电子管代换及说明

电子管代换及说明
电子管代换及说明

常用电压放大级即前级放大胆管代换表

6N1ECC85,6AQ8,6H1л

6N412AX7,ECC83,E83CC,7729,CV4004,B759,CV492

6N10 12AU7,ECC82,E82CC,7316,CV4003,5814,B749,6189

6N11 6DJ8,E88CC,ECC88,6922,ECC189,6J5,6H11N,7308,El88CC

6N8P 6SN7,B65,5692,33S30,CV1988,6H8C,6HM,6F8G,1633

6H8C 6HM,6F8G,1633,9002,6C8G

6J8P 6SJ7,6267,EF86,12A T7

ECC81,CV4024,6201,B739,A2900,2025,ECC8015

6N9P 6SL7,5691,33S29,VT229

6F2ECF82,6U8

6N26H2л

电子管代换及说明

可以直接代用12AU7的型号有:ECC82,E82CC,ECC802S,B329,CV491,CV4003,CV8155,M8136,5814,6189,7730,6067,7730。

可以直接代用12AX7的管子有:ECC83,ECC803S,B339,E283CC,M8137,CV492,CV4004,CV8156,6057,7729。7025,5751,7058,6N4。

前级管的选择:

12AX7:

品牌一:AMPEREX 『橙字』『地球嘜』

品牌二:RCA 5751 『红字』『黑屏』『方环胆』『三云母』

三:『黃字』『三雲母』『黑屏』『方環』『閃電嘜』 SYLVANIA 5157。

12AU7:

品牌一:AMPEREX『地球嘜』

品牌二:MULLARD ecc82

6922:

品牌一:西门子 CCA

品牌二:AMPEREX 7308

PHILIPS电子管大家族

“买Philips电子管?不是真的吧,他们好像只是生产灯泡和光管,其音响用电子管的质素想必好不到哪里吧!”,“Philips电子管?他们根本没有生产音响用电子管,全部都是买别人家的出品回来印牌发售,又谈何Philips电子管的音色呢?”“Amperex电子管?Amperex只是一个商标,并无自己的出品,好像其吹喇叭系列电子管,都是买Philips 电子管来印牌发售的”。上述一堆说法,笔者也不知听过多少遍,究竟是对还是错呢?笔者也很感兴趣,在多年来累积的买电子管用电子管经验的支持下,并参考过两本最具代表性的电子管专书后(分别是Tyne 的《Saga of the Vacuum Tube》及Stokes的《70 Year of Radio Tube and Valves》),决定撰写本文,尝试弄清楚一些关于Philips电子管的疑团并赞扬Philips电子管王国的光辉成就。

商标的创始

Philips和许多后来叱咤一时的电子管生产商一样,起初都是以制造照明用灯泡起家,当初由Philips父子于1891年在荷兰的Eindhoven建厂,当时该地只是一个与世无争的小市镇,又有谁会料到日后它会是欧洲电器业王国的根据地呢!到了20世纪初,虽然Philips已是全欧第四大灯泡生产商,但却从未接触过无线电(或现在称为音响的东西)电子管市场。

Philips之所以生产电子管,纯粹是机缘巧合。话说在1917年末,一位在海牙的无线电发烧友ldzerda,做无线电器材和元件生意觉得有声有色,但当时的无线电电子管全部是进口货,ldzerda希望游说荷兰厂家自行生产电子管,起初Philips对这市场的信心不大,只在ldzerda 肯保证每年买货180只之后,才肯投资生产,但谁也料不到,首款Philips电子管在1918年推出市场后,一年内竟然售出1200只,较原先估计高出6倍以上。如此业绩,换了阁下是Philips厂方主管,也知道应该怎样做吧!

从此,Philips便开始在电子生产方面大展拳脚,不断开发和设计新品种及注入新科技。1924年,厂方出品了第一款以Miniwatt商标命名的三极管,参考过当代的Philips电子管广告,知道他们除了标榜其Miniwatt系列电子管输出更强,音质更清,寿命更长外,也非常省电,例如其B2电子管的灯丝为1.6V,耗电量只有0.15A,这对当时仍是以电池供DC电为主流的无线电收音机用户而言,却是非常吸引,是名副其实的Miniwatt(低耗电量的意思),从此这个商标就成了Philips电子管的代名词,且想不到一用就用了近半个世纪,直到70年代初才开始渐渐消失。

成长、在海外的发展

在确认了电子管市场的潜力后,N.V.Philips Radio Company在1920年正式建立,以别于以往只是“兼职”生产电子管的N.V.Philips灯泡厂。而这年也正是Philips电子管厂迅速发展的年代,不但在激烈竞争中淘汰了国内所有同行业对手,也成功收购了另一家以生产电缆和灯泡

为主的大厂Pope,加强了Philips的声势,日后Philips更借Pope的基础来生产电子管和开发市场,也获益不少。到了30年代初,Philips 可说已经垄断了荷兰的整个电子管工业,从此之后,所有印着Made In Holland的电子管,不论印上任何商标或牌头者,全都是出自Philips 在荷兰的厂房。

20年代、30年代也是Philips在国际间闯出霸业的年头,为了突破当时各国常用的保证关税政策及顺利开发市场,Philips便展开了一连串的收购战,先买下了德国RRF厂,并自当年起改称为Valva Werke GMBH,接着在1925~1927年收购了英国的大厂Mullard,在1931年又在一连串诉讼后成功收购了该厂的Dario商标使用权。故此各位若有机会见到Valva、Mullard、RT(及RTC)和Dario的电子管如果结构一样的话,实无需见怪,因为它们根本就是Philips在德、英、法等国内的分公司的出品而已。到了30年代后期,Philips又在澳洲开设分厂,而据有些电子管发烧友说,澳洲Philips电子管的质素也确实不俗。

到了30年代,Philips可说已是在欧洲屈指可数的大电子管商之一,它又在1934年与德国名厂Telefunken合作开创了一套他们称为欧洲编号的新系统,企图两家合作一统欧洲,以别于来自美国的主流电子管势力,这套新编号系统虽然未能正式一统纷乱的欧洲各种编号系统,但日后有不少流行电子管的编号,就是按照这套1934年订下的新系统去命名的,最具代表性者莫过如EL34,按照这套编号系统,E代表6.3V灯丝电压,第二歌字母L代表五极管,那个3字代表八脚电子管座,第二个数字4代表是同类设计的第四款产品,这四种条件加起来,就是那到目

前为止仍是风行世界的强放管型号EL34了。而类似的流行编号还有GZ32、EZ280等,可谓不胜枚举,从这方面的影响力而言,Philips在欧洲电子管坛的地位也可见一斑。

Philips在国际电子管坛的最大突破,肯定是在40年代中期终于成功登陆北美洲,突破了自20年代以来RCA厂对欧洲厂家涉足美国电子管市场的封杀。Philips先以收购加拿大老牌电子管厂Rogers开始,同时成立North America Philips Inc.,继而在1955年买下在美国以发射电子管和工业用电子管而驰名的Amperex,从而全面进军美国的庞大市场,之后就凭着推出Amperex的“吹喇叭”(Bugle Boy)系列而名噪一时,而成为电子管坛传奇。带了80年代电子管生产事业已经日渐式微之际,Philips仍未放弃,并购入了历史最悠久的美国大厂Sylvania,补上了在70年代后期西欧Philips各厂房相继关闭后的生产真空,而这间易名为Philips ECG的公司,就成为Philips近70年电子管生产史上的终点站。目前市面上仍有大量的JAN Philips的80年代出品,无论是篮字或绿字印牌者,几乎全是这Philips ECG的产品。“吹喇叭”系列

