大学数学概率论及试验统计》第三章课后答案(余家林主编)

大学数学概率论及试验统计》第三章课后答案(余家林主编)
大学数学概率论及试验统计》第三章课后答案(余家林主编)

概率论与数理统计模拟试卷和答案

北京语言大学网络教育学院 《概率论与数理统计》模拟试卷一 注意: 1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。请监考老师负责监督。 2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。 3.本试卷满分100分,答题时间为90分钟。 4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。 一、【单项选择题】(本大题共5小题,每小题3分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。 1、设A,B 是两个互不相容的事件,P (A )>0,P (B )>0,则()一定成立。 [A]P (A)=1-P (B ) [B]P (A│B)=0 [C]P (A│B )=1 [D]P (A B )=0 2、设A,B 是两个事件,P (A )>0,P (B )>0,当下面条件()成立时,A 与B 一定相互独立。 [A]P(A B )=P (A )P (B ) [B]P (AB )=P (A )P (B ) [C]P (A│B )=P (B ) [D]P (A│B )=P(A ) 3、若A 、B 相互独立,则下列式子成立的为()。 [A])()()(B P A P B A P = [B]0)(=AB P [C]) ()(A B P B A P = [D] )()(B P B A P = 4、下面的函数中,()可以是离散型随机变量的概率函数。 [A]{}1 1(0,1,2)!e P k k k ξ-=== [B]{}1 2(1,2)!e P k k k ξ-=== [C]{}31 (0,1,2)2k P k k ξ=== [D]{}41 (1,2,3)2 k P k k ξ===--- 5、设1()F x 与2()F x 分别为随机变量1X 与2X 的分布函数,为了使12()()()F x aF x bF x =-是某一随机变 量的分布函数,则下列个组中应取()。 [A]1,2a =-32b = [B]2,3a = 2 3b = [C]3,5a =25 b =- [D]1,2a =32 b =- 二、【判断题】(本大题共5小题,每小题3分,共15分)正确的填T ,错误的填F ,填在答题卷相应题号处。 6、事件“掷一枚硬币,或者出现正面,或者出现反面”是必然事件。() 7、通过选取经验函数()12;,,...,k x a a a μ 中的参数使得观察值i y 与相应的函数值()12;,,...,i k x a a a μ之差的 平方和最小的方法称之为方差分析法。() 8、在进行一元线性回归时,通过最小二乘法求得的经验回归系数^ b 为 xy xx l l 。()

