影响锅炉汽温的因素及汽温的控制措施

影响锅炉汽温的因素及汽温的控制措施
影响锅炉汽温的因素及汽温的控制措施

编号:SY-AQ-07503

( 安全管理)

单位:_____________________

审批:_____________________

日期:_____________________

WORD文档/ A4打印/ 可编辑

影响锅炉汽温的因素及汽温的

控制措施

Factors affecting boiler steam temperature and control measures

影响锅炉汽温的因素及汽温的控制

措施

导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管

理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关

系更直接,显得更为突出。

锅炉运行中,如果汽温过高,将引起过热器、再热器、蒸汽管道以及汽轮机汽缸、阀门、转子部分金属强度降低,导致设备使用寿命缩短,严重时甚至造成设备损坏事故。从以往锅炉受热面爆管事故统计情况来看,绝大多数的炉管爆破是由于金属管壁严重超温或长期过热造成的,因而汽温过高对设备的安全是一个很大的威胁。蒸汽温度低的危害大家也是知道的,它将引起机组的循环效率下降,使煤耗上升,汽耗率上升,新蒸汽温度过低时,带来的后果就不仅仅是经济上的问题了,严重时可能引起蒸汽带水,给汽轮机的安全稳定运行带来严重的危害,所以规程上规定机组额定负荷下新蒸汽温度变化应在+5℃~-5℃之间。

一、影响过热汽温变化的因素

1、燃料性质的变化:主要指燃料的挥发份、含碳量、发热量等的变化,当煤粉变粗时,燃料在炉内燃烬时间长,火焰中心上移,汽温将升高。当燃料的水份增加时,水份在炉内蒸发需吸收部分热量,使炉膛温度降低,同时水份增加,也使烟气体积增大,增加了烟气流速,使辐射过热器的吸热量降低,对流过热器的吸热量增加。

2、风量及其配比的变化:炉内氧量增大时,由于低温冷风吸热,炉膛温度降低,使炉膛出口温度升高。在总风量不变的情况下,配风的变化也会引起汽温的变化,当下层风量不足时,部分煤粉燃烧不完全,使得火焰中心上移,炉膛出口烟温升高。

3、燃烧器及制粉系统运行方式的变化:上层制粉系统运行将造成汽温升高,燃烧器摆角的变化,使火焰中心发生变化,从而引起汽温的变化

4、给水温度的变化:给水温度升高,蒸发受热面产汽量增多,从而使汽温降低。反之,给水温度降低汽温将升高。

5、受热面清洁程度的变化:水冷壁和屏过积灰结焦或管内结垢时,受热面的吸热将减少,使炉膛出口温度升高,当过热器本身结

焦或积灰时,由于传热不好,将使汽温降低。

6、锅炉负荷的变化:炉膛热负荷增加时,炉膛出口烟温升高,使对流受热面吸热量增大,辐射受热面吸热量降低。

7、饱和蒸汽温度和减温水量的变化:从汽包出来的饱和蒸汽含有少量水分,在正常工况下饱和温度变化很小,但由于某些原因造成饱和蒸汽温度较大变化时,如汽包水位突增,蒸汽带水量增大,在燃烧工况不变的情况下,这些水分在过热器中要吸热,将使汽温降低。在用减温水调节汽温时,当减温水的温度或流量变化时将引起蒸汽侧总热量的变化,当烟气侧工况未变时,汽温将发生相应的变化。

二、影响再热汽温变化的因素

由于再热器具有较大的容积,工质在其中的流速较慢,且又布置在烟气低温区域,烟气侧的传热温差小,因而再热汽温变化的迟滞时间较长。再热蒸汽压力低,比热小,使得再热汽温在工况变化时的温度变化幅度较大。同时,再热蒸汽温度不仅受锅炉工况的变化影响,还受汽轮机工况的影响。如抽汽量变化的影响及高压缸排

汽温度变化的影响。

1、高压缸排汽温度变化的影响:机组在定压方式下运行时,高压缸排汽温度将随机组负荷的增加而升高。过热汽温的升高也将造成高压缸排汽温度的升高,另外,主汽压力越高,蒸汽在汽轮机中做功能力越大,焓降也越大,高压缸排汽温度则相应降低。

2、锅炉烟气量的变化:因再热器呈对流特性,烟气量越大时,再热器吸热越多,汽温升高。

3、锅炉负荷的变化:锅炉负荷降低时,辐射受热面的吸热比例增加,作为对流受热面的再热器吸热量减少,汽温将降低。

4、其它一些诸如:受热面的清洁程度、火焰中心的位置、减温水量的变化等因素对再热汽温的影响与过热汽温类似。

三、蒸汽的压力在这里很关键,从下表可以看出:

压力

P(MPa)

饱和温度

ts(℃)

YZG22.5油田注汽炉说明书

YZG22.5-14/360-G型油田过热注汽锅炉 使用说明书 编制: 校对: 审核: 哈尔滨鑫北源电站设备制造有限公司 二零一四年二月

简介 油田注汽锅炉是稠油热采的专用设备,属油田专用A级直流锅炉。其产生的高温、高压湿饱和蒸汽注入油井加热原油,降低稠油的粘度,改善稠油的流动性,大幅度提高稠油的采收率。 YZG22.5-14/360-G型油田过热注汽锅炉是卧式强制循环直流锅炉,专门针对SAGD 开发工艺技术的特殊要求而设计的,与传统的注汽锅炉相比,该型锅炉蒸汽出口为过热度为2-23℃,适用于注汽压力在14MPa以下的超稠油区块开发。该型锅炉充分考虑了冬季室外运行的防冻、停炉排水等问题,具有现场安装简单、锅炉管束和耐火绝热层维修方便,运行操作方便等优点。控制系统采用新型触摸屏控制,具有强大的控制和通讯功能。 YZG22.5-14/360-G型油田过热注汽锅炉的主要技术参数如下: 额定蒸发量:22.5t/h 额定工作压力:14MPa 额定蒸汽温度:360℃热效率:90.0% 过热度:2-23℃燃料:天然气 控制方式:触摸屏 + PLC控制承载方式:撬座 外形尺寸(长×宽×高):35900×5798×9985mm 设备重量:125816Kg 由于注油过热注汽锅炉结构的特殊性及较高的安全要求,特制定本说明以指导安装、操作和维护。 2.1 原理 2.1.1 水汽系统 从油田水处理装置来的合格软化水,进入给水泵升至工作压力后,经孔板流量计、单向阀、截止阀后进入水—水换热器外管,与对流段出来的热水换热后,温度(90℃-120℃)升高到露点温度以上,然后进入对流段。对流段入口水温可用旁路阀门来进行调节。水在对流段中经高温烟气对流换热(吸收约40%的热量),再进入水—水换热器内管,与锅炉给水换热后进入辐射段(吸收约50%的热量)继续加热蒸发,使其转变为干度为80%的高温高压湿饱和蒸汽。进入汽水分离器,由于汽和水存在的重度差,干蒸汽在汽水分离器内螺旋上升运动并形成汽柱,而饱和含盐水则旋转下降,从而实现汽水分离。分离出来的干饱和蒸汽在额定工作条件下流量为22.5t/h,温度为340℃,进入过热器,过热器烟气侧烟温可达928℃,干饱和蒸汽被加热为过热蒸汽,过热器出口蒸汽温度可达456℃,工作压力为14MPa,经长颈喷嘴,测量过热蒸汽流量,进入喷水掺混器,过热蒸汽与汽水分离器出来的高温饱和水进行混合,混合过程中,饱和水被汽化,过热蒸汽的温度降低,经单向阀、截止阀后,进入注汽管网的过热蒸汽温度为360℃,工作压力为14Mpa。

