高压并联电容器组单双星形接线方式的选择

高压并联电容器组单双星形接线方式的选择
高压并联电容器组单双星形接线方式的选择

高压并联电容器装置说明书

高压并联电容器装置说明书 一.概述 1.1产品适用范围与用途 TBB型高压并联电容器装置(以下简称装置),主要用于3~ 110kV,频率为50Hz的三相交流电力系统中,用以提高功率因数,调整网络电压,降低线路损耗,改善供电质量,提高供配电设备的使用效率的容性无功补偿装置。 1.2型号、规格 及外形尺寸 1.2.1型号说明 装置的保护方式通常与电容器组的接线方式有关系,一般的有

AK、AC、AQ和BC、BL之分。 1.2.2执行标准 GB 50227 标称电压1kV以上交流电力系统用并联电容器 GB 10229 电抗器 GB 311.1 高压输变电设备的绝缘配合 GB 50060 3~110kV高压配电装置设计规范 JB/T 5346 串联电抗器 JB/T 7111 高压并联电容器装置 DL/T 840 高压并联电容器使用技术条件 其它现行国家标准。 DL/T 604 高压并联电容器装置订货技术条件 1.2.3产品规格与外形尺寸 常用的产品规格与柜体外形尺寸如表1~5所示。装置的外形和基础的示意图分如图1、图2所示。 产品规格与外形尺寸 注:以下尺寸仅供参考,实际尺寸根据用户情况而定。以单台电容额定电压11/3kV 表格 1 卧式-阻尼电抗后置 单位:mm

序 号型号规格额定容量L1 L2 H 额定电 流 (A) 1 TBB10-600/100A K 600 1200 2800 2600 94.5 2 TBB10-900/100A K 900 1200 3100 2600 141.7 3 TBB10-1000/334A K 1000 1200 2100 2600 157.5 4 TBB10-2000/334A K 2000 1200 2800 2600 315 5 TBB10-2400/200A K 2400 1200 3400 2600 378 6 TBB10-3000/334A K 3000 1200 3000 2600 472.4 7 TBB10-3600/200A K 3600 1200 4000 2600 566.9 8 TBB10-4008/334A K 4008 1200 3400 2600 631.2 9 TBB10-4200/200A K 4200 1200 4400 2600 661.4 10 TBB10-4800/200A4800 1200 4600 2600 755.9

电力电容器保护原理解释

常见电力电容器保护类型: 电容器保护 1 保护熔丝 现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。 2 过电流保护(电流取自线路TA) 过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。 为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s以上就可躲过涌流的影响。 3 不平衡电压保护(电压取自放电TV二次侧所构成的开口三角型) 电容器发生故障后,将引起电容器组三相电容不平衡。电容器组的各种主保护方式都是从这个基本点出发来确定的。 根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。这两种保护,都是利用故障电容器被切除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。这些保护方式各有优缺点,我们可以根据需要选择。 单星形接线的电容器组目前国内广泛采用开口三角电压保护。 对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。 4 不平衡电流保护 这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。常见的不平衡电流保护的方式有以下两种: 4.1 双星形中性点间不平衡电流保护 保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线。如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸。

高压并联电容使用说明

产品名称:高电压并联电容器出品单位:西安华超电力电容器有限公司 1 产品用途 本产品适用于频率50Hz电力系统,提高功率因数用的并联电容器。主要用于改善交流电力系统的功率因数,降低线路损耗,提高网路末端电压质量,增大变压器的有功输出。 2 特点 2.1该产品以粗化聚丙烯薄膜及苄基甲苯做介质,电子、电力电容器专用铝箔 为电极,采用无感卷制方式,为扁形元件,元件内部场强分布均匀,容量无衰减、比特性小、寿命长以及优良的电气性能等特点。 2.2采用高真空干燥浸渍技术除去电容器中全部残余水分和空气,填注苄基甲 苯浸渍剂(法国C101)。具有不易导磁、过流大、损耗小等特点,有良 好的耐低温特性。 2.3采用不锈钢外壳封装。两侧带有固定架,陶瓷绝缘子。以及科学合理的引出方式。 3 产品型号及含义

4 技术参数 4.1主要参数 4.1.1额定频率:50Hz 4.1.2端子间试验电压:交流试验电压2.15Un或直流试验电压4.3Un。 4.1.3损耗角正切值:小于0.0009。 4.1.4相数:单相。 4.1.5绝缘水平: 电容器的高压端子与地之间应能承受表1规定的耐受电压。工频耐受电压施加的时间为1min。 表1 绝缘水平(kV) 4.1.6放电电阻:电容器内部装有内放电电阻,从电网断开后,端子上的电压在10分钟内可降至75V以下。 4.1.7电容偏差:±5% 4.1.8电容器组三相最大电容量与最小电容量之比不大于1.01。 4.1.9执行标准:GB/11024-2001《标称电压1kV以上交流电力系统用并联电容器》 4.2过负载 4.2.1电容器可在表2的电压水平下运行。 表2