“吹喇叭”系列电子管的来龙去脉,对许多朋友来说都是一个谜,笔者也只是略只一二,就在此和各位分享一下。自从Philips在1955年收购了美国名厂Amperex之后,便锐意发展在美国的市场,当时不少著名厂机如Mclntosh、Fisher、Dynaco等,跟机小电子管都爱用Telefunken 出品的,显见美国厂家对优质欧洲电子管很有信心,而Philips也不甘后人,决定借Amperex的盛名,在美国引进各种型号的优质荷兰电子管,

并配以一个全新的商标来突出这系列的进口精品,一个以一只会吹喇叭的电子管为标记的商标由此出现,“吹喇叭”电子管的传奇从此诞生。遗憾的是,笔者未能找到任何文字资料去详细了解这个系列,据本人的有限经验,所见过的“吹喇叭”电子管中,日期编号最早者为1958年,最迟者为1967年。则相信整个“吹喇叭”系列的发行不外乎在那10年之间。在这段期间,Philips仍有在欧洲发行其以Miniwatt命名的电子管,而Philips也有发行以普通Amperex商标印牌的电子管,有些更冠以PQ电子管以突出其高质素(代表Premium Quality),而美国Amperex仍有继续生产他们的货品,如常见的6922,但全都不及“吹喇叭”系列般经典合富吸引力。“吹喇叭”系列中,常见的都是音响器材最通行的编号,包括了12AU7、7025、12AX7、5814、12AT7、EF86、6DJ8、EL84和EL34等,唯独是荷兰Philips一直有生产,且质素甚高的

E88CC/6922,却还未见过有“吹喇叭”牌的,也不知是没有发行还是流通量太少,或是避免和骑下美国的Amperex厂的6922正面竞争。这批“吹喇叭”电子管清一色是荷兰制品,只有12AT7一款在60年代初以后,由法国的Dario和英国Mullard的出品取代了荷兰T7的地位,而许多电子管迷则对出自英、法的“吹喇叭”电子管看低一线,单看他们目前的市价就可知道。在“吹喇叭”系列中,最抢手者自然是12AX7、和EL34,其中12AX7和12AU7还分有长屏、短屏大圈和短屏小圈三期,虽然味道不同,但都是质素超群的经典极靓12AX7;EL34方面则就更稀有,即使不计极早的金属座期,就算是略后期的咖啡色座只有D字形除气剂环型号,也算是极品,一套4只售价惊人,这肯定是“吹喇叭”系

列的魔力,若是一般同期的Philips EL34,售价起码差3成。事实上,“吹喇叭”系列跟同期的Philips Miniwatt荷兰电子管同出一源,声底无甚分别,但“吹喇叭”系列的平均水准要更高,有理由相信他们是经过挑选的优质货色。由于这系列产期短,口碑好,在现今市场上已买少见少,且售价也不断上涨。

自从60年代后期那个极富象征意义的Amperex地球牌面世后,Philips 电子管,不论印Philips的、或印Amperex 的也好,都渐渐进入了“联合国”时期,产品来自五湖四海,但主要来自Philips在各地的分公司,质素仍算有保证,尤其那印有SQ牌者更属上品;到了70年代中以后,情形就更加复杂,在Philips把不少传统的厂房和分公司陆续关闭后,Philips电子管的来源就更难追寻,仍可辨认的有Siemens RFT,甚至80年代后的E1,当然还有Philips的最后命脉------ Philips ECG,但有些则“来历不明”,到了这地步,我们也不能对这时期的Philips 电子管名存实亡可能在字面上有问题,但说Philips电子管只余下一个没有多大代表性的商标便肯定正确了。

Philips 旗下各家公司电子管Manufacturing Code 說明:

以下這些資訊為國內某位Diyer 長久點滴得到的知識與經驗,累積起來,整理出來的文章,

非常感謝他,提供他的知識與大家分享.

通常在 Philips 旗下各家公司和工廠都會在管子出廠時加上一串 ID 碼. 這碼多是蝕刻進玻璃中的, 因此一但刻上就不易消除. 通常它們

會呈黑色或棕色帶銅的光澤.因為在 Philips/Valvo/Mullard 的管子

最容易出現, 常稱為 PVM碼.

熟知古典真空管的人都知道,PVM碼是判斷管子出廠工廠,年代,版本的

最好方法.因為以前各廠商間也常有互相代工,OEM生產的情形,所以可

能會出現管子上打著TFK or Siemens印刷,但實際上是Mullard 英國

廠製的,這時就必須要靠PVM碼來判斷管子實際的生產地,年代,版本,

所以PVM碼可以說是管子的"身分證明".不管管子上印的是什麼印刷,

甚至沒有任何印刷,只要管子上有PVM碼,就能知道管子實際的出廠工廠,年代,版本.

PVM Code on tube:

PVM 碼格式可參考如下範例解釋: (以一支 E88CC 為例)

其PVM碼為 :

7L1

R8E1

1. 7L 表示 E88CC, 這兩個文數字是 Philips 內部對管子形號的代碼. 其他如 Mullard 的 EL34 的代碼是 xf.

2. 1 這個位置會有一個數字或字母, 則是 Philips 內部對同型號管

子的不同版本編號.

3. R 這個位置則是生產工廠的編碼:

4: Philips 荷蘭 Eindhoven 廠

右頃斜三角形: Philips 荷蘭 Heerlen 廠

R: Mullard 英國 Mitcham 廠

B: Mullard 英國 Blackburn 廠

D: Valvo 德國 Hamburg 廠

其他應該還有, 只是不確定.

4. 8 是年份代碼, 表 '58, '68, '78, 或 '88 (不太可能!) 所以只能知道尾數, 實際年份還要參照其它線索判定.

5. E 表示生產月份, 一月為 A 依序算起, 所以不可能出現 L 之後的字母.

6. 1 表示該月第一週生產, 所以不應該出現 5 以上的數字.

我重点讲一下E88CC CCA:大多数电子管都是早期的好,E88CC/CCA;包装合是黄身蓝字,顶加蓝色阔身封条封口,封条上印着CCA编号,在合的另一开口上,也印着CCA编号,此外还印着一个出厂编号,胆樽上也印着一个出厂编号,后期的包装合转为橙蓝两色围白色边后,出厂编号印在盒盖的"舌"上,要揭开盒盖才能看到.再后一期则不附有任何出厂编号,而在盒盖的"舌"上印出厂年份,最后期西门子合子则没有印上任何资料,连合内页印着的十二个月保用说明也不见了.这类包装上的马虎,在胆的制作上也反映出来.西门子CCA音色较E88CC要醇和很多,声底较厚,超群高频伸展能力,分析力\动态可以和TELEFUNKEN一较高下,弱点是音色太干净,是属硬朗率直的靓胆.早期的CCA金脚光亮的很,一般的西门子后期的金脚是沙金脚.既使是七十年代的西门子E88CC表现也胜过俄罗斯胆SOVTEK.在高频表现上尤为明显,SOVTEK在大音量时,高频发尖\发毛,很不耐听.

amperex7308代替费力浦的6922,效果令人惊喜,细节、定位、临场感、音乐味通通胜出!

amperex7308、(6N11)

费力浦的6922、(6N11)

西门子E88CC、(6N11)

俄罗斯胆SOVTEK、(6N11)

常用胆管代换及特性

常用胆管代换及特性(一) 常用电压放大级即前级放大胆管代换表 6N1ECC85,6AQ8,6H1л 6N412AX7,ECC83,E83CC,7729,CV4004,B759,CV492 6N10 12AU7,ECC82,E82CC,7316,CV4003,5814,B749,6189 6N11 6DJ8,E88CC,ECC88,6922,ECC189,6J5,6H11N,7308,El88CC 6N8P 6SN7,B65,5692,33S30,CV1988,6H8C,6HM,6F8G,1633 6H8C 6HM,6F8G,1633,9002,6C8G 6J8P 6SJ7,6267,EF86,12AT7 ECC81,CV4024,6201,B739,A2900,2025,ECC8015 6N9P 6SL7,5691,33S29,VT229 6F2ECF82,6U8 6N26H2л 功率用管代换表 6P3P6L6GC,5881 6P6P6V6GT,5S2,KT63 EL346CA7,KT66,7027A 6P14EL84,6BQ5,6П14П 6N5P6080,6AS7,6H5C FU-5805 FU-7807,1625 FU-13813 FU-4606146B FU-17 FU-605 6T51 70926T50 FU811811A FU812812A GL-211 211