5现代控制理论 主汽温对象模型

1火电厂主汽温研究背景及意义 火电厂锅炉主汽温控制决定着机组生产的经济性和安全性。由于锅炉的蒸汽容量非常大、过热汽管道很长,主汽温调节对象往往具有大惯性和大延迟,导致锅炉主汽温控制存在很多方面的问题,影响机组的整个工作效率。主汽温系统是表征锅炉特性的重要指标之一,主汽温的稳定对于机组的安全运行至关重要。其重要性主要表现在以下几个方面: (1) 汽温过高会加速锅炉受热面以及蒸汽管道金属的蠕变,缩短其使用寿命。例如,12CrMoV 钢在585℃环境下可保证其应用强度的时间约为10万小时,而在 595℃时,其保证应用强度的时间可能仅仅是 3 万小时。而且一旦受热面严重超温,管道材料的强度将会急剧下降,最终可能会导致爆管。再者,汽温过高也会严重影响汽轮机的汽缸、汽门、前几级喷嘴和叶片、高压缸前轴承等部件的机械强度,从而导致设备损坏或者使用年限缩短。 (2) 汽温过低,会使得机组循环热效率降低,增大煤耗。根据理论估计可知:过热汽温每降低10℃,会使得煤耗平均增加0.2%。同时,汽温降低还会造成汽轮机尾部的蒸汽湿度增大,其后果是,不仅汽轮机内部热效率降低,而且会加速汽轮机末几级叶片的侵蚀。此外,汽温过低会增大汽轮机所受的轴向推力,不利于汽轮机的安全运行。 (3) 汽温变化过大会使得管材及有关部件产生疲劳,此外还将引起汽轮机汽缸的转子与汽缸的胀差变化,甚至产生剧烈振动,危及机组安全运行。 据以上所述,工艺上对汽温控制系统的质量要求非常严格,一般控制误差范围在±5℃。主汽温太高会缩短管道的使用寿命,太低又会降低机组效率。所以必须实现汽温系统的良好控制。而汽温被控对象往往具有大惯性、大延时、非线性,时变一系列的特性,造成对象的复杂性,增加了控制的难度。现代控制系统中有很多关于主汽温的控制方案,本文我们着重研究带状态观测器的状态反馈控制对主汽温的控制[1] 。 2主汽温对象的特性 2.1主汽温对象的静态特性 主汽温被控对象的静态特性是指汽温随锅炉负荷变化的静态关系。过热器的传热形式、结构和布置将直接影响过热器的静态特性。现代大容量锅炉多采用对流过热器、辐射过热器和屏式过热器。对流过热器布置在450℃~1000℃烟气温度的烟道中,受烟气的横向和纵向冲刷,烟气以对流方式将热量传给管道。而辐射过热器则是直接吸收火焰和高温烟气的辐射能。屏式过热器布置在炉膛内上部

过热汽温控制系统

第一部分 多容对象动态特性的求取 控制对象是指各种具体热工设备,例如热工过程中的各种热交换器,加热炉、锅炉、贮 液罐及流体输送设备等。尽管它们的结构和生产过程的物理性质很不相同,从控制的观点来 看它们在本质上有许多相似之处。控制对象是自动控制系统中的一个重要组成部分。它的输 出信号通常是生产过程中要求控制的被调量;它的输入信号是引起被调量变化的各种因素 (扰动作用和控制作用)。 对象的动态特性取决于它的内部过程的物理性质,设备的结构参数和运行条件等,原则 上可以用分析方法写出它的动态方程式。但是由于一般热工对象内部过程的物理性质比较复 杂,加之运行过程中的一些实际条件很难全面予以考虑,因此用分析方法并不容易得到动态 特性的精确数学表达式。比较常用的方法是在运行条件下通过实验来获得对象的动态特性。 根据测定到的对象阶跃响应曲线,可以把它拟合成近似的传递函数,根据阶跃响应曲线 求近似传递函数有很多方法,采用的传递函数在形式上也是各式各样 有自平衡能力的高阶对象的阶跃响应曲线如图所示: 无迟延一阶对象阶跃响应曲线 选定的传递函数的形式为 ()() 1N K W S TS = + 即采用一个n 阶等容惯性环节来近似表征。 上式中有三个待定的参数:放大系数K ,时间常数T 和阶数n ,传递函数的放大系数K 的求取方法按前面求取公式确定。 (1)作稳态值的渐近线y(∞),则 ()() 0Y Y K μ ∞-= ? 在试验获得的阶跃响应曲线上,求得y(t 1)=0.4y(∞)及y(t 2)=0.8y(∞)时对应的时间 t 1、t 2 后,利用下式求阶数n : 利用两点法公式可知(见《热工控制系统》谷俊杰,课本62 页公式):由曲线可知放大