TBB系列高压并联电容器装置

TBB系列高压并联电容器装置 一.型号说明 例1:TBB10-6000/334-AK 即系统电压10kV、补偿总容量6000kvar、电容器单台容量334kvar、一次单星型接线方式、开口三角电压保护,室内安装并联电容器装置。例2:TBB35-60000/500-BLW 即系统电压35kV、补偿总容量60000kvar、电容器单台容量500kvar、一次双星型接线方式、中性点不平衡电流保护,户外安装并联电容器装置。 二.产品概述 TBB系列高压并联电容器装置适用于频率为50Hz,额定电压等级为6kV、10kV、35kV的输配电系统中,作为系统无功功率的补偿装置,使系统功率因数达到最佳,并可以调整网络电压,以减少配电系统和变压器的损耗,降低线路损耗,改善电网的供电质量。 三、产品性能特点 装置的绝缘水平:6kV 额定电压的成套装置,其主电路相间及相与地之间,工频耐受电压(方均根值)23kV,1min;10kV额定电压的成套装置其主电路相间以及相与地之间,工频耐受电压(方

均根值)30kV,1min;成套装置辅助电路工频耐受电压(方均根 值)2kV ,1min。装置的实际电容与其额定电容之差不超过额定 值的0~10%,装置的任何两线路端子之间电容的最大值与最小值之比不超过1.06。装置允许在工频1.1倍额定电压下长期运行。 ?装置允许在由于过电压和高次谐波造成的有效值1.3倍额定电流的稳态过电流下连续运行。 ?装置对电容器内部故障,除设有单台熔断器保护外,根据主接线型式不同,设有不同的继电保护。装置应能将电容器组投入运行 瞬间产生的涌流限制在电容器组额定电流的20倍以下。 四、产品结构特点 串联电抗器与电容器串联,可抑制谐波和合闸涌流,配置电抗率为 1%-12%(按电容器装置总容量计算)的串联铁芯电抗器或干式空芯电抗器。如不提出特殊要求,配置电抗率为4.5%-6%的电抗器,用来抑制五次以上谐波和合闸涌流。 1.高压并联电容器采用美国库柏公司优质全膜电容。 2.放电线圈直接与电容器并联使用,其在电容器从电网断开后,在5s 内将电容器端子间的电压降至50V以下。放电线圈还可为并联电容器提供二次保护信号。 3.氧化锌避雷器主要用来限制电容器投切开关的过电压。 4.接地开关主要作用是停电检修时将电容器的端子接地,保证检修人员的安全。

电气主接线方式优缺点

电气主接线方式优缺点 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

电气主接线方式优缺点 1、单母线接线 优点:接线简单、清晰、操作方便、扩建容易; 缺点:运行方式不灵活、供电可靠性差。 2、单母线分段接线 单母线分段接线就是将一段母线用断路器分为两段或多段 优点:母线故障或检修时缩小停电范围; 缺点:当一段母线或母线隔离开关故障或检修时,必须断开该分段上的所有电源或出现,这样就减少了系统的发电量,并使该分段单回路供电的用户停电。 3、双母线接线 双母线接线就是将工作线、电源线和出线通过一台断路器和两组隔离开关连接到两组(一次/二次)母线上,且两组母线都是工作线,而每一回路都可通过母线联络断路器并列运行。 优点:与单母线相比,它的优点是供电可靠性大,可以轮流检修母线而不使供电中断。 缺点:每一回路都增加了一组隔离开关,使配电装置的构架及占地面积、投资费用都相应增加;同时由于配电装置的复杂,在改变运行方式倒闸操作时容易发生误操作,且不宜实现自动化;尤其当母线故障时,须短时切除较多的电源和线路,这对特别重要的大型发电厂和变电站是不允许的。4、双母线分段接线

优点:可缩小母线故障停电范围、提高供电可靠性; 缺点:保护及二次接线复杂。 5、双母线带旁路接线 双母线带旁路接线就是在双母线接线的基础上,增设旁路母线。 优点:具有双母线接线的优点,当线路(主变压器)断路器检修时,仍可继续供电。 缺点:旁路的倒换操作比较复杂,增加了误操作的机会,也使保护及自动化系统复杂化,投资费用较大。 6、双母线分段带旁路接线? 双母线分段带旁路接线就是在双母线带旁路接线的基础上,在母线上增设分段断路器。 优点:具有双母线带旁路的优点。 缺点:投资费用较大,占用设备间隔较多。 一般采用此种接线的原则为: (1)当设备连接的进出线总数为12~16回时,在一组母线上设置 分段断路器; (2)当设备连接的进出线总数为17回及以上时,在两组母线上 设置分段断器。 7、3/2接线 3/2断路器接线就是在每3个断路器中间送出2回回路,一般只用于500kV(或重要220kV)电网的母线主接线。 优点:

电力电容器保护原理解释

电力电容器保护原理解 释 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

常见电力电容器保护类型: 电容器保护 1 保护熔丝 现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。 2 过电流保护 (电流取自线路TA) 过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。 为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s以上就可躲过涌流的影响。 3 不平衡电压保护 (电压取自放电TV二次侧所构成的开口三角型) 电容器发生故障后,将引起电容器组三相电容不平衡。电容器组的各种主保护方式都是从这个基本点出发来确定的。 根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。这两种保护,都是利用故障电容器被切

除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。这些保护方式各有优缺点,我们可以根据需要选择。 单星形接线的电容器组目前国内广泛采用开口三角电压保护。 对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。 4 不平衡电流保护 这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。常见的不平衡电流保护的方式有以下两种: 4.1 双星形中性点间不平衡电流保护 保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线。如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸。

