机器学习笔记-冗余的数据对特征量进行降维

机器学习笔记-冗余的数据对特征量进行降维

机器学习笔记:冗余的数据对特征量进行降维

如果我们有许多冗余的数据,我们可能需要对特征量进行降维(Dimensionality Reduction)。

我们可以找到两个非常相关的特征量,可视化,然后用一条新的直线来准确的描述这两个特征量。例如图10-1所示,x1和x2是两个单位不同本质相同的特征量,我们可以对其降维。

图10-1 一个2维到1维的例子

又如图10-2所示的3维到2维的例子,通过对x1,x2,x3的可视化,发现虽然样本处于3维空间,但是他们大多数都分布在同一个平面中,所以我们可以通过投影,将3维降为2维。

图10-2 一个3维到2维的例子

降维的好处很明显,它不仅可以数据减少对内存的占用,而且还可以加快学习算法的执行。注意,降维只是减小特征量的个数(即n)而不是减小训练集的个数(即m)。

10.1.2 Motivation two: Visualization

我们可以知道,但特征量维数大于3时,我们几乎不能对数据进行可视化。所以,有时为了对数据进行可视化,我们需要对其进行降维。我们可以找到2个或3个具有代表性的特征量,他们(大致)可以概括其他的特征量。

例如,描述一个国家有很多特征量,比如GDP,人均GDP,人均寿命,平均家庭收入等等。想要研究国家的经济情况并进行可视化,我们可以选出两个具有代表性的特征量如GDP和人均GDP,然后对数据进行可视化。如图10-3所示。

图10-3 一个可视化的例子

10.2 Principal Component Analysis

主成分分析(Principal Component Analysis : PCA)是最常用的降维算法。

PCA降维方法(主成分分析降维)

一、简介 PCA(Principal Components Analysis)即主成分分析,是图像处理中经常用到的降维方法,大家知道,我们在处理有关数字图像处理方面的问题时,比如经常用的图像的查询问题,在一个几万或者几百万甚至更大的数据库中查询一幅相近的图像。这时,我们通常的方法是对图像库中的图片提取响应的特征,如颜色,纹理,sift,surf,vlad等等特征,然后将其保存,建立响应的数据索引,然后对要查询的图像提取相应的特征,与数据库中的图像特征对比,找出与之最近的图片。这里,如果我们为了提高查询的准确率,通常会提取一些较为复杂的特征,如sift,surf等,一幅图像有很多个这种特征点,每个特征点又有一个相应的描述该特征点的128维的向量,设想如果一幅图像有300个这种特征点,那么该幅图像就有300*vector(128维)个,如果我们数据库中有一百万张图片,这个存储量是相当大的,建立索引也很耗时,如果我们对每个向量进行PCA处理,将其降维为64维,是不是很节约存储空间啊?对于学习图像处理的人来说,都知道PCA是降维的,但是,很多人不知道具体的原理,为此,我写这篇文章,来详细阐述一下PCA及其具体计算过程: 二、PCA原理 1、原始数据: 为了方便,我们假定数据是二维的,借助网络上的一组数据,如下: x=[2.5, 0.5, 2.2, 1.9, 3.1, 2.3, 2, 1,1.5, 1.1]T y=[2.4, 0.7, 2.9, 2.2, 3.0, 2.7, 1.6, 1.1, 1.6, 0.9]T 2、计算协方差矩阵 什么是协方差矩阵?相信看这篇文章的人都学过数理统计,一些基本的常识都知道,但是,也许你很长时间不看了,都忘差不多了,为了方便大家更好的理解,这里先简单的回顾一下数理统计的相关知识,当然如果你知道协方差矩阵的求法你可以跳过这里。 (1)协方差矩阵: 首先我们给你一个含有n个样本的集合,依次给出数理统计中的一些相关概念: 均值: 标准差:

特征值分解与奇异值分解

特征值:一矩阵A作用与一向量a,结果只相当与该向量乘以一常数λ。即A*a=λa,则a 为该矩阵A的特征向量,λ为该矩阵A的特征值。 奇异值:设A为m*n阶矩阵,A H A的n个特征值的非负平方根叫作A的奇异值。记 (A) 为σ i 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景。奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性。就像是描述一个人一样,给别人描述说这个人长得浓眉大眼,方脸,络腮胡,而且带个黑框的眼镜,这样寥寥的几个特征,就让别人脑海里面就有一个较为清楚的认识,实际上,人脸上的特征是有着无数种的,之所以能这么描述,是因为人天生就有着非常好的抽取重要特征的能力,让机器学会抽取重要的特征,SVD是一个重要的方法。 在机器学习领域,有相当多的应用与奇异值都可以扯上关系,比如做feature reduction的PCA,做数据压缩(以图像压缩为代表)的算法,还有做搜索引擎语义层次检索的LSI(Latent Semantic Indexing) 另外在这里抱怨一下,之前在百度里面搜索过SVD,出来的结果都是俄罗斯的一种狙击枪(AK47同时代的),是因为穿越火线这个游戏里面有一把狙击枪叫做 SVD,而在Google上面搜索的时候,出来的都是奇异值分解(英文资料为主)。想玩玩战争游戏,玩玩COD不是非常好吗,玩山寨的CS有神马意思啊。国内的网页中的话语权也被这些没有太多营养的帖子所占据。真心希望国内的气氛能够更浓一点,搞游戏的人真正是喜欢制作游戏,搞Data Mining的人是真正喜欢挖数据的,都不是仅仅为了混口饭吃,这样谈超越别人才有意义,中文文章中,能踏踏实实谈谈技术的太少了,改变这个状况,从我自己做起吧。 前面说了这么多,本文主要关注奇异值的一些特性,另外还会稍稍提及奇异值的计算,不过本文不准备在如何计算奇异值上展开太多。另外,本文里面有部分不算太深的线性代数的知识,如果完全忘记了线性代数,看本文可能会有些困难。 一、奇异值与特征值基础知识: 特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。先谈谈特征值分解吧:

降维和特征选择

1.数据降维和特征选择的区别 数据降维,一般说的是维数约简(Dimensionality reduction)。它的思路是:将原始高维特征空间里的点向一个低维空间投影,新的空间维度低于原特征空间,所以维数减少了。在这个过程中,特征发生了根本性的变化,原始的特征消失了(虽然新的特征也保持了原特征的一些性质)。 特征选择,是从 n 个特征中选择 d (d

高维数据降维方法研究

·博士论坛· 高维数据降维方法研究 余肖生,周 宁 (武汉大学信息资源研究中心,湖北武汉430072) 摘 要:本文介绍了MDS 、Isomap 等三种主要的高维数据降维方法,同时对这些降维方法的作用进 行了探讨。 关键词:高维数据;降维;MDS ;Isomap ;LLE 中图分类号:G354 文献标识码:A 文章编号:1007-7634(2007)08-1248-04 Research on Methods of Dimensionality Reduction in High -dimensional Data YU Xiao -s heng ,ZH OU Ning (Research Center for Information Resourc es of Wuhan University ,W uhan 430072,China ) A bstract :In the paper the authors introduce three ke y methods of dimensionality r eduction in high -dimen -sional dataset ,such as MDS ,Isomap .At the same time the authors discuss applications of those methods .Key words :high -dimensional data ;dimensionality reduction ;MDS ;Isomap ;LLE 收稿日期:2006-12-20 基金项目:国家自科基金资助项目(70473068) 作者简介:余肖生(1973-),男,湖北监利人,博士研究生,从事信息管理与电子商务研究;周 宁(1943-),男, 湖北钟祥人,教授,博士生导师,从事信息组织与检索、信息系统工程、电子商务与电子政务研究. 1 引 言 随着计算机技术、多媒体技术的发展,在实际应用中经常会碰到高维数据,如文档词频数据、交易数据及多媒体数据等。随着数据维数的升高,高维索引结构的性能迅速下降,在低维空间中,我们经常采用Lp 距离(当p =1时,Lp 距离称为Man -hattan 距离;当p =2时,Lp 距离称为Euclidean 距离)作为数据之间的相似性度量,在高维空间中很多情况下这种相似性的概念不复存在,这就给基于高维数据的知识挖掘带来了严峻的考验【1】 。而这些高维数据通常包含许多冗余,其本质维往往比原始的数据维要小得多,因此高维数据的处理问题可以归结为通过相关的降维方法减少一些不太相关的数据而降低它的维数,然后用低维数据的处理办法进行处理 【2-3】 。高维数据成功处理的关键在于降维方 法的选择,因此笔者拟先介绍三种主要降维方法, 接着讨论高维数据降维方法的一些应用。 2 高维数据的主要降维方法 高维数据的降维方法有多种,本文主要讨论有代表性的几种方法。 2.1 MDS (multidimensional scaling )方法 MDS 是数据分析技术的集合,不仅在这个空间上忠实地表达数据之间联系,而且还要降低数据集的维数,以便人们对数据集的观察。这种方法实质是一种加入矩阵转换的统计模式,它将多维信息 通过矩阵运算转换到低维空间中,并保持原始信息之间的相互关系 【4】 。 每个对象或事件在多维空间上都可以通过一个 点表示。在这个空间上点与点之间的距离和对象与对象之间的相似性密切相关。即两个相似的对象通过空间临近的两个点来表示,且两个不相似的对象 第25卷第8期2007年8月 情 报 科 学 Vol .25,No .8 August ,2007

