CMOS与TTL的电平特点及转换方法-1

逻辑器件的电平特点及互连

一、CMOS与TTL器件互连

5V TTL逻辑电平和5V CMOS逻辑电平是很通用的逻辑电平,注意他们的输入输出电平差别较大,在互连时要特别注意。

z5V TTL电平:

输出高电平>2.4V,输出低电平<0.4V。

输入高电平>=2.0V,输入低电平<=0.8V。

z5V CMOS电平:

5V CMOS器件的逻辑电平参数与供电电压有一定关系,一般情况下:

Voh≥Vcc-0.5V

Vol≤0.5V

Vih≥0.7Vcc

Vil≤0.3Vcc

即:

输出高电平>4.95V,输出低电平<0.05V。

输入高电平>3.5V,输入低电平<1.5V。

在电路中常遇到TTL电路和CMOS电路混合使用的情况,由于这些电路相互之间的电源电压和输入、输出电平及负载能力等参数不同,因此他们之间的连接必须通过电平转换或电流转换电路,使前级器件的输出的逻辑电平满足后级器件对输入电平的要求,并不得对器件造成损坏。逻辑器件的接口电路主要应注意电平匹配和输出能力两个问题,并与器件的电源电压结合起来考虑。下面分两种情况来说明。

CMOS到TTL的连接需要进行电流匹配。CMOS电路输出逻辑电平与TTL电路的输入电平可以兼容,但CMOS电路的驱动电流较小,不能够直接驱动TTL电路。为此可采用CMOS/TTL专用接口电路,如CMOS缓冲器CC4049等,经缓冲器之后的高电平输出电流能满足TTL电路的要求,低电平输出电流可达4mA,实现CMOS电路与TTL电路的连接。 需说明的时,CMOS与TTL电路的接口电路形式多种多样,实用中应根据具体情况进行选择。

TTL到CMOS的连接需要进行电压匹配。用TTL电路去驱动CMOS电路时,由于CMOS电路是电压驱动器件,所需电流小,因此电流驱动能力不会有问题,主要是电压驱动能力问题,TTL电路输出高电平的最小值为2.4V,而CMOS电路的输入高电平一般高于3.5V,这就使二者的逻辑电平不能兼容。为此,在TTL的输出端与电源之间接一个上拉电阻R(取值一般在1-4.7KΩ),可将TTL的电平提高到3.5V以上。

二、逻辑器件的互连总则

在不同逻辑电平器件之间进行互连时主要考虑以下几点:

1、 电平关系,必须保证在各自的电平范围内工作,否则,不能满足正常逻辑功能,严重时会烧毁芯片。

2、 驱动能力,必须根据器件的特性参数仔细考虑,计算和试验,否则很可能造成隐患,在电源波动,受到干扰时系统就会崩溃。

3、 时延特性,在高速信号进行逻辑电平转换时,会带来较大的延时,设计时一定要充分考虑其容限。

4、 选用电平转换逻辑芯片时应慎重考虑,反复对比。通常逻辑电平转换芯片为通用转换芯片,可靠性高,设计方便,简化了电路,但对于具体的设计电路一定要考虑以上三种情况,合理选用。

5、 对于数字电路来说,各种器件所需的输入电流、输出驱动电流不同,为了驱动大电流器件、远距离传输、同时驱动多个器件,都需要审查电流驱动能力:输出电流应大于负载所需输入电流;另一方面,TTL、CMOS、ECL等输入、输出电平标准不一致,同时采用上述多种器件时应考虑电平之间的转换问题。

三、电平转换的“五要素”

(1) 电平兼容

解决电平转换问题,最根本的就是要解决逻辑器件接口的电平兼容问题。而电平兼容原则就两条:

VOH > VIH

VOL < VIL

再简单不过了!当然,考虑抗干扰能力,还必须有一定的噪声容限:

|VOH-VIH| > VN+

|VOL-VIL| > VN-

其中,VN+和VN-表示正负噪声容限。

只要掌握这个原则,熟悉各类器件的输入输出特性,可以很自然地找到合理方案,如前面的方案(3)(4)都是正确利用器件输入特性的例子。

(2) 电源次序

多电源系统必须注意的问题。某些器件不允许输入电平超过电源,如果没有电源时就加上输入,很可能损坏芯片。这种场合性能最好的办法可能就是方案(5)——164245。如果速度允许,方案(1)(7)也可以考虑。