电气主接线基本形式

电气主接线基本形式 第一节 单母线接线 一 单母线接线 1.接线特点 单母线接线如图10-1所示 单母线接线的特点是每一回路均经过一台断路器QF 和隔离开关QS 接于一组母线上。断路器用于在正常或故障情况下接通与断开电路。断路器两侧装有隔离开关,用于停电检修断路器时作为明显断开点以隔离电压,靠近母线侧的隔离开关称母线侧隔离开关(如11QS ),靠近引出线侧的称为线路侧隔离开关(如13QS )。在主接线设备编号中隔离开关编号前几位与该支路断路器编号相同,线路侧隔离开关编号尾数为3,母线侧隔离开关编号尾数为1(双母线时是1和2)。在电源回路中,若断路器断开之后,电源不可能向外送电能时,断路器与电源之间可以不装隔离开关,如发电机出口。若线路对侧无电源,则线路侧可不装设隔离开关。 图10-1 单母线接线 L1 1QF 4QF 13QS 11QS 2QF

二、单母线分段接线 1.接线特点 单母线分段接线,如图10-2所示。 正常运行时,单母线分段接线有两种运行方式: (1)分段断路器闭合运行。正常运行时分段断路器0QF 闭合,两个电源分别接在两段母线上;两段母线上的负荷应均匀分配,以使两段母线上的电压均衡。在运行中,当任一段母线发生故障时,继电保护装置动作跳开分段断路器和接至该母线段上的电源断路器,另一段则继续供电。有一个电源故障时,仍可以使两段母线都有电,可靠性比较好。但是线路故障时短路电流较大。 (2)分段断路器0QF 断开运行。正常运行时分段断路器0QF 断开,两段母线上的电压可不相同。每个电源只向接至本段母线上的引出线供电。当任一电源出现故障,接该电源的母线停电,导致部分用户停电,为了解决这个问题,可以在0QF 处装设备自投装置,或者重要用户可以从两段母线引接采用双回路供电。分段断路器断开运行的优点是可以限制短路电流。 图10-2 单母线分段接线 L1 1QF 0QF 01QS I 段 Ⅱ段 13QS 11QS 2QF 02QS

预防高压并联电容器事故措施示范文本

预防高压并联电容器事故措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

预防高压并联电容器事故措施示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1 总则 1.1 为预防并联电容器事故发生,保障电网安全、可 靠运行,特制定本预防措施。 1.2 本措施是依据国家的有关标准、规程和规范设备 运行经验和检修而制定的。 1.3 本措施针对并联电容器设备在运行中容易导致典 型、频繁出现的事故提出了具体的预防措施。 1.4 本措施适用于中电投某风电场系统的35(6.3、) kV电压等级并联电容器。 2 引用标准 以下为设备设计、制造及试验所应遵循的国家、行业

和企业的标准及规范,但不仅限于此: GB 6915-1986 高原电力电容器 GB 3983.2-1989 高电压并联电容器 GB 11025-1989 并联电容器用内部熔丝和内部过压力隔离器 GB 15116.5-1994 交流高压熔断器并联电容器外保护用熔断器 GB 50227-1995 并联电容器装置设计规范 DL 402-1991 交流高压断路器订货技术条件 DL 442-1991 高压并联电容器单台保护用熔断器订货技术条件 DL 462-1992 高压并联电容器用串联电抗器订货技术条件 DL/T 604-1996 高压并联电容器装置订货技术条件 DL/T 628-1997 集合式高压并联电容器订货技术条件

TBB系列高压并联电容器装置

武汉华能阳光电气有限公司 TBB系列高压并联电容器装置 一.型号说明 例1:TBB10-6000/334-AK 即系统电压10kV、补偿总容量6000kvar、电容器单台容量 334kvar、一次单星型接线方式、开口三角电压保护,室内安装并联电容器装置。 例2:TBB35-60000/500-BLW 即系统电压35kV、补偿总容量60000kvar、电容器单台容量500kvar、一次双星型接线方式、中性点不平衡电流保护,户外安装并联电容器装置。 二.产品概述 TBB系列高压并联电容器装置适用于频率为50Hz,额定电压等级为6kV、10kV、35kV的输配电系统中,作为系统无功功率的补偿装置,使系统功率因数达到最佳,并可以调整网络电压,以减少配电系统和变压器的损耗,降低线路损耗,改善电网的供电质量。

武汉华能阳光电气有限公司 三、产品性能特点 ?装置的绝缘水平:6kV 额定电压的成套装置,其主电路相间及相与地之间,工频耐受电压(方均根值)23kV,1min; 10kV额定电压的成套装置其主电路相间以及相与地之间, 工频耐受电压(方均根值)30kV,1min;成套装置辅助电 路工频耐受电压(方均根值)2kV ,1min。装置的实际电 容与其额定电容之差不超过额定值的0~10%,装置的任何 两线路端子之间电容的最大值与最小值之比不超过1.06。 装置允许在工频1.1倍额定电压下长期运行。 ?装置允许在由于过电压和高次谐波造成的有效值1.3倍额定电流的稳态过电流下连续运行。 ?装置对电容器内部故障,除设有单台熔断器保护外,根据主接线型式不同,设有不同的继电保护。装置应能将电容 器组投入运行瞬间产生的涌流限制在电容器组额定电流的 20倍以下。 四、产品结构特点