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论与数理统计

古典概率接近生活 经过一学期的概率论与数理统计的学习,从最开始最基本的随机事件与概率到比较复杂的多维随机变量,再到数理统计,参数估计,我对于概率论与数理统计的一些基本知识也有了一定的了解。因为概率论与数理统计这门课程与现实生活息息相关,而且随着计算机的普及,它已经成为处理信息,制定决策的重要理论和方法。对于我个人来说,我觉得目前与我最相近的应该算是古典概率了,所以我就在此浅析一下古典概率。 古典概率通常又叫事前概率,是指当随机事件中各种可能发生的结果及其出现的次数都可以由演绎或外推法得知,而无需经过任何统计试验即可计算各种可能发生结果的概率。关于古典概率是以这样的假设为基础的,即随机现象所能发生的事件是有限的、互不相容的,而且每个基本事件发生的可能性相等。这两个条件是古典概率必须具备的,这也是古典概率与其他类型概率的不同之处。 在开始上这门课程的时候,老师就讲过概率论起源于赌博,十七世纪中叶,法国数学家帕斯卡,费马以及荷兰数学家惠更斯基于排列组合方法,研究利用古典概率解决赌博中提出的一些问题。这里涉及到了如何去计算古典概率,我们可以用穷举法列出所有基本事件,再数清一个事件所含的基本事件个数相除,即借助组合计算可以简化计算过程。 例如抛硬币实验,我们已经知道抛硬币的最后结果即正面和反面,由于硬币是对称的,我们可以认为两个基本事件发生的可能性是相等的;又如投掷一个均匀的骰子,最后结果出现六个点数的可能性是相等的。还有许多其他的例子,总之,我觉得古典概率与生活依旧是息息相关,可以这样说,古典概率模型是概率论中最直观和最简单的模型;概率的许多运算规则,也首先是在这种模型下得到的。所以说,古典概型在现实生活中依旧扮演着非常重要的角色。 上文是我对古典概率的简单介绍。下边我要拿出几个我碰到的几个我自认为比较好的问题来一起分享。上文我已经说过古典概型的起源是赌博,所以古典概率问题有许多经典问题都十分生活化。而且有些问题的解题思路灵活,方法十分直观简单,这也正是古典概型的魅力所在。 分赌本问题:最初吸引数学家研究赌博问题的就是分赌本问题:甲、乙两人赌技相同,各出赌注500元。约定:谁先胜三局,则谁拿走全部1000元。现在赌了三局,甲两胜一负,因故要中止赌博,问这1000元要如何分才公平? 这个问题在当时持续了很长一段时间没有得到解决,且众说纷纭。有人认为按已胜的局数分,即甲拿2/3,乙拿1/3,但仔细分析,这样分是不合理的,因为设想再继续赌下去,结果无非是以下四种:甲甲,甲乙,乙甲,乙乙。把已赌过的三局与此对照,可以看出,对前三个结果,都是甲先胜三局,因而得1000元,只在最后一个结果中乙才得1000元,在赌技相同的情况下,这四个结果出现的可能性相等,即甲、乙最终获胜的可能性之比为3:1,所以全部赌本按这个比例来分,即甲分750元,乙分250元才算公平合理。 这个问题我在解决的时候就是按照上面讲的那种一开始错的方法,即甲拿2/3,乙拿1/3,我没有深入思考分析问题,没有解开问题的本质。所以这道题目提醒我在思考问题时候要深入理解,分析各个可能出现的事件,不轻易做出判断。只有当把所有的可能发生的事件分析完后才能够做出正确的判断。 邻座问题:n个朋友随机地围绕圆桌而坐,求其中甲、乙两人坐在一起(座位相邻)的概率。 我们很自然地会把这个问题看作圆周排列的一个简单应用,但是在这里我们不用这种办

概率论与数理统计课后习题答案

第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数 (设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产 品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上 “正品”,不合格的记上“次品”,如连续查出2个次品 就停止检查,或检查4个产品就停止检查,记录检查的 结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命。 解(1)},100,,1,0{n i n i ==Ω其中n 为班级人数。 (2)}18,,4,3{ =Ω。 (3)},11,10{ =Ω。 (4)=Ω{00,100,0100,0101,0110,1100, 1010,1011,0111,1101,0111,1111},其中 0表示次品,1表示正品。 (5)=Ω{(x,y)| 0

(2)A 与B 都发生,而C 不发生。 (3)A ,B ,C 中至少有一个发生。 (4)A ,B ,C 都发生。 (5)A ,B ,C 都不发生。 (6)A ,B ,C 中不多于一个发生。 (7)A ,B ,C 至少有一个不发生。 (8)A ,B ,C 中至少有两个发生。 解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC , (5)C B A , (6)C B C A B A ++或 C B A C B A C B A C B A +++, (7)C B A ++, (8)BC AC AB ++或 ABC BC A C B A C AB ??? 3.指出下列命题中哪些成立,哪些不成立,并作 图说明。 (1)B B A B A =(2)AB B A = (3)AB B A B =?则若,(4)若 A B B A ??则, (5)C B A C B A = (6)若Φ=AB 且A C ?,

概率论课后习题答案

习题1解答 1、 写出下列随机试验的样本空间Ω: (1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数; (3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标、 解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为 {|0,1,2,,100}i i n n Ω==、 (2)设在生产第10件正品前共生产了k 件不合格品,样本空间为 {10|0,1,2,}k k Ω=+=, 或写成{10,11,12,}.Ω= (3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的就是正品,样本空间可表示为 {00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=、 (3)取直角坐标系,则有22 {(,)|1}x y x y Ω=+<,若取极坐标系,则有 {(,)|01,02π}ρθρθΩ=≤<≤<、 2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件、 (1) A 发生而B 与C 不发生; (2) A 、B 、C 中恰好发生一个; (3) A 、B 、C 中至少有一个发生; (4) A 、B 、C 中恰好有两个发生; (5) A 、B 、C 中至少有两个发生; (6) A 、B 、C 中有不多于一个事件发生、