工业锅炉过热汽温全程控制系统的

引言 近年来,随着电力工业的飞速发展,大容量火电机组已成为各电厂中的主要机组,它对系统运行的安全性、经济性和系统的自动化程度提出了更高的要求。与此同时,对过热汽温控制系统的要求也越来越高。 火电厂锅炉汽温控制系统具有大迟延、大惯性的特点,且影响汽温变化的扰动因素很多,如蒸汽负荷、烟气温度和流速、火焰中心位置、减温水量、给水温度等等,这些扰动会极大影响机组的安全、经济运行。正常运行时的锅炉燃烧系统须使出口的过热汽温维持在一定范围内,该参数的控制质量直接影响着机组运行的安全性和经济性。过热蒸汽温度过高,可能造成过热器、蒸汽管道及汽轮机的高压部分金属损坏;过热蒸汽温度过低,会降低汽轮机的效率,加剧对叶片的侵蚀。 针对过热汽温调节对象调节通道惯性迟延大、被调量信号反馈慢的特点,应该从对象的调节通道中找出一个比被调量反应快的中间点信号作为调节器的补充反馈信号,以改善对象调节通道的动态特性,提高调节系统的质量。 目前采用的过热蒸汽温度调节系统主要有两种方案: 一种是串级控制, 另一种是导前汽温微分信号控制。本设计所采用的汽温控制方案为导前汽温微分控制。这种控制系统的结构特点是:只用了一个调节器,调节器的输入取了两个信号。一个信号是主汽温经变送器直接进入调节器的信号,另一个信号则是减温器后的温度经微分器后送入调节器的信号。 本设计通过理论计算与仿真研究相结合的方法,将导前微分控制应用于过热汽温控制方案中,改善了控制对象的动态特性和控制品质。该方案的可行性和该控制系统的优点,为进一步研究和设计这种控制系统提供了理论基础。

第一章过热汽温控制系统概述 1.1 过热蒸汽温度控制的任务 现代锅炉的过热器是在高温、高压条件下工作的,锅炉出口的过热蒸汽温度是整个汽水行程中共质的最高温度,对于电厂的安全经济运行有重大影响。 锅炉过热器是由辐射过热器、对流过热器和减温器等组成。其任务是将汽包出来的饱和蒸汽加热到一定数值,然后送往汽机去作功。通常称减温器前的过热器为前级过热器,减温器后的过热器为后级过热器。由于过热器承受高温高压,它的材料采用耐高温、高压的合金钢。过热器正常运行的温度已接近钢材允许的极限温度,强度方面的安全系数也很小,因此,必须相当严格地将过热汽温控制在给定值附近。中、高压锅炉过热汽温的暂时偏差不允许超过±10℃,长期偏差不允许超过±5℃,这个要求对于汽温控制系统来说是非常高的。汽温过高会使过热器和汽机高压缸承受过高的热应力而损坏,汽温偏低会降低机组热效率,影响经济运行。 图1-1所示为锅炉过热蒸汽温度控制系统的结构图。 图1-1 过热汽温控制系统

锅炉汽温调整的方法和注意事项

锅炉汽温调整的方法和注意事项汽温是机、炉安全经济运行所必须监视与调整的主要参数之一,由于影响汽温的因素多,影响过程复杂多变,调节过程惯性大,这就要求汽温调节应勤分析、多观察,树立起超前调节的思想。在机组工况发生变化时,应加强对汽温的监视与调整,分析其影响因素与变化的关系,摸索出汽温调节的一些经验,来指导我们的调整操作。下面,我们对一些典型工况进行分析,并提出一些指导性措施。由于汽温变化的复杂性,大家在应用过程中要结合实际遇到的情况学会灵活变通,不可生搬硬套。 一、机组正常运行中的汽温调节 汽温调节可以分为烟气侧调整、蒸汽侧的调整,烟气侧的调节过程惯性大,通常情况下需要3-5分钟左右温度才会开始变化;而蒸汽侧的调节相对比较灵敏。因此正常运行过程中,应保持减温水调整门具有一定的开度,一般应大于7%;如果减温器已经关完或开度很小时,由于阀门的特性原因它的调节能力减弱,也就是减温水流量变化相对较小,此时应观察同侧另一级减温水流量是否偏大,并及时对其的减温水流量进行重新分配,另外还可以对燃烧进行调整(在炉膛氧量允许时可适当加大风量,或调整风门使火焰中心上移),使汽温回升、减温器开启。如果各级减温器开度均比较大时(若大于60%),

同时也应从燃烧侧调整,或对炉膛进行吹灰,以达到关小各级减温器,使其具有足够的调节余量。 总之,在机组正常运行时,各级减温后的蒸汽温度在不同工况下是不相同的。应加强对各级减温器后蒸汽温度的监视,并做到心中有数,以便在汽温异常时作为调整的参考。建议在负荷发生变化时应将减温水且为手动调整,避免汽温大幅度波动。 二、变工况时汽温的调节。 变工况时汽温波动大,影响因素众多,值班员应在操作过程中分清主次因素,对症下药,及早动手,提前预防.必要时采取过调手段处理,不可贻误时机,酿成超温事故。变工况时汽温的变化主要是锅炉的燃烧负荷与汽轮机的机械负荷不匹配所造成的。一般情况下,当锅炉的热负荷大于汽轮机的机械负荷时,汽温为上升趋势,两者的差值越大,汽温的上升速度越快。目前机组在投入BLR方式下运行时,机组负荷变化频繁且幅度较大。下面对几种常见情况分析如下: 1、正常加减负荷时的汽温调节。 正常加负荷时,在汽轮机调门开度增加,锅炉压力下降自调系统开始增加燃料量、风量。而汽温的变化要滞后于燃烧侧的热负荷的增加。对于过热器来说,由于蒸发量的增加,对过热汽温有一定的补偿能力,所以过热汽温的变化是滞后与负荷变化速度的(它随着负荷的增加燃料量、蒸汽压力、蒸汽流量的增加而增快的)。也就是说负荷

主蒸汽温度控制系统

主蒸汽温度控制系统 本机组的锅炉为单汽包、单炉膛、再热式自然循环锅炉。由汽包分离分离出的蒸汽依次流过顶棚、热回收包覆面、初级过热器、屏式过热器和未级过热器,最后达到一定的温度离开锅炉。 两级喷水减温器分别布置于初过出口、屏过入口处和屏过出口、未级过热器入口处,如图1所示。主蒸汽温度控制系统,通过这两级喷水减温,将未级过热器出口主蒸汽温度控制在某个定值上,并且保护整个过热器管路乃至主蒸汽管道及汽机金属不被高温损坏。 该系统分两级喷水控制,每级喷水又分左右两侧控制,如图1所示,同一级的两侧减温控制设计思想是相同的。一、二级减温水控制系统是相互独立的,现分别予以剖析。 1.1一级减温水控制 一级减温水的作用,简单地说是将一级减温器出口温度即屏过入口温度控制在某个定值上。图2为原理性框图。 这个温度定值通常是锅炉负荷(用汽机第一级压力P1代表),主汽压力P,主汽压偏差△P的函数(P1、P、△P)。其中,定值与负荷的关系,如图2中的曲线所示,而与压力的关系待定。但在特殊工况下,这个定值还要受最小减温水量和最大减温水量的限制。 ①最小一级减温水量限制 限制最小减温水量的目的是为了防止屏式过热器被高温烧坏,因屏过接受炉内高温火焰辐射,防止屏过内蒸汽温度过高尤为重要,因此最小一级减温水量限制又可理解成屏过出口最高蒸汽温度限制。图2中,A1为屏过出口所允许的最高汽温值。当屏过出口汽温高于这个最高值后,PID1将逐渐减小输出,最后在小值选择器之后,将取代通常的定值(P1、P,