300B WE300B,NL50,4300B KT886550,NT99,KT100 2A32A3S 845845A 6360,TY-7 整流电子管代换及特性表 型号代换型号Bb2V UfV/I I2L(mA)最大型式 5U4G5Z3P,U52500V5V/3A2500直热式5Y3GT522P350V5V/2A125直热式5R4GY22S2C900V5V/2A150直热式5T4450V5V/3A250A直热式6Z4350V 6.3V/0.5A50直热式 6Z56X5230V 6.3V/0.8A60旁热式 6X4325V 6.3V/0.5A70旁热式 5Z4P5Z4400V5V/2A125旁热式5AR4GZ34450V5V/1.9A250旁热式

电子管基础知识大全

电子管,电子管基础知识大全(图) 电子管的基本参数: 1.灯丝电压:V; 2.灯丝电流:mA; 3.阳极电压:V; 4.阳极电流:mA; 5.栅极电压:V; 6.栅极电流:mA; 7.阴极接入电阻:Ω; 8.输出功率:W; 9.跨导:mA/v;10.内阻: kΩ。 几个常用值的计算: 放大因数μ=阳极电压Uak/栅极电压Ugk 表示在维持阳极电流不变的情况下,阳极电压与栅极电压的比值。 跨导S=阳极电流Ia/栅极电压Ugk 表示在维持阳极电压不变的情况下,栅极电压若有一个单位(如mV)的电压变化时将引起阳极电流有多少个单位的变化。 内阻Ri=栅极电压Uak/阳极电流Ia 表示在维持栅极电压不变的情况下,阳极电流若有一个单位(如mA)的电压变化时将引起阳极电压有多少个单位的变化。 上面的几个值也可以表述为放大因数μ=跨导S乘以内阻Ri 先说这些,各位要是觉得可以瞧下去,下回再说几种常见的管型和结构工作原理等等等等。 这回就先说电子管的构造和工作原理吧。照顾一下咱的老习惯,以后所涉及的管型和单元电路均以国产管为例,在最后我会结合自己的使用体会简要说说部分常见的国产管和进口管的各自特点以及代换。 在讨论之前咱们先得把讨论的范围作一界定,即仅限于真空式电子管。 不管是二极,三极还是更多电极的真空式电子管,它们都具有一个共同结构就是由抽成几近真空的玻璃(或金属,陶瓷)外壳及封装在壳里的灯丝,阴极和阳极组成。直热式电子管的灯丝就是阴极,三极以上的多极管还有各种栅极。 先说二极管: 考虑一块被加热的金属板,当它的温度达到摄氏800度以上时,会形成电子的加速运动,以至能够摆脱金属板本身对它们的吸引而逃逸到金属表面以外的空间。若在这一空间加上一个十几至几万伏的正向电压(踏雪留痕在上面说到的显象管,阳极上就加有7000--27000伏的高压),这些电子就会被吸引飞向正向电压极,流经电源而形成回路电流。把金属板(阴极),加热源(灯丝),正向电压极板(阳极)封装在一个适当的壳里,即上面说的玻璃(或金属,陶瓷)封装壳,再抽成几近真空,就是电子二极管。 需要说明的是由于制造工艺,杂质附着以及材料本身等原因,管内会残留微量余气,成品管都在管内涂敷了一层吸气剂。吸气剂一般使用掺氮的蒸散型锆铝或锆钒材料。目前除特殊用途外(如超高频和高压整流等),为便于使用和增加一至性,均为两只二极管,或二极三极,或三极三极以及二极五极等合装在一个管壳内,这就是复合管。

电子管代换

6N1 ECC85,6AQ8,6H1л 6N4 12AX7,ECC83,E83CC,7729,CV4004,B759,CV492 6N10 12AU7,ECC82,E82CC,7316,CV4003,5814,B749,6189 6N11 6DJ8,E88CC,ECC88,6922,ECC189,6J5,6H11N,7308,El88CC 6N8P 6SN7,B65,5692,33S30,CV1988,6H8C,6HM,6F8G,1633 6H8C 6HM,6F8G,1633,9002,6C8G 6J8P 6SJ7,6267,EF86,12AT7 ECC81,CV4024,6201,B739,A2900,2025,ECC8015 6N9P 6SL7,5691,33S29,VT229 6F2 ECF82,6U8 6N2 6H2л 功率用管代换表 6P3P 6L6GC,5881 6P6P 6V6GT,5S2,KT63 EL34 6CA7,KT66,7027A 6P14 EL84,6BQ5,6П14П 6N5P 6080,6AS7,6H5C FU-5 805 FU-7 807,1625 FU-13 813 FU-46 06146B

FU-17 FU-605 6T51 7092 6T50 FU811 811A FU812 812A GL-211 211 300B WE300B,NL50,4300B KT88 6550,NT99,KT100 2A3 2A3S 845 845A 6360,TY-7 整流电子管代换及特性表 型号代换型号 Bb2V UfV/I I2L(mA)最大型式 5U4G 5Z3P,U52 500V 5V/3A 2500 直热式5Y3GT 522P 350V 5V/2A 125 直热式 5R4GY 22S2C 900V 5V/2A 150 直热式 5T4 450V 5V/3A 250A 直热式 6Z4 350V 6.3V/0.5A 50 直热式

电子管代换2

国内外常用电子管代换大全-----希望对各位烧友有用………… 一、常用型号、用途及代换 常用型号管芯结构主要用途国外同类型号代备注 5X4G 直热式双阳极二极管小功率全波整流氧化物阴极 5Z3P 直热式双阳极二极管小功率全波整流5T4、5ц3C、CV1861、5R4GY、U52、CV1071、5V3、5AU4、5U4G氧化物阴极 5Z4P 旁热式双阳极二极管小功率全波整流*5B×1、*5ц4C,GZ30、CV2748、5Z4G/GT 氧化物阴极 5Z1P 直热式双阳极二极管小功率全波整流氧化物阴极 5Z2P 直热式双阳极二极管小功率全波整流5W4、5Y3G、80、U50 氧化物阴极 5Z8P 旁热式双阳极二极管全波整流*5ц8C 氧化物阴极 5Z9P 旁热式双阳极二极管全波整流*5ц9C 氧化物阴极 6Z4 旁热式双阳极二极管全波整流*6ц4П、6B×4、6×4、6Z31 共阴极 6Z5P 旁热式双阳极二极管小功率全波整流*6ц5C 共阴极 6H2 旁热式双阳极二极管检波、整流*6×2П、6AL5、C 氧化物阴极 6C1 旁热式三极管宽带电压放大*6C1П、CV664、9002 氧化物阴极 6C3 旁热式三极管宽带电压放大*6C3П 阴地三极管 6C4 旁热式三极管宽带电压放大*6C4П 栅地三极管 6C5P 旁热式三极管低频电压放大6C5GT、*6C5C、6C5 、CV1067、L63氧化物阴极 6C6B 旁热式三极管低频电压放大5703、CV3917、*6C6Ь 氧化物阴极 6C7B 旁热式三极管低频电压放大*6C7Ь 氧化物阴极 6C12 旁热式三极管宽带电压放大EC88、5842 高S、低N 6C31B-Q 旁热式三极管电压放大*6C31Ь-B 氧化物阴极 6C32B-Q 旁热式三极管电压放大*6C32Ь-B 遥截止三极管