降维方法

国内当前流行的文本分类算法有最大熵(MaximumEntropy,ME),K近邻法(KNN),朴素贝叶斯法(NB),支持向量机法(SVM),线性最小平分拟合法(LLSF),神经网络法(Nnet)等,其中KNN、NB和SVM的分类效果相对较好。 文本分类由文本表示,特征降维和分类器训练组成,分类算法只是其中的一个环节,另外两个环节也非常重要。目前普遍采用向量空间模型来表示文本,常见的特征词加权方法有:布尔权重、词频权重、TF—IDF权重等,常见的特征选择方法有文档频率,互信息和统计等。 基于机器学习文本分类的基础技术由文本的表示(representation) 、分类方法及效果(effectiveness)评估3 部分组成。Sebastiani对文本分类发展历程及当时的技术进行了总结,主要内容包括: (1)文本关于项(term)或特征的向量空间表示模型(VSM)及特征选择 (selection)与特征提取(extraction)两种表示空间降维(dimensionality reduction)策略,讨论了χ2,IG,MI,OR 等用于特征过滤的显著性统计量及项聚类和隐含语义索引(LSI)等特征提取方法; (2) 当时较成熟的分类模型方法,即分类器的归纳构造(inductive construction)或模型的挖掘学习过程; (3) 分类效果评估指标,如正确率(precision) 召回率(recall) 均衡点(BEP) F β(常用F1)和精度(accuracy)等,以及之前报道的在Reuters 等基准语料上的效果参考比较。 1、中文评论语料的采集 利用DOM 构建网页结构树,对结构树的分析实现了中文评论的自动采集的方

较大规模数据应用PCA降维的一种方法

计算机工程应用技术 本栏目责任编辑:梁 书 较大规模数据应用PCA 降维的一种方法 赵桂儒 (中国地震台网中心,北京100045) 摘要:PCA 是一种常用的线性降维方法,但在实际应用中,当数据规模比较大时无法将样本数据全部读入内存进行分析计 算。文章提出了一种针对较大规模数据应用PCA 进行降维的方法,该方法在不借助Hadoop 云计算平台的条件下解决了较大规模数据不能直接降维的问题,实际证明该方法具有很好的应用效果。关键词:主成分分析;降维;大数据中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2014)08-1835-03 A Method of Dimensionality Reduction for Large Scale Data Using PCA ZHAO Gui-ru (China Earthquake Networks Center,Beijing 100045,China) Abstract:PCA is a general method of linear dimensionality reduction.It is unable to read all the sample data into the memory to do analysis when the data scale becomes large.A method of dimensionality reduction for large scale data using PCA without Ha?doop is proposed in this paper.This method solves the problem that it can ’t do dimensionality reduction directly on large scale data.Practice proves that this method has a good application effect.Key words:PCA;dimensionality reduction;large scale data 现实生活中人们往往需要用多变量描述大量的复杂事物和现象,这些变量抽象出来就是高维数据。高维数据提供了有关客观现象极其丰富、详细的信息,但另一方面,数据维数的大幅度提高给随后的数据处理工作带来了前所未有的困难。因此数据降维在许多领域起着越来越重要的作用,通过数据降维可以减轻维数灾难和高维空间中其他不相关属性。所谓数据降维是指通过线性或非线性映射将样本从高维空间映射到低维空间,从而获得高维数据的一个有意义的低维表示的过程。 主成分分析(Principal Component Analysis ,PCA )是通过对原始变量的相关矩阵或协方差矩阵内部结构的研究,将多个变量转换为少数几个综合变量即主成分,从而达到降维目的的一种常用的线性降维方法。这些主成分能够反映原始变量的绝大部分信息,它们通常表示为原始变量的线性组合。在实际应用中当数据规模超过计算机内存容量(例如16G)时就无法将样本数据全部读入内存来分析原始变量的内部结构,这成为PCA 在实际应用中存在的一个问题。该文从描述PCA 变换的基本步骤出发,提出了一种不需要Hadoop 等云计算平台即可对较大规模数据进行降维的一种方法,实际证明该方法具有很好的应用效果。 1PCA 变换的基本步骤 PCA 是对数据进行分析的一种技术,主要用于数据降维,方法是利用投影矩阵将高维数据投影到较低维空间。PCA 降维的一般步骤是求取样本矩阵的协方差矩阵,计算协方差矩阵的特征值及其对应的特征向量,由选择出的特征向量构成这个投影矩阵。 ?è???????? ÷÷÷÷÷÷cov(x 1,x 1),cov(x 1,x 2),cov(x 1,x 3),?,cov(x 1,x N )cov(x 2,x 1),cov(x 2,x 2),cov(x 2,x 3),?,cov(x 2,x N ) ?cov(x N ,x 1),cov(x N ,x 2),cov(x N ,x 3),?,cov(x N ,x N )(1)假设X M ×N 是一个M ×N (M >N ),用PCA 对X M ×N 进行降维分析,其步骤为:1)将矩阵X M ×N 特征中心化,计算矩阵X M ×N 的样本的协方差矩阵C N ×N ,计算出的协方差矩阵如式(1)所示,式中x i 代表X M ×N 特征中心化后的第i 列; 2)计算协方差矩阵C N ×N 的特征向量e 1,e 2...e N 和对应的特征值λ1,λ2...λN ,将特征值按从大到小排序; 3)根据特征值大小计算协方差矩阵的贡献率及累计贡献率,计算公式为: θi =λi ∑n =1 N λn i =1,2,...,N (2) 收稿日期:2014-01-20基金项目:国家留学基金资助项目(201204190040)作者简介:赵桂儒(1983-),男,山东聊城人,工程师,硕士,迈阿密大学访问学者,主要研究方向为多媒体信息处理。 1835