同济大学概率统计试卷

概率统计试卷二 一、(10分)已知随机变量X 服从参数为1的泊松分布,记事件{}2,X A =≥ {}1,X B =<求()()() ,,.P P P A B A -B B A 二、(10分)对以往数据分析结果表明,当机器运转正常时,产品的合格率为90%;而当机器发生故障时其合格率为30%,机器开动时,机器运转正常的概率为75%,试求已知某日首件产品是合格品时,机器运转正常的概率。 三、(12分)设(X ,Y )为二维离散型随机变量,X ,Y 的边缘概率函数分别为 且()01,P XY ==试求: (1)(X ,Y )的联合概率函数;(2)X ,Y 是否相互独立?为什么? (3)X ,Y 是否相关?为什么? 四、(14分)设(X ,Y )的联合密度函数为()()22,0,0,0, x y e x y f x y -+?>>?=???其余, 试求:(1)()X 1,Y 2;P <> (2)()X Y 1.P +< 五、(12分)假设一条生产流水线在一天内发生故障的概率为0.1,流水线发生故障时全天停止工作,若一周5个工作日无故障这条流水线可产生利润20万元,一周内发生一次故障时,仍可获利润6万元,发生二次或二次以上故障就要亏损2万元,求一周内这条流水线所产生利润的期望值。 六、(12分)假设生产线上组装每件成品花费的时间服从指数分布。统计资料表明:该生产线每件成品的平均组装时间10分钟。假设各件产品的组装时间相互独立。试求在15小时至20小时之间在该生产线组装完成100件成品的概率。(要用中心极限定理) 七、(16分)设()1n X ,,X 是取自总体X 的一个样本,X 服从区间[],1θ上的均匀分布, 其中1,θθ<未知,求(1)*θθ的矩估计; (2)θθ的极大似然估计; (3)试问:θ是否为θ的无偏估计?若不是,试将θ修正成θ的一个无偏估计。 八、(14分)已知某种食品的袋重(单位:千克)服从正态分布() 2N μσ,,其中

概率论和数理统计带答案

单选 题(共 40 分) 1、在假设检验问题中,犯第一类错误的概率α的意义是( ) (C) A、在H0不成立的条件下,经检验H0被拒绝的概率 B、在H0不成立的条件下,经检验H0被接受的概率 C、在H0成立的条件下,经检验H0被拒绝的概率 D、在H0成立的条件下,经检验H0被接受的概率 2、设,AB是两个事件,且P(A)≤P(A|B),则有 (C) A、P(A)=P(A|B) B、P(B)>0 C、P(A|B)≥P(B) D、设,AB是两个事件 3、某中学为迎接建党九十周年,举行了”童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年纪各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是( )(A) A、1/6. B、1/5. C、1/4. D、1/3. 4、设,,ABC是三个相互独立的事件,且0(B) A、AUB与c B、AC与C C、A-B与C D、AB与C 5、设随机事件A与B相互独立,P(A)=0.5,P(B)=0.6则P(A-B)= (D) A、1/2. B、1/5. C、1/4. D、1/12. 6、将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为 (A) A、4/7. B、4/9. C、5/11. D、6/7. 7、设事件,AB满足ABBB,则下列结论中肯定正确的是( )(D) A、AB互不相容 B、AB相容 C、互不相容 D、P(A-B)=P(A) 8、已知P(B)=0.3,P(AUB)=0.7,且A与B相互独立,则P(A)=(D) A、0.2 B、0.3 C、0.7 D、0.5 9、若事件A和事件B相互独立, P(A)==,P(B)=0.3,P(AB)=0.7,则则 (A) A、3/7. B、4/7. C、5/7. D、6/7. 10、,设X表示掷两颗骰子所得的点数,则EX =(D) A、2 B、3 C、4 D、7 ?多选 题(共 20 分) 1、甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(D) A、0.3 B、0.5 C、0.6 D、0.8

概率论与数理统计课后习题答案

习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -. 解:如图:

概率统计简明教程课后习题答案(工程代数同济大学版)