电力电容器的保护原理及技术要求

电力电容器保护原理技术要求 (1)电容器组应采用适当保护措施,如采用平衡或差动保护或采用瞬时作用过电流继电保护,对于3.15kV及以上的电容器,必须在每个电容器上装置单独的熔断器,熔断器的额定电流应按熔丝的特性和接通时的涌流来选定,一般为1.5倍电容器的额定电流为宜,以防止电容器油箱爆炸。 (2)除上述指出的保护形式外,在必要时还可以作下面的几种保护: ①如果电压升高是经常及长时间的,需采取措施使电压升高不超过1.1倍额定电压。 ②用合适的电流自动开关进行保护,使电流升高不超过1.3倍额定电流。 ③如果电容器同架空线联接时,可用合适的避雷器来进行大气过电压保护。 ④在高压网络中,短路电流超过20A时,并且短路电流的微机保护装置或熔丝不能可靠地保护对地短路时,则应采用单相短路保护装置。 (3)正确选择电容器组的保护方式,是确保电容器安全可靠运行的关键,但无论采用哪种保护方式,均应符合以下几项要求: ①保护装置应有足够的灵敏度,不论电容器组中单台电容器内部发生故障,还是部分元件损坏,电容器保护装置都能可靠地动作。

②能够有选择地切除故障电容器,或在电容器组电源全部断开后,便于检查出已损坏的电容器。 ③在电容器停送电过程中及电力系统发生接地或其它故障时,保护装置不能有误动作。 ④保护装置应便于进行安装、调整、试验和运行维护。 ⑤消耗电量要少,运行费用要低。 (4)电容器不允许装设自动重合闸装置,相反应装设无压释放自动跳闸装置。主要是因电容器放电需要一定时间,当电容器组的开关跳闸后,如果马上重合闸,电容器是来不及放电的,在电容器中就可能残存着与重合闸电压极性相反的电荷,这将使合闸瞬间产生很大的冲击电流,从而造成电容器外壳膨胀、喷油甚至爆炸。 电容器组保护: 开口三角保护,开口三角形保护标准名称为零序电压保护,多用于单星形接线 (对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护装置采集到差电压后即动作掉闸。 并联电容器组的保护及应用

高压并联电容器装置运行规范

第三条 正常巡视项目及标准 武汉华能阳光电气有限公司 高压并联电容器装置规范书 一. 电容器巡视检查 第一条 正常巡视周期为每小时巡检一次;每周夜间熄灯巡视一次。 第二条 特殊巡视周期 (一)环境温度超过规定温度时应采取降温措施,并应每半小时巡视一 次; (二)设备投入运行后的 72h 内,每半小时巡视一次。 (三)电容器断路器故障跳闸应立即对电容器的断路器、保护装置、电 容器、电抗器、放电线圈、电缆等设备全面检查; (四)系统接地,谐振异常运行时,应增加巡视次数; (五)重要节假日或按上级指示增加巡视次数; (六)每月结合运行分析进行一次鉴定性的巡视。 序 号 巡视内容及标准 备 注 1 检查瓷绝缘有无破损裂纹、放电痕迹,表面是否清洁。 2 母线及引线是否过紧过松,设备连接处有无松动、过 热。 3 设备外表涂漆是否变色,变形,外壳无鼓肚、膨胀变 形,接缝无开裂、渗漏油现象,内部无异声。 外壳温度不 超过 50℃。 4 电容器编号正确,各接头无发热现象。 5 熔断器、放电回路完好,接地装置、放电回路是否完 好,接地引线有无严重锈蚀、断股。熔断器、放电回 路及指示灯是否完好。

武汉华能阳光电气有限公司 第四条特殊巡视项目及标准 序 号 巡视内容及标准备注 1雨、雾、雪、冰雹天气应检查瓷绝缘有无破损裂纹、放电现象,表面是否清洁;冰雪融化后有无悬挂冰柱,桩头有无发热;建筑物及设备构架有无下沉倾斜、积水、屋顶漏水等现象。大风后应检查设备和导线上有无悬挂物,有无断线;构架和建筑物有无下沉倾斜变形。 2大风后检查母线及引线是否过紧过松,设备连接处有无松动、过热。 3雷电后应检查瓷绝缘有无破损裂纹、放电痕迹 4环境温度超过或高于规定温度时,检查试温蜡片是否齐全或熔化,各接头有无发热现象。 5断路器故障跳闸后应检查电容器有无烧伤、变形、移位等,导线有无短路;电容器温度、音响、外壳有无异常。熔断器、放电回路、电抗器、电缆、避雷器等是否完好。 6系统异常(如振荡、接地、低周或铁磁谐振)运行消除后,应检查电容器有无放电,温度、音响、外壳有 6电容器室干净整洁,照明通风良好,室温不超过40℃或低于-25℃。门窗关闭严密。 7电抗器附近无磁性杂物存在;油漆无脱落、线圈无变形;无放电及焦味;油电抗器应无渗漏油。 8电缆挂牌是否齐全完整,内容正确,字迹清楚。电缆外皮有无损伤,支撑是否牢固电缆和电缆头有无渗油漏胶,发热放电,有无火花放电等现象。