常见的特征选择或特征降维方法

URL:https://www.360docs.net/doc/615190724.html,/14072.html 特征选择(排序)对于数据科学家、机器学习从业者来说非常重要。好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点、底层结构,这对进一步改善模型、算法都有着重要作用。 特征选择主要有两个功能: 1.减少特征数量、降维,使模型泛化能力更强,减少过拟合 2.增强对特征和特征值之间的理解 拿到数据集,一个特征选择方法,往往很难同时完成这两个目的。通常情况下,选择一种自己最熟悉或者最方便的特征选择方法(往往目的是降维,而忽略了对特征和数据理解的目的)。 在许多机器学习的书里,很难找到关于特征选择的容,因为特征选择要解决的问题往往被视为机器学习的一种副作用,一般不会单独拿出来讨论。本文将介绍几种常用的特征选择方法,它们各自的优缺点和问题。 1 去掉取值变化小的特征Removing features with low variance 这应该是最简单的特征选择方法了:假设某种特征的特征值只有0和1,并且在所有输入样本中,95%的实例的该特征取值都是1,那就可以认为这个特征作用不大。如果100%都是1,那这个特征就没意义了。当特征值都是离散型变量的时候这种方法才能用,如果是连续型变量,就需要将连续变量离散化之后才能用,而且实际当中,一般不太会有95%以上都取某个值的特征存在,所以这种方法虽然简单但是不太好用。可以把它作为特征选择的预处理,先去掉那些取值变化小的特征,然后再从接下来提到的特征选择方法中选择合适的进行进一步的特征选择。

2 单变量特征选择Univariate feature selection 单变量特征选择能够对每一个特征进行测试,衡量该特征和响应变量之间的关系,根据得分扔掉不好的特征。对于回归和分类问题可以采用卡方检验等方式对特征进行测试。 这种方法比较简单,易于运行,易于理解,通常对于理解数据有较好的效果(但对特征优化、提高泛化能力来说不一定有效);这种方法有许多改进的版本、变种。 2.1 Pearson相关系数Pearson Correlation 皮尔森相关系数是一种最简单的,能帮助理解特征和响应变量之间关系的方法,该方法衡量的是变量之间的线性相关性,结果的取值区间为[-1,1],-1表示完全的负相关(这个变量下降,那个就会上升),+1表示完全的正相关,0表示没有线性相关。 Pearson Correlation速度快、易于计算,经常在拿到数据(经过清洗和特征提取之后的)之后第一时间就执行。 Pearson相关系数的一个明显缺陷是,作为特征排序机制,他只对线性关系敏感。如果关系是非线性的,即便两个变量具有一一对应的关系, Pearson相关性也可能会接近0。 2.2 互信息和最大信息系数Mutual information and maximal information coefficient (MIC)