电子管介绍

电子管介绍 基本电子管一般有三个极,一个阴极 (K) 用来发射电子,一个阳极(A)用来吸收阴极所发射的电子,一个栅极(G)用来控制流到阳极的电子流量。阴极发射电子的基本条件是:阴极本身必须具有相当的热量,阴极又分两种,一种是直热式,它是由电流直接通过阴极使阴极发热而发射电子;另一种称旁热式阴极,其结构一般是一个空心金属管,管内装有绕成螺线形的灯丝,加上灯丝电压使灯丝发热从而使阴极发热而发射电子,现在日常用的多半是这种电子管(如图所示)。由阴极发射出来的电子穿过栅极金属丝间的空隙而达到阳极,由于栅极比阳极离阴极近得多,因而改变栅极电位对阳极电流的影响比改变阳极电压时大得多,这就是三极管的放大作用。换句话说就是栅极电压对阳极电流的控制作用。我们用一个参数称跨导(S)来表示.另外还有一个参数μ来描述电子管的放大系数,它的意义是说明了栅极电压控制阳流的能力比阳极电压对阳流的作用大多少倍。 为了提高电子管的放大系数,在三极管的阳极和控制栅极之间另外加入一个栅极称之为帘栅极,而构成四极管,由于帘栅极具有比阴极高很多的正电压,因此也是一个能力很强的加速电极,它使得电子以更高的速度迅速到达阳极,这样控制栅极的控制作用变得更为显著。因此比三极管具有更大的放大系数。但是由于帘栅极对电子的加速作用,高速运动的电子打到阳极,这些高速电子的动能很大,将从阳极上打出所谓二次电子,这些二次电子有些将被帘栅吸收形成帘栅电流,使帘栅电流上升导致帘栅电压的下降,从而导致阳极电流的下降,为此四极管的放大系数受到一定而限制。 为了解决上述矛盾,在四极管帘栅极外的两侧再加入一对与阴极相连的集射极,由于集射极的电位与阴极相同,所以对电子有排斥作用,使得电子在通过帘栅极之后在集射极的作用下按一定方向前进并形成扁形射束,这扁形电子射束的电子密度很大,从而形成了一个低压区,从阳极上打出来的二次电子受到这个低压区的排斥作用而被推回到阳极,从而使帘栅电流大大减少,电子管的放大能力得而加强,这种电子管我们称为束射四极管。束射四极管不但放大系数较三极管为高,而且其阳极面积较大,允许通过较大的电流,因此现在的功放机常用到它作为功率放大。

电子管代换与说明

常用电压放大级即前级放大胆管代换表6N1ECC85,6AQ8,6H1л 6N412AX7,ECC83,E83CC,7729,CV4004,B759,CV492 6N10 12AU7,ECC82,E82CC,7316,CV4003,5814,B749,6189 6N11 6DJ8,E88CC,ECC88,6922,ECC189,6J5,6H11N,7308,El88CC 6N8P 6SN7,B65,5692,33S30,CV1988,6H8C,6HM,6F8G,1633 6H8C 6HM,6F8G,1633,9002,6C8G 6J8P 6SJ7,6267,EF86,12AT7 ECC81,CV4024,6201,B739,A2900,2025,ECC8015 6N9P 6SL7,5691,33S29,VT229 6F2ECF82,6U8 6N26H2л 电子管代换及说明 可以直接代用12AU7的型号有:ECC82,E82CC,ECC802S,B329,CV491,CV4003,CV8155,M8136,5814,6189,7730,6067,7730。 可以直接代用12AX7的管子有:ECC83,ECC803S,B339,E283CC,M8137,CV492,CV4004,CV8156,6057,7729。7025,5751,7058,6N4。 前级管的选择:12AX7:品牌一:AMPEREX 『橙字』『地球嘜』品牌二:RCA 5751 『红字』『黑屏』『方环胆』『三云母』三:『黃字』『三雲母』『黑屏』『方環』『閃電嘜』SYLVANIA 5157。12AU7:品牌一:AMPEREX『地球嘜』品牌二:MULLARD ecc82 6922:品牌一:西门子CCA品牌二:AMPEREX 7308 PHILIPS电子管大家族 “买Philips电子管?不是真的吧,他们好像只是生产灯泡和光管,其音响用电子管的质素想必好不到哪里吧!”,“Philips电子管?他们根本没有生产音响用电子管,全部都是买别人家的出品回来印牌发售,又

常用电子管代换表

【<常用电子管代换表>供大家速查和参考】 国产型号管芯结构主要用途国外同类型号代备注 5Z3P 直热式双阳极二极管小功率全波整流5T4,5×4G,5U4G*,5ц3C,U52 氧化物阴极5Z4P 旁热式双阳极二极管小功率全波整流* 5B×1,*5ц4C,GZ30,5Z4G/GT氧化物阴极5Z1P 直热式双阳极二极管小功率全波整流氧化物阴极5Z2P 直热式双阳极二极管小功率全波整流 5W4、5Y3G、80、U50 氧化物阴极 5Z8P 旁热式双阳极二极管全波整流*5ц8C氧化物阴极 5Z9P 旁热式双阳极二极管全波整流*5ц9C氧化物阴极 6Z4 旁热式双阳极二极管全波整流*6ц4П、6B×4、6×4、6Z31 共阴极 6Z5P 旁热式双阳极二极管小功率全波整流*6ц5C共阴极 6H2 旁热式双阳极二极管检波、整流*6×2П、6AL5、C 氧化物阴极 6C1 旁热式三极管宽带电压放大*6C1П、CV664、9002 氧化物阴极 6C3 旁热式三极管宽带电压放大*6C3П阴地三极管 6C4 旁热式三极管宽带电压放大*6C4П栅地三极管 6C5P 旁热式三极管低频电压放大 6C5GT、*6C5C、6C5 氧化物阴极 6C6B 旁热式三极管低频电压放大 5703、CV3917、*6C6Ь氧化物阴极 6C7B 旁热式三极管低频电压放大*6C7Ь氧化物阴极6C12 旁热式三极管宽带电压放大 EC88、5842 高S、低N 6C31B-Q 旁热式三极管电压放大*6C31Ь-B 氧化物阴极6C32B-Q 旁热式三极管电压放大*6C32Ь-B 遥截止三极管 6N1 旁热式双三极管低频电压放大*6H1П,6AQ8,AA61,ECC40/82氧化物阴极 6N2 旁热式双三极管低频电压放大*6H2П、6AX7、6AV7、ECC41 氧化物阴极 6N3 旁热式双三极管低频电压放大*6H3П、6A8Q、2C51、ECC42 氧化物阴极 6N4 旁热式双三极管低噪声电压放大ECC83、12AX7 高μ、低N 6N5P 旁热式双三极管低频功率放大*6H13C,6AS7,CV2523,6NS7G/GT 低Ri 6N6(T)旁热式双三极管低频电压放大*6H6П、E182CC、12BH7 氧化物阴极 6N7P 旁热式双三极管低频功率放大6H7、*H7C、6N7/G/GT 共阴极 6N8P 旁热式双三极管低频电压放大*6H8C*6H8M,6SN7,6F8G,CV181,QB65,ECC32氧化 6N9P 旁热式双三极管低频电压放大 *6H9C,6SL7,ECC35,6SC7,6CY7 高μ 6N10 旁热式双三极管低频电压放大*6H10M、12AV7A、E82CC、CV491 氧化物阴极 6N11 旁热式双三极管宽带电压放大*6H23П,6DJ8,ECC84,E88CC,6922,CV2492高S,低RI、N. 6N12P 旁热式双三极管低频电压放大*6H12C、TS229、5687 氧化物阴极 6N13P 旁热式双三极管低频功率放大*6H13C,6AS7,CV2523,6NS7G/GT 低内阻 6N15 旁热式双三极管低频电压放大*6H15П,6J6WA,6CC31,CV858共阴极 6N16B 旁热式双三极管低频电压放大氧化物阴极6N17B 旁热式双三极管低频电压放大*6H17Ь、6112、CV5007 氧化物阴极 6N21B-Q 旁热式双三极管低频电压放大氧化物阴极6N23 旁热式双三极管低频电压放大6DJ8、ECC88、PCC88 高μ低N 6J1 旁热锐止五极管宽带电压放大*6ж1П,6AK5,6BC5,EF40,EF95,CV850高频管 6J1B 锐截止五极管宽带电压放大*6ж1Ь,CV3929,61489,CK5702/7083 旁热式阴极 6J2锐截止五极管宽带电压放大*6ж2П,6AS6,CV2522,EF11/732,CV4011旁热式阴极 6J2B 锐截止五极管宽带电压放大*6ж2Ь、CK5639 旁热式阴极