△P),即去降低一级减温器出口温度定值,PID0将去增加一级减温水量,从而降低整个屏过段的蒸汽温度。 ②最大一级减温水量限制 限制最大一级减温水量目的是为了防止屏过入口汽温过低以致低于此处当前压力下水蒸汽的饱和点,所以又可将最大一级减温水量限制理解成屏过入口最低温度限制。图2中,f(x)输出为相应压力下屏过入口蒸汽的饱和温度,在此基础上再加上A2(约11℃)的过热度,这个和值在大值选择器中与前级的小选输出进行比较,取大值输出。这样就可限制屏过入口蒸汽温度定值,使其不致低于饱和点,从而防止了屏过入口蒸汽带水。 如果不出现两种极端情况,即屏过出口汽温过高或屏过入口汽温过低,定值将是f(P1、P、△P)。 实际屏过入口温度与其定值求偏差后,经PID0调节器运算,其输出去调节一级减温水量最终使屏过入口实际汽温与其定值相等。 由此可见,一级减温水控制回路只是一个单回路调节系统,虽然虽然在框图中有两个PID调节器“串联”在一起,但并不是串级控制系统。

影响过热汽温、再热汽温因素

控制循环或自然循环锅炉影响汽温的运行因素 一、影响过热汽温的主要运行因素 1、给水温度 当给水温度降低时,汽包内的水与较低温度的给水混合后,干度下降。在燃料量不变的情况下,汽包产汽量下降,即进入过热器的蒸汽量减少,引起过热汽温上升。增加燃料恢复产汽量后,汽温更上升。 2、过量空气系数 当过量空气系数变化时,直接影响锅炉的排烟损失,同时影响对流受热面与辐射受热面的吸热比例。当过量空气系数增加时,除排烟损失增加,锅炉效率降低外,炉膛辐射吸热减少,烟道对流传热增加,具有对流特性的过热器吸热量有所增加,末级过热器出口汽温上升。具有辐射特性的过热器,汽温可能下降。 3、火焰中心高度 火焰中心温度上移时,炉膛出口烟气温度上升,引起过热汽温上升;反之,过热汽温下降。 4、受热面结渣 当炉膛水冷壁结渣时,水冷壁吸热量降低,汽包产汽量减少;同时,炉膛出口烟气温度上升,过热汽温升高。若过热器结渣或积灰时,过热汽温明显下降。 二、影响再热汽温的主要运行因素 1、给水温度 当给水温度降低时,在燃料量不变的条件下,锅炉蒸发量降低。如果保持给水温度降低前的锅炉蒸发量,必须增加燃料量。对于汽包锅炉,由于燃料量增加,相应的烟气量增加,对流布置的再热器吸热量就会随之增加,再热汽温上升。 2、过量空气系数 过量空气系数增加时,对流再热器吸热量增加,出口汽温上升。过量空气系数减少 时,对流再热器吸热量减少,出口汽温降低。 3、火焰中心高度 火焰中心高度变化的影响与过量空气系数变化的影响相似,但对辐射再热器的锅炉 调温作用更为明显。火焰中心上移,辐射式或对流式再热器吸热量增加,再热汽温 上升。 4、受热面结渣 当炉膛水冷壁结渣时,水冷壁吸热量降低,炉膛出口烟气温度上升,再热汽温升高。 当再热器结渣或积灰时,再热汽温明显下降。 5、烟气流量 利用烟道挡板改变两侧烟道的烟气量,可以改变两侧烟道内受热面的吸热量,达到 调温度的目的。某侧烟气量增大,则该侧受热面的吸热量增大,出口汽温提高。

锅炉过热蒸汽温度控制系统设计

课程设计任务书 题目: 锅炉过热蒸汽温度控制系统设计 摘要 本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计。控制系统采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。 关键字:过热蒸汽控制串级控制系统自动控制主控-串级切换 目录 1 生产工艺介绍 .................................................. 错误!未定义书签。 1.1 锅炉设备介绍............................................................................ 3 1.2 蒸汽过热系统的控制................................................................ 52控制原理简介 ..................................................................................... 6 2.1控制方案选择............................................................................. 6 2.1.1单回路控制方案................................................................. 6

超临界机组主汽温控制

超临界机组主汽温控制 超临界机组过热汽温的调节 1.1、过热汽温的粗调(即煤水比的调节) 对于直流锅炉,控制主蒸汽温度的关键在于控制锅炉的煤水比,而煤水比合适与否则需要通过中间点温度来鉴定。在直流锅炉运行中,为了维持锅炉过热蒸汽温度的稳定,通常在过热区段中取一温度测点,将它固定在相应的数值上,这就是通常所谓的中间点温度。实际上把中间点至过热汽出口之间的过热区段固定,相当于汽包炉固定过热器区段情况类似。在过热汽温调节中,中间点温度实际是与锅炉负荷有关,中间点温度与锅炉负荷存在一定的函数关系,那么锅炉的煤水比B/G 按中间点温度来调整,中间点至过热器出口区段的过热汽温变化主要依靠喷水减温调节。对于直流锅炉,其喷水减温只是一个暂时措施,要保持稳定汽温的关键是要保持固定的煤水比。其原因是:从图1可以看出直流炉G=D ,如果过热区段有喷水量d ,那么直流炉进口水量为(G-d)。如果燃料量B 增加、热负荷增加,而给水量G 未变,这样过热汽温就要升高,喷水量d 必然增加,使进口水量(G-d)的数值就要减少,这样变化又会使过热汽温上升。因此喷水量变化只是维持过热汽温的暂时稳定(或暂时维持过热汽温为额定值),但最终使其过热汽温稳定,主要还是通过煤水比的调节来实现的。而中间点的状态一般要求在各种工况下为微过热蒸汽。 加热区段过热区段G-d d D 图1 超临界压力锅炉工作示意图 超临界压力直流锅炉中间点温度选择为内置式分离器的出口温度,以该点作为中间点有以下几方面的好处: (1) 能快速反应出燃料量的变化。当燃料量增加时,水冷壁最先吸收燃烧释放出的辐射热,分离器出口温度的变化比依靠吸收对流热量的过热器快得多。 (2) 中间点选在两极减温器之前,基本上不受减温水流量变化的影响,即使发生减温水量大幅度变化,按锅炉给水量=给水泵入口流量-减温水量,中间点温度送出的调节信号仍保证正确的调节方向。 (3) 当锅炉负荷大于37%MCR 时,分离器呈干态,分离器出口处于过热状态,这样在分离器干态运行的整个负荷范围内,中间点具有一定的过热度,而且该点靠近开始过热的点。从直流锅炉汽温控制的动态特性可知:过热汽温控制点离开工质开始过热点越近,汽温控制时滞越小,即汽温控制的反应明显。 根据中间点温度可以控制燃料——给水之间的比例。在运行中,当负荷变化时,如煤水比维持或控制得不准确,中间点温度就会偏离设定值。中间点温度的偏差信号指示运行人员或计算机及时调节煤水比,消除中间点温度的偏差。如能控制好中间点温度(相当于固定过热器区段),就能较方便地控制其后各点的汽温值。但需要强调的是,中间点温度的设定值与锅炉特性和负荷有关,如变压运

