2.物性估算(讲义)

2.物性估算(讲义)
2.物性估算(讲义)

物性估算

嘉兴学院化学工程系

2009-03-16

Estimation Physical Property for a Non-databank Component

?用于估算Aspen 物性数据库中没有的化合物的物质性质?需要的相关资讯

–分子结构式–分子量

–饱和蒸汽压(Extended Antoine Equation )

?范例:Dimethyl Adipate

–分子量:174.19–沸点:235.68 oC

在此选择物性估算

Run type

定义组份定义组份,,由于Aspen 数据库没有该物质性质参数该物质性质参数,,故后两格留空白

估算所有缺少的参数

输入

分子结构式的mol 文件

Notice:

如果没有分子结构式图如果没有分子结构式图,,就要在General 下手工输入基团信息

按下按下,,计算化学键结构信息

从File 菜单选择输出菜单选择输出((Export…)命令, 在对话框下部的文件类型选择栏中选择MDL Molfiles ,将结构式保存为*.mol 文件文件。。

只有结构式可以存盘, 图象和文字不能以这种格式存盘

ChemSketch ,ChemWindow ,ChemOffice ,ChemDraw ,ISIS/Draw 等多款化学结构式绘制软件都具有输出*.mol 文件的功能

点击点击““确定确定””得出得出上述结果上述结果

下拉选择化学键结构类型

没有分子结构式图没有分子结构式图,,手工输入基团信息

手工输入完成

没有分子结构式图没有分子结构式图,,

手工输入基团信息

与温度无关

与温度相关

输入纯组份性质

显示计算结果物性参数估算完成

T -dependent correlation (与温度相关)

CPIG-1:理想理想气体热容气体热容CPLDIP-1:混合参数混合参数((Miscellaneous )DHVLWT-1:汽化热

KLDIP-1:液体导热系数MULAND-1:液体粘度MUVDIP-1:蒸汽粘度

PCES-1:物性常数估算系统PLXANT-1:蒸汽压蒸汽压((修正Antoine 方程方程))PURE-1:纯组份SIGDIP-1:表面张力

故障诊断:

红色红色,,不能计算不能计算,,极有可能是因为没有正确选择Run type

故障诊断:

在本页选择方法和模型是不正确的确的,,也会导致不能模拟计算

?将Run type 改回Flowsheet ,在

Properties/Estimation/Input /Setup 选项中选项中,,选择:Do not estimate any parameters .?添加流程就可以使用刚刚获获得的估算结果添加流程就可以使用刚刚获获得的估算结果。。

嘉兴学院

化学工程系

2009-03-16

岩石物性资料

岩石物性资料

岩(矿)石物性资料 (2008年12月11日) 一、密度: 表1-1 常见矿物的密度 名称 密度/g.3cm - 名称 密度/g.3cm -石英 2.65 金刚石 2.6-2.9 正长石 2.55-2.63 重晶石 4.4-4.7 钠长石 2.63 刚玉 3.9-4.0 钙长石 2.76 岩盐 3.1-3.2 方解石 2.72-2.94 硬石膏 2.7-3.0 白云石 2.86-2.93 石膏 2.2-2.4 白云母 2.77-2.88 霞石 2.55-2.65 黑云母 2.7-3.3 绿高岭石 1.72-2.5 角闪石 3.62-3.65 白榴石 2.45-2.5 透闪石 2.99-3.00 硅灰石 2.79-2.91 阳起石 3.1-3.2 蛇纹石 2.5-2.6 星叶石 3.0-3.15 赤铁矿 4.5-5.2 钠闪石 3.3-3.46 磁铁矿 4.8-5.2 纳钙闪石 3.3-3.46 黄铁矿 4.9-5.2 钛铁矿 4.5-5.0 磁黄铁矿 4.3-4.8 铬铁矿 3.2-4.4 黄铜矿 4.1-4.3 辉铜矿 5.5-5.8 斑铜矿 4.9-5.2 海绿石 2.2-2.9 石墨 2.09-2.25 多水高岭土 1.9-2.6 蛋白石 1.9-2.5 钾盐 1.99 叶绿泥石 2.6-3.0 硬绿泥石 3.3-3.6 金红石 4.18-4.23 锰矿 3.4-6.0 钨酸钙矿 5.9-6.2 铝矾土 2.4-2.5 煤 1.2-1.7 褐煤 1.1-1.3 表1-2 常见岩石密度 名称 密度/g.3cm - 名称 密度/g.3 cm -纯橄榄岩 2.5-3.3 橄榄岩 2.5-3.6 玄武岩 2.6-3.3 辉长岩 2.7-3.4 安山岩 2.5-2.8 辉绿岩 2.9-3.2 鞍山玢岩 2.6-2.9 花岗岩 2.4-3.1 石英岩 2.6-2.9 流纹岩 2.3-2.7 片麻岩 2.4-2.9 云母片岩 2.5-3.0 千枚岩 2.7-2.8 蛇纹岩 2.6-3.2 大理岩 2.6-2.9 白云岩 2.4-2.9

基团贡献方法UNIFAC估算局部组成模型NRTLWILSONUNIQUAC的二元参数

基团贡献方法(UNIFAC)估算局部组成模型(NRTL\WILSON\UNIQUAC)的二元参数 结合海友的问题给出详细步骤:https://www.360docs.net/doc/6110797335.html,/thread-581160-1-1.html 海友的问题:在模拟时,选用NRTL热力学方法时,二元交互作用参数中没有丙酮和2-甲基戊烷,但在文献中说二者能共沸,常压下组成为丙酮:44%,2-甲基戊烷:56%(质量分数),共沸温度为47摄氏度。 请教高手,如何在ASPEN中设置?

