖车的Hilare 2 系统描述 Hilare是一个有两个驱动轮的移动机器人。拖车是被挂在这个机器人上的,确定了两个不同的系统取决于连接设备:在系统A的拖车拴在机器人的车轮轴中心线上方(图1 ,顶端),而对系统B是栓在机器人的车轮轴中心线的后面(图1 ,底部)。A l= 0 。这个系统不过单从控制的角度来看,需要更对B来说是一种特殊情况,其中 r 多的复杂的计算。出于这个原因,我们分开处理挂接系统。两个马达能够控制机器人的线速度和角速度(v r,r ω)。除了这些速度之外,还由传感器测量,而机器人和拖车之间的角度?,由光学编码器给出。机器人的位置和方向(x r,y r,rθ)通过整合前的速度被计算。有了这些批注,控制系统B是:

电子技术专业英语翻译

基本电路 包括电路模型的元素被称为理想的电路元件。一个理想的电路元件是一个实际的电气元件的数学模型,就像一个电池或一个灯泡。重要的是为理想电路元件在电路模型用来表示实际的电气元件的行为可接受程度的准确性。电路分析,本单位的重点,这些工具,然后应用电路。电路分析基础上的数学方法,是用来预测行为的电路模型和其理想的电路元件。一个所期望的行为之间的比较,从设计规范,和预测的行为,形成电路分析,可能会导致电路模型的改进和理想的电路元件。一旦期望和预测的行为是一致的,可以构建物理原型。 物理原型是一个实际的电气系统,修建从实际电器元件。测量技术是用来确定实际的物理系统,定量的行为。实际的行为相比,从设计规范的行为,从电路分析预测的行为。比较可能会导致在物理样机,电路模型,或两者的改进。最终,这个反复的过程,模型,组件和系统的不断完善,可能会产生较准确地符合设计规范的设计,从而满足需要。 从这样的描述,它是明确的,在设计过程中,电路分析中起着一个非常重要的作用。由于电路分析应用电路模型,执业的工程师尝试使用成熟的电路模型,使设计满足在第一次迭代的设计规范。在这个单元,我们使用20至100年已测试通过机型,你可以认为他们是成熟的。能力模型与实际电力系统理想的电路元件,使电路理论的工程师非常有用的。 说理想电路元件的互连可用于定量预测系统的行为,意味着我们可以用数学方程描述的互连。对于数学方程是有用的,我们必须写他们在衡量的数量方面。在电路的情况下,这些数量是电压和电流。电路分析的研究,包括了解其电压和电流和理解上的电压施加的限制,目前互连的理想元素的每一个理想的电路元件的行为电路分析基础上的电压和电流的变量。电压是每单位电荷,电荷分离所造成的断电和SI单位伏V = DW / DQ。电流是电荷的流动速度和具有的安培SI单位(I= DQ/ DT)。理想的基本电路元件是两个终端组成部分,不能细分,也可以在其终端电压和电流的数学描述。被动签署公约涉及元素,当电流通过元素的参考方向是整个元素的参考电压降的方向端子的电压和电流的表达式使用一个积极的迹象。 功率是单位时间内的能量和平等的端电压和电流的乘积;瓦SI单位。权力的代数符号解释如下: 如果P> 0,电源被传递到电路或电路元件。 如果p<0,权力正在从电路或电路元件中提取。 在这一章中介绍的电路元素是电压源,电流源和电阻器。理想电压源保持一个规定的电压,不论当前的设备。理想电流源保持规定的电流不管了整个设备的电压。电压和电流源是独立的,也就是说,不是任何其他电路的电流或电压的影响;或依赖,就是由一些电路中的电流或电压。一个电阻制约了它的电压和电流成正比彼此。有关的比例常数电压和一个电阻值称为其电阻和欧姆测量。 欧姆定律建立相称的电压和电流的电阻。具体来说,V = IR电阻的电流流动,如果在它两端的电压下降,或V=_IR方向,如果在该电阻的电流流是在它两端的电压上升方向。 通过结合对权力的方程,P = VI,欧姆定律,我们可以判断一个电阻吸收的功率:P = I2R= U2/ R 电路节点和封闭路径。节点是一个点,两个或两个以上的电路元件加入。当只有两个元素连接,形成一个节点,他们表示将在系列。一个闭合的路径是通过连接元件追溯到一个循环,起点和终点在同一节点,只有一次每遇到中间节点。 电路是说,要解决时,两端的电压,并在每个元素的电流已经确定。欧姆定律是一个重要的方程,得出这样的解决方案。 在简单的电路结构,欧姆定律是足以解决两端的电压,目前在每一个元素。然而,对于更复杂的互连,我们需要使用两个更为重要的代数关系,被称为基尔霍夫定律,来解决所有的电压和电流。 基尔霍夫电流定律是: 在电路中的任何一个节点电流的代数和等于零。 基尔霍夫电压定律是: 电路中的任何封闭路径上的电压的代数和等于零。 1.2电路分析技术 到目前为止,我们已经分析应用结合欧姆定律基尔霍夫定律电阻电路相对简单。所有的电路,我们可以使用这种方法,但因为他们而变得结构更为复杂,涉及到越来越多的元素,这种直接的方法很快成为累赘。在这一课中,我们介绍两个电路分析的强大的技术援助:在复杂的电路结构的分析节点电压的方法,并网电流的方