影响锅炉汽温的因素及汽温的控制措施

仅供参考[整理] 安全管理文书 影响锅炉汽温的因素及汽温的控制措施 日期:__________________ 单位:__________________ 第1 页共8 页

影响锅炉汽温的因素及汽温的控制措施 锅炉运行中,如果汽温过高,将引起过热器、再热器、蒸汽管道以及汽轮机汽缸、阀门、转子部分金属强度降低,导致设备使用寿命缩短,严重时甚至造成设备损坏事故。从以往锅炉受热面爆管事故统计情况来看,绝大多数的炉管爆破是由于金属管壁严重超温或长期过热造成的,因而汽温过高对设备的安全是一个很大的威胁。蒸汽温度低的危害大家也是知道的,它将引起机组的循环效率下降,使煤耗上升,汽耗率上升,新蒸汽温度过低时,带来的后果就不仅仅是经济上的问题了,严重时可能引起蒸汽带水,给汽轮机的安全稳定运行带来严重的危害,所以规程上规定机组额定负荷下新蒸汽温度变化应在+5℃~-5℃之间。 一、影响过热汽温变化的因素 1、燃料性质的变化:主要指燃料的挥发份、含碳量、发热量等的变化,当煤粉变粗时,燃料在炉内燃烬时间长,火焰中心上移,汽温将升高。当燃料的水份增加时,水份在炉内蒸发需吸收部分热量,使炉膛温度降低,同时水份增加,也使烟气体积增大,增加了烟气流速,使辐射过热器的吸热量降低,对流过热器的吸热量增加。 2、风量及其配比的变化:炉内氧量增大时,由于低温冷风吸热,炉膛温度降低,使炉膛出口温度升高。在总风量不变的情况下,配风的变化也会引起汽温的变化,当下层风量不足时,部分煤粉燃烧不完全,使得火焰中心上移,炉膛出口烟温升高。 3、燃烧器及制粉系统运行方式的变化:上层制粉系统运行将造成汽温升高,燃烧器摆角的变化,使火焰中心发生变化,从而引起汽温的变化 4、给水温度的变化:给水温度升高,蒸发受热面产汽量增多,从 第 2 页共 8 页

锅炉主汽温度控制系统设计说明书

内蒙古科技大学 本科生过程控制课程设计说明书 摘要 随着先进的电子和计算机技术的发展和控制功能的不断完善以及对热电厂中锅炉仪表控制系统进行的先进改造,以先进的DCS系统作为锅炉的控制核心,锅炉鼓风机和引风机采用变频驱动技术,以保护电机和节约能源,结合实际的现场仪表、变频调速器、DCS控制方案的具体实施方案。而在锅炉主汽温度控制系统中,也有越来越多的方法可以实现生产控制,这里需要我们对过热器的出口蒸汽温度进行检测,当温度不在控制范围内时就通过对过热器阀门的控制,设计锅炉主汽温度控制系统,实现对汽包主蒸汽温度的控制,以产生合格的产品,这个就是这次设计的主要内容。 关键词:锅炉;主汽;温度;控制

目录 第一章绪论 (3) 第二章热电厂概述 (4) 2.1锅炉概述 (4) 2.2锅炉、锅筒设备及结构 (5) 2.3锅炉控制的工作原理 (6) 第三章锅炉主汽温度控制系统概述 (7) 3.1锅炉蒸汽温度控制概述 (7) 3.2过热器的基本概念 (7) 3.3锅炉主汽温度控制系统的总体设计方案 (8) 第四章锅炉主汽温度控制的设计过程 (9) 4.1锅炉主汽温度控制说明 (9) 4.2锅炉主汽温度控制系统的分析与初步设计 (10) 4.3锅炉主汽温度串级控制系统图解及仪表选型 (11) 4.4锅炉主汽温度控制系统安全保护对策 (13) 第五章总结 (15) 参考文献 (16)

第一章绪论 这个学期的第一个课程设计是过程控制课程设计,通过上个学期的热电厂的实习,以及对热电厂的工艺和锅炉的生产设备及工艺的了解,我们选择了各自的课程设计题目,我的设计主要是介绍锅炉控制中的主汽温度控制系统的设计。随着科学的进步以及各种仪器的发展,现在已经有很成熟的控制方法来控制锅炉的生产,我这里是根据一般的场合所需要的控制方案,设计了一个串级的控制系统。对一些大的生产设备和一些有大的延迟或者是大的滞后的生产过程就不做叙述了。