问题: 1. 在第五步中的Method为什么选Unif-DMD,而没有选其他的方法,比如UNIF-LBY、UNIF-R4等,这些方法有什么本质上的区别吗 UNIFAC-DMD,LBY等没有本质区别,只是修正模型不同而已。你找我发的那个A+10说明书看下,有详细介绍是什么修正。 2. 如果我不想使用Aspen自带的unifac基团交互参数,而是用自己的unifac基团交互参数(基团参数rq仍旧采用软件自带的),来进行楼主帖子中这样的估算,如何操作? 另外,除了上面的问题外,还有一问,那就是如果我自己定义了Aspen中没有的新基团(有时候想把一个物质自己来进行拆分),而且通过别的途径得到了新基团的基团参数RQ以及所需要的相关基团交互参数,那么在这种情况下,在Aspen中怎么样来定义新基团,然后进行楼主帖子中的估算操作呢? 还请楼主解答。 今天研究了一下,你的这两个问题应该都可以解决: 1、当你选择UNIFAC方法的时候,A+默认使用数据库中参数,但也可以修改。你只需要在parameters→unifac group binary→GMUFB-1中输入参数即可。但这前提是你在components中有定义unifac groups,否则gmufb-1是灰色。 2、a+ components的UNIFAC group支持定义新的基团。号码可以自己定义。关键是你能定义官能团(方法有很多,bondi、unifac等等),这一步在分子结构中实现,并可以求的q、r的值。同样你可以在参数中输入。这个时候你不需要在进行回归了。 上面的关键是如何定义官能团(新或者旧)。

北京化工大学高等化热大作业-基团贡献法

浅谈基团贡献法 引言 不久前,我前往导师XXX的办公室,与他沟通交流学业上的问题。谈话间,王老师提及的一种建立自由基聚合反应过程机理模型的方法──链节分析法[1],引起了我极大的兴趣。这一方法可以对复杂的聚合反应过程进行准确的动态模拟,解决了以往须同时求解无限多个微分方程才能模拟聚合过程的难题。通过这篇文献[1]我得知,对于高分子聚合物体系的热力学性质的处理,一直是建立聚合反应机理模型的难题之一。此法[1]不再把组成和链长不同的无穷多的聚合物大分子作为组分,而是将流程模拟系统的组分中出现的C、E、A·、R·等基本单元,参考其相应的单体物性,从而得到大分子聚合物的各种热力学性质。高分子的绝大部分热力学性质如密度ρ、比热容C p、焓H、摩尔体积V b、各种临界参数都能利用Joback基团贡献法,由基本单元的物性计算得到。联想到化热课堂上与基团贡献法有关的似乎只有UNIFAC模型,因此我想对物性估算法中的基团贡献法展开讨论,描述各种不同的方法并加以简单的评价。这便是本题目的来源。 第1章临界参数估算方法 不论是通过自己对化工热力学的学习,还是通过对文献的查阅,都不难得出这样的结论:对纯物质而言,临界参数是最重要的物性参数之一。其实,在所有的PVT 关系中,无论是对应状态法还是状态方程法都与临界数据有关。对应状态法已成为应用热力学的最基本法则[2],借助于对应状态法,物质的几乎所有的热力学参数和大量的传递参数可被预测,而对应状态法的使用又强烈地依赖于临界数据。此外,涉及到临界现象的高压操作,如超临界萃取和石油钻井[2],也与临界参数密切相关。总而言之,临界数据是化工设计和计算中不可缺少的重要数据。 临界参数如此重要,前人自然少不了花费巨大精力对其进行收集、整理和评定,但据我了解,所收集的临界数据大多局限于稳定物质的临界数据。虽然近几年对不稳定物质临界参数测定方法的研究在开展着,并且也测定了一些不稳定物质的临界参数,但大部分的不稳定物质仍由于测定难度大而缺乏实测的临界数据。因此,人们在致力

物性数据估算考查题2013

2013年《物性数据估算》选修课程考查题 姓名:吴景程学号:2010650621班级:2010级化学工程与工艺三班 (含4道问答题、1道计算题,共5道题。要求4道问答题总字数不低于2000字,可加页。每人独立作答,不得相互抄袭。) 1、化学物质的基本物性主要包括哪些,主要从哪些手册上可查阅到基本物性数据,物性数据的估算主要有哪些方法? 答:基本物性主要包括:密度,粘度,表面张力,溶解度,沸点和凝点,蒸气压,比热容,导热系数,汽化热、溶解热和熔融热,焓和熵,临界值,普朗特数,扩散系数,折射率和折射度,压缩因子,气-液平衡常数、挥发度和逸度,活度系数,偏心因子,P-V-T 数据等。 基本物性数据查阅手册:石油化工基础数据手册,化学试剂国内外标准手册 ,溶剂手册,化工工艺算图手册,物性手册查用基础,《危险货物品名表》速查手册,试剂手册,《化工计算手册》,水处理化学品手册 ,兰氏化学手册,《氯碱工业理化常数手册》,纯物质热化学数据手册 ,无机精细化学品手册,化学化工物性数据手,[美]B.E.波林《气液物性估算手册》,工业气体手册,气体数据手册等。 物性数据的估算方法:对应状态法(对比态法,两参数法,三参数法,极性参数法,沸点参数,量子参数法),基团贡献法,UNIFAC 法;状态方程法等。 两参数法 对比状态法从p -V -T 关系开始,van der Waals 方程: 提供了压缩因子Z 的估算方法(两参数压缩因子图) 发展为估算蒸气压、蒸发焓、焓差、熵差、热容差、逸度系数等一系列热力学性质的计算。 此法使用方便,但主要用于计算气相。 三参数法 加入第三参数可更好地反映物质的特性,因此在p -V -T 及其他各种热力学性质计算中更准确、更常用的三参数是偏心因子和临界压缩因子。 使用 和Zc 后,有关液相的计算更加准确了。 用作为第三参数时,作为标准的是球形流体(Ar 、Kr 、Xe ),后者的为零。 Lee -Kesler 是三参数法的一种改进,选择两种参考流体的方法更准确些。但复杂得多。 对比状态法和状态方程法比较 从计算方法比较,这两种方法有很大差异 但状态方程法中,所用参数都是从临界参数计算,即以Tc 、pc 、来表达的,在处理混合物时,需要用实验值回归交互作用参数,这样的计算成为估算方法。 对比态法在处理户混合物时也存在同样的问题。因此这两种方法也有一定的共同点。 2、介绍物质的偏心因子的概念,它的测定和估算方法是什么,利用物质的偏心因子可以有哪些应用? (),,0 r r r p T V φ=ωωω

