数学方法在物理中的应用

数学方法在物理中的应用
数学方法在物理中的应用

数学方法在物理中的应用

一.极值分析

数学中求极值的方法很多,物理极值问题中常用的极值法有:三角函数极值法、二次函数极值法、一元二次方程的判别式法等.

1.利用三角函数求极值

y =a cos θ+b sin θ =a 2+b 2(a a 2+b

2cos θ+b a 2+b 2sin θ) 令sin φ=a a 2+b 2,cos φ=b a 2+b 2

则有:y =a 2+b 2(sin φcos θ+cos φsin θ)

=a 2+b 2sin (φ+θ)

所以当φ+θ=π2

时,y 有最大值,且y max =a 2+b 2. 2.利用二次函数求极值

二次函数:y =ax 2+bx +c =a (x 2

+b a x +b 24a 2)+c -b 24a =a (x +b 2a )2+4ac -b 24a (其中a 、b 、c 为实常数),当x =-b 2a 时,有极值ym =4ac -b24a

(若二次项系数a>0,y 有极小值;若a<0,y 有极大值).

3.均值不等式

对于两个大于零的变量a 、b ,若其和a +b 为一定值p ,则当a =b 时,其积ab 取得

极大值 p24

;对于三个大于零的变量a 、b 、c ,若其和a +b +c 为一定值q ,则当a =b =c 时,其积abc 取得极大值 q327

. 4.函数求导

二.迭代递推

无穷数列的求和,一般是无穷递减数列,有相应的公式可用.

等差:Sn =n(a1+an)2=na 1+n(n -1)2

d(d 为公差). 等比:Sn =a1(1-qn)1-q

(q 为公比).

●例1: 如图8-2甲所示,一薄木板放在正方形水平桌面上,木板的两端与桌面的两端对齐,一小木块放在木板的正中间.木块和木板的质量均为m ,木块与木板之间、木板与

桌面之间的动摩擦因数都为μ.现突然以一水平外力F 将薄木板抽出,要使小木块不从桌面上掉下,则水平外力F 至少应为________.(假设木板抽动过程中始终保持水平,且在竖直方向上的压力全部作用在水平桌面上)

A .2μmg

B .4μmg

C .6μmg

D .8μmg

【解析】解法一 F 越大,木块与木板分离时的速度、位移越小,木块越不可能从桌面滑下.设拉力为F 0时,木块恰好能滑至桌面的边缘,再设木块与木板分离的时刻为t 1,在0~t 1 时间有:

12·(F 0-μmg -2μmg )m ·t 12-12μgt 12=L 2

对t 1时间后木块滑行的过程,有:

v 122μg =(μgt 1)22μg =L 2-12

μgt 12 解得:F 0=6μmg .

解法二 F 越大,木块与木板分离时的速度、位移越小,木块越不可能从桌面滑出.若木块不从桌面滑出,则其v -t 图象如图8-2乙中OBC 所示,其中OB 的斜率为μg ,BC 的斜率为-μg ,t 1=t 2

有:S △OBC =? ??

??12·μgt 12×2≤L 2 设拉力为F 时,木板的v -t 图象为图7-2乙中的直线OA ,则S △OAB =L 2

即12(v 2-v 1)·t 1=L 2

其中v 1=μgt 1,v 2=F -3μmg m

·t 1 解得:F ≥6μmg

即拉力至少为6μmg .

[答案] C

●例2:如图8-5甲所示,一质量m =1 kg 的木板静止在光滑水平地面上.开始时,木板右端与墙相距L =0.08 m ,一质量m =1 kg 的小物块以初速度v0=2 m/s 滑上木板左端.木板的长度可保证物块在运动过程中不与墙接触.物块与木板之间的动摩擦因数μ=0.1,木板与墙碰撞后以与碰撞前瞬时等大的速度反弹.取g =10 m/s2,求:

图8-5甲

(1)从物块滑上木板到两者达到共同速度时,木板与墙碰撞的次数及所用的时间.

(2)达到共同速度时木板右端与墙之间的距离.