主汽温 再热气温的调节

气温调整原则 蒸汽温度的调整应以烟气侧为主,蒸汽侧为辅。烟气侧的调整主要是改变火焰中心的位置和流过过热器和再热器的烟气量,蒸汽侧的调整,是根据蒸汽温度的变化情况适当调整相应减温器的减温水量,达到调整蒸汽温度的目的,再热汽温应以烟气侧进行调整,以提高机组的经济性,再热器系统喷水减温只做辅助调整。 正常运行时维持锅炉侧主再汽温为538±5℃之间,主再热汽温偏差≯14℃,最大≯28℃。若锅炉主再热汽温≥550℃时,减温水调整无效时,必要时应立即停止上层磨机运行,以降低汽温 当气温达到550°且仍有上升趋势时,应报机组长,值长,加大调整幅度,促使气温恢复至正常值。 当汽温达到547—557°范围内,运行不能超过15min。主再热汽温达到565°运行15min仍不能恢复至正常值或仍上升时,应立即打闸停机。 汽温降至530°时,应及时调整,机组满负荷时,降510°应减负荷运行,在减负荷过程中如有回升趋势应停止减负荷,汽温每降低1°减负荷5mw,450°负荷应减到0,降至430°仍不能恢复时应打闸停机。 正常运行时过热汽温,再热汽温调整应由自动装置完成,自动投入时加强监视。发现异常,事故时及时解列自动,手动调节汽温。 过热器和再热器喷水管路中闭锁阀是用于喷水不流入汽轮机,以免损坏汽轮机的叶片, 当锅炉主燃料切断MFT时,降闭锁阀关闭。 锅炉负荷小于20%B?MCR时,降闭锁阀关闭 当喷水调整阀开度不大于5%时,才能将闭锁阀开启 主再热汽温最高不允许超过546°,546—552°一年累计不超过400小时,主再热汽温不允许在15min内由额定汽温升至566°或下降至510°,否则停机,超过566°一年累计不超过80小时,15min内快速波动一年不超过80小时。 主再热主气门前温差达42°,最多可运行15min,否则应停机且4小时内部能发生两次。减负荷时,主再热汽温之差≯28°,最高时≯42°,这种情况仅限于再热低于过热,机组空载时,主再热汽温差不超过83° 主汽温的调整 1、过热蒸汽温度调整分三级调整,第一级在前屏入口作为粗调,第二级喷水在后屏过热器入口,第三级喷水在后屏和末级过热器之间。设计容量:第一级喷水量约总喷水量的2/3,第二级与第三级喷水量约占总喷水的1/3.第一级喷水调整后屏过热器出口温度,第二级喷水调节后屏过热器出口汽温偏差,第三级喷水作为对高过出口汽温的细调,一级喷水主要通过降低前屏入口汽温来控制后屏壁温不超。 2.调整汽温时,应合理使用各级减温水,特别应注意减温水压差的变化,确保各受热面不超温,正常情况下控制低过前汽温不超过设计值,后屏过热器出口汽温不超过设计值,末级过热器出口汽温在538±5°,之间,过热器减温水总量不超过主汽流量的10% 3.使用减温水时,减温水流量不可猛开猛关,要注意给水压力,减温水量和减温器前后温度的变化,防止汽温急剧波动 4.汽机高加退出时,过热器温会升高,应及时调整燃烧和减温水量,控制汽温在规定的范围内,当高加投入时,操作相反。 5.煤粉变粗,炉膛总送风量增加,炉膛炉低漏风增加,启动上层制粉系统,增加上部燃烧器的出力,关小上部二次风,燃烧倾角上摆均会引起炉膛火焰中心上移,过热气温升高,应及时调整减温水量,控制汽温在规定值,反之汽温下降操作相反。

火电厂再热蒸汽温度控制系统的设计

摘要 锅炉蒸汽温度自动控制包括过热蒸汽温度控制和再热蒸汽温度控制。再热蒸汽温度是锅炉运行质量的重要指标之一,再热蒸汽温度过高或过低都会显著地影响电厂的安全性和经济性。再热循环可以降低汽轮机尾部叶片处的蒸汽湿度,降低汽耗,提高电厂的热循环效率,所以单元机组普遍采用中间再热技术[1-2]。本次毕业设计以再热蒸汽温度为被控对象,设计相应的控制器使再热器出口蒸汽温度在允许范围内,并且保护再热器,使管壁温度不超过允许的工作温度。 火电厂对再热蒸汽汽温控制若采用常规串级控制系统,具有很大的迟延性,对此,本文采用模糊控制和PID相结合的控制方式。实验结果显示,系统的控制特性在超调量、快速性、抗干扰方面都有了很大的改善,对大范围工况变化具有较强的鲁棒性和适应性,对大型发电机组的锅炉再热蒸汽汽温控制具有实用价值。 关键词:再热蒸汽;模糊控制;串级控制系统

Abstract Boiler steam temperature control includes control of superheated steam temperature and reheat steam temperature control. Reheat steam temperature is one of the important indicators of the quality of boiler operation, reheat steam temperature which is too high or too low will significantly affect plant safety and economy. Reheat cycle can reduce steam turbine moisture at the end of the leaves, reduce gas consumption and increase power plant thermal cycle efficiency, so reheat units commonly is used in the unit. The graduation project make the reheat steam temperature as controlled object, the corresponding controller is designed to reheat outlet steam temperature in the allowed range, to protect the reheater, the wall temperature does not exceed the allowable operating temperature. If steam temperature control uses a conventional cascade control system ,it has a great delay.therefore,this paper combines fuzzy control with PID control to improve . Experimental results show that the control characteristics of the system in the overshoot, fast and interference aspects have substantial improvement , it has significantly robustness and adaptivity when conditions change on a wide range , it has a practical value for large-scale generating units reheat steam boiler Steam temperature control. Keywords: reheat steam; fuzzy control; cascade control system 2

锅炉主蒸汽温度低原因及处理

我厂三期机组主蒸汽温度低原因及处理 近期,我厂#6、7机组机组负荷在50%及以上时经常出现主蒸汽温度低现象,现总结其原因及其处理方向。 一、主蒸汽温度过低的危害 当主蒸汽压力和凝结真空不变,主蒸汽温度降低时,主蒸汽在汽轮机内的总焓降减少,若要维持额定 负荷,必须开大调速汽阀的开度,增加主蒸汽的进汽量。一般机组主蒸汽温度每降低10C,汽耗量要 增加 1.3%~1.5%。 主蒸汽温度降低时,不但影响机组的经济性,也威胁着机组的运行安全。其主要危害是: (1)末级叶片可能过负荷。因为主蒸汽温度降低后,为维持额定负荷不变,则主蒸汽流量要增加,末级焓降增大,末级叶片可能过负荷状态。 (2)末几级叶片的蒸汽湿度增大。主蒸汽压力不变,温度降低时,末几级叶片的蒸汽湿度将要增加,这样除了会增大末几级动叶的湿汽损失外,同时还将加剧开几级动叶的水滴冲蚀,缩短叶片的使用寿命。 (3 )各级反动度增加。由于主蒸汽温度降低,则各级反动度增加,转子的轴向推力明显增大,推力瓦块温度升高,机组运行的安全可靠性降低。 (4)高温部件将产生很大的热应力和热变形。若主蒸汽温度快速下降较多时,自动主汽阀外壳、调节级、汽缸等高温部件的内壁温度会急剧下降而产生很大的热应力和热变形,严重时可能使金属部件产生裂纹或使汽轮机内动、静部分造成磨损事故;当主蒸汽温度降至极限值时,应打闸停机。 (5)有水击的可能。当主蒸汽温度急剧下降50C以上时,往往是发生水冲击事故的先兆,汽轮机值班员必须密切注意,当主蒸汽温度还继续下降时,为确保机组安全,应立即打闸停机。 二、引起主蒸汽温度低的因素: 1)水煤比。 在直流锅炉动态分析中,汽轮机调节汽阀的扰动,对直流锅炉是一种典型的负荷扰动。当调节汽阀阶 跃开大时,蒸汽流量D和机组输出功率N E立即增加,随即逐渐减少,并恢复初始值,汽轮机阀前压力 P T一开始立即下降,然后逐渐下降至新的平衡压力。由于直流锅炉的蓄热系数比汽包锅炉小,所以直流锅炉的汽压变化比汽包锅炉大得多。当负荷扰动时,过热汽温T2近似不变,这是由于给水流量和燃 烧率保持不变,过热汽温就基本保持不变。 燃烧率扰动是燃料量、送风量和引风量同时协调变化的一种扰动。当燃烧率B阶跃增加时,经过一段 较短的迟延时间,蒸汽流量D会暂时向增加方向变化;过热汽温T2则经过一段较长的迟延时间后单调上升,最后稳定在较高的温度上;汽压P T和功率N E的变化也因汽温的上升而最后稳定在较高的数值。 当燃烧率不变而给水流量增加时,一开始由于加热段和蒸发段的伸长而推出一部分蒸汽,因此蒸汽流 量D、汽压P T、功率Nk几乎没有迟延的开始增加,但由于汽温T2的下降,最后虽然蒸汽流量D增加,而输出功率N E却有所减少;汽压Pr也降至略高于扰动前的汽压,过热汽温T2则经过一段较长的迟延时间后,最后稳定在较低的温度。 给水和燃料复合扰动时的动态特性是两者单独扰动时的动态特性之和,由图2可知,当给水和燃料按 比例变化时,蒸发量D立即变化,然后稳定在新的数值上,过热汽温则保持在原来的数值上(额定汽温)。这就是说明严格控制水煤比是直流炉主蒸汽调节的关键。