(3) 速度/频率

某些转换方式影响工作速度,所以必须注意。像方案(1)(2)(6)(7),由于电阻的存在,通过电阻给负载电容充电,必然会影响信号跳沿速度。为了提高速度,就必须减小电阻,这又会造成功耗上升。这种场合方案(3)(4)是比较理想的。

(4) 输出驱动能力

如果需要一定的电流驱动能力,方案(1)(2)(6)(7)就都成问题了。这一条跟上一条其实是一致的,因为速度问题的关键就是对负载电容的充电能力。

(5) 路数

某些方案元器件较多,或者布线不方便,路数多了就成问题了。例如总线地址和数据的转换,显然应该用方案(3)(4),采用总线缓冲器芯片(245,541,16245...),或者用方案(5)。如果只有一两个信号要转换,弄个16245固然罗嗦,就是74AHC04之类的SO-14的芯片,也嫌大了,这是可以考虑 TI 或 Onsemi的单/双门逻辑系列,如 74AHC1G04, 74AHCT1G04...可以节省板面积、优化布线。

四、常用的电平转换方案

(1) 晶体管+上拉电阻法

就是一个双极型三极管或 MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。

(2) OC/OD 器件+上拉电阻法

跟 1) 类似。适用于器件输出刚好为 OC/OD 的场合。

(3) 74xHCT系列芯片升压 (3.3V→5V)

凡是输入与 5V TTL 电平兼容的 5V CMOS 器件都可以用作 3.3V→5V 电平转换。 ——这是由于 3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而 CMOS 的输出电平总是接近电源电平的。

廉价的选择如 74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列 (那个字母 T 就表示 TTL 兼容)。

(4) 超限输入降压法 (5V→3.3V, 3.3V→1.8V, ...)

凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。

这里的“超限”是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制 (改变了输入级保护电路)。

例如,74AHC/VHC 系列芯片,其 datasheets 明确注明“输入电压范围为0~5.5V”,如果采用 3.3V 供电,就可以实现5V→3.3V 电平转换。

(5) 专用电平转换芯片

最著名的就是 164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的(¥45/片),若非必要,最好用前两个方案。

(6) 电阻分压法

最简单的降低电平的方法。5V电平,经1.6k+3.3k电阻分压,就是3.3V。

(7) 限流电阻法

如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如74HC 系列为 20mA),仍然是安全的。

(8) 无为而无不为法

只要掌握了电平兼容的规律。某些场合,根本就不需要特别的转换。例如,电路中用到了某种 5V 逻辑器件,其输入是 3.3V电平,只要在选择器件时选择输入为 TTL 兼容的,就不需要任何转换,这相当于隐含适用了方法3)。

(9) 比较器法

算是凑数,有人提出用这个而已,还有什么运放法就太恶搞了。

五、电平转换的具体电路

(1)CMOS驱动TTL电路

我们建议按照下图电路连接,这种连接方式既可以起到电平变换作用,又可以解决CMOS 驱动能力不足的问题,此外我们还可参考图2,调整分压电阻达到电平变换的目的,可谓一举两得。

(2)CMOS驱动HCMOS电路

如果COMS与HCMOS使用相同的电源电压,问题就很简单,直接连接即可。如果它们使用不同的电源电压,那么必须参照图1或图2进行连接,主要考虑的是它们的电平变换问题。

(3)TTL驱动CMOS电路

当它们使用相同的电源电压,可采用外接上拉电阻的方法提高TTL的驱动能力,参见图3。当使用不同的电源电压,也必须采用电平变换电路,参考图4。当然我们在选用器件时,也可考虑选用集电极开路型(OC)门驱动CMOS电路。可参考图5。

(4)TTL驱动HCMOS电路

HCT系列的逻辑电平与TTL兼容,可以直接连接,TTL驱动HC电路,可参考TTL驱动CMOS 的方法,参见图3和图4。

(5)HCMOS驱动TTL门电路

HCMOS直接驱动TTL电路即可,对于标准输出的HCMOS门电路,HCMOS具有直接驱动10-20个LSTTL门电路的能力。而对于总线输出的HCMOS电路,HCMOS甚至可驱动15-30个LSTTL 门电路的能力。