习题一解答 1. 用集合的形式写出下列随机试验的样本空间与随机事件A: (1) 抛一枚硬币两次,观察出现的面,事件两次出现的面相同}; (2) 记录某电话总机一分钟, (2) 记X为一分钟 2. 袋中有10个球,分别编有号码1至10,从中任取1球,设取得球的号码是偶数},取得球的号码是奇数},取得球的号码小于5},问下列运算表示什么事件: ;(2)AB;(3)AC;(4)AC;(5);;解是必然事件; 是不可能事件; 取得球的号码是2,4}; 取得球的号码是1,3,5,6,7,8,9,10}; 取得球的号码为奇数,且不小于取得球的号码为5,7,9}; 取得球的号码是不小于5的偶数取得球的号码为6,8,10}; 取得球的号码是不小于5的偶数}={取得球的号码为6,8,10} 在区间[0,2]上任取一数,记,,求下列事件的表达式: ;(2)B;(3)A; 解 或 (3) 因为,所以; 或或或用事件 的运算关系式表示下列事件: (1) A出现,B,C都不出现(记为E1); (2) A,B都出现,C不出现(记为E2); (3) 所有三个事件都出现(记为E3); (4) 三个事件中至少有一个出现(记为E4); (5) 三个事件都不出现(记为E5); (6) 不多于一个事件出现(记为E6); (7) 不多于两个事件出现(记为E7); (8) 三个事件中至少有两个出现(记为E8)。 解;AB; ;; ;; ; 5. 一批产品中有合格品和废品,从中有放回地抽取三次,每次取一件,设Ai表示事件“第i次抽到废品”,,试用Ai表示下列事件:

(1) 第一次、第二次中至少有一次抽到废品; (2) 只有第一次抽到废品; (3) 三次都抽到废品; (4) 至少有一次抽到合格品; (2) 只有两次抽到废品。 解;(2)A1A2A3;(3)A1A2A3;; 6. 接连进行三次射击,设Ai={第i次射击命中},,三次射击恰好命中二次},三次射击至少命中二次};试用Ai表示B和C。 解 习题二解答 1.从一批由45件正品、5件次品组成的产品中任取3件产品,求其中恰有1件次品的概率。 解这是不放回抽取,样本点总数,记求概率的事件为A, 则有利于A的样本点数 于是 2.一口袋中有5个红球及2个白球,从这袋中任取一球,看过它的颜色后放回袋中,然后,再从这袋中任取一球,设每次取球时袋中各个球被取到的可能性相同。求 (1) 第一次、第二次都取到红球的概率; (2) 第一次取到红球,第二次取到白球的概率; (3) 二次取得的球为红、白各一的概率; (4) 第二次取到红球的概率。 解本题是有放回抽取模式,样本点总数记(1)(2)(3)(4)题求概率的事件分别为A,B,C,D. ⅰ)有利于A的样本点数,故 ⅱ) 有利于B的样本点数,故 20(ⅲ) 有利于C的样本点数,故 ⅳ) 有利于D的样本点数,故 3.一个口袋中装有6只球,分别编上号码1至6,随机地从这个口袋中取2只球,试求:(1) 最小号码是3的概率;(2) 最大号码是3的概率。 解本题是无放回模式,样本点总数 (ⅰ) 最小号码为3,只能从编号为3,4,5,6这四个球中取2只,且有一次抽到3,因而有利 样本点数为,所求概率为 (ⅱ) 最大号码为3,只能从1,2,3号球中取,且有一次取到3,于是有利样本点数为,

概率统计实验报告

概率统计实验报告 班级16030 学号16030 姓名 2018 年1 月3 日

1、 问题概述和分析 (1) 实验内容说明: 题目12、(综合性实验)分析验证中心极限定理的基本结论: “大量独立同分布随机变量的和的分布近似服从正态分布”。 (2) 本门课程与实验的相关内容 大数定理及中心极限定理; 二项分布。 (3) 实验目的 分析验证中心极限定理的基本结论。 2、实验设计总体思路 2.1、引论 在很多实际问题中,我们会常遇到这样的随机变量,它是由大量的相互独立的随机 因素的综合影响而形成的,而其中每一个个别因素在总的影响中所起的作用是微小的,这种随机变量往往近似的服从正态分布。 2.2、 实验主题部分 2.2.1、实验设计思路 1、 理论分析 设随机变量X1,X2,......Xn ,......独立同分布,并且具有有限的数学期望和方差:E(Xi)=μ,D(Xi)=σ2(k=1,2....),则对任意x ,分布函数 满足 该定理说明,当n 很大时,随机变量 近似地服从标准正 态分布N(0,1)。因此,当n 很大时, 近似地服从正 态分布N(n μ,n σ2). 2、实现方法(写清具体实施步骤及其依据) (1) 产生服从二项分布),10(p b 的n 个随机数, 取2.0=p , 50=n , 计算n 个随 机数之和y 以及 ) 1(1010p np np y --; 依据:n 足够大,且该二项分布具有有限的数学期望和方差。 (2) 将(1)重复1000=m 组, 并用这m 组 ) 1(1010p np np y --的数据作频率直方图进 行观察. 依据:通过大量数据验证随机变量的分布,且符合极限中心定理。