电子管代换及说明

常用电压放大级即前级放大胆管代换表 6N1ECC85,6AQ8,6H1л 6N412AX7,ECC83,E83CC,7729,CV4004,B759,CV492 6N10 12AU7,ECC82,E82CC,7316,CV4003,5814,B749,6189 6N11 6DJ8,E88CC,ECC88,6922,ECC189,6J5,6H11N,7308,El88CC 6N8P 6SN7,B65,5692,33S30,CV1988,6H8C,6HM,6F8G,1633 6H8C 6HM,6F8G,1633,9002,6C8G 6J8P 6SJ7,6267,EF86,12A T7 ECC81,CV4024,6201,B739,A2900,2025,ECC8015 6N9P 6SL7,5691,33S29,VT229 6F2ECF82,6U8 6N26H2л 电子管代换及说明 可以直接代用12AU7的型号有:ECC82,E82CC,ECC802S,B329,CV491,CV4003,CV8155,M8136,5814,6189,7730,6067,7730。 可以直接代用12AX7的管子有:ECC83,ECC803S,B339,E283CC,M8137,CV492,CV4004,CV8156,6057,7729。7025,5751,7058,6N4。 前级管的选择: 12AX7: 品牌一:AMPEREX 『橙字』『地球嘜』 品牌二:RCA 5751 『红字』『黑屏』『方环胆』『三云母』 三:『黃字』『三雲母』『黑屏』『方環』『閃電嘜』 SYLVANIA 5157。 12AU7: 品牌一:AMPEREX『地球嘜』 品牌二:MULLARD ecc82

用电子管6N3代替CD运放LPF输出实例

用电子管6N3代替CD运放LPF输出实例 CD 机是HIFI烧友必备的音源设备,机型选择余地很多,不过大多数老百姓用的还是“阳春白雪”式的普及品,音质效果一般,所以很多发烧友通过各种方法“摩机”,本人也是其中之一,换发烧电容、换运放、摩电源等等,有一定效果,实话实说效果不是很明显,大多数属于“自欺欺人”的阶段(由于芯片的限制不可能产生质的飞跃)。看到国外(俄罗斯、日本)摩机资料,用电子管摩改CD 机音频输出部分,据说效果有明显不同,心里就有一种冲动,很想试验一下,但是由于自己知识水平的局限,总觉得电子管工作在高压状态对CD 的危害大于利益,况且电子管的发热、安装高度、高输入阻抗的感应噪音、灯丝感应交流声等原因,所以没有进行实际试验。看到山灵的电子管CD,低压60伏6N3 阴极跟随器的实际应用,改变了我对电子管一定要在高压应用的局限性,父亲曾对我说过,以前的扩大机前级,6N1电子管都有在50伏灯丝直流5伏的工作状态(已超出灯丝合理电压范围),主要用在MIC放大上,可以大幅降低电子管的噪音,开始我还不信,经过查资料证明是可以长期实际使用的。偶然得到一台ONE BCD-497廉价CD机,该机机壳高度合适,内部有一定的空间,适合电子管的安装,底板留有散热孔便于电子管散热,就马上进行动手实验,再说价格很低,失败了损失也不大,所以没有什么心理负担。具体电路采用了6N3在低压的应用状态,首先进行一级放大,再有阴极输出的形式,本来没有滤波网络,想以电子管结构本身滤出20kHz以上的干扰信号,老一辈烧友建议加上为好,因为一般电压放大电子管都可以工作在MHz以上,经过计算采用手头已有的阻容元件设计电路见图一(电路原理部分): ?screen.width-333)this.width=screen.width-333”> ?图二:(电源部分)

电子管置换表

常用电子管代换 (一)二极管部分: 5Z3P 直热式双阳极二极管 小功率全波整流 5T4、5×4G、5U4G*、5ц3C、U52 氧化物阴极 5Z4P 旁热式双阳极二极管 小功率全波整流 *5B×1、*5ц4C,GZ30、5Z4G/GT 氧化物阴极 5Z1P 直热式双阳极二极管 小功率全波整流 氧化物阴极 5Z2P 直热式双阳极二极管 小功率全波整流 5W4、5Y3G、 80、 U50 氧化物阴极 5Z8P 旁热式双阳极二极管 全波整流 *5ц8C 氧化物阴极 5Z9P 旁热式双阳极二极管 全波整流 *5ц9C 氧化物阴极 6Z4 旁热式双阳极二极管 全波整流 *6ц4П、6B×4、6×4、6Z31 共阴极 6Z5P 旁热式双阳极二极管 小功率全波整流 *6ц5C

共阴极 6H2 旁热式双阳极二极管 检波、整流 *6×2П、6AL5、C 氧化物阴极 (二)三极管部分: 6C1 旁热式三极管 *6C1П、CV664、9002 氧化物阴极 6C3 旁热式三极管 *6C3П 阴地三极管 6C4 旁热式三极管 *6C4П 栅地三极管 6C5P 旁热式三极管 6C5GT、*6C5C、6C5 氧化物阴极 6C6B 旁热式三极管 5703、CV3917、*6C6Ь 氧化物阴极 6C7B 旁热式三极管 *6C7Ь 氧化物阴极 6C12 旁热式三极管 EC88、5842 高S、低N 6C22D 旁热式三极管 5876 金属陶瓷管

6C31B-Q 旁热式三极管 *6C31Ь-B 氧化物阴极 6C32B-Q 旁热式三极管 *6C32Ь-B 遥截止三极管 6N1 旁热式双三双极管 *6H1П、6AQ8、AA61、ECC40/82 氧化物阴极 6N2 旁热式双三双极管 *6H2П、6AX7、6AV7、ECC41 氧化物阴极 6N3 旁热式双三双极管 *6H3П、6A8Q、2C51、ECC42 氧化物阴极 6N4 旁热式双三双极管 低噪声电压放大 ECC83、12A×7 高μ、低N 6N5P 旁热式双三双极管 低频功率放大 *6H13C、6AS7、CV2523、6NS7G/GT 低Ri 6N6(T) 旁热式双三双极管 *6H6П、E182CC、12BH7 氧化物阴极 6N7P 旁热式双三极管 6H7、*H7C、6N7/G/GT 共阴极 6N8P

电子管代换

6N1 ECC85,6AQ8,6H1 JI 6N4 12AX7,ECC83,E83CC,7729,CV4004,B759,CV492 6N10 12AU7,ECC82,E82CC,7316,CV4003,5814,B749,6189 6N11 6DJ8,E88CC,ECC88,6922,ECC189,6J5,6H11N,7308,El88CC 6N8P 6SN7,B65,5692,33S30,CV1988,6H8C,6HM,6F8G,1633 6H8C 6HM,6F8G,1633,9002,6C8G 6J8P 6SJ7,6267,EF86,12AT7 ECC81,CV4024,6201,B739,A2900,2025,ECC8015 6N9P 6SL7,5691,33S29,VT229 6F2 ECF82,6U8 6N2 6H2j 功率用管代换表 6P3P 6L6GC,5881 6P6P 6V6GT,5S2,KT63 EL34 6CA7,KT66,7027A 6P14 EL84,6BQ5,6 n i4n 6N5P 6080,6AS7,6H5C FU-5 805 FU-7 807,1625 FU-13 813 FU-46 06146B