电子信息工程外文翻译外文文献英文文献微处理器

外文资料 所译外文资料: 1. 作者G..Bouwhuis, J.Braat, A.Huijser 2. 书名:Principles of Optical Disk Systems 3. 出版时间:1991年9月 4. 所译章节:Session 2/Chapter9, Session 2/Chapter 11 原文: Microprocessor One of the key inventions in the history of electronics, and in fact one of the most important inventions ever period, was the transistor. As time progressed after the inven ti on of LSI in tegrated circuits, the tech no logy improved and chips became smaller, faster and cheaper. The functions performed by a processor were impleme nted using several differe nt logic chips. In tel was the first compa ny to in corporate all of these logic comp onents into a si ngle chip, this was the first microprocessor. A microprocessor is a complete computati on engine that is fabricated on a sin gle chip. A microprocessor executes a collecti on of machi ne in struct ions that tell the processor what to do. Based on the in struct ions, a microprocessor does three basic things: https://www.360docs.net/doc/608933558.html,ing the ALU (Arithmetic/Logic Unit), a microprocessor can perform mathematical operatio ns like additi on, subtract ion, multiplicatio n and divisi on; 2.A microprocessor can move data from one memory location to another; 3.A microprocessor can make decisi ons and jump to a new set of in struct ions based on those decisi ons. There may be very sophisticated things that a microprocessor does, but those are its three basic activities. Microprocessor has an address bus that sends an address to memory, a data bus that can send data to memory or receive data from memory, an RD(read) and WR(write) line that lets a clock pulse sequenee the processor and a reset li ne that resets the program coun ter to zero(or whatever) and restarts executi on. And let ' s assume that both the address and data buses are 8 bits wide here. Here are the comp onents of this simple microprocessor: 1. Registers A, B and C are simply latches made out of flip-flops. 2. The address latch is just like registers A, B and C. 3. The program coun ter is a latch with the extra ability to in creme nt by 1 whe n told to do so, and also to reset to zero whe n told to do so. 4. The ALU could be as simple as an 8-bit adder, or it might be able to add, subtract, multiply and divide 8- bit values. Let ' s assume the latter here. 5. The test register is a special latch that can hold values from comparisons performed in the ALU. An ALU can normally compare two numbers send determine if they are equal, if one is greater