Aspen_Plus推荐使用的物性计算方法

做模拟的时候物性方法的选择是十分关键的,选择的十分正确关系着运行后的结果。是一个难点,高难点,而此内容与化工热力学关系十分紧密。 首先要明白什么是物性方法?比如我们做一个很简单的化工过程计算,一股100C,1atm的水-乙醇(1:1的摩尔比,1kmol/h)的物料经过一个换热器后冷却到了80C,0.9atm,问如分别下值是多少?1.入口物料的密度,汽相分率。2.换热器的负荷。3.出口物料的汽相分率,汽相密度,液相密,还可以问物料的粘度,逸度,活度,熵等等。以上的值怎么计算出来? 好,我们来假设进出口的物料全是理想气体,完全符合理想气体的行为,则其密度可以使用PV=nRT计算出来。并且汽相分率全为1,即该物料是完全气体。由于理想气体的焓与压力无关,则换热器的负荷可以根据水和乙醇的定压热熔计算出来。在此例当中,描述理想气体行为的若干方程,比如涉及至少如下2个方程:1.pv=nRT,2.dH=CpdT. 这就是一种物性方法(aspen plus中称为ideal property method)。简单的说,物性方法就是计算物流物理性质的一套方程,一种物性方法包含了若干的物理化学计算公式。当然这例子选这种物性方法显然运行结果是错误的,举这个例子主要是让大家对物性方法有个概念。对于水-乙醇体系在此两种温度压力下,如果当作理想气体来处理,其误差是比较大的,尤其对于液相。按照理想气体处理的话,冷却后仍然为气体,不应当有液相出现。那么应该如何计算呢?想要准确的计算这一过程需要很多复杂的方程,而这些方程如果需要我们用户去一个个选择出来,则是一件相当麻烦的工作,并且很容易出错。好在模拟软件已经帮我做了这一步,这就是物性方法。对于本例,我们对汽相用了状态方程,srk,液相用了活度系数方程(nrtl,wilson,等等),在aspen plus中将此种方法叫做活度系数法。如果你选择nrtl方程,就称为nrtl方法,wilson方程就成为wilson物性方法(wilson property method)。 在aspen plus中(或者化工热力学中)有两大类十分重要的物性方法,对于初学者而言,了解到此两类物性方法,基本上就可以开始着手模拟工作了。大体而言,根据液相混合物逸度的计算方法的不同,物性方法可以分为两大类:状态方程法和活度系数法。状态方程法使用状态方程来计算汽相及液相的逸度,而活度系数法使用状态方程计算汽相逸度,但是通过活度系

测定岩石标本物性参数

测定岩(矿)石标本磁物性参数技术方法及工作细则 陕西省核工业地质调查院 2014年四月

测定岩(矿)石标本磁物性参数技术方法及工作细则 一、物性参数 σ) SI 单位为千克每立方米,符号为kg / m 3 换算单位: 103kg / m 3=1 g / cm 3 (2) 磁性单位 :磁化率的单位为:SI(k) 与CGSM 单位换算如下:4πSI(k) = 1 CGSM(k) :磁化强度的单位为:安培每米(A/m ) 与CGSM 单位换算为:A/m=10-3 CGSM( M ) (D)与磁倾角(I)的单位均为:°(度) (3)、电性单位 ρ):电阻率的单位为:Ω·m (欧姆·米) η):极化率的单位为:% (百分数) 可见,岩矿石物性标本应具有地质单元的代表性、统计样本的代表性、空间分布的代表性。岩矿石物性数据应具有地质描述的准确性,参数测定的精确性,数理统计的合理性,构造岩矿石物性数据的可靠性。 专门的岩矿石物性调查工作应单独进行技术设计编写,物探中的物性工作可参考专门的岩矿石物性调查工作编写技术设计,也可作为相应项目的一部分编写设计。 误差计算公式有两种: a) 平均相对误差为:%100Bi Ai -n 1i i n 1i ?+B A =∑=μ

b) 均方误差为: n B A n i i i 2) ( 12 ∑=- ± = ε 式中:μ—平均相对误差;ε—均方误差;n —检查样品数;A i ——第i件样品一次测量结果; B i ——第i件样品另一次测量结果。 二、测定物性参数的仪器设备 (1) 密度测定仪器 ①、密度测定仪器 其种类包括:大称、密度计和电子天平等。大称宜用于第四系松散沉积物的密度测定;密度计和电子天平宜用于固结岩矿石的密度测定。 ②、测定密度仪器的测程为1000~7000kg / m3。 ③、仪器检查与性能测定:按仪器使用说明书规定进行仪器检查与性能测定。根据样品质量的范围,在测定过程中应使用相应质量大小的砝码进行仪器标定。 ④、仪器维护:维护砝码的清洁,以保证砝码质量的稳定。 (2) 磁性测定仪器 ①、磁性测定仪器:类型主要有:无定向磁力仪、线圈感应式岩样磁力仪、卡帕桥、旋转式磁力仪、磁勘查所使用的高精度磁力仪等。 ②、磁性仪器灵敏度要求:专门测定磁性仪器要求的灵敏度不低于 10-6SI,其他类仪器的灵敏度应为10-6SI 量级,能够测量强磁性样品的磁性。 ③、仪器检查与性能测定 按仪器使用说明书规定进行仪器检查与性能测定。根据磁性强弱,应有相应测程的标准磁性样品进行仪器标定。 ④、仪器维护与使用 宜在无磁空间或磁场稳定的空间使用磁性测定仪器,使用中应注意仪器的防尘、防潮,防止电磁干扰 (3) 电性测定仪器 ①、电性测定仪器 种类主要有:改进的微机激电仪、电阻率桥等。

材料的基本物理性质1

项目一建筑材料基本性质 (1)真实密度(密度) 岩石在规定条件(105土5)℃烘干至恒重,温度 20℃)下,单位矿质实体体积(不含孔隙的矿质实体的体积)的质量。真实密度用ρ t表示,按下式计算: 式中:ρt——真实密度,g/cm3 或 kg/m3; m s——材料的质量,g 或 kg; Vs——材料的绝对密实体积,cm3或 m3。 ??因固 ??测定方法:氏比重瓶法 将石料磨细至全部过0.25mm的筛孔,然后将其装入比重瓶中,利用已知比重的液体置换石料的体积。(2)毛体积密度 岩石在规定条件下,单位毛体积(包括矿质实体和孔隙体 积)质量。毛体积密度用ρ d表示,按下式计算:

式中:ρd——岩石的毛体积密度, g/cm3或 kg/m3; m s——材料的质量,g 或 kg; Vi、Vn——岩石开口孔隙和闭口孔隙的体积,cm3或m3。(3)孔隙率 岩石的孔隙率是指岩石部孔隙的体积占其总体积的百分率。孔隙率n按下式计算: 式中:V——岩石的总体积,cm3或 m3; V0——岩石的孔隙体积,cm3或 m3; ρd——岩石的毛体积密度, g/cm3或 kg/m3 ρt——真实密度, g/cm3或 kg/m3。 2、吸水性 、岩石的吸水性是岩石在规定的条件下吸水的能力。 、岩石与水作用后,水很快湿润岩石的表面并填充了岩石的孔隙,因此水对岩石的破坏作用的大小,主要取决于岩石造岩矿物性质及其组织结构状态(即孔隙分布情况和孔