注汽锅炉安装使用说明书

8安装 8.1技术资料 8.1.1油田注汽锅炉安装之前应具备的技术资料应按《蒸汽锅炉安全技术监察规程》执行。 8.1.2注汽锅炉出厂时,必须有发货清单和随机配件的装箱清单。 8.1.3注汽锅炉出厂时,必须附有与安全使用有关的技术资料,应包括以下内容: 1锅炉总图。 2锅炉工艺流程图。 3流程图设备名称对照表。 4锅炉质量证明书。 5热力计算结果汇总表。 6水阻力计算书。 7强度计算书。 8烟风阻力计算书。 9安全阀排放量计算书。 10热膨胀系统图。 11安装使用说明书。 12锅炉程序控制图。 13锅炉动力原理图。 14各项报警整定值。 15锅炉配件说明书。 8.2到货验收 8.2.1注汽锅炉和随机配件到货后,供方、需方及安装单位共同检查技术随机文件及设备,并按标识方向拆包装,按发货清单和装箱清单进行清点。 8.2.2对运输中内外部件破损及保温耐火材料破损情况进行检查。 8.2.3所有运输件的损坏及丢失均应向承运方报告。 8.2.4检查验收后履行交接手续。 8.3基础 8.3.1基础必须经验收合格方可安装。 8.3.2安装前必须对基础进行下列复测检查: 1基础表面不应有裂纹、蜂窝、空洞及露筋等缺陷。 2基础上平面水平度的允许偏差在全长范围内不应该大于10mm,基础水平位置的偏差不应大于20mm,基础标高的允许偏差为+10mm。 8.3.3基础表面应修整,表面不应该有油污或疏松层。 8.3.4放置垫铁处(至周边约50mm)的基础表面应铲平。 8.3.5设备安装强应在基础上标出安装中心线和标高基准线。 8.3.6基础混凝土强度必须达到设计要求的75%以上方可吊装设备。 8.4就为及连接 8.4.1安装单位必须熟悉安装技术资料。 8.4.2拆除防护材料时,不得损坏设备。 8.4.3设备吊装应按制造厂推荐的方法进行。 8.4.4应按基础中心线先安装辐射段橇座,以此段为基准依次安装过渡段、对流段及炉前操作平台,然后安装滑道。 8.4.5用垫铁找平撬座上平面,全长范围内的水平度允许偏差不应大于10mm,相临两垫铁组间的距离宜为500mm~1000mm。找平后在垫铁组的两侧进行层间点焊固定,垫铁与撬座

大型单元机组主汽温控制系统设计

引言 在生产和科学技术的发展过程中,自动控制起着主要的作用,目前已广泛应用于工农业生产及其他建设方面。生产过程自动化是保持生产稳定、降低成本、改善劳动成本、促进文明生产、保证生产安全和提高劳动生产率的重要手段,是20世纪科学与技术进步的特征,是工业现代化的标志之一。可以说,自动化水平是衡量一个国家的生产技术和科学水平先进与否的一项重要标志。电力工业中电厂热工生产过程自动化技术相对于其他民用工业部门有较长的历史和较高的自动化水平,电厂热工自动化水平的高低是衡量电厂生产技术的先进与否和企业现代化的重要标志。 设计所讨论的汽温控制系统包括锅炉主蒸汽温度控制系统。主蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行是非常重要的。过热蒸汽温度控制的任务是维持过热器出口蒸汽温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。一般规定过热器的温度上限不高于其额定值5℃。 如果过热蒸汽温度偏低,则会降低电厂的工作效率,据估计,温度每降低5℃,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽温度升高,甚至使之带水,严重影响汽轮机的安全运行。一般规定过热汽温下限不低于其额定值10℃。通常,高参数电厂都要求保持过热汽温在540℃的范围内。 由于汽温对象的复杂性,给汽温控制带来许多的困难,其主要难点表现在以下几个方面: (1)影响汽温变化的因素很多,例如,蒸汽负荷、减温水量、烟气侧的过剩空气系数和火焰中心位置、燃料成分等都可能引起汽温变化。 (2)汽温对象具有大延迟、大惯性的特点,尤其随着机组容量和参数的增加,蒸汽的过热受热面的比例加大,使其延迟和惯性更大,从而进一步加大了汽温控制的难度。 (3)汽温对象在各种扰动作用下(如负荷、工况变化等)反映出非线性、时变等特性,使其控制的难度加大。