单三角形接线电容器组的保护

本文要点:在集中补偿的电容器组的各种接线中,单三角形接线居多数,为提高安全运行水平,研究这种接线方式的保护,具有普遍的意义。本文阐明: 1、RN1型熔丝单台保护灵敏度底,不能可靠的防止电容器爆破及由此引起的火灾。 2、过电流保护作为电容器组外部相间短路保护,但仍不能防止电容器爆破及火灾。 3、零序保护作单台内部保护,其灵敏度和速动性比较理想,可作为主保护。 4、失压保护同过压保护一样重要,忽视失压保护,有可能引起群爆。 因此,单三角形接线的电容器组,采用上述五种保护,可有效地防止电容爆破及由此引起的火灾,提高安全运行水平。 一、RN1型熔丝单台保护及存在的问题: 1、RN1型熔丝作电容器内部保护,目前使用比较普遍。单台保护按电容器额定电流的1.5-2.5倍选择熔丝.现场使用中,RN1型熔丝一般能反映出电容器内部故障,但仍发生爆破事故,甚至引起火灾.这说明无论从理论计算,或运行实践验证, RN1熔丝灵敏度低.对近年 来所生产的YW10.5—— ——1三种电容器,用RN1型熔丝单台保护,保护效果计算,仍说明这个问题.表1是根据RN1——10/3A—5A熔丝50秒熔断电流值,使用公式 计算得出的结果 从表1看出,上述三种电容器,当内部元件击穿83—85 % ,熔丝50秒钟才熔断,速动性很差,灵敏度低,将导致电容器爆破. 从电压角度分析可进一步看清这个问题.YW10.5型电容器有十二个串联元件,当击穿系数λ为83 % 时,10个元件击穿,剩余2个元件工作.每个元件的额定电压为0.875KV,两个元

件为1.75KV.此时,剩余2个元件承受的网络电压为10KV,约为其额定电压的6倍.在6倍于额定电压作用下,这两个元件将很快击穿.加之,此时已击穿元件对工作元件放电,瞬间释放能量很大.在强电场作用下,绝缘油将迅速分解产生大量气体,气体压力剧增,外壳承受不了高压气体的压力作用,在这瞬间熔丝来不及熔断,故障电容器发展为相同短路而爆破. 南阳地区某变电站,采用RN1——10/3A熔丝保护YY10.5-12-1电容器,有2台电空器爆破后检查熔丝熔断。实例说明RN型熔丝的速动性差灵敏度低不能可靠防止爆破.但有7台由于内部元件击穿 而鼓肚,熔丝熔断,说明运行效果比较满意。 因此,单台熔丝保护是必要的,但不能作为防止爆破的主保护。 二、过电流保护: 过电流保护,作为电容器组外部相间短路保护。其保护范围在电缆终端盒 至放电PT柜引接母线间,以及电容器相与相之间。 过电流保护的整定值 式中:Idz——继电器动作值,安。 ICN——电容器组额定线电流,安。 KK——可靠系数,取2.0~2.5. Kjl——接线系数,继电器全星接,不完全星接均为1。 no——电流互感器变比。 过电流保护不能作为电容器内部故障保护,当内部元件全部击穿引塌直间短路时,过电流保护才动作,因此过电流保护也不能防止电容器爆破(南阳市某变电站电容器爆破两台,同时过电流动作) 三、零序保护: 1、零序保护的接线,如图1,2,3,所示。 三只电流LH——3LH的一次侧接三角形内部各相,二次侧星接与电流继电器线圈串联构成回路,直流回路如图3示。

电气主接线的基本形式及优缺点

第四章电气主接线 第2节单母线接线 主接线的基本形式,就是主要电气设备常用的几种连接方式。概括的讲可分为两大类:有汇流母线的接线形式;无汇流母线的接线形式。 变电所电气主接线的基本环节是电源(变压器)、母线和出线(馈线)。各个变电所的出线回路数和电源数不同,且每路馈线所传输的功率也不一样。在进出线数较多时(一般超过4回),为便于电能的汇集和分配,采用母线作为中间环节,可使接线简单清晰,运行方便,有利于安装和扩建。但有母线后,配电装置占地面积较大,使用断路器等设备增多。无汇流母线的接线使用开关电器较少,占地面积小,但只适于进出线回路少,不再扩建和发展的变电所。有汇流母线的接线形式主要有:单母线接线和双母线接线。 一、单母线接线 单母线接线的特点是整个配电装置只有一组母线,每个电源线和引出线都经过开关电器接到同一组母线上。供电电源是变压器或高压进线回路,母线即可以保证电源并列工作,又能使任一条出线路都可以从电源1或2获得电能。每条回路中都装有断路器和隔离开关,靠近母线侧的隔离开关称作母线隔离开关,靠近线路侧的称为线路隔离开关(在实际变电所中,通常把靠近电源侧的隔离开关称为甲刀闸,把靠近负荷侧的隔离开关称为乙刀闸。 断路器具有开合电路的专用灭弧装置,可以开断或闭合负荷电流和开断短路电流,用来作为接通或切断电路的控制电器。 隔离开关没有灭弧装置,其开合电流能力极低,只能用作设备停运后退出工作时断开电路,保证与带电部分隔离,起着隔离电压的作用。同一回路中在断路器可能出现电源的一侧或两侧均应配置隔离开关,以便检修断路器时隔离电源。 同一回路中串接的隔离开关和断路器,在运行操作时,必须严格遵守下列操作顺序:如对馈线L1送电时,须先合上隔离开关QS1和QS2,再投入断路器QF2;如欲停止对其供电,须先断开QF2,然后再断开QS3和QS2。为了防止误操作,除严格按照操作规程实行操作票制度外,还应在隔离开关和相应的断路器之间,加装电磁闭锁、机械闭锁。接地开关(又称接地刀闸)QS4是在检修电路和设备时合上,取代安全接地线的作用。当电压在110kV及以上时,断路器两侧的隔离开关和线路隔离开关的线路侧均应配置接地开关。对35kV及以上的母线,在每段母线上亦应设置1~2组接地开关或接地器,以保证电器和母线检修时的安全。