隙率大小)。为此,我国现行《公路工程岩石试验规程》规定,采用吸水率和饱水率两项指标来表征岩石的吸水性。(1)吸水率 岩石吸水率是指在室常温(202℃)和大气压条件下,岩石试件最大的吸水质量占烘干(1055℃干燥至恒重)岩石试件质量的百分率。 吸水率wa的计算公式为: 式中:m h——材料吸水至恒重时的质量(g); m g——材料在干燥状态下的质量(g)。 (2)饱和吸水率 在强制条件下(沸煮法或真空抽气法),岩石在水中吸收水分的能力。 吸水率wsa 的计算公式为: 式中:m b——材料经强制吸水至饱和时的质量(g); m g——材料在干燥状态下的质量(g)。 饱水率的测定方法(JTG E41—2005): 采用真空抽气法。因为当真空抽气后占据岩石孔隙部的空气被排出,当恢复常压时,则水即进入具有稀薄残压的

岩石物性资料

岩(矿)石物性资料 (2008年12月11日) 一、密度: 表1-1 常见矿物的密度 名称 密度/g.3cm - 名称 密度/g.3cm -石英 2.65 金刚石 2.6-2.9 正长石 2.55-2.63 重晶石 4.4-4.7 钠长石 2.63 刚玉 3.9-4.0 钙长石 2.76 岩盐 3.1-3.2 方解石 2.72-2.94 硬石膏 2.7-3.0 白云石 2.86-2.93 石膏 2.2-2.4 白云母 2.77-2.88 霞石 2.55-2.65 黑云母 2.7-3.3 绿高岭石 1.72-2.5 角闪石 3.62-3.65 白榴石 2.45-2.5 透闪石 2.99-3.00 硅灰石 2.79-2.91 阳起石 3.1-3.2 蛇纹石 2.5-2.6 星叶石 3.0-3.15 赤铁矿 4.5-5.2 钠闪石 3.3-3.46 磁铁矿 4.8-5.2 纳钙闪石 3.3-3.46 黄铁矿 4.9-5.2 钛铁矿 4.5-5.0 磁黄铁矿 4.3-4.8 铬铁矿 3.2-4.4 黄铜矿 4.1-4.3 辉铜矿 5.5-5.8 斑铜矿 4.9-5.2 海绿石 2.2-2.9 石墨 2.09-2.25 多水高岭土 1.9-2.6 蛋白石 1.9-2.5 钾盐 1.99 叶绿泥石 2.6-3.0 硬绿泥石 3.3-3.6 金红石 4.18-4.23 锰矿 3.4-6.0 钨酸钙矿 5.9-6.2 铝矾土 2.4-2.5 煤 1.2-1.7 褐煤 1.1-1.3 表1-2 常见岩石密度 名称 密度/g.3cm - 名称 密度/g.3 cm -纯橄榄岩 2.5-3.3 橄榄岩 2.5-3.6 玄武岩 2.6-3.3 辉长岩 2.7-3.4 安山岩 2.5-2.8 辉绿岩 2.9-3.2 鞍山玢岩 2.6-2.9 花岗岩 2.4-3.1 石英岩 2.6-2.9 流纹岩 2.3-2.7 片麻岩 2.4-2.9 云母片岩 2.5-3.0 千枚岩 2.7-2.8 蛇纹岩 2.6-3.2

岩石物性资料21页

岩(矿)石物性资料 (2008年12月11日) 一、密度: 表1-1 常见矿物的密度 名称密度/g.3 cm-名称密度/g.3 cm-石英 2.65 金刚石2.6-2.9 正长石 2.55-2.63 重晶石4.4-4.7 钠长石 2.63 刚玉3.9-4.0 钙长石 2.76 岩盐3.1-3.2 方解石 2.72-2.94 硬石膏2.7-3.0 白云石 2.86-2.93 石膏2.2-2.4 白云母 2.77-2.88 霞石2.55-2.65 黑云母 2.7-3.3 绿高岭石1.72-2.5

角闪石 3.62-3.65 白榴石2.45-2.5 透闪石 2.99-3.00 硅灰石2.79-2.91 阳起石 3.1-3.2 蛇纹石2.5-2.6 星叶石 3.0-3.15 赤铁矿4.5-5.2 钠闪石 3.3-3.46 磁铁矿4.8-5.2 纳钙闪石 3.3-3.46 黄铁矿4.9-5.2 钛铁矿 4.5-5.0 磁黄铁矿4.3-4.8 铬铁矿 3.2-4.4 黄铜矿4.1-4.3 辉铜矿 5.5-5.8 斑铜矿4.9-5.2 海绿石 2.2-2.9 石墨2.09-2.25 多水高岭土 1.9-2.6 蛋白石1.9-2.5

钾盐 1.99 叶绿泥石2.6-3.0 硬绿泥石 3.3-3.6 金红石4.18-4.23 锰矿 3.4-6.0 钨酸钙矿5.9-6.2 铝矾土 2.4-2.5 煤1.2-1.7 褐煤 1.1-1.3 表1-2 常见岩石密度 名称密度/g.3 cm-名称密度/g.3 cm-纯橄榄岩 2.5-3.3 橄榄岩2.5-3.6 玄武岩 2.6-3.3 辉长岩2.7-3.4 安山岩 2.5-2.8 辉绿岩2.9-3.2 鞍山玢岩 2.6-2.9 花岗岩2.4-3.1 石英岩 2.6-2.9 流纹岩2.3-2.7 片麻岩 2.4-2.9 云母片岩

第3章 物性方法详解

第3章物性方法作者:毕欣欣孙兰义

物性方法 3.1 Aspen Plus数据库 3.2 Aspen Plus中的主要物性模型3.3 物性方法的选择 3.4 定义物性集 3.5 物性分析 3.6 物性估算 3.7 物性数据回归 3.8 电解质组分

系统数据库?是Aspen Plus的一部分,适用于每一个程序的运行,包括PURECOMP、SOLIDS、AQUEOUS、INORGANIC、BINARY等数据库 内置数据库?与Aspen Plus的数据库无关,用户自己输入,用户需自己创建并激活 用户数据库?用户需要自己创建并激活,且数据具有针对性,不是对所有用户开放