FU-17 FU-605 6T51 7092 6T50 FU811 811A FU812 812A GL-211 211 300B WE300B,NL50,4300B KT88 6550,NT99,KT100 2A3 2A3S 845 845A 6360,TY-7 整流电子管代换及特性表 型号代换型号 Bb2V UfV/I I2L(mA) 最大型式 5U4G 5Z3P,U52 500V 5V/3A 2500 直热式5Y3GT 522P 350V 5V/2A 125 直热式 5R4GY 22S2C 900V 5V/2A 150 直热式 5T4 450V 5V/3A 250A 直热式 6Z4 350V 6.3V/0.5A 50 直热式

国内外电子管代换

国内外电子管代换 常用型号管芯结构主要用途国外同类型号代备注 5X4G 直热式双阳极二极管小功率全波整流氧化 物阴极 5Z3P 直热式双阳极二极管小功率全波整流5T4、5ц3C、 CV1861、5R4GY、U52、CV1071、5V3、5AU4、5U4G氧化物阴极5Z4P 旁热式双阳极二极管小功率全波整流*5B×1、*5ц4C ,GZ30、CV2748、5Z4G/GT 氧化物阴极 5Z1P 直热式双阳极二极管小功率全波整流氧化物阴极 5Z2P 直热式双阳极二极管小功率全波整流5W4、5Y3G、80 、U50 氧化物阴极 5Z8P 旁热式双阳极二极管全波整流*5ц8C 氧化物阴极 5Z9P 旁热式双阳极二极管全波整流*5ц9C 氧化物阴极 6Z4 旁热式双阳极二极管全波整流*6ц4П、6B×4、6×4 、6Z31 共阴极 6Z5P 旁热式双阳极二极管小功率全波整流*6ц5C 共阴极 6H2 旁热式双阳极二极管检波、整流*6×2П、6AL5、C 氧 化物阴极 6C1 旁热式三极管宽带电压放大*6C1П、CV664、9002 氧 化物阴极 6C3 旁热式三极管宽带电压放大*6C3П阴地三极管 6C4 旁热式三极管宽带电压放大*6C4П栅地三极管 6C5P 旁热式三极管低频电压放大6C5GT、*6C5C、6C5 、 CV1067、L63氧化物阴极 6C6B 旁热式三极管低频电压放大5703、CV3917、*6C6Ь 氧化物阴极 6C7B 旁热式三极管低频电压放大*6C7Ь氧化物阴极 6C12 旁热式三极管宽带电压放大EC88、5842 高S、低N 6C31B-Q 旁热式三极管电压放大*6C31Ь-B 氧化物阴极 6C32B-Q 旁热式三极管电压放大*6C32Ь-B 遥截止三极管 6N1 旁热式双三极管低频电压放大*6H1П、6AQ8、AA61、 ECC40/82 氧化物阴极 6N2 旁热式双三极管低频电压放大*6H2П、6AX7、6A V7、

【电子管电路基础知识大全】

电子管电路基础知识大全 (第1页) (一)二极管的结构及其工作原理 电子管是利用电子在真空中受电场力的吸引或排斥作用,进行工作的电子器件。 最简单的电子管是二极管,它是在高度真空的密封容器内装有两个金属电极,一个是阴极,呈细长管状丝外面,另一个是阳极,呈圆筒状,套在阴极外面。当灯丝通电点燃,间接将阴极加热到1000~C以上时,量电子获得能量从金属中逸出,逸出的热电子在阴极金属表面附近堆积,成为空间电荷。 我们知道,电子是带负电荷的,此时如果在另一金属板(阳极)加上一个直流正电压并与阴极构成闭合回电子在正电压(电场)的吸引下将从阴极经过空间到达阳极,形成电流,如图1。 反之,如果在阳极加上直流负电压(电场),它将排斥从阴极发射出来的热电子,回路就没有电流。只有电位高于阴极电位时。闭合回路才有电流流过,因此二极管具有单向导电性。利用二极管的单向导电性,就能 电变为直流电。 (二)三极管的结构及其工作原理 1.结构 在二极管的两个电极之间插入一个栅栏状的电极就构成三极管(如图2所示)。这个栅栏状的电极叫做控极,简称栅极,用符号G(grid)表示。结构一般是用镍锰合金丝在支撑物上绕成螺旋形,每圈之间有一定的便从阴极发射出来的电子能通过这些空隙流到屏极。 从三极管各个电极的相对位置来看。栅极与阴极之间的距离较屏极与阴极之间的距离近得多,这使栅极对射的电子的作用力也比屏极大得多,因而三极管具有放大作用。 2.三极管的基本电路 要使任何电路工作,都必须是一个闭合的回路。三极管在电路中,有3个基本回路:一是屏极回路,二是

路,三是灯丝回路,如图3所示。 在电子管电路中,各极电压都是以阴极为公共端的。屏极与阴极之间的电路是屏极回路。 它们之间的电压叫做屏压,以u。表示,一般屏压总是正的,即屏极电位比阴极电位高,因此屏极回路经流ia流动。屏极回路的正电源叫做屏极电源。用Ea表示。 3.三极管的放大作用 将三极管按图3连接好工作电源。这时在电子管阴极附近将产生两个电场,一个是屏极吸引电子的正电场个是栅极排斥电子的负电场。因此电子管屏流i。的大小不仅与屏压有关,并且也与栅负压大小有关。 如果设定屏压固定不变,则栅压越负。对电子的排斥力越大,则屏流越小。反之,如果把栅极负电压减小对值减小),则栅极对电子的排斥力将减小,屏流ia将随之增加。这个现象说明,在栅极上加入大小不同的负就能控制由阴极流向屏极的电子数量,即栅极有控制屏极电流ia大小的作用。而且由于栅极与阴极的距离比屏极的距离近,根据电场力和电场强度原理。 栅极控制电子的能力比屏极大得多,即栅压ug有微小的变化,就能引起屏流ia发生较大的变化,这就是具有放大作用的原因。 图4是一个简单的三极管放大电路。栅极回路叫输入回路,屏极回路叫输出回路。当在栅极回路接入一个交流电源ex时,就会使栅压ug发生变化,如果在屏极回路中接人一个电阻Ra,ia流过Ra时在Ra两端的压比ug的变化大得多,因此就具有电压放大作用,电阻Ra我们叫它负载电阻。