并联电容器设计要求规范

并联电容器装置设计规范(GB50227-95) 第一章总则 第1.0.1条为使电力工程的并联电容器装置设计贯彻国家技术经济政策, 做到安全可靠、技术先进、经济合理和运行检修方便,制订本规范. 第1.0.2条本规范适用于220KV及以下变电所、配电所中无功补偿用三相交流高压、低压并联电容器装置的新建、扩建工程设计. 第1.0.3条并联电容器装置的设计, 应根据安装地点的电网条件、补偿要求、环境状况、运行检修要求和实践经验,确定补偿容量、选择接线、保护与控制、布置及安装方式. 第1.0.4条并联电容器装置的设备选型, 应符合国家现行的产品标准的规定. 第1.0.5条并联电容器装置的设计,除应执行本规范的规定外,尚应符合国家现行的有关标准和规范的规定. 第二章-1 术语 1.高压并联电容器装置 (installtion of high voltage shunt capacitors): 由高压并联电容器和相应的一次及二次配套设备组成, 可独立运行或并联运行的装置. 2.低压并联电容器装置 (installtion of low voltage shunt capacitors): 由低压并联电容器和相应的一次及二次配套元件组成, 可独立运行或并联运行的装置. 3.并联电容器的成套装置 (complete set of installation for shunt capacitors): 由制造厂设计组装设备向用户供货的整套并联电容器装置. 4.单台电容器(capacitor unit): 由一个或多个电容器元件组装于单个外壳中并引出端子的组装体. 5.电容器组(capacitor bank): 电气上连接在一起的一群单台电容器. 6.电抗率(reactance ratio): 串联电抗器的感抗与并联电容器组的容抗之比,以百分数表示.

110kV变电站电气主接线及运行方式

110kV变电站电气主接线及运行方式 变电站电气主接线是指高压电气设备通过连线组成的接受或者分配电能的电路。其形式与电力系统整体及变电所的运行可靠性、灵活性和经济性密切相关,并且对电气设备选择、配电装置的布置、继电保护和控制方式的拟定有较大影响。所以,主接线设计是一个综合性问题,应根据电力系统发展要求,着重分析变电所在系统中所处的地位、性质、规模及电气设备特点等,做出符合实际需要的经济合理的电气主接线。 一变电所主接线基本要求 1.1 保证必要的供电可靠性和电能质量。 保证供电可靠性和电能质量是对主接线设计的最基本要求,当系统发生故障时,要求停电范围小,恢复供电快,电压、频率和供电连续可靠是表征电能质量的基本指标,主接线应在各种运行方式下都能满足这方面的要求。 1. 2 具有一定的灵活性和方便性。 主接线应能适应各种运行状态,灵活地进行运行方式切换,能适应一定时期内没有预计到的负荷水平变化,在改变运行方式时操作方便,便于变电所的扩建。 1. 3 具有经济性。 在确保供电可靠、满足电能质量的前提下,应尽量节省建设投资和运行费用,减少用地面积。 1. 4 简化主接线。 配网自动化、变电所无人化是现代电网发展的必然趋势,简化主接线为这一技术的全面实施创造了更为有利的条件。 1. 5 设计标准化。 同类型变电所采用相同的主接线形式,可使主接线规范化、标准化,有利于系统运行和设备检修。 1. 6 具有发展和扩建的可能性。 变电站电气主接线应根据发展的需要具有一定的扩展性。 二变电所主接线基本形式的变化 随着电力系统的发展,调度自动化水平的提高及新设备新技术的广泛应用,变电所电气主接线形式亦有了很大变化。目前常用的主接线形式有:单母线、单母线带旁路母线、单母线分段、单母线分段带旁路、双母线、双母线分段带旁路、一个半断路器接线、桥形接线及线路变压器组接线等。从形式上看,主接线的发展过程是由简单到复杂,再由复杂到简单的过程。在当今的技术环境中, 随着新技术、高质量电气产品广泛应用,在某些条件下采用简单主接线方式比复杂主接线方式更可靠、更安全,变电所主接线日趋简化。因此,变电所电气主接线形式应根据可靠性、灵活性、经济性及技术环境统一性来决定。 三 110kV变电站的主接线选择 在电力系统和变电所设计中,根据变电所在系统中的地位和作用,可把电网中110kV变电所分为终端变电所和中间变电所两大类。下面就这两类变电所高压侧电气主接线模式作一分析。 3. 1 110kV终端变电所主接线模式分析