(6)HCMOS驱动CMOS门电路

使用相同的电源电压,HCMOS可直接驱动CMOS电路,如果CMOS电源电压高于HCMOS门电路,亦可采用有源三极管电路进行电平变换,如图6。

六、不同互连方法对电路造成的影响

我们在电路设计中经常遇到不同的逻辑电平之间的互连,不同的互连方法对电路造成以下影响:

1、 对逻辑电平的影响。应保证合格的噪声容限(Vohmin-Vihmin≥0.4V,Vilmax-Volmax ≥0.4V),并且输出电压不超过输入电压允许范围。

2、对上升/下降时间的影响。应保证Tplh和Tphl满足电路时序关系的要求和EMC的要求。

3、对电压过冲的影响。过冲不应超出器件允许电压绝对最大值,否则有可能导致器件损坏。

七、3.3V的逻辑电平简介及驱动

3.3V的逻辑电平标准有三种,实际的3.3V TTL/CMOS逻辑器件的输入电平参数一般都使用LVTTL或3.3V逻辑电平标准(一般很少使用LVCMOS输入电平),输出电平参数在小电流负载时高低电平可分别接近电源电压和地电平(类似LVCMOS输出电平),在大电流负载时输出电平参数则接近 LVTTL电平参数,所以输出电平参数也可归入3.3V逻辑电平,另外,一些公司的手册中将其归纳如LVTTL的输出逻辑电平,也可以。

在下面讨论逻辑电平的互连时,对3.3V TTL /CMOS的逻辑电平,我们就指的是3.3V逻辑电平或LVTTL逻辑电平。

常用的TTL和CMOS逻辑电平分类有:5V TTL、5V CMOS、3.3V TT L/CMOS、3.3V/5V Tol.、和OC/OD门。其中,3.3V/5V Tol.是指输入是3.3V逻辑电平,但可以忍受5V电压的信号输入。

3.3V TTL/CMOS逻辑电平表示不能输入5V信号的逻辑电平,否则会出问题。

注意某些5V的CMOS逻辑器件,它也可以工作于3.3V的电压,但它与真正的3.3V器件(是LVTTL逻辑电平)不同,比如其VIH是2.31V(=0.7×3.3V,工作于3.3V)(其实是LVCMOS逻辑输入电平),而不是2.0V,因而与真正的3.3V器件互连时工作不太可靠,使用时要特别注意,在设计时最好不要采用这类工作方式。

值得注意的是有些器件有单独的输入或输出电压管脚,此管脚接3.3V的电压时,器件的输入或输出逻辑电平为3.3V的逻辑电平信号,而当它接5V电压时,输入或输出的逻辑电平为5V的逻辑电平信号,此时应该按该管脚上接的电压的值来确定输入和输出的逻辑电平属于哪种分类。对于可编程器件(EPLD和FPGA)的互连也要根据器件本身的特点进行处理。

一般对于高逻辑电平驱动低逻辑电平的情况如简单处理估计可以通过串接10-1K欧的电阻来实现,具体阻值可以通过试验确定,如为可靠起见,可参考后面推荐的接法。

OC/OD 输出加上拉电阻可以驱动所有逻辑电平,5V TTL和3.3V /5V Tol.可以被所有逻辑电平驱动。所以如果您的可编程逻辑器件有富裕的管脚,优先使用其OC/OD输出加上拉电阻实现逻辑电平转换;其次才用以下专门的逻辑器件转换。

对于其他的不能直接互连的逻辑电平,可用下列逻辑器件进行处理:

z TI的AHCT系列器件为5V TTL输入、5V CMOS输出。

z TI的LVC/LVT系列器件为TTL/CM OS逻辑电平输入、3.3V TTL(LVTTL)输出,也可以用双轨器件替代。

注意:不是所有的LVC/LVT系列器件都能够运行5V TTL/CMOS输入,一般只有带后缀A 的和LVCH/ LVTH系列的可以,具体可以参考其器件手册。

5V TTL门作驱动源驱动3.3V TTL/CMOS,通过LVC/LVT系列器件(为TTL/ CMOS逻辑电平输入,LVTTL逻辑电平输出)进行转换。驱动5V CMOS可以使用上拉5V电阻的方法。

相关文档
最新文档