数据降维方法分析与研究_吴晓婷

收稿日期:2008211226;修回日期:2009201224 基金项目:国家自然科学基金资助项目(60372071);中国科学院自动化研究所复杂系统与智能科学重点实验室开放课题基金资助项目(20070101);辽宁省教育厅高等学校科学研究基金资助项目(2004C031) 作者简介:吴晓婷(19852),女(蒙古族),内蒙古呼伦贝尔人,硕士研究生,主要研究方向为数据降维、模式识别等(xiaoting wu85@hot m ail . com );闫德勤(19622),男,博士,主要研究方向为模式识别、数字水印和数据挖掘等. 数据降维方法分析与研究 3 吴晓婷,闫德勤 (辽宁师范大学计算机与信息技术学院,辽宁大连116081) 摘 要:全面总结现有的数据降维方法,对具有代表性的降维方法进行了系统分类,详细地阐述了典型的降维方法,并从算法的时间复杂度和优缺点两方面对这些算法进行了深入的分析和比较。最后提出了数据降维中仍待解决的问题。 关键词:数据降维;主成分分析;局部线性嵌入;等度规映射;计算复杂度 中图分类号:TP301 文献标志码:A 文章编号:100123695(2009)0822832204 doi:10.3969/j .jssn .100123695.2009.08.008 Analysis and research on method of data dimensi onality reducti on WU Xiao 2ting,Y AN De 2qin (School of Co m puter &Infor m ation Technology,L iaoning N or m al U niversity,D alian L iaoning 116081,China ) Abstract:This paper gave a comp rehensive su mmarizati on of existing di m ensi onality reducti on methods,as well as made a classificati on t o the rep resentative methods systematically and described s ome typ ical methods in detail.Further more,it deep ly analyzed and compared these methods by their computati onal comp lexity and their advantages and disadvantages .Finally,it p r oposed the crucial p r oble m s which needed t o be res olved in future work in data di m ensi onality reducti on . Key words:data di m ensi onality reducti on;p rinci pal component analysis (PCA );l ocally linear e mbedding (LLE );is ometric mapp ing;computati onal comp lexity 近年来,数据降维在许多领域起着越来越重要的作用。通过数据降维可以减轻维数灾难和高维空间中其他不相关属性,从而促进高维数据的分类、可视化及压缩。所谓数据降维是指通过线性或非线性映射将样本从高维空间映射到低维空间,从而获得高维数据的一个有意义的低维表示的过程。数据降维的数学描述如下:a )X ={x i }N i =1是D 维空间中的一个样本集, Y ={y i }N i =1是d (d <

数据挖掘经典方法

在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。这些方法从不同的角度对数据进行挖掘。 1.分类 分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。 分类的方法有:决策树、贝叶斯、人工神经网络。 1.1决策树 决策树是用于分类和预测的主要技术之一,决策树学习是以实例为基础的归纳学习算法,它着眼于从一组无次序、无规则的实例中推理出以决策树表示的分类规则。构造决策树的目的是找出属性和类别间的关系,用它来预测将来未知类别的记录的类别。它采用自顶向下的递归方式,在决策树的内部节点进行属性的比较,并根据不同属性值判断从该节点向下的分支,在决策树的叶节点得到结论。 1.2贝叶斯 贝叶斯(Bayes)分类算法是一类利用概率统计知识进行分类的算法,如朴素贝叶斯