中国的对外贸易外文翻译及原文

外文翻译 原文 Foreign T rade o f China Material Source:W anfang Database Author:Hitomi Iizaka 1.Introduction On December11,2001,China officially joined the World T rade Organization(WTO)and be c a me its143rd member.China’s presence in the worl d economy will continue to grow and deepen.The foreign trade sector plays an important andmultifaceted role in China’s economic development.At the same time, China’s expanded role in the world economy is beneficial t o all its trading partners. Regions that trade with China benefit from cheaper and mor e varieties of imported consumer goods,raw materials and intermediate products.China is also a large and growing export market.While the entry of any major trading nation in the global trading system can create a process of adjustment,the o u t c o me is fundamentally a win-win situation.In this p aper we would like t o provide a survey of the various institutions,laws and characteristics of China’s trade.Among some of the findings, we can highlight thefollowing: ?In2001,total trade to gross domestic pr oduct(GDP)ratio in China is44% ?In2001,47%of Chinese trade is processed trade1 ?In2001,51%of Chinese trade is conduct ed by foreign firms in China2 ?In2001,36%of Chinese exports originate from Gu an gdon g province ?In2001,39%of China’s exports go through Hong Kong to be re-exported elsewhere 2.Evolution of China’s Trade Regime Equally remarkable are the changes in the commodity composition of China’s exports and imports.Table2a shows China’s annu al export volumes of primary goods and manufactured goods over time.In1980,primary goods accounted for 50.3%of China’s exports and manufactured goods accounted for49.7%.Although the share of primary good declines slightly during the first half of1980’s,it remains at50.6%in1985.Since then,exports of manufactured goods have grown at a much

速度控制系统设计外文翻译

译文 流体传动及控制技术已经成为工业自动化的重要技术,是机电一体化技术的核心组成之一。而电液比例控制是该门技术中最具生命力的一个分支。比例元件对介质清洁度要求不高,价廉,所提供的静、动态响应能够满足大部分工业领域的使用要求,在某些方面已经毫不逊色于伺服阀。比例控制技术具有广阔的工业应用前景。但目前在实际工程应用中使用电液比例阀构建闭环控制系统的还不多,其设计理论不够完善,有待进一步的探索,因此,对这种比例闭环控制系统的研究有重要的理论价值和实践意义。本论文以铜电解自动生产线中的主要设备——铣耳机作为研究对象,在分析铣耳机组各构成部件的基础上,首先重点分析了铣耳机的关键零件——铣刀的几何参数、结构及切削性能,并进行了实验。用电液比例方向节流阀、减压阀、直流直线测速传感器等元件设计了电液比例闭环速度控制系统,对铣耳机纵向进给装置的速度进行控制。论文对多个液压阀的复合作用作了理论上的深入分析,着重建立了带压差补偿型的电液比例闭环速度控制系统的数学模型,利用计算机工程软件,研究分析了系统及各个组成环节的静、动态性能,设计了合理的校正器,使设计系统性能更好地满足实际生产需要 水池拖车是做船舶性能试验的基本设备,其作用是拖曳船模或其他模型在试验水池中作匀速运动,以测量速度稳定后的船舶性能相关参数,达到预报和验证船型设计优劣的目的。由于拖车稳速精度直接影响到模型运动速度和试验结果的精度,因而必须配有高精度和抗扰性能良好的车速控制系统,以保证拖车运动的稳速精度。本文完成了对试验水池拖车全数字直流调速控制系统的设计和实现。本文对试验水池拖车工作原理进行了详细的介绍和分析,结合该控制系统性能指标要求,确定采用四台直流电机作为四台车轮的驱动电机。设计了电流环、转速环双闭环的直流调速控制方案,并且采用转矩主从控制模式有效的解决了拖车上四台直流驱动电机理论上的速度同步和负载平衡等问题。由于拖车要经常在轨道上做反复运动,拖动系统必须要采用可逆调速系统,论文中重点研究了逻辑无环流可逆调速系统。大型直流电机调速系统一般采用晶闸管整流技术来实现,本文给出了晶闸管整流装置和直流电机的数学模型,根据此模型分别完成了电流坏和转速环的设计和分析验证。针对该系统中的非线性、时变性和外界扰动等因素,本文将模糊控制和PI控制相结合,设计了模糊自整定PI控制器,并给出了模糊控制的查询表。本文在系统基本构成及工程实现中,介绍了西门子公司生产的SIMOREGDC Master 6RA70全数字直流调速装置,并设计了该调速装置的启动操作步骤及参数设置。完成了该系统的远程监控功能设计,大大方便和简化了对试验水池拖车的控制。对全数字直流调速控制系统进行了EMC设计,提高了系统的抗干扰能力。本文最后通过数字仿真得到了该系统在常规PI控制器和模糊自整定PI控制器下的控制效果,并给出了系统在现场调试运行时的试验结果波形。经过一段时间的试运行工作证明该系统工作良好,达到了预期的设计目的。 提升装置在工业中应用极为普遍,其动力机构多采用电液比例阀或电液伺服阀控制液压马达或液压缸,以阀控马达或阀控缸来实现上升、下降以及速度控制。电液比例控制和电液伺服控制投资成本较高,维护要求高,且提升过程中存在速度误差及抖动现象,影响了正常生产。为满足生产要求,提高生产效率,需要研究一种新的控制方法来解决这些不足。随着科学技术的飞速发展,计算机技术在液压领域中的应用促进了电液数字控制技术的产生和发展,也使液压元件的数字化成为液压技术发展的必然趋势。本文以铅电解残阳极洗涤生产线中的提升装置为研究