电子管的代换

常用型号管芯结构主要用途国外同类型号代备注 5X4G 直热式双阳极二极管小功率全波整流氧化物阴极 5Z3P 直热式双阳极二极管小功率全波整流5T4、5ц3C、CV1861、5R4GY、U52、CV1071、5V3、5AU4、5U4G氧化物阴极5Z4P 旁热式双阳极二极管小功率全波整流*5B×1、*5ц4C,GZ30、CV2748、5Z4G/GT 氧化物阴极 5Z1P 直热式双阳极二极管小功率全波整流氧化物阴极 5Z2P 直热式双阳极二极管小功率全波整流5W4、5Y3G、80、U50 氧化物阴极 5Z8P 旁热式双阳极二极管全波整流*5ц8C 氧化物阴极 5Z9P 旁热式双阳极二极管全波整流*5ц9C 氧化物阴极 6Z4 旁热式双阳极二极管全波整流*6ц4П、6B×4、6×4、6Z31 共阴极 6Z5P 旁热式双阳极二极管小功率全波整流*6ц5C 共阴极 6H2 旁热式双阳极二极管检波、整流*6×2П、6AL5、C 氧化物阴极 6C1 旁热式三极管宽带电压放大*6C1П、CV664、9002 氧化物阴极 6C3 旁热式三极管宽带电压放大*6C3П阴地三极管 6C4 旁热式三极管宽带电压放大*6C4П栅地三极管 6C5P 旁热式三极管低频电压放大6C5GT、*6C5C、6C5 、CV1067、L63氧化物阴极 6C6B 旁热式三极管低频电压放大5703、CV3917、*6C6Ь氧化物阴极 6C7B 旁热式三极管低频电压放大*6C7Ь氧化物阴极 6C12 旁热式三极管宽带电压放大EC88、5842 高S、低N 6C31B-Q 旁热式三极管电压放大*6C31Ь-B 氧化物阴极 6C32B-Q 旁热式三极管电压放大*6C32Ь-B 遥截止三极管 6N1 旁热式双三极管低频电压放大*6H1П、6AQ8、AA61、ECC40/82 氧化物阴极 6N2 旁热式双三极管低频电压放大*6H2П、6AX7、6A V7、ECC41 氧化物阴极 6N3 旁热式双三极管高频电压放大*6H3П、6A8Q、2C51、ECC42 氧化物阴极 6N4 旁热式双三极管低噪声电压放大ECC83、12A×7 高μ、低N 6N5P 旁热式双三极管低频功率放大*6H13C、6AS7、CV2523、6NS7G/GT 低Ri 6N6(T)旁热式双三极管低频电压放大*6H6П、E182CC、12BH7 、CV5042 7P 旁热式双三极管低频功率放大6H7、*H7C、6N7/G/GT 共阴极 6N8P 旁热式双三极管低频电压放大*6H8C*6H8M、6SN7、6F8G、CV181、QB65、ECC32 氧化物阴极 6N9P 旁热式双三极管低频电压放大*6H9C、6SL7、ECC35、6SC7、6CY7 高μ

电子管检测方法及其参数

电子管检测方法 一外观检查 1.观察电子管顶部的颜色正常的电子管,其顶部的颜色是银色或黑色。若顶部已变成乳白色或浅黑色, 则说明该电子管已漏气或老化。 2.观察管内是否有杂物轻轻摇动或用手指轻弹电子管玻壳,再上下颠倒几下仔细观察内是否有碎片、白色氧化物、碎云母片等杂物。若电子管内有杂物,则说明该管经过居中烈振动,其内部极间短路的可能性 较大。 二用万用表检测 1.测量灯丝电压用万用表R×1档,测量电子管的两个灯丝引脚的电阻值,正常值只有几欧姆。若测得阻 值为无穷大,则说明该电子管的灯丝已断。 2.检测电子管是否衰老通过用万用表测量电子管阴极的发射能力,即可判断出电子管是否衰老。检测时,可单独为电子管的灯丝提供工作电压(其余各极电压均不加),预热2min左右,用万用表R×100档,红表笔接电子管极阴,黑表笔接栅极(表内1.5V电池相当于给电子管加上正偏栅压),测量栅、阴极之间的电阻值。正常的电子管,栅、阴极之间的电阻值应小于3kΩ。若测得电子管栅、阴极之间的阻值大于3 kΩ,则说明该电子管已衰老。该电阻值越大,电子管的衰老程度越严重。 电子管的主要参数有哪些 电子管的主要参数有灯丝电压、灯丝电流、屏极电流、屏极内阻、屏极电压、帘栅极电压、极间电容、放 大系数、电导、输出功率等。 (一)灯丝电压 灯丝电压VF是指电子管灯丝的额定工作电压。不同结构和规格的电子管,其灯丝电压也不相同。通常,电子二极管的灯丝电压为1.2V或2.4V(双二极管),三极以上电子管的灯丝电压为6.3V、12.6V(复合管),部分直热式电子管、低内阻管、束射管等的灯丝电压还有2.5V、5V、6V、7.5V、10V、26.5V等多种规格。 (二)灯丝电流 灯丝电流IF是指电子管灯丝的工作电流。不同结构和规格的电子管,其灯丝电流也不同。例如,同样是束射四极管,FU-7的灯丝电流为0.9mA,而FU-13的灯丝电流却为5A。 (三)屏极内阻rP 屏极内阻是指在栅极电压VC不变时,屏极电压VA的变化量与其对应的屏极电流IA变化量的比值。 (四)放大系数μ 放大系数是指在电子管阴极k的表面上,电栅极电压VG和屏极电压VA所形成的两个电场的有效值之比,

电子管代换资料

电子管代换资料 国内外电子管代换 常用型号管芯结构主要用途国外同类型号代备注 5X4G 直热式双阳极二极管小功率全波整流氧化物阴极 5Z3P 直热式双阳极二极管小功率全波整流5T4、5ц3C、CV1861、5R4GY、U52、CV1071、5V3、5AU4、5U4G氧化物阴极 5Z4P 旁热式双阳极二极管小功率全波整流*5B×1、*5ц4C,GZ30、CV2748、5Z4G/GT 氧化物阴极 5Z1P 直热式双阳极二极管小功率全波整流氧化物阴极 5Z2P 直热式双阳极二极管小功率全波整流5W4、5Y3G、80、U50 氧化物阴极 5Z8P 旁热式双阳极二极管全波整流*5ц8C 氧化物阴极 5Z9P 旁热式双阳极二极管全波整流*5ц9C 氧化物阴极 6Z4 旁热式双阳极二极管全波整流*6ц4П、6B×4、6×4、6Z31 共阴极 6Z5P 旁热式双阳极二极管小功率全波整流*6ц5C 共阴极 6H2 旁热式双阳极二极管检波、整流*6×2П、6AL5、C 氧化物阴极6C1 旁热式三极管宽带电压放大*6C1П、CV664、9002 氧化物阴极6C3 旁热式三极管宽带电压放大*6C3П 阴地三极管 6C4 旁热式三极管宽带电压放大*6C4П 栅地三极管 6C5P 旁热式三极管低频电压放大6C5GT、*6C5C、6C5 、CV1067、L63氧化物阴极

6C6B 旁热式三极管低频电压放大5703、CV3917、*6C6Ь 氧化物阴极 6C7B 旁热式三极管低频电压放大*6C7Ь 氧化物阴极 6C12 旁热式三极管宽带电压放大EC88、5842 高S、低N 6C31B-Q 旁热式三极管电压放大*6C31Ь-B 氧化物阴极 6C32B-Q 旁热式三极管电压放大*6C32Ь-B 遥截止三极管 6N1 旁热式双三极管低频电压放大*6H1П、6AQ8、AA61、ECC40/82 氧化物阴极 6N2 旁热式双三极管低频电压放大*6H2П、6AX7、6A V7、ECC41 氧化物阴极 6N3 旁热式双三极管高频电压放大*6H3П、6A8Q、2C51、ECC42 氧化物阴极 6N4 旁热式双三极管低噪声电压放大ECC83、12A×7 高μ、低N 6N5P 旁热式双三极管低频功率放大*6H13C、6AS7、CV2523、6NS7G/GT 低Ri 6N6(T)旁热式双三极管低频电压放大*6H6П、E182CC、12BH7 、CV5042 7P 旁热式双三极管低频功率放大6H7、*H7C、6N7/G/GT 共阴极 6N8P 旁热式双三极管低频电压放大*6H8C*6H8M、6SN7、6F8G、CV181、QB65、ECC32 氧化物阴极 6N9P 旁热式双三极管低频电压放大*6H9C、6SL7、ECC35、6SC7、6CY7 高μ