电容器组电抗器的接线方式与滤波

电容器的接线通常分为三角形和星形两种方式。此外,还有双三角形和双星形之分。 三角形接线的电容器直接承受线间电压,任何一台电容器因故障被击穿时,就形成两相短路,故障电流很大,如果故障不能迅速切除,故障电流和电弧将使绝缘介质分解产生气体,使油箱爆炸,并波及邻近的电容器。因此这种接线已经很少在10kV系统中使用,只是在380V配电系统中有少量使用。 在高压电力网中,星形接线的电容器组目前在国内外得到广泛应用。星形接线电容器的极间电压是电网的相电压,绝缘承受的电压较低,电容器的制造设计可以选择较低的工作场强。当电容器组中有一台电容器因故障击穿短路时,由于其余两健全相的阻抗限制,故障电流将减小到一定范围,并使故障影响减轻。 星形接线的电容器组结构比较简单、清晰,建设费用经济,当应用到更高电压等级时,这种接线更为有利。 星形接线的最大优点是可以选择多种保护方式。少数电容器故障击穿短路后,单台的保护熔丝可以将故障电容器迅速切除,不致造成电容器爆炸。 由于上述优点,各电压等级的高压电容器组现已普遍采用星形接线。 高压电力系统的电容器组除广泛采用星形接线外,双星形接线也在国内外得到广泛应用。所谓双星形接线,是将电容器平均分为两个电容相等或相近的星形接线电容器组,并联到电网母线,两组电容器的中性点之间经过一台低变比的电流互感器连接起来。 这种接线可以利用其中性点连接的电流保护装置,当电容器故障击穿切除后,会产生不平衡电流,使保护装置动作将电源断开,这种保护方式简单有效,不受系统电压不平衡或接地故障的影响。 大容量的电容器组,如单台容量较小,每相并联台数较多者可以选择双星形接线。如电压等级较高,每相串联段数较多,为简化结构布局,宜采用单星形接线。 电容器一次侧接有串联电抗器和并联放电线圈。放电线圈的作用是将断开电源后的电容器上的电荷迅速、可靠地释放掉。由于电容器组需要经常进行投入、切除操作,其间隔可能很短,电容器组断开电源后,其电极间储存有大量电荷,不能自行很快消失,在短时间内,其极间有很高的直流电压,待再次合闸送电时,造成电压叠加,将会产生很高的过电压,危及电容器和系统的安全运行。因此,必须安装放电线圈,将它和电容器并联,形成感容并联谐振电路,使电能在谐振中消耗掉。放电线圈应能在电容器断开电源5s内将电容器端电压下降到50V。 对串联电抗器的作用,我们做一下重点介绍: 电容器配套设置的串联电抗器是为了限制合闸涌流和限制谐波两个目的,串联电

并联电容器保护和投切装置

并联电容器保护和投切装置 1.保护装置: (1)对电容器内部故障采用的保护方式,有用外熔丝或外熔丝加继电保护两种。 (2)电容器组应装设不平衡保护,并应符合下列规定: ①单星形接线的电容器组,可采用开口三角电压保护。 ②串联段数为两段及以上的单星形电容器组,可采用相电压差动保护。 ③每相能接成四个桥臂的单星形电容器组,可采用桥式差电流保护。 ④双星形接线电容器组,可采用中性点不平衡电流保护。 (3)高压并联电容器装置可装设带有短延时的速断保护和过电流保护,保护动作于跳闸。 (4)高压并联电容器装置宜装设过负荷保护,带时限动作于信号或跳闸。 (5)高压并联电容器装置应装设母线过电压保护,带时限动作于信号或跳闸。带延时的目的是避免瞬时电压波动引起的误动。 (6)高压并联电容器装置应装设母线失压保护,带时限动作于跳闸。 (7)容量为0.18MVA及以上的油浸式铁芯串联电抗器宜装设瓦斯保护。轻瓦斯动作于信号,重瓦斯动作于跳闸。 (8)低压并联电容器装置,应有短路保护、过电压保护、失压保护,并宜有过负荷保护或谐波超值保护。 2.投切装置: (1)高压并联电容器装置可根据其在电网中的作用、设备情况和运行经验选择自动投切或手动投切方式,并应符合下列规定:

①兼负电网调压的并联电容器装置,可采用按电压、无功功率及时间等组合条件的自动投切。 ②变电所的主变压器具有有载调压装置时,可采用对电容器组与变压器分接头进行综合调节的自动投切。③除上述之外变电所的并联电容器装置,可分别采用按电压、无功功率(电流)、功率因数或时间为控制量的自动投切。 ④高压并联电容器装置,当日投切不超过三次时,宜采用手动投切。 (2)低压并联电容器装置应采用自动投切。自动投切的控制量可选用无功功率、电压、时间、功率因数。 (3)自动投切装置应具有防止保护跳闸时误合电容器组的闭锁功能,并根据运行需要应具有的控制、调节、闭锁、联络和保护功能;应设改变投切方式的选择开关。 (4)并联电容器装置,严禁设置自动重合闸。

DL/T 604-2009高压并联电容器装置使用技术条件(内容)