电力电子技术外文翻译

外文翻译 题目:电力电子技术二 A部分 晶闸管 在晶闸管的工作状态,电流从阳极流向阴极。在其关闭状态,晶闸管可以阻止正向 导电,使其不能运行。 可触发晶闸管能使导通状态的正向电流在短时间内使设备处于阻断状态。使正向电压下降到只有导通状态的几伏(通常为1至3伏电压依赖于阻断电压的速度)。 一旦设备开始进行,闸极电流将被隔离。晶闸管不可能被闸关闭,但是可以作为一个二极管。在电路的中,只有当电流处于消极状态,才能使晶闸管处于关闭状态,且电流降为零。在设备运行的时间内,允许闸在运行的控制状态直到器件在可控时间再次进入正向阻断状态。 在逆向偏置电压低于反向击穿电压时,晶闸管有微乎其微的漏电流。通常晶闸管的正向额定电压和反向阻断电压是相同的。晶闸管额定电流是在最大范围指定RMS和它是有能力进行平均电流。同样的对于二极管,晶闸管在分析变流器的结构中可以作为理想的设备。在一个阻性负载电路中的应用中,可以控制运行中的电流瞬间传至源电压的正半周期。当晶闸管尝试逆转源电压变为负值时,其理想化二极管电流立刻变成零。 然而,按照数据表中指定的晶闸管,其反向电流为零。在设备不运行的时间中,电流为零,重要的参数变也为零,这是转弯时间区间从零交叉电流电压的参

考。晶闸管必须保持在反向电压,只有在这个时间,设备才有能力阻止它不是处于正向电压导通状态。 如果一个正向电压应用于晶闸管的这段时间已过,设备可能因为过早地启动并有可能导致设备和电路损害。数据表指定晶闸管通过的反向电压在这段期间和超出这段时间外的一个指定的电压上升率。这段期间有时被称为晶闸管整流电路的周期。 根据使用要求,各种类型的晶闸管是可得到的。在除了电压和电流的额定率,转弯时间,和前方的电压降以及其他必须考虑的特性包括电流导通的上升率和在关闭状态的下降率。 1。控制晶闸管阶段。有时称为晶闸管转换器,这些都是用来要是整顿阶段,如为直流和交流电机驱动器和高压直流输电线路应用的电压和电流的驱动。主要设备要求是在大电压、电流导通状态或低通态压降中。这类型的晶闸管的生产晶圆直径到10厘米,其中平均电流目前大约是4000A,阻断电压为5之7KV。 2。逆变级的晶闸管。这些设计有小关断时间,除了低导通状态电压,虽然在设备导通状态电压值较小,可设定为2500V和1500A。他们的关断时间通常在几微秒范围到100μs之间,取决于其阻断电压的速率和通态压降。 3。光控晶闸管。这些会被一束脉冲光纤触发使其被引导到一个特殊的敏感的晶闸管地区。光化的晶闸管触发,是使用在适当波长的光的对硅产生多余的电子空穴。这些晶闸管的主要用途是应用在高电压,如高压直流系统,有许多晶闸管被应用在转换器阀门上。光控晶闸管已经发现的等级,有4kV的3kA,导通状态电压2V、光触发5毫瓦的功率要求。 还有其它一些晶闸管,如辅助型关断晶闸管(关贸总协定),这些晶闸管其他变化,不对称硅可控(ASCR)和反向进行,晶闸管(RCT)的。这些都是应用。 B部分 功率集成电路 功率集成电路的种类 现代半导体功率控制相当数量的电路驱动,除了电路功率器件本身。这些控制电路通常由微处理器控制,其中包括逻辑电路。这种在同一芯片上包含或作