管代换表

07N03L 30V 80A 150W N 10N20 10A 200V N 沟道MOS管 10N60 10A 600V 11N80 11A 800V 156W 11P06 60V 9.4A P沟道直插 13N60 13A 600V N 沟道 15N03L 30V 42A 83W N 2N7000 60V 0.2A 0.35W N 2NS 6A60 600V 6A N 6N70 700V 6A N 6P25 250V 6A 70L02 70N06 70A 60V 125W 7N60 600V 7A N,铁 7N70 7A 700V 85L02 8N25 250V ,8A ,同IRF634 95N03 25V 75A 125W 9916H 18V 35A 58W 小贴片,全新 9N60 9A 600V 9N70 9A 700V AF4502CS 内含P沟道,N沟道MOS管各一A04403 30V 6.1A 单P沟道8脚贴片 A04404 30V 8.5A 单N沟道8脚贴片 A04405 30V 6A 3W 单P沟道8脚贴片 A04406 30V,11.5A,单N沟道,8脚贴 A04407 30V 12A 3W 单P沟道,8脚贴片 A04407 30V 12A 3W 单P沟道,8脚贴片 A04408 30V 12A 单N沟道,8脚贴片 A04409 30V 15A P沟道场效应,8脚 A04410 30V 18A 单N沟道8脚贴片 A04411 30V 8A 3W P沟道场效应,8脚 A04413 30V 15A 3W 单P沟道,8脚贴片 A04413 30V 15A 3W 单P沟道,8脚贴片 A04414 30V,8.5A,3WM 单N沟道,8脚 A04418 30V 11.5A N沟道8脚贴片 A04422 30V 11A N 沟道8脚贴片 A04423 30V 15A 3.1W 单P沟道,8脚贴 A04600 内含P沟道,N沟道MOS管各一A0D405 30V,18A,P高压板MOS管贴 A0D408 30V,18A,P高压板MOS管贴 A0D409 60V 26/18A P 高压板MOS 管贴 A0D409 60V 26/18A P 高压板MOS 管贴

2021年电子管代换及说明

常用电压放大级即前级放大胆管代换表6N1 ECC85,6AQ8,6H1л 6N4 12AX7,ECC83,E83CC,7729,CV4004, B759,CV492 6N10 12AU7,ECC82,E82CC,7316,CV4003,5 814,B749,6189 6N11 6DJ8,E88CC,ECC88,6922,ECC189,6J 5,6H11N,7308,El88CC 6N8P 6SN7,B65,5692,33S30,CV1988,6H8C, 6HM,6F8G,1633 6H8C 6HM,6F8G,1633,9002,6C8G 6J8P 6SJ7,6267,EF86,12AT7 ECC81,CV4024,6201,B739,A2900,202 5,ECC8015

6N9P 6SL7,5691,33S29,VT229 6F2ECF82,6U8 6N26H2л 欧阳光明(2021.03.07) 电子管代换及说明 可以直接代用12AU7的型号有:ECC82,E82CC,ECC802S, B329,CV491,CV4003,CV8155,M8136,5814,6189,7730,6067,7730。 可以直接代用12AX7的管子有:ECC83,ECC803S,B339, E283CC,M8137,CV492,CV4004,CV8156,6057,7729。7025,5751,7058,6N4。 前级管的选择:12AX7:品牌一:AMPEREX 『橙字』『地球 嘜』品牌二:RCA 5751 『红字』『黑屏』『方环胆』『三云母』三:『黃字』『三雲母』『黑屏』『方環』『閃電嘜』 SYLV ANIA 5157。12AU7:品牌一:AMPEREX『地球嘜』品牌二:MULLARD ecc82 6922:品牌一:西门子 CCA品牌二:AMPEREX 7308 PHILIPS电子管大家族 “买Philips电子管?不是真的吧,他们好像只是生产灯泡和光管,其音响用电子管的质素想必好不到哪里吧!”,“Philips电子管?他们根本没有生产音响用电子管,全部都是买别人家的出品回来印牌

电子管的基础知识

电子管的基础知识 80mm的谆谆指导下,准备着手"造"一个电子管的耳放,对于没有接触过电路,所以用"造"比较贴切:) 看了80mm的管子选购篇,受益匪浅。 现贴出我找到的电子管资料,与大家分享,以此感谢帮助过我的朋友,勉励同我一样刚入门的朋友。 电子管的基本参数: 1.灯丝电压:V; 2.灯丝电流:mA; 3.阳极电压:V; 4.阳极电流:mA; 5.栅极电压:V; 6.栅极电流:mA; 7.阴极接入电阻:Ω; 8.输出功率:W; 9.跨导:mA/v; 10.内阻: kΩ。 几个常用值的计算: 放大因数μ=阳极电压Uak/栅极电压Ugk 表示在维持阳极电流不变的情况下,阳极电压与栅极电压的比值。 跨导 S=阳极电流Ia/栅极电压Ugk 表示在维持阳极电压不变的情况下,栅极电压若有一个单位(如mV)的电压变化时将引起阳极电流有多少个单位的变化。 内阻 Ri=栅极电压Uak/阳极电流Ia 表示在维持栅极电压不变的情况下,阳极电流若有一个单位(如mA)的电压变化时将引起阳极电压有多少个单位的变化。 上面的几个值也可以表述为放大因数μ=跨导S乘以内阻Ri 先说这些,各位要是觉得可以瞧下去,下回再说几种常见的管型和结构工作原理等等等等。 这回就先说电子管的构造和工作原理吧。照顾一下咱的老习惯,以后所涉及的管型和单元电路均以国产管为例,在最后我会结合自己的使用体会简要说说部分常见的国产管和进口管的各自特点以及代换。 在讨论之前咱们先得把讨论的范围作一界定,即仅限于真空式电子管。

不管是二极,三极还是更多电极的真空式电子管,它们都具有一个共同结构就是由抽成几近真空的玻璃(或金属,陶瓷)外壳及封装在壳里的灯丝,阴极和阳极组成。直热式电子管的灯丝就是阴极,三极以上的多极管还有各种栅极。 先说二极管: 考虑一块被加热的金属板,当它的温度达到摄氏800度以上时,会形成电子的加速运动,以至能够摆脱金属板本身对它们的吸引而逃逸到金属表面以外的空间。若在这一空间加上一个十几至几万伏的正向电压(踏雪留痕在上面说到的显象管,阳极上就加有7000--27000伏的高压),这些电子就会被吸引飞向正向电压极,流经电源而形成回路电流。 把金属板(阴极),加热源(灯丝),正向电压极板(阳极)封装在一个适当的壳里,即上面说的玻璃(或金属,陶瓷)封装壳,再抽成几近真空,就是电子二极管。 需要说明的是由于制造工艺,杂质附着以及材料本身等原因,管内会残留微量余气,成品管都在管内涂敷了一层吸气剂。吸气剂一般使用掺氮的蒸散型锆铝或锆钒材料。目前除特殊用途外(如超高频和高压整流等),为便于使用和增加一至性,均为两只二极管,或二极三极,或三极三极以及二极五极等合装在一个管壳内,这就是复合管。 接下来说三极管: 二极管的结构决定了它的单向导电的性质,当在阴极与阳极之间再加上一个带适当电压的极点,这个电压就会改变阴极的表面电位,从而影响了阴极热电子飞向阳极的数量,这就是调制极,一般是用金属丝做成螺旋状的栅网,所以又把它称为栅极。这就是四季青朋友所说的阀门功能了。由此可以知道,当作为被放大的信号电压加在栅极----阴极之间时,由于它的变化必然会使阳极电流发生相应的变化,又由于阳极电压远高于阴极,因此栅阴极间微小的电压变化同样能使阳极产生相应的几十至上百倍的电压变化,这就是三极管放大电压信号的原理。 这是颗用于高频放大的通用双三极管6N1。1是吸气剂;2是灯丝阴极和栅极的组合体;3就是阳极

相关文档
最新文档