PURECOMP 常数参数。例如绝对温度、绝对压力。 相变的性质参数。例如沸点、三相点。 参考态的性质参数。例如标准生成焓以及标准生成吉布斯自由能。 随温度变化的热力学性质参数。例如饱和蒸汽压。 传递性质的参数,例如粘度。 安全性质的参数。例如闪点、着火点。 UNIFAC模型中的集团参数。 状态方程中的参数。 与石油相关的参数。例如油品的API值、辛烷值、芳烃含量、氢含量及

?IDEAL SYSOP0 理想模型 ?Lee 方程、PR 方程、RK 方程 状态方程模 型 ?Pitzer 、NRTL 、UNIFAC 、UNIQUAC 、VANLAAR 、WILSON 活度系数模 型 ?AMINES 、BK-10、STEAM-TA 特殊模型

?Aspen Plus提供了含有常用的热力学模型的物性方法。 ?物性方法与模型选择不同,模拟结果大相径庭。如精馏 塔模拟的例子。相同的条件计算理论塔板数,用理想方法得到11块,用状态方程得到7块,用活度系数法得42块。显然物性方法和模型选择的是否合适,也直接影响模拟结果是否有意义。 ?《Aspen plus物性方法和模型》 理想模型 理想物性方法K值计算方法 IDEAL Ideal Gas/Raoult's law/Henry's law SYSOP0 Release 8 version of Ideal Gas/Raoult's law

岩石物性资料

岩(矿)石物性资料 密度: 一. 表1-1 常见矿物的密度 名称 密度/g.3cm - 名称 密度/g.3cm -石英 2.65 金刚石 2.6-2.9 正长石 2.55-2.63 重晶石 4.4-4.7 钠长石 2.63 刚玉 3.9-4.0 钙长石 2.76 岩盐 3.1-3.2 方解石 2.72-2.94 硬石膏 2.7-3.0 白云石 2.86-2.93 石膏 2.2-2.4 白云母 2.77-2.88 霞石 2.55-2.65 黑云母 2.7-3.3 绿高岭石 1.72-2.5 角闪石 3.62-3.65 白榴石 2.45-2.5 透闪石 2.99-3.00 硅灰石 2.79-2.91 阳起石 3.1-3.2 蛇纹石 2.5-2.6 星叶石 3.0-3.15 赤铁矿 4.5-5.2 钠闪石 3.3-3.46 磁铁矿 4.8-5.2 纳钙闪石 3.3-3.46 黄铁矿 4.9-5.2 钛铁矿 4.5-5.0 磁黄铁矿 4.3-4.8 铬铁矿 3.2-4.4 黄铜矿 4.1-4.3 辉铜矿 5.5-5.8 斑铜矿 4.9-5.2 海绿石 2.2-2.9 石墨 2.09-2.25 多水高岭土 1.9- 2.6 蛋白石 1.9-2.5 钾盐 1.99 叶绿泥石 2.6-3.0 硬绿泥石 3.3-3.6 金红石 4.18-4.23 锰矿 3.4-6.0 钨酸钙矿 5.9-6.2 铝矾土 2.4-2.5 煤 1.2-1.7 褐煤 1.1-1.3 表1-2 常见岩石密度 名称 密度/g.3cm - 名称 密度/g.3cm -纯橄榄岩 2.5-3.3 橄榄岩 2.5-3.6 玄武岩 2.6-3.3 辉长岩 2.7-3.4 安山岩 2.5-2.8 辉绿岩 2.9-3.2 鞍山玢岩 2.6-2.9 花岗岩 2.4-3.1 石英岩 2.6-2.9 流纹岩 2.3-2.7 片麻岩 2.4-2.9 云母片岩 2.5-3.0 千枚岩 2.7-2.8 蛇纹岩 2.6-3.2 大理岩 2.6-2.9 白云岩 2.4-2.9 石灰岩 2.3-3.0 页岩 2.1-2.8 砂岩 1.8-2.8 白垩岩 1.8-2.6 干砂岩 1.4-1.7 粘土 1.5-2.2 表土 1.1-2.0 花岗闪长岩 2.69

氯化钙热力学物性参数

氯化钙热力学物性参数 1氯化钙理化性质及其应用 氯化钙的相对密度为2.15g/cm3,熔点782℃、沸点1600℃以上。具有极强的吸湿性,暴露于空气中极易潮解。易溶于水,同时放出大量的热。文献[1]详细介绍了氯化钙的应用和生产工艺:氯化钙的应用按级别分为:工业级氯化钙[2]和食品级氯化钙[3]。1.1工业级氯化钙 工业级氯化钙具有遇水发热且凝点低的特点,可用于融雪和除冰[4-6]。并有吸水性强的功能,还可用作干燥剂,如用于氮气、氧气、氢气等气体的干燥。还是港口消雾[7]和路面集尘[8]、织物防火的最佳材料[9]。氯化钙水溶液是冷冻机用和制冰用的重要制冷介质[10]。另外氯化钙还可当作脱水剂、防冻剂、絮凝剂及生产色淀颜料的沉淀剂等。 1.2食品级氯化钙应用 在食品生产中,氯化钙可用于食品加工的稳定剂、稠化剂、吸潮剂、口感改良剂等。在医药领域,氯化钙还可用于药物合成的原料。 1.3氯化钙用于热泵 氯化钙主要是用于化学热泵(Chemical Heat Pump 简称CHP),它是利用不同条件下的一对耦合的可逆化学反应所产生的吸收放热现象来实现热量的传递的,它是一种将热能转化为化学能,从而将蓄热机和热泵机合二为一的新型节能技术[11]。文献[11]研究了化学热

泵为CaCl 2/CH 3OH 体系,它利用了如下化学反应: 2323 2()2()CaCl CH OH g CaCl CH OH s ??→+?←?? 该反应是一个气固两相的可逆络合反应,反应的正方向是放热反应。 以CaCl 2/CH 3OH 体系设计的化学热泵的工作原理图如下: 下面是氯化钙的部分热力学性质图表:

各种岩石矿物地球物理物性参数总结

沉积岩、冲积物及水的电阻率 (单位:Ω.M) 岩石名称 ρ变化范围 岩石名称 ρ变化范围 固结页岩 20-2×103潜水 <100 厚层泥岩 10-8×102海水 n×10-1- n×100砾 石 2×103-104矿井水 n×100 砂 岩 1-6.4×108 n×10-1 深成盐渍水 灰 岩 50-107 未凝结 20 湿 粘 土 泥 灰 岩 3-70 粘 土 1-100 10-800 冲击层和砂 油 砂 4-800 白 云 岩 3.5×102-5×103 雨 水 >1000 河 水 n×10-1- n×102

各类岩石磁参数(数量级)一览表 岩石类型K(10-6CGSM)Jr(10-6CGSM)磁铁矿及钛磁铁矿103—106103—106 其他铁矿101—105100—105 超基性岩102—104102—104 基性岩101—104100—104 酸性岩101—103100—104 变质岩100—103100—102 沉积岩100—102100—102

火成岩和变质岩的电阻率 (单位:Ω.M) 岩石名称 ρ变化范围 岩石名称 ρ变化范围 花 岗 岩 3×102-106玄 武 岩 10-1.3×106(干) 花岗斑岩 4.5×102(湿)-1.3×106(干) 橄榄苏长岩 103-6×104(湿) 长石斑岩 4×103(湿) 橄 榄 岩 3×103(湿)-6.5×103(干) 钠 长 岩 3×102(湿)-3.3×103(干)角 闪 岩 8×103(湿)-6×107(干) 正 长 岩 102-106片 岩 20-104 闪 长 岩 104-105凝 灰 岩 2×103(湿)- 105(干) 闪长斑岩 1.9×103(湿)- 2.8×104(干) 石墨片岩 10-102 斑岩(各类) 60-104板 岩 6×102-4×107 英 安 岩 2×104(湿) 片 麻 岩 6.8×104(湿)-3×106(干) 辉绿斑岩 103(湿)-1.7×105(干) 大 理 岩 102-2.5×108(干) 辉 绿 岩 20-5×107矽 卡 岩 2.5×102(湿)-2.5×108(干)熔 岩 102-5×104石 英 岩 10-2×108 辉 长 岩 103-106

物性方法选择概述

对于初学者而言,除非他十分熟悉热力学的内容,否则物性方法的选择确实是个难点,在你们还没有重新学习过热力学或者精度过Aspen Plus物性方法和模型手册之前,出于学习软件的目的,先讲一下物性方法。 首先要明白什么是物性方法? 比如我们做一个很简单的化工过程计算,一股100℃,1bar的水-乙醇(50:50摩尔比,100kmol/h)的物料经过一个换热器后冷却到了80℃,0.9bar,问如下值分别是多少? 1.入口物料的密度,汽相分率。 2.换热器的负荷。 3.出口物料的汽相分率,汽相密度,液相密度。复杂一点,我还可以问物料的粘度,逸度,活度,熵等等。 以上的值怎么计算出来? 好,我们来假设进出口物料全是理想气体,完全符合理想气体的行为,则其密度可以使用pv=nRT计算出来。并且汽相分率全为1,即该物料是完全气体。由于理想气体的焓与压力无关,则换热器的负荷可以根据水和乙醇的定压热熔计算出来。 在此例当中,描述理想气体行为的若干方程,就是一种物性方法(Aspen Plus中称为Ideal Property Method)。简单的说,物性方法就是计算物流物理性质的一套方程,一种物性方法包含了若干物理化学计算公式。对于本例而言至少包含了如下两个方程: 1.pV=nRT 2.dH=C p dT 实际上,以上是一种最简单的计算方法,但结果是错误的。对于水-乙醇体系在此两种温度压力下,如果当作理想气体来处理,其误差是比较大的,尤其对于液相。按照理想气体处理的话,冷却后仍然为气体,不应当有液相出现。 那么应该如何计算呢?主要涉及以下过程: 1.对于汽相pvt计算,可以使用srk方程,从而可以得到密度。液相也可以使用状态方程计算密度,但此处不推荐使用,可以使用Rackett模型计算液相密度。 2.至于物流的相态,则首先需要做汽液平衡计算。 3.在进行汽液平衡计算时,液相应用活度系数方程计算组分的逸度系数,并且还需要使用拓展antoine方程计算蒸汽压力。 4.换热器负荷的计算比较复杂,可以使用进出口物流焓差来计算,那么需要计算出进出口物流的焓。 5.焓的计算有多种途径,对于液相比较常用的方法是计算理想液体混合物焓,然后再加上过剩焓计算出来。要计算非理想液体混合物过剩焓,则可通过混合物质汽相焓与蒸发焓差来计算,非理想性比较强是还要考虑混合焓差。 由此可见,实际过程至少包含如下公式方程: 1.状态方程srk, 2.液相密度方程rackett. 3.拓展antoine方程. 4.汽,液相逸度系数方程 5.液相活度系数方程 6.汽相焓方程,通过srk方程导出,需要设计纯气体Cp=f(p,t)方程。 7.液相焓方程,相当复杂,此处不再重复。 8.其他方程,包括数学方程,比如以上计算时涉及到了微积分运算,汽液平衡的回归运算等等。

PROII常用热力学方程的选择

PROII常用热力学方程的选择 SRK方程: 用于气体及炼油过程,可计算K值,焓,熵,气体密度,液体密度(不好),通常不用于高度非理想体系,支持自由水,不支持VLLE。 PR方程: 主炼油过程,可计算K值,焓,熵,气体密度,不适用于高度非理想体系,支持自由水,不支持VLLE。 修正的SRK及PR方程: 可计算K值,焓,熵,气体密度,适用于非理想体系,不支持自由水,可用于VLLE。 Uniwaals方程: 可计算K值,焓,熵,气液体密度,如果基团贡献参数由数据库或用户提供时,可很好地用于高度非理想体系。用于低中压系统,不支持自由水,支持VLLE。 BWRS方程: 可计算K值,焓,熵,气液体密度,可用于炼油厂的轻重烃组分。但不支持严格的双液相行为。支持自由水,不支持VLLE。 六聚物方程: 适用于HF烷基化及致冷剂合成,可计算K值,焓,熵,气体密度,支持严格的双液相行为。适用于仅一个六聚物组分且无水。 LKP方程: 可计算K值,焓,熵,气液体密度,主要用于轻烃及含大量氢气的重整系统。可用于VLLE 体系,不适用于自由水。