英文翻译与英文原文.陈--

翻译文献:INVESTIGATION ON DYNAMIC PERFORMANCE OF SLIDE UNIT IN MODULAR MACHINE TOOL (对组合机床滑台动态性能的调查报告) 文献作者:Peter Dransfield, 出处:Peter Dransfield, Hydraulic Control System-Design and Analysis of TheirDynamics, Springer-Verlag, 1981 翻译页数:p139—144 英文译文: 对组合机床滑台动态性能的调查报告 【摘要】这一张纸处理调查利用有束缚力的曲线图和状态空间分析法对组合机床滑台的滑动影响和运动平稳性问题进行分析与研究,从而建立了滑台的液压驱动系统一自调背压调速系统的动态数学模型。通过计算机数字仿真系统,分析了滑台产生滑动影响和运动不平稳的原因及主要影响因素。从那些中可以得出那样的结论,如果能合理地设计液压缸和自调背压调压阀的结构尺寸. 本文中所使用的符号如下: s1-流源,即调速阀出口流量; S el—滑台滑动摩擦力 R一滑台等效粘性摩擦系数: I1—滑台与油缸的质量 12—自调背压阀阀心质量 C1、c2—油缸无杆腔及有杆腔的液容; C2—自调背压阀弹簧柔度; R1, R2自调背压阀阻尼孔液阻, R9—自调背压阀阀口液阻 S e2—自调背压阀弹簧的初始预紧力; I4, I5—管路的等效液感 C5、C6—管路的等效液容: R5, R7-管路的等效液阻; V3, V4—油缸无杆腔及有杆腔内容积; P3, P4—油缸无杆腔及有杆腔的压力 F—滑台承受负载, V—滑台运动速度。本文采用功率键合图和状态空间分折法建立系统的运动数学模型,滑台的动态特性可以能得到显著改善。

污水处理外文翻译(带原文)