同济大学概率论与数理统计 复习试卷

同济大学概率论与数理统计 复习试卷 1、对于任意二个随机事件B A ,,其中1)(,0)(≠≠A P A P ,则下列选项中必定成立的是( ) (A ) ()()A B P A B P = 是B A ,独立的充分必要条件; (B) ()()A B P A B P = 是B A ,独立的充分条件非必要条件; (C) ()()A B P A B P = 是B A ,独立的必要条件非充分条件; (D) ()()A B P A B P = 是B A ,独立的既非充分条件也非必要条件. 2、 设一批产品中一、二、三等品各占60%、30%、10%,现从中随机地取出一件,结果发现取到的这件不是三等品,在此条件下取到的这件产品是一等品的概率为 ,在此条件下取到的这件产品是二等品的概率为 . 3、 对任意常数)(,,b a b a <,已知随机变量X 满足 (),()P X a P X b αβ≤=≥=. 记()b X a P p ≤<=,则下列选项中必定成立的是 ( ) (A))(1βα+-=p ; (B) )(1βα+-≥p ; (C) )(1βα+-≠p ; (D) )(1βα+-≤p . 4、 设随机变量X 的概率密度为 ???<<=其它,010,5)(4x x x f ,则使得)()(a X P a X P <=>成立的常数=a ,X Y ln 2-=的密度函数

为=)(y f Y . 5、如果22,,EY EX ∞<<∞且X 与Y 满足()(),D X Y D X Y +=-则必有 ( ) ()A X 与Y 独立; ()B X 与Y 不相关; ()()0C D Y =; ()()()0.D D X D Y = 6、 设12,,n X X X 相互独立且服从相同的分布, ∑====n i i X n X X D X E 1 111,3)(,1)(,则由切比雪夫不等式可得() ≤≥-11X P ,∑=n i i X n 121依概率收敛于 . 7、 设521,X X X 独立且服从相同的分布, ()1,0~1N X .()()2 542321X X X X X c Y +++=.当常数c = 时,Y 服从自由度为 的F 分布. 8、一个男子在某城市的一条街道遭到背后袭击和抢劫,他断言凶犯是黑人。然而,当调查这一案件的警察在可比较的光照条件下多次重新展现现场情况时,发现受害者正确识别袭击者肤色的概率只有80%,假定凶犯是本地人,而在这个城市人口中90%是白人,10%是黑人,且假定白人和黑人的犯罪率相同,

概率论与数理统计及其应用课后答案

第1章 随机变量及其概率 1,写出下列试验的样本空间: (1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录 投掷的次数。 (2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次, 记录投掷的次数。 (3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。 (4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰 子,观察出现的各种结果。 解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =; (4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。 2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(___ ___AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P , 375.0)()(])[()(=-=-=AB P B P B A S P B A P ,

875.0)(1)(___--=AB P AB P , 5 .0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P 3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。 解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为 72.0900 648= 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于330的概率。 解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=??个。(1)该数是奇数的可能个数为48344=??个,所以出现奇数的概率为 48.0100 48= (2)该数大于330的可能个数为48454542=?+?+?,所以该数大于330的概率为