高压并联电容器装置使用技术条件 1范围 本标准规定了电力行业使用的高压并联电容器装置的术语、产品分类、技术要求、安全要求、试验方法、检验规则等。 本标准适用于电力系统中35kV及以上电压等级变电站(所)内安装在6kV~66kV侧的高压并联电容器装置和10kV(含6kV)配电线路上的柱上高压并联电容器装置。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,在随后所有的修改单或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB311.1高压输变电设备的绝缘配合 GB763交流高压电器在长期工作时的发热 GB1984交流高压断路器 GB2706交流高压电器动、热稳定试验方法 GB 3804 3.6kV—40.5kV高压交流负荷开关 GB4208外壳防护等级(IP代码) GB 7328 变压器和电抗器的声级测定 GB50227并联电容器装置设计规范 GB/T11024标称电压1kV以上交流电力系统用并联电容器 DL /T 40310kV-40.5kV高压真空断路器订货技术条件 DL/T 442高压并联电容器单台保护用熔断器订货技术条件 DL/T 840 高压并联电容器使用技术条件 3定义 下列定义适用于本标准。 3.1 高压并联电容器装置installation of high-voltage shunt capacitors 制造厂根椐用户要求设计并组装的以电容器为主体的,用于6kV~66kV系统并联补偿用的并联电容器补偿装置。以下简称装置。 3.2 电容器组capacitor bank 由多台电容器或单台电容器按一定方式连接的总体。 3.3 装置的额定容量(Q N) rated output of a installation 一套装置中电容器组的额定容量即为该套装置的额定容量。 3.4 装置额定输出容量rated output of a installation 当装置中电容器组承受的电压等于电容器组的额定电压时,装置的额定输出容量等于该装置的额定

电容器保护

不平衡电流指3相的电流不相等保护,一般3相电流都是不等的在允许的范围内就行了。零序电流是测接地故障的,3相4线的电力系统发生接地就会产生零序电流。 过电压元件电压取自母线PT。为避免在母线单相接地时过电压保护误动,电压采用线电压: 低电压保护电压取自母线PT 电容器保护 4.1. 两段式相间过电流元件保护电容器组与断路器之间的引线、绝缘子、套管间的相间短路故障,同时也可作为电容器内部故障的后备保护。 电容器组回路一般不装设电流速断保护,因为速断保护要考虑躲过电容器组合闸冲击电流及对外放电电流的影响,其保护范围和效果不能充分利用。 4.2. 过电压保护原理及功能由于系统负荷变化等原因,系统电压也经常变化。电容器输出的无功功率和内部有功功率损耗与两端电压的平方成正比,即Qc=ωCU2 P=ωCU2tgδ。当运行电压过高时,箱壳内的有功损失增加的很快,使电容器内部产生的热量超过电容器冷却作用所能散到周围空气中的热量时,热平衡就被破坏,温度升高,游离增大,使介质老化,寿命降低。除造成电容器外壳膨胀外,由于热击穿发展,造成局部地方击穿,易引起电容器爆炸。故电容器需装设较完善的工频过电压保护,确保电容器在不超过最高允许电压下和规定的时间范围内运行。 国家标准规定,电容器允许的工频过电压最大持续时间为:在1.1倍额定电压下,可长期运行;在1.15倍额定电压时,每24小时可运行30min;在1.2倍额定电压时,为5min;在1.3倍额定电压时,为1min。 为保证瞬时出现过电压后,过电压元件能可靠返回,过电压元件宜有较高的返回系数,可取0.95(>0.98)。 过电压元件电压取自母线PT。为避免在母线单相接地时过电压保护误动,电压采用线电压。 由于电压取自母线PT,为防止电容器未投入运行时,母线电压过高误切电容器,过电压元件中加有断路器合位判据。 4.3. 低电压保护原理及功能 从电容器本身特点看,运行中的电容器如果突然失去电压,对电容器本身并无损害。但可能产生以下后果:①当变电站电源侧断开、事故跳闸或电压急剧下降时,如果电容器还接于母线上,则当电源重合闸或备用电源自投后,母线电压很快恢复,在电容器的残压还未降到0.1倍的额定电压的情况下,就有可能使电容器承受高于1.1倍的额定电压而损坏。②当变电站断电恢复时,若变压器带电容器合闸,可能产生谐振过电压,使电容器损坏。③变电站断电恢复的初期,若变压器还未带上负荷或负荷较少,母线电压较高,也可能引起电容器过电压。故加设低电压保护,且其动作时限应小于上级电源进线重合闸或BZT的动作时限(变压器保护或其它保护跳开母线进线断路器时,应同时联跳电容器,但若加设低电压保护,且其动作时限整定适当,可不联跳电容器)。 低电压保护电压取自母线PT,为防止电容器未投入运行时,母线电压过低误切电容器,低电压元件中加有断路器合位判据。为避免在PT断线时低电压保护误动,电压采用线电压,由软件计算得出;且可通过控制字选择是否经有流闭锁。 4.4. 过负荷保护. 电容器组的过负荷是由系统过电压及高次谐波引起,按照国标规定,电容器应能在有效值为1.3倍额定电流下长期运行,对于电容量具有最大偏差的电容器,过电流值允许达到1.43倍额定电流。 由于按规定电容器组必须装设反映母线电压稳态升高的过电压保护,又由于大容量电容器组一般需装设抑制高次谐波的串联电抗器,故可以不装设过负荷保护。仅当该系统高次谐

相关文档
最新文档