提高塔式复合人工湿地处理农村生活污水的 脱氮效率1 摘要: 努力保护水源,尤其是在乡镇地区的饮用水源,是中国污水处理当前面临的主要问题。氮元素在水体富营养化和对水生物的潜在毒害方面的重要作用,目前废水脱氮已成为首要关注的焦点。人工湿地作为一种小型的,处理费用较低的方法被用于处理乡镇生活污水。比起活性炭在脱氮方面显示出的广阔前景,人工湿地系统由于溶解氧的缺乏而在脱氮方面存在一定的制约。为了提高脱氮效率,一种新型三阶段塔式混合湿地结构----人工湿地(thcw)应运而生。它的第一部分和第三部分是水平流矩形湿地结构,第二部分分三层,呈圆形,呈紊流状态。塔式结构中水流由顶层进入第二层及底层,形成瀑布溢流,因此水中溶解氧浓度增加,从而提高了硝化反应效率,反硝化效率也由于有另外的有机物的加入而得到了改善,增加反硝化速率的另一个原因是直接通过旁路进入第二部分的废水中带入的足量有机物。常绿植物池柏(Taxodium ascendens),经济作物蔺草(Schoenoplectus trigueter),野茭白(Zizania aquatica),有装饰性的多花植物睡莲(Nymphaea tetragona),香蒲(Typha angustifolia)被种植在湿地中。该系统对总悬浮物、化学需氧量、氨氮、总氮和总磷的去除率分别为89%、85%、83%、83% 和64%。高水力负荷和低水力负荷(16 cm/d 和32 cm/d)对于塔式复合人工湿地结构的性能没有显著的影响。通过硝化活性和硝化速率的测定,发现硝化和反硝化是湿地脱氮的主要机理。塔式复合人工湿地结构同样具有观赏的价值。 关键词: 人工湿地;硝化作用;反硝化作用;生活污水;脱氮;硝化细菌;反硝化细菌 1. 前言 对于提高水源水质的广泛需求,尤其是提高饮用水水源水质的需求是目前废水深度处理的技术发展指向。在中国的乡镇地区,生活污水是直接排入湖泊、河流、土壤、海洋等水源中。这些缺乏处理的污水排放对于很多水库、湖泊不能达到水质标准是有责任的。许多位于中国的乡镇地区的社区缺乏足够的生活污水处理设备。由于山区地形、人口分散、经济基础差等原因,废水的收集和处理是很成问题的。由于资源短缺,经济欠发达地区所采取的废水处理技术必须低价高效,并且要便于施用,能量输入及维护费用较低,而且要保证出水能达标。建造在城市中基于活性污泥床的废水集中处理厂,对于小乡镇缺乏经济适用性,主要是由于污水收集结构的建造费用高。 1Ecological Engineering,Fen xia ,Ying Li。

模糊控制外文翻译

基于模糊控制的matlab simulink仿真 摘要:为提高工业上所需温度的控制精度,在本文中详细介绍如何设计模糊控制器,以及如何在在MA TLAB中建立模型,并使用模糊工具箱和SIMULINK在Matlab中实现参数的计算机模拟控制系统。在该系统中,通过采用模糊控制算法对温度实现了很好的控制,并且该系统正处于实际工业电阻炉温度控制的应用和试行阶段,也达到了满意的控制效果。实践表明,模糊控制方法提高了控制的实时性,稳定性和精确度,并且实现了操作过程的简化,对于工程实际应用具有较强的借鉴意义。 关键词:模糊控制,SIMULINK,MATLAB,仿真 1介绍系统 MATLAB / Simulink是一种世界通用的科学计算和仿真的语言, Simulink则是一个以系统级仿真环境为基础的系统框图和程序框图,这个环境提供了很多的专业模块库:如CDMA参考仿真、数字信号处理器(DSP)模块库等。它是一个动态的系统建模,仿真和仿真结果具有以下特点: (1)调用代理模块框图是连接到系统的工程,使建模和仿真系统的框图,更全面,研究信息系统具有高的开放性。 (2)使用户可以自由修改模块的参数,并可以无限的使用所有的MATLAB分析工具,因此MATLAB具有高互动性。 (3)仿真结果可以几乎跟在实验室里显示的图形或数据是一样的。 模糊逻辑控制、自动化的发展和它们未来的发展策略,是一种智能控制系统,已经受到了极大的关注。它使用语言规则和模糊集进行模糊推理。为了解决复杂的系统,包括非线性、不确定性和精确的数学模型难以建立的问题,就可以采用模糊控制技术,目前,此技术被广泛使用。温度控制通常采用传统的PID控制算法,但是控制效果较不明显的。当情况的变化时将改变系统参数,PID参数也需要及时调整,否则会产生更糟糕的动态特性,使控制精度下降。当温度偏差太大时,容易导致积分饱和的现象,导致控制时间太久和其他的问题。在同一时间,模糊工具箱和SIMULINK在用MATLAB来实现参数控制系统的计算机仿真技术,能提高效率和系统设计的精度。 整个系统以AT89S51单片机为核心、以温度数据采集电路,过零检测和触发电路、键盘和显示电路、记忆电路(CF卡)、声光报警电路、复位电路等组成硬件部分,还有相应的控制软件等构成了完整电阻炉温度控制系统,其系统框图如图1-1所示。