概率论与数理统计复旦大学出版社第一章课后参考答案

精心整理 第一章 1.见教材习题参考答案. 2.设A ,B ,C 为三个事件,试用A ,B ,C (1)A 发生,B ,C 都不发生; (2)A , B , C 都发生; (3)A ,B ,C (4)A , B , C 都不发生; (5)A ,B ,C (6)A ,【解】(1(B C (4)ABC B C (5)ABC ∪ABC ∪ABC ABC =AB BC AC 3. . 4.设A ,?B )=0.3,求P (. 【解】P 5.设A ,(A )=0.6,P (B )=0.7, (1AB (2AB 【解】(1)()0.6AB P A ==,()P AB 取到最大值为(2)当()()()0.3P A P B P A B =+-= 6.设A ,B ,P (C )=1/3P (AC )至少有一事件发生的概率. )=0, 由加法公式可得 =14+14+13?112=34 7.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少? 【解】设A 表示“取出的13张牌中有5张黑桃,3张红心,3张方块,2张梅花”, 则样本空间Ω中样本点总数为13 52n C =,A 中所含样本点533213131313k C C C C =,所求概率为 8. (1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率; (3)求五个人的生日不都在星期日的概率. 【解】(1)设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故

P (A 1)= 5 17 =(17)5(亦可用独立性求解,下同) (2)设A 2={五个人生日都不在星期日},有利事件数为65,故 P (A 2)=5567=(67 )5 (3)设A 3={五个人的生日不都在星期日} P (A 3)=1?P (A 1)=1?(1 7 )5 9..见教材习题参考答案. 10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n

概率论与数理统计课后习题及答案

习题八 1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N,.现在测了5炉铁水,其含碳量(%)分别为 问若标准差不改变,总体平均值有无显着性变化(α=) 【解】 0010 /20.025 0.025 : 4.55;: 4.55. 5,0.05, 1.96,0.108 4.364, (4.364 4.55) 3.851, 0.108 . H H n Z Z x x Z Z Z α μμμμ ασ ==≠= ===== = - ===- > 所以拒绝H0,认为总体平均值有显着性变化. 2. 某种矿砂的5个样品中的含镍量(%)经测定为: 设含镍量服从正态分布,问在α=下能否接收假设:这批矿砂的含镍量为. 【解】设 0010 /20.005 0.005 : 3.25;: 3.25. 5,0.01,(1)(4) 4.6041 3.252,0.013, (3.252 3.25) 0.344, 0.013 (4). H H n t n t x s x t t t α μμμμ α ==≠= ==-== == - === < 所以接受H0,认为这批矿砂的含镍量为. 3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为(克),样本方差s2=(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=). 【解】设 0010 /20.025 2 0.025 : 1.1;: 1.1. 36,0.05,(1)(35) 2.0301,36, 1.008,0.1, 6 1.7456, 1.7456(35) 2.0301. H H n t n t n x s x t t t α μμμμ α ==≠= ==-=== == === =<= 所以接受H0,认为这堆香烟(支)的重要(克)正常. 4.某公司宣称由他们生产的某种型号的电池其平均寿命为小时,标准差为小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短设电池寿命近似地

同济大学版概率论与数理统计——修改版答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第一章 随机事件及其概率(一) 一.选择题 1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ] (A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件 2.下面各组事件中,互为对立事件的有 [ B ] (A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品} (B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品} (C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个} (D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品} 3.下列事件与事件A B -不等价的是 [ C ] (A )A A B - (B )()A B B ?- (C )A B (D )A B 4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ?表示 [ C] (A )二人都没射中 (B )二人都射中 (C )二人没有都射着 (D )至少一个射中 5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D] (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销 6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则A B 表示 [ A] (A ){|01}x x ≤< (B ){|01}x x << (C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<

概率统计习题带答案

概率统计习题带答案 概率论与数理统计习题及题解沈志军盛子宁第一章概率论的基本概念1.设事件A,B及A?B的概率分别为p,q及r,试求P(AB),P(AB),P(AB)及P(AB) 2.若A,B,C相互独立,试证明:A,B,C 亦必相互独立。3.试验E为掷2颗骰子观察出现的点数。每种结果以(x1,x2)记之,其中x1,x2分别表示第一颗、第二颗骰子的点数。设事件A?{(x1,x2)|x1?x2?10},事件B?{(x1,x2)|x1?x2}。试求P(B|A)和P(A|B) 4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。问:恰好第三次打开房门锁的概率?三次内打开的概率?如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n个白

球、m个红球,乙袋中装有N个白球、M个红球。今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为,,在甲系统失灵的条件下乙系统也失灵的概率为。试求下列事件的概率:仓库发生意外时能及时发出警报;乙系统失灵的条件下甲系统亦失灵?9.设A,B为两随机变量,试求解下列问题:已知P(A)?P(B)?1/3,P(A|B)?1/6。求:P(A|B);