多组分分析方法综述

重金属多组分分析的研究现状 近年来,随着科技的进步,单组分重金属的检测技术已经非常成熟,但是在实际污染体系中重金属离子种类繁多,且它们之间往往存在相互干扰,传统的化学分析方法和化学分析仪器难以一次性精确的检测出各个重金属离子的浓度,需要对共存组分进行同时测定。 对共存组分进行同时测定,传统的化学分析方法是首先通过加入各种掩蔽剂进行组分的预分离,然后采用单组分重金属检测技术进行分析检测。这种方法的分离过程往往冗长繁琐,实验条件苛刻,费时费力,而且检测精度低,无法应用于污染现场的检测。 随着计算机科学技术、光谱学和化学信息学的发展,复杂体系的多组分分析已成为当今光谱技术的研究热点,应用范围涉及环境监测、石油化工、高分子化工、食品工业和制药工业等领域,而且需求日益显著。由于多重金属离子共存时会产生重金属离子间的相互作用,因此在用化学分析仪器检测时会产生相干数据干扰,对实验结果产生影响,为了使测试结果更加准确,需要在实验的基础上建立数学模型,用于数据处理,消除各重金属离子共存时产生的相干数据干扰。近年来,引入化学计量学手段,用“数学分离”部分代替复杂的“化学分离”,从而达到重金属离子的快速、简便分析测定[1]。 化学计量学是一门通过统计学或数学方法将对化学体系的测量值与体系的状态之间建立联系的学科,它应用数学、统计学和其他方法和手段(包括计算机)选择最优试验设计和测量方法,并通过对测量数据的处理和解析,最大限度地获取有关物质系统的成分、结构及其他相关信息。目前,已有许多化学计量学方法从不同程度和不同方面解决了分析化学中多组分同时测定的问题,如偏最小二乘法(PLS)、主成分回归法(PCR)、Kalman滤波法、多元线性回归(MLR)等,这些方法减少了分离的麻烦,并使试验更加科学合理。 (1) 光谱预处理技术 这些方法用来降噪、消除无关信息。 ①主成分分析法 在处理多元样本数据时,假设总体为X=(x1,x1,x3…xn),其中每个xi (i=1,2,3,…n)为要考察的数量指标,在实践中常常遇到的情况是这n个指标之间存在着相关关系。如果能从这n个指标中构造出k个互不相关的所谓综合指标(k

高维数据的低维表示综述

高维数据的低维表示综述 一、研究背景 在科学研究中,我们经常要对数据进行处理。而这些数据通常都位于维数较高的空间,例如,当我们处理200个256*256的图片序列时,通常我们将图片拉成一个向量,这样,我们得到了65536*200的数据,如果直接对这些数据进行处理,会有以下问题:首先,会出现所谓的“位数灾难”问题,巨大的计算量将使我们无法忍受;其次,这些数据通常没有反映出数据的本质特征,如果直接对他们进行处理,不会得到理想的结果。所以,通常我们需要首先对数据进行降维,然后对降维后的数据进行处理。 降维的基本原理是把数据样本从高维输入空间通过线性或非线性映射投影到一个低维空间,从而找出隐藏在高维观测数据中有意义的低维结构。(8) 之所以能对高维数据进行降维,是因为数据的原始表示常常包含大量冗余: · 有些变量的变化比测量引入的噪声还要小,因此可以看作是无关的 · 有些变量和其他的变量有很强的相关性(例如是其他变量的线性组合或是其他函数依赖关系),可以找到一组新的不相关的变量。(3) 从几何的观点来看,降维可以看成是挖掘嵌入在高维数据中的低维线性或非线性流形。这种嵌入保留了原始数据的几何特性,即在高维空间中靠近的点在嵌入空间中也相互靠近。(12) 数据降维是以牺牲一部分信息为代价的,把高维数据通过投影映射到低维空间中,势必会造成一些原始信息的损失。所以在对高维数据实施降维的过程中如何在最优的保持原始数据的本质的前提下,实现高维数据的低维表示,是研究的重点。(8) 二、降维问题 1.定义 定义1.1降维问题的模型为(,)X F ,其中D 维数据空间集合{}1N l l X x == (一 般为D R 的一个子集),映射F :F X Y →(),x y F x →=

大数据降维的经典方法

大数据降维的经典方法 近来由于数据记录和属性规模的急剧增长,大数据处理平台和并行数据分析算法也随之出现。 近来由于数据记录和属性规模的急剧增长,大数据处理平台和并行数据分析算法也随之出现。于此同时,这也推动了数据降维处理的应用。实际上,数据量有时过犹不及。有时在数据分析应用中大量的数据反而会产生更坏的性能。 最新的一个例子是采用2009 KDD Challenge 大数据集来预测客户流失量。该数据集维度达到15000 维。大多数数据挖掘算法都直接对数据逐列处理,在数据数目一大时,导致算法越来越慢。该项目的最重要的就是在减少数据列数的同时保证丢失的数据信息尽可能少。 以该项目为例,我们开始来探讨在当前数据分析领域中最为数据分析人员称道和接受的数据降维方法。 缺失值比率(Missing Values Ratio) 该方法的是基于包含太多缺失值的数据列包含有用信息的可能性较少。因此,可以将数据列缺失值大于某个阈值的列去掉。阈值越高,降维方法更为积极,即降维越少。该方法示意图如下: 低方差滤波(Low Variance Filter) 与上个方法相似,该方法假设数据列变化非常小的列包含的信息量少。因此,所有的数据列方差小的列被移除。需要注意的一点是:方差与数据范围相关的,因此在采用该方法前需要对数据做归一化处理。算法示意图如下: 高相关滤波(High Correlation Filter) 高相关滤波认为当两列数据变化趋势相似时,它们包含的信息也显示。这样,使