电动汽车电子技术中英文对照外文翻译文献

(文档含英文原文和中文翻译) 中英文资料外文翻译 原文: As the world energy crisis, and the war and the energy consumption of oil -- and are full of energy, in one day, someday it will disappear without a trace. Oil is not in resources. So in oil consumption must be clean before finding a replacement. With the development of science and technology the progress of

the society, people invented the electric car. Electric cars will become the most ideal of transportation. In the development of world each aspect is fruitful, especially with the automobile electronic technology and computer and rapid development of the information age. The electronic control technology in the car on a wide range of applications, the application of the electronic device, cars, and electronic technology not only to improve and enhance the quality and the traditional automobile electrical performance, but also improve the automobile fuel economy, performance, reliability and emissions purification. Widely used in automobile electronic products not only reduces the cost and reduce the complexity of the maintenance. From the fuel injection engine ignition devices, air control and emission control and fault diagnosis to the body auxiliary devices are generally used in electronic control technology, auto development mainly electromechanical integration. Widely used in automotive electronic control ignition system mainly electronic control fuel injection system, electronic control ignition system, electronic control automatic transmission, electronic control (ABS/ASR) control system,

外文翻译原文

204/JOURNAL OF BRIDGE ENGINEERING/AUGUST1999

JOURNAL OF BRIDGE ENGINEERING /AUGUST 1999/205 ends.The stress state in each cylindrical strip was determined from the total potential energy of a nonlinear arch model using the Rayleigh-Ritz method. It was emphasized that the membrane stresses in the com-pression region of the curved models were less than those predicted by linear theory and that there was an accompanying increase in ?ange resultant force.The maximum web bending stress was shown to occur at 0.20h from the compression ?ange for the simple support stiffness condition and 0.24h for the ?xed condition,where h is the height of the analytical panel.It was noted that 0.20h would be the optimum position for longitudinal stiffeners in curved girders,which is the same as for straight girders based on stability requirements.From the ?xed condition cases it was determined that there was no signi?cant change in the membrane stresses (from free to ?xed)but that there was a signi?cant effect on the web bend-ing stresses.Numerical results were generated for the reduc-tion in effective moment required to produce initial yield in the ?anges based on curvature and web slenderness for a panel aspect ratio of 1.0and a web-to-?ange area ratio of 2.0.From the results,a maximum reduction of about 13%was noted for a /R =0.167and about 8%for a /R =0.10(h /t w =150),both of which would correspond to extreme curvature,where a is the length of the analytical panel (modeling the distance be-tween transverse stiffeners)and R is the radius of curvature.To apply the parametric results to developing design criteria for practical curved girders,the de?ections and web bending stresses that would occur for girders with a curvature corre-sponding to the initial imperfection out-of-?atness limit of D /120was used.It was noted that,for a panel with an aspect ratio of 1.0,this would correspond to a curvature of a /R =0.067.The values of moment reduction using this approach were compared with those presented by Basler (Basler and Thurlimann 1961;Vincent 1969).Numerical results based on this limit were generated,and the following web-slenderness requirement was derived: 2 D 36,500a a =1?8.6?34 (1) ? ??? t R R F w ?y where D =unsupported distance between ?anges;and F y =yield stress in psi. An extension of this work was published a year later,when Culver et al.