NRTL液体活度方程: 用于VLE或VLLE体系,不支持自由水。通常用于非理想体系,特别是不混合体系。用于计算K值。 Uniquac液体活度方程: 用于VLE或VLLE体系,不支持自由水。通常用于高度非理想体系,特别是不混合体系。用于计算K值。 Unifac液体活度方程: 用于VLE或VLLE体系,不支持自由水。Unifac基团贡献法通常用于低压、非理想体系。通常限制组分少于10,或较少的基团,且系统含有低分子量的聚合物。计算K值。 修正的Unifac液体活度方程: 用于VLE或VLLE体系,不支持自由水。Unifac基团贡献法通常用于低压、非理想体系。通常限制组分少于10,或较少的基团,且系统含有低分子量的聚合物。计算K值。 Wilson方程: 用于VLE体系,不支持自由水。适用于轻度非理想体系。计算K值。 Van laar方程: 用于VLE及VLLE体系,不支持自由水。通常用于轻度非理想体系。计算K值。 Margules方程: 用于VLE及VLLE体系,不支持自由水。通常用于轻度非理想体系。计算K值。 Regular Solution方程: 用于VLE及VLLE体系,支持自由水。通常用于轻度非理想体系。计算K值。 Flory-Huggins方程: 用于VLE及VLLE体系,不支持自由水。当体系混合物的尺寸相差较大时,例如聚合物溶

Aspen_Plus推荐使用的物性计算方法

首先要明白什么是物性方法比如我们做一个很简单的化工过程计算,一股100C,1atm的水-乙醇(1:1的摩尔比,1kmol/h)的物料经过一个换热器后冷却到了80C,,问如分别下值是多少1.入口物料的密度,汽相分率。2.换热器的负荷。3.出口物料的汽相分率,汽相密度,液相密,还可以问物料的粘度,逸度,活度,熵等等。以上的值怎么计算出来 好,我们来假设进出口的物料全是理想气体,完全符合理想气体的行为,则其密度可以使用PV=nRT计算出来。并且汽相分率全为1,即该物料是完全气体。由于理想气体的焓与压力无关,则换热器的负荷可以根据水和乙醇的定压热熔计算出来。在此例当中,描述理想气体行为的若干方程,比如涉及至少如下2个方程:=nRT,=CpdT. 这就是一种物性方法(aspen plus 中称为ideal property method)。简单的说,物性方法就是计算物流物理性质的一套方程,一种物性方法包含了若干的物理化学计算公式。当然这例子选这种物性方法显然运行结果是错误的,举这个例子主要是让大家对物性方法有个概念。对于水-乙醇体系在此两种温度压力下,如果当作理想气体来处理,其误差是比较大的,尤其对于液相。按照理想气体处理的话,冷却后仍然为气体,不应当有液相出现。那么应该如何计算呢想要准确的计算这一过程需要很多复杂的方程,而这些方程如果需要我们用户去一个个选择出来,则是一件相当麻烦的工作,并且很容易出错。好在模拟软件已经帮我做了这一步,这就是物性方法。对于本例,我们对汽相用了状态方程,srk,液相用了活度系数方程(nrtl,wilson,等等),在aspen plus中将此种方法叫做活度系数法。如果你选择nrtl方程,就称为nrtl方法,wilson方程就成为wilson物性方法(wilson property method)。 在aspen plus中(或者化工热力学中)有两大类十分重要的物性方法,对于初学者而言,了解到此两类物性方法,基本上就可以开始着手模拟工作了。大体而言,根据液相混合物逸度的计算方法的不同,物性方法可以分为两大类:状态方程法和活度系数法。状态方程法使用状态方程来计算汽相及液相的逸度,而活度系数法使用状态方程计算汽相逸度,但是通过活度系数来计算液相的逸度。常见的状态方程有ideal,srk,pr,lk方程以及他们的一些改进方程.状态方程法就是基于此类状态方程来计算逸度,压缩因子,焓等等的物性方法。常见的活度系数方

岩 石 物 性

油层2 - 储层岩石的物理特性 1.岩石的粒度:岩石颗粒的大小称为粒度粒度组成:是指不同粒径范围(粒级)的颗粒占全部颗粒的百分数(含量)通常用质量百分数来表示。测定方法筛析法和沉降法多孔介质 2.不均匀系数:累计分布曲线上累计质量60%所对应的颗粒直径d60与累计质量10%所对应的颗粒直径d10之比称为不均匀系数 3.粒度中值:累计分布曲线上质量50%所对应的颗粒直径Md 粒度分布曲线 4.分选系数: 表示颗粒大小的均匀程度,So 5.岩石的比面: 是指单位体积岩石内孔隙内表面积或单位体积岩石内岩石骨架的总表面积。 6.影响比面大小的因素P112除受粒径影响外,还受颗粒排列方式、颗粒形状、胶结物含量等因素的影响 7.胶结物:是除碎悄屑颗粒以外的化学沉淀物质,一般是结晶的或非结晶的自生矿物,在砂岩中含量不大于50%。胶结物含量增加使岩石的储油能力和渗透能力变差 8.泥质胶结物:是沉积岩粒度分析中粒度小于0.01的物质的总和粘土矿物: 是指天然的土状细粒集合体,当它与少量的水混合时具有可塑性,粘土矿物是指组成粘土主体的矿物 9.自生粘土矿物在砂岩孔隙中的产状的三种基本类型:1)分散质点式2)薄膜式3)架桥式 10.陆源粘土与自生粘土在储层岩石中的产状不同是造成地层非均质性的原因,分布方式不同则造成地层伤害和生产能力下降 11.灰质胶结物:主要由碳酸盐类矿物组成 12.胶结类型P116胶结物在岩石中的分布状况以及它们与碎屑颗粒的接触关系。1)基底式胶结2)孔隙式胶结3)接触式胶结 13.空隙:孔隙空洞裂缝 14.岩石孔隙类型-----按成因分类 1)粒间孔隙 2)杂基内微孔隙 3)晶体次生晶间孔隙 4)纹理及层理缝 5)裂缝孔隙 6)溶蚀孔隙 15.按孔隙大小的分类 1)超毛细管孔隙 2)毛细管孔隙 3)微毛细管孔隙 16.岩石孔隙组成P120是指组成岩石的各种直径的孔隙数量的比例 17.孔隙结构P121是全部孔隙特征的总称,包括岩石孔隙的大小、形状、孔间连通情况、孔隙类型、孔壁粗糙程度等全部孔隙特征和它的构成方式。直接影响到岩石的储集特性和渗流特性 18.孔隙结构参数:孔隙大小及其分选性;孔喉比;孔隙配位数;孔隙迂曲度 19.孔隙结构类型:1)单重孔隙介质:粒间孔隙结构;纯裂缝结构 2)双重孔隙介质:裂缝--粒间孔结构;孔洞--粒间孔结构 3)三重孔隙介质:粒间孔隙--微裂缝--大洞穴;粒间孔隙--微裂缝--大裂缝 20.孔隙度:是指岩石中孔隙体积Vp与岩石总体积Vb的比值,表达式:

PROII热力学方法的选择

PROⅡ热力学方法的选用 ProⅡ热力学最少输入:对于只进行热平衡、物料平衡计算最少输入SYSTEM=SRK,传递物性是不需要的。 每一个不同的SYSTEM关键词均包括K值、气液相焓值、熵值、气液相密度计算方法,但不同的关键词具体每一种性质计算方法参传递性质:见ProⅡ输入手册。 传递性质:Transport关键词,决定传递性质的计算方法,包括汽液相粘度、汽液相导热系统、表面张力,严格换热计算、塔板水学计算传递物性总是必需的。 体系性质:模拟计算之前,必须知道系统所有组分,及形成什么样的体系,强极性还是弱极性。体系所处的温度、压力范围。 水的考虑:体系内是否有水?水是做严格第二相,还是作为近似处理?作为近似处理可用一般的热力学方法。作为严格第二相处理,必须使用适于两液相热力学方法。 热力学的选用是模拟成功第一因素。 与实际吻合的热力学是最好的热力学,因此有准确的实验数据或工程实际数据时,应筛选计算结果与实际数据吻合的热力学。 应尽量选用最简单、最适用的热力学。 通用关联式或状态方程无法用于极性体系。 选用热力学时考虑体系主体,而不应重点考虑微量组分,否则计算结果反与实际不符。 炼油和气体工艺的应用: 水的考虑:用简单的烃热力学方法的缺省水倾析相完全可满足要求。例:SRK、PR、GS、BK10 低压原油系统(常减压塔):BK10,GS/IGS,SRK/PR。 高压原油系统(FCCU主分馏塔、COKER主分馏塔):GS,SRK/PR 重整和加氢系统:SRK/PR用API计算液相密度。 润滑油和溶剂油沥青系统:SRK/P,SRKM。 天然气系统: —SRK/PR/BWRS 对于大部分烃和水烃系。 —SRKKD 对于水烃高压系统,不包含极性组分。 —SRKM/PRM 包含水和其他极性组分,严格两相。

地球物理勘探中常用的各类岩石物性参数

各类岩石磁参数(数量级)一览表 沉积岩、冲积物及水的电阻率(单位:Ω.M) 火成岩和变质岩的电阻率(单位:Ω.M)

金属元素及常见矿物电阻率(单位:Ω.M)

部分岩石、矿石极化率实测数据统计结果 明显不含电子导电矿物的岩石石墨化岩石含浸染状硫化物的岩石 浸染状硫化物矿石 块状硫化物矿石 梯形下底边两端点位置表示极化率的极大值和极小值;梯形上边两端点位置是不同作者得到的极化率平均值。 主要岩石和矿石密度表

组成岩石和矿石的矿物磁性 绝大部分矿物属逆磁性和顺磁性,只有少部分的矿物具有铁磁性。 一、属于逆磁性的矿物 岩盐石膏方解石石英石油大理石石墨金刚石及某些长石等,其值的数量级为-10-6CGSM单位。基本上可视为接近于零。但有时在某些简单的地质条件下,在某些盐丘和石英脉上能观测到微弱的负异常。 二、属于顺磁性的矿物 如黑云母、辉石、角闪石、蛇纹石、石榴子石、堇青石、褐铁矿等。磁化

率变化范围由0—5000×10-6CGSM单位。有时,由于矿物中掺有磁铁矿而出现较高的磁化率。 三、自然界并不存在纯铁磁性矿物,主要是铁淦氧磁性的(也有反铁磁性的)矿物 如铁的氧化物和硫化物及铁的氧化物和其他金属氧化物的混合结晶体。这些矿物虽然数量不多,但磁性很强。 1. 磁铁矿(FeO.Fe 2O 3 ):它是典型的铁淦氧磁体。在弱磁场中的磁化率为 0--29CGSM,Jr=4--20 CGSM,Tc=560—5650C。饱和磁化Js=485 CGSM。Hc=7—30Oe。 2. 氧化铁Fe 2O 3 : 有两种类型,即γFe 2 O 3 和αFe 2 O 3 。前者是磁赤铁矿к =0.1CGSM,Tc=7200C,Hc=30—400Oe。后者是赤铁矿,为菱形晶体系,具有反铁磁性,к=20-100×10-6CGSM,Tc=6750C,Hc=7600Oe。天然的赤铁矿常含有铁磁 性杂质(γFe 2O 3 和Fe 3 O 4 )使к及Jr增加。赤铁矿的一个重要特性是当其从高温 冷却下来时,会得到很强的温差剩磁,比感磁大数千倍。 3. 钛铁矿(FeO.TiO 2 ):顺磁性,к=500×10-6CGSM。钛铁矿常与磁铁矿形成钛磁铁矿,表现铁磁性。在自然界中,大部分的铁淦氧磁体差不多都有FeO、 Fe 2O 3 及TiO 2 三种成分组合而成,称之为FeO—Fe 2 O 3 —TiO 2 三元系。在矿物组合中, 这三种化合物的比例不同组成不同性质的磁性矿物。 4. 磁黄铁矿FeS (1+X): 铁和硫的化合物有特殊的磁性, FeS 2 为黄铁矿,具有 顺磁性。而FeS (1+X),(Fe 11 S 12 —Fe 6 S 7 )一般具有铁淦氧磁性,称为磁黄铁矿 Tc=300—3250C,Hc=15—20Oe。 5. 褐铁矿(Fe 2O 3 .nH 2 O): к=50--500×10-6CGSM。但有铁磁性杂质时有明 显的铁磁性。Hc=100Oe,Jr=0.01 CGSM。 6. 针铁矿(α—Fe 2O 3 .H 2 O),纤铁矿(γ—Fe 2 O 3 .H 2 O)及菱铁矿(FeCO 3 )。前 二者为顺磁性,к=40×10-6CGSM。后者是反铁磁性矿物。

相关文档
最新文档