用相似列中的一列就可以满足机器学习模型。对于数值列之间的相似性通过计算相关系数来表示,对于名词类列的相关系数可以通过计算皮尔逊卡方值来表示。相关系数大于某个阈值的两列只保留一列。同样要注意的是:相关系数对范围敏感,所以在计算之前也需要对数据进行归一化处理。算法示意图如下: 随机森林/组合树(Random Forests) 组合决策树通常又被成为随机森林,它在进行特征选择与构建有效的分类器时非常有用。一种常用的降维方法是对目标属性产生许多巨大的树,然后根据对每个属性的统计结果找到信息量最大的特征子集。例如,我们能够对一个非常巨大的数据集生成非常层次非常浅的树,每颗树只训练一小部分属性。如果一个属性经常成为最佳分裂属性,那么它很有可能是需要保留的信息特征。对随机森林数据属性的统计评分会向我们揭示与其它属性相比,哪个属性才是预测能力最好的属性。算法示意图如下: 主成分分析(PCA) 主成分分析是一个统计过程,该过程通过正交变换将原始的n 维数据集变换到一个新的被称做主成分的数据集中。变换后的结果中,第一个主成分具有最大的方差值,每个后续的成分在与前述主成分正交条件限制下与具有最大方差。降维时仅保存前m(m < n) 个主成分即可保持最大的数据信息量。需要注意的是主成分变换对正交向量的尺度敏感。数据在变换前需要进行归一化处理。同样也需要注意的是,新的主成分并不是由实际系统产生的,因此在进行PCA 变换后会丧失数据的解释性。如果说,数据的解释能力对你的分析来说很重要,那么PCA 对你来说可能就不适用了。算法示意图如下: 反向特征消除(Backward Feature Elimination)

矩阵运算、分解和特征值

实验报告(五) 院(系)课程名称:数学模型日期:年月日 班级学号实验室506 专业数学教育姓名计算机号F08 实验 名称 矩阵运算、分解和特征值成绩评定 所用 软件 MATLAB 7.0 指导教师 实验目的1.矩阵的基本运算。 2.矩阵的LU、QR和Cholesky分解。3.矩阵的特征向量和特征值。 实验内容问题1:求线性方程组 1234 124 234 1234 258 369 225 4760 x x x x x x x x x x x x x x +-+= ? ?--= ? ? -+=- ? ?+-+= ? 的解。问题2: (1)求矩阵 123 456 780 A ?? ? = ? ? ?? 的LU分解。 (2)求矩阵 123 456 789 101112 A ?? ? ? = ? ? ?? 的QR分解。 (3)求5阶pascal矩阵的Cholesky分解。 问题3: (1)求矩阵 31 13 A - ?? = ? - ?? 的特征值和特征向量。 (2)求矩阵 23 45 84 A ?? ? = ? ? ?? 的奇异值分解。

实验过程问题1:A=[2,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6]; >> inv(A) ans = 1.3333 -0.6667 0.3333 -1.0000 -0.0741 0.2593 1.1481 -0.1111 0.3704 -0.2963 0.2593 -0.4444 0.2593 -0.4074 -0.5185 -0.1111 ans=[1.3333,-0.6667,0.3333,-1.0000;-0.0741,0.2593,1.1481,-0.1111;0.3704,-0. 2963,0.2593,-0.4444;0.2593,-0.4074,-0.5185,-0.1111]; >> B=[8;9;-5;0]; >> ans*B ans = 2.9996 -3.9996 -1.0000 1.0003 所以线性方程的解x=[ 2.9996,-3.9996,-1.0000,1.0003] 问题2:1、A=[1,2,3;4,5,6;7,8,0]; >> [L,U]=lu(A) L = 0.1429 1.0000 0 0.5714 0.5000 1.0000 1.0000 0 0 U = 7.0000 8.0000 0 0 0.8571 3.0000 0 0 4.5000 2、A=[1,2,3;4,5,6,;7,8,9;10,11,12]; >> [Q,R]=qr(A) Q = -0.0776 -0.8331 0.5456 -0.0478 -0.3105 -0.4512 -0.6919 0.4704 -0.5433 -0.0694 -0.2531 -0.7975 -0.7762 0.3124 0.3994 0.3748 R = -12.8841 -14.5916 -16.2992 0 -1.0413 -2.0826 0 0 -0.0000 0 0 0