(1973)checked the accuracy of the isolated elas-tically supported cylindrical strips by treating the panel as a unit two-way shell rather than as individual strips.The ?ange/web boundaries were modeled as ?xed,and the boundaries at the transverse stiffeners were modeled as ?xed and simple.Longitudinal stiffeners were modeled with moments of inertias as multiples of the AASHO (Standard 1969)values for straight https://www.360docs.net/doc/608933558.html,ing analytical results obtained for the slenderness required to limit the plate bending stresses in the curved panel to those of a ?at panel with the maximum allowed out-of-?atness (a /R =0.067)and with D /t w =330,the following equa-tion was developed for curved plate girder web slenderness with one longitudinal stiffener: D 46,000a a =1?2.9 ?2.2 (2) ? ? ? t R f R w ?b where the calculated bending stress,f b ,is in psi.It was further concluded that if longitudinal stiffeners are located in both the tension and compression regions,the reduction in D /t w will not be required.For the case of two stiffeners,web bending in both regions is reduced and the web slenderness could be de-signed as a straight girder panel.Eq.(1)is currently used in the ‘‘Load Factor Design’’portion of the Guide Speci?cations ,and (2)is used in the ‘‘Allowable Stress Design’’portion for girders stiffened with one longitudinal stiffener.This work was continued by Mariani et al.(1973),where the optimum trans-verse stiffener rigidity was determined analytically. During almost the same time,Abdel-Sayed (1973)studied the prebuckling and elastic buckling behavior of curved web panels and proposed approximate conservative equations for estimating the critical load under pure normal loading (stress),pure shear,and combined normal and shear loading.The linear theory of shells was used.The panel was simply supported along all four edges with no torsional rigidity of the ?anges provided.The transverse stiffeners were therefore assumed to be rigid in their directions (no strains could be developed along the edges of the panels).The Galerkin method was used to solve the governing differential equations,and minimum eigenvalues of the critical load were calculated and presented for a wide range of loading conditions (bedding,shear,and combined),aspect ratios,and curvatures.For all cases,it was demonstrated that the critical load is higher for curved panels over the comparable ?at panel and increases with an increase in curvature. In 1980,Daniels et al.summarized the Lehigh University ?ve-year experimental research program on the fatigue behav-ior of horizontally curved bridges and concluded that the slen-derness limits suggested by Culver were too severe.Equations for ‘‘Load Factor Design’’and for ‘‘Allowable Stress Design’’were developed (respectively)as D 36,500a =1?4?192(3)? ?t R F w ?y D 23,000a =1?4 ?170 (4) ? ? t R f w ?b The latter equation is currently used in the ‘‘Allowable Stress Design’’portion of the Guide Speci?cations for girders not stiffened longitudinally. Numerous analytical and experimental works on the subject have also been published by Japanese researchers since the end of the CURT project.Mikami and colleagues presented work in Japanese journals (Mikami et al.1980;Mikami and Furunishi 1981)and later in the ASCE Journal of Engineering Mechanics (Mikami and Furunishi 1984)on the nonlinear be-havior of cylindrical web panels under bending and combined bending and shear.They analyzed the cylindrical panels based on Washizu’s (1975)nonlinear theory of shells.The governing nonlinear differential equations were solved numerically by the ?nite-difference method.Simple support boundary condi-tions were assumed along the curved boundaries (top and bot-tom at the ?ange locations)and both simple and ?xed support conditions were used at the straight (vertical)boundaries.The large displacement behavior was demonstrated by Mi-kami and Furunishi for a range of geometric properties.Nu-merical values of the load,de?ection,membrane stress,bend-ing stress,and torsional stress were obtained,but no equations for design use were presented.Signi?cant conclusions include that:(1)the compressive membrane stress in the circumfer-ential direction decreases with an increase in curvature;(2)the panel under combined bending and shear exhibits a lower level of the circumferential membrane stress as compared with the panel under pure bending,and as a result,the bending moment carried by the web panel is reduced;and (3)the plate bending stress under combined bending and shear is larger than that under pure bending.No formulations or recommendations for direct design use were made. Kuranishi and Hiwatashi (1981,1983)used the ?nite-ele-ment method to demonstrate the elastic ?nite displacement be-havior of curved I-girder webs under bending using models with and without ?ange rigidities.Rotation was not allowed (?xed condition)about the vertical axis at the ends of the panel (transverse stiffener locations).Again,the nonlinear distribu-

相关文档
最新文档