锅炉汽温的控制与调整

锅炉汽温的控制与调整 锅炉汽温的控制与调整 在电力工业的长期发展过程中,蒸汽参数不断提高,这提高了电厂热力循环的效率。但是蒸汽温度的进一步提高受到必须采用价格昂贵、抗热强度及工艺性能差的高温钢材的限制,故目前绝大多数电站锅炉的过热汽温和再热汽温在.540℃~555℃的范围内,本锅炉的过热汽温和再热汽温均选择541℃。 锅炉正常运行过程中,过热汽温和再热汽温偏离额定值过大时,会对锅炉和汽轮机的安全或经济运行带来不良的影响。 汽温过高时,将引起过热器、再热器、蒸汽管道及汽轮机汽缸、阀门、转子部分金属强度,降低,导致设备寿命缩短,严重时甚至造成设备损坏事故。从以往锅炉受热面爆管事故的统计情况来看,绝大多数的炉管爆漏是由于金属管壁严重超温或长期过热造成的。因而汽温过高对设备的安全是一个很大的威胁。 蒸汽温度过低时,则会使汽轮机最后几级叶片的蒸汽湿度增加,严重时甚至还有可能发生水击,造成汽轮机叶片断裂损坏。此外,汽温过低时还将造成汽轮机转子所受的轴向推力增大。凡此种种,均将严重威胁汽轮机的安全运行。当蒸汽压力不变时如发生汽温降低,还将造成蒸汽焓下降,蒸汽作功能力降低,使汽轮机的汽耗增加,机组热力循环效率下降。所以汽温过低,不仅严重影响设备的安全性,而且还

将对机组运行的经济性带来不良的后果。 过热汽温和再热汽温如发生大幅度变化,除使锅炉管材及有关部件产生较大的热应力和疲劳外,还将引起汽轮机转子与汽缸间的差胀变化,严重时甚至可能发生叶轮与隔板的动静摩擦,造成汽轮机的强烈振动。汽温两侧偏差过大时,将使汽轮机汽缸两侧受热不均,热膨胀不均,威胁机组的安全运行。 因此,锅炉运行中,在各种内、外扰动因素影响下,如何通过运行分析调整,用最合理的方法保持汽温稳定,是汽温调节的首要任务。一、锅炉受热面的传热特性 锅炉的受热面,按传热方式一般可分为辐射受热面、半辐射受热面和对流受热面三种类型。水冷壁蒸发受热面,前屏及包复管受热面等,由于辐射换热量占主要成份,一般属辐射受热面;后屏过热器一方面吸收烟气的对流传热,另一方面又吸收炉膛中和管间烟气的辐射传热,属半辐射受热面;省煤器及对流烟道中的过热器、再热器等受热面由于对流换热量占主要成份,一般属对流受热面。随着锅炉负荷的变化,炉内辐射传热量和对流传热量的分配比例将发生变化。当锅炉负荷增加时,对流受热面的传热份额将增加,辐射受热面的传热份额相对减少,而半辐射受热面则影响较小,见图4-2-1。 锅炉负荷增加时,炉膛温度及炉膛出口烟气温度均将升高,由于炉膛温度的提高,总辐射传热量将增加;但是炉膛出口烟温的升高,又表示了每千克燃料在炉内辐射传热量的相应减少。所以锅炉负荷增加时,

锅炉汽温调节系统

汽包锅炉蒸汽温度自动调节系统 一、蒸汽温度自动调节系统 锅炉蒸汽温度自动调节包括过热蒸汽温度和再热蒸汽温度调节。调节的任务是维持锅炉过热器及再热器的出口汽温在规定的允许范围之内。 1、过热汽温调节任务和特点 过热汽温是锅炉运行质量的重要指标之一。过热汽温过高或过低都会显著地影响电厂的安全性和经济性。过热汽温过高,可能会造成过热器、蒸汽管道和汽机的高压部分金属损坏,因为超温会引起汽轮机金属内部过大的热应力,会缩短使用寿命,还可能导致叶片根部的松动;过热汽温过低,会引起机组热耗上升,并使汽机轴向推力增大而可能造成推力轴承过载。过热汽温过低还会引起汽轮机尾部叶片处蒸汽湿度增加,从而降低汽轮机的内效率,并加剧对尾部叶片的水蚀。所以,在锅炉运行中,必须保持过热汽温长期稳定在规定值附近(一般范围为额定值541±5℃)。过热汽温调节对象的静态特性是指过热汽温随锅炉负荷变化的静态关系。过热器的传热形式、结构、布置都将直接影响过热器的静态特性。对流式过热器和辐射式过热器的过热汽温静态特性完全相反。对于对流式过热器,当负荷增加时,通过其烟气的温度和流速都增加,因而使过热汽温升高。而对于辐射式过热器,由于负荷增加时炉膛温度升高不多,而炉膛烟温升高所增加的辐射热量小于蒸汽负荷增大所需要的吸热量。我们的过热器系统采取了对流式、辐射式和屏式(半辐射式)交替串联布置的结构,这有利于减小过热器出口汽温的偏差,并改善了过热汽温调节对象的静态特性。 引起过热蒸汽温度变化的原因很多,如蒸汽流量变化、燃烧工况变化、进入过热器的蒸汽温度变化、流过过热器的烟气温度和流速变化等。归结起来,过热汽温调节对象的扰动主要来自三个方面:蒸汽流量变化(机组负荷变化),加热烟气的热量变化和减温水流量变化(过热器入口汽温变化)。 过热汽温调节对象的动态特性是指引起过热汽温变化的扰动与过热汽温之间的动态关系。在各种扰动下的过热汽温调节对象动态特性的特点是有迟延和惯性,典型的过热汽温阶跃反应曲线如下图所示。. 当机组负荷扰动时,蒸汽流量的变化使沿整个过热器管路长度上各点的蒸汽流速几乎同时改变,从而改变过热器的对流放热系数,使过热器各点的蒸汽温度也几乎同时改变。所以,在机组负荷扰动下,过热汽温的迟延和惯性比较小。当烟气热量扰动(烟气温度和流速发生变化)时,由于烟气流速和温度的变化也是沿整个过热器同时改变的,与蒸汽流量变化对传热影响的情况类似,所以过热汽温的反应也是较快的。当减温水流量扰动时,改变了高温过热器的入口汽温,从而影响了过热器出口汽温。由于过热器管路很长,因此汽温的反应是较慢的。 由此,在不同扰动作用下,过热汽温动态特 )有较大的差别,例、K性参数的数值(τ、Tc远大于如:减温水扰动时汽温反应的迟延时间t 烟气侧扰动时的迟延时间。使调正确选择调节过热汽温的手段,因此,(即调节机构动作节机构动作后能及时影响汽温 应尽可能小)是τ时,汽温动态特性的迟延时间调节对象在调节作用下的迟但目前广泛采用喷水减温作为调节过热汽温的手段,很重要的。太大,如果只根据汽温偏差来改变喷水量往往不能满足生产上的要和时间常数Tct延时间以便好地控制汽温的因此,在设计自动调节系统时应该设法减小调节对象的惯性迟延,求。变化。 、过热汽温调节基本方案2从过热汽温调节对象的阶跃试验曲线可以看出:若从动态特性的角

相关文档
最新文档