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布 习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律. (X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }= 35147 2222=C C C P {X=1, Y=1 }=356 47 221213=C C C C P {X=1, Y=2 }= 3564 7 1 2 2213=C C C C P {X=2, Y=0 }=353 472 223=C C C P {X=2, Y=1 }= 35124 712 1223=C C C C P {X=2, Y=2 }=353 47 2 223=C C C P {X=3, Y=0 }= 35247 1233=C C C P {X=3, Y=1 }=352 47 1233=C C C P {X=3, Y=2 }=0 习题3-2 设随机变量),(Y X 的概率密度为 ?? ?<<<<--=其它 , 0, 42,20), 6(),(y x y x k y x f (1) 确定常数k ; (2) 求{}3,1<

?? ????????<<<<=42,20),(y x y x D o 解:(1)∵??? ? +∞∞-+∞ ∞ ---= = 20 12 )6(),(1dydx y x k dy dx y x f ,∴8 1= k (2)8 3 )6(8 1)3,1(32 1 ? ?= --= <

概率论习题答案

第一章 随机事件与概率 1.对立事件与互不相容事件有何联系与区别? 它们的联系与区别是: (1)两事件对立(互逆),必定互不相容(互斥),但互不相容未必对立。 (2)互不相容的概念适用于多个事件,但对立的概念仅适用于两个事件。 (3)两个事件互不相容只表示两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生。而两个事件对立则表明它们有且仅有一个发生,即肯定了至少有一个发生。特别地,A A =、?=A A U 、φ=A A I 。 2.两事件相互独立与两事件互不相容有何联系与区别? 两事件相互独立与两事件互不相容没有必然的联系。我们所说的两个事件相互独立,其实质是事件是否发生不影响A B 、A 事件B 发生的概率。而说两个事件互不相容,则是指事件发生必然导致事件A B 、A B 不发生,或事件B 发生必然导致事件不发生,即A φ=AB ,这就是说事件是否发生对事件A B 发生的概率有影响。 3.随机事件与样本空间、样本点有何联系? 所谓样本空间是指:随机试验的所有基本事件组成的集合,常用来记。其中基本事件也称为样本点。而随机事件可看作是有样本空间中具有某种特性的样本点组成的集合。通常称这类事件为复合事件;只有一个样本点组成的集合称为基本事件。在每次试验中,一定发生的事件叫做必然事件,记作。而一定不发生的事件叫做不可能事件,记作??φ。为了以后讨论问题方便,通常将必然事件和不可能事件看成是特殊的随机事件。这是由于事件的性质

随着试验条件的变化而变化,即:无论是必然事件、随机事件还是不可能事件,都是相对“一定条件”而言的。条件发生变化,事件的性质也发生变化。例如:抛掷两颗骰子,“出现的点数之和为3点”及“出现的点数之和大于3点”,都是随机事件。若同时抛掷4颗骰子,“出现的点数之和为3点”,则是不可能事件了;而“出现的点数之和大于3点”则是必然事件了。而样本空间中的样本点是由试验目的所确定的。例如: (1)将一颗骰子连续抛掷三次,观察出现的点数之和,其样本空间为 ?={34}。 518,,,,L (2)将一颗骰子连续抛掷三次,观察六点出现的次数,其样本空间为 ?={012}。 3,,, 在(1)、(2)中同是将一颗骰子连续抛掷三次,由于试验目的不同,其样本空间也就不一样。 4.频率与概率有何联系与区别? 事件的概率是指事件在一次试验中发生的可能性大小,其严格的定义为: A A 概率的公理化定义:设E 为随机试验,?为它的样本空间,对E 中的每一个事件都赋予一个实数,记为,且满足 A P A () (1)非负性:01≤≤P A (); (2)规范性:P ()?=1; (3)可加性:若两两互不相容,有。 A A A n 12,,,,L L )P A P A i i i i ()(=∞=∞ =∑11U 则称为事件的概率。 P A ()A 而事件的频率是指事件在次重复试验中出现的次数与总的试验次数n 之比,即A A n n A ()n A n )(为次试验中出现的频率。因此当试验次数n 为有限数时,频率只能在一定程度上反映了事件n A A 发生的可能性大小,并且在一定条件下做重复试验,其结果可能是不一样的,所以不能用频率代替概率。

相关文档
最新文档