四大机器学习降维算法:PCA、LDA、LLE、Laplacian Eigenmaps

机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式。y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的)。f可能是显式的或隐式的、线性的或非线性的。 目前大部分降维算法处理向量表达的数据,也有一些降维算法处理高阶张量表达的数据。之所以使用降维后的数据表示是因为在原始的高维空间中,包含有冗余信息以及噪音信息,在实际应用例如图像识别中造成了误差,降低了准确率;而通过降维,我们希望减少冗余信息所造成的误差,提高识别(或其他应用)的精度。又或者希望通过降维算法来寻找数据内部的本质结构特征。 在很多算法中,降维算法成为了数据预处理的一部分,如PCA。事实上,有一些算法如果没有降维预处理,其实是很难得到很好的效果的。 主成分分析算法(PCA) Principal Component Analysis(PCA)是最常用的线性降维方法,它的目标是通过某种线性投影,将高维的数据映射到低维的空间中表示,并期望在所投影的维度上数据的方差最大,以此使用较少的数据维度,同时保留住较多的原数据点的特性。 通俗的理解,如果把所有的点都映射到一起,那么几乎所有的信息(如点和点之间的距离关系)都丢失了,而如果映射后方差尽可能的大,那么数据点则会分散开来,以此来保留更多的信息。可以证明,PCA是丢失原始数据信息最少的一种线性降维方式。(实际上就是最接近原始数据,但是PCA并不试图去探索数据内在结构) 设n维向量w为目标子空间的一个坐标轴方向(称为映射向量),最大化数据映射后的方差,有:

数据分析中常用的降维方法有哪些

数据分析中常用的降维方法有哪些 对大数据分析感兴趣的小伙伴们是否了解数据分析中常用的降维方法都有哪些呢?本篇文章小编和大家分享一下数据分析领域中最为人称道的七种降维方法,对大数据开发技术感兴趣的小伙伴或者是想要参加大数据培训进入大数据领域的小伙伴就随小编一起来看一下吧。 近来由于数据记录和属性规模的急剧增长,大数据处理平台和并行数据分析算法也随之出现。于此同时,这也推动了数据降维处理的应用。实际上,数据量有时过犹不及。有时在数据分析应用中大量的数据反而会产生更坏的性能。 我们今天以2009 KDD Challenge 大数据集来预测客户流失量为例来探讨一下,大多数数据挖掘算法都直接对数据逐列处理,在数据数目一大时,导致算法越来越慢。因此,下面我们一下来了解一下数据分析中常用的降维方法。 缺失值比率(Missing Values Ratio) 该方法的是基于包含太多缺失值的数据列包含有用信息的可能性较少。因此,可以将数据列缺失值大于某个阈值的列去掉。阈值越高,降维方法更为积极,即降维越少。 低方差滤波(Low Variance Filter) 与上个方法相似,该方法假设数据列变化非常小的列包含的信息量少。因此,所有的数据列方差小的列被移除。需要注意的一点是:方差与数据范围相关的,因此在采用该方法前需要对数据做归一化处理。 高相关滤波(High Correlation Filter) 高相关滤波认为当两列数据变化趋势相似时,它们包含的信息也显示。这样,使用相似列中的一列就可以满足机器学习模型。对于数值列之间的相似性通过计算相关系数来表示,对于名词类列的相关系数可以通过计算皮尔逊卡方值来表示。相关系数大于某个阈值的两列只保留一列。同样要注意的是:相关系数对范围敏感,所以在计算之前也需要对数据进行归一化处理。 随机森林/组合树(Random Forests) 组合决策树通常又被成为随机森林,它在进行特征选择与构建有效的分类器时非常有用。一种常用的降维方法是对目标属性产生许多巨大的树,然后根据对每个属性的统计结果找到信息量最大的特征子集。例如,我们能够对一个非常巨大的数据集生成非常层次非常浅的树,每颗树只训练一小部分属性。如果一个属

相关文档
最新文档