【解析】解法一 物块滑上木板后,在摩擦力的作用下,木板从静止开始做匀加速运动.设木板的加速度大小为a ,经历时间T 后与墙第一次碰撞,碰撞时的速度为v 1,则有:

μmg =ma

L =12

aT 2 v 1=aT

可得:a =1 m/s 2,T =0.4 s ,v 1=0.4 m/s

物块与木板达到共同速度之前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的运动,因而木板与墙相碰后将返回至初态,所用时间为T .设在物块与木板达到共同速度v 之前木板共经历了n 次碰撞,则有:

v =v 0-(2nT +Δt )a =a ·Δt

式中Δt 是碰撞n 次后木板从起始位置至达到共同速度所需要的时间

上式可改写为:2v =v 0-2nTa

由于木板的速率只能在0到v 1之间,故有:

0≤v 0-2nTa ≤2v 1

解得:1.5≤n ≤2.5

由于n 是整数,故n =2

解得:v =0.2 m/s ,Δt =0.2 s

从开始到物块与木板达到共同速度所用的时间为:

t =4T +Δt =1.8 s .

(2)物块与木板达到共同速度时,木板右端与墙之间的距离为:s =L -12

a ·Δt 2 解得:s =0.06 m

解法二 (1)物块滑上木板后,在摩擦力的作用下,木板做匀加速运动的加速度a 1=μg =1 m/s ,方向向右

物块做减速运动的加速度a 2=μg =1 m/s ,方向向左

可作出物块、木板的v -t 图象如图8-5乙所示

由图可知,木板在0.4 s 、1.2 s 时刻两次与墙碰撞,在t =1.8 s 时刻物块与木板达到共同速度.

(2)由图8-5乙可知,在t =1.8 s 时刻木板的位移为:

s =12

×a 1×0.22=0.02 m 木板右端距墙壁的距离Δs =L -s =0.06 m .

图8-5乙

[答案] (1)1.8 s (2)0.06 m ●例3:如图所示,一轻绳吊着一根粗细均匀的棒,棒下端离地面高为H ,上端套着一个细环.棒和环的质量均为m ,相互间的最大静摩擦力等于滑动摩擦力kmg(k >1).断开轻绳,棒和环自由下落.假设棒足够长,与地面发生碰撞时触地时间极短,无动能损失.棒在整个运动过程中始终保持竖直,空气阻力不计.求:

(1)棒第一次与地面碰撞后弹起上升的过程中,环的加速度.

(2)从断开轻绳到棒与地面第二次碰撞的瞬间,棒运动的路程s .

(3)从断开轻绳到棒和环都静止的过程中,摩擦力对环和棒做的总功W .

[2007年高考·物理卷]

【解析】(1)设棒第一次上升的过程中环的加速度为a 环,由牛顿第二定律有:

a 环=kmg -mg m =(k -1)g ,方向竖直向上.

(2)棒第一次落地前瞬间的速度大小为:v 1=2gH

设棒弹起后的加速度为a 棒,由牛顿第二定律有:

a 棒=-kmg +mg m =-(k +1)g

故棒第一次弹起的最大高度为:

H 1=-v 122a 棒=H

k +1

路程s =H +2H 1=k +3

k +1H .

(3)解法一 设棒第一次弹起经过t 1时间后与环达到共同速度v 1′

环的速度v 1′=-v 1+a 环t 1

棒的速度v 1′=v 1+a 棒t 1

解得:t 1=1k 2H

g

v 1′=-2gH

k

环的位移h 环1=-v 1t 1+12a 环t 12=-k +1

k 2H

棒的位移h 棒1=v 1t 1+12a 棒t 12=k -1

k 2H

x 1=h 环1-h 棒1

解得:x 1=-2H

k

棒、环一起下落至地,有:v 22-v 1′2=2gh 棒1

解得:v 2=2gH

k

同理,环第二次相对棒的位移为:

x 2=h 环2-h 棒2=-2H

k 2

……

x n =-2H

k n

故环相对棒的总位移x =x 1+x 2+…+x n =-2H k -1

所以W =kmgx =-2kmgH k -1

. 解法二 经过足够长的时间棒和环最终静止,设这一过程中它们相对滑动的总路程为l ,由能量的转化和守恒定律有:

mgH +mg (H +l )=kmgl

解得:l =2H k -1

故摩擦力对环和棒做的总功为:

W =-kmgl =-2kmgH k -1

. [答案] (1)(k -1)g ,方向竖直向上 (2)k +3k +1

H (3)-2kmgH k -1

●例4:如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l 、足够长且电阻忽略不计,导轨平面的倾角为α,条形匀强磁场的宽度为d ,磁感应强度大小为B ,方向与导轨平面垂直.长度为2d 的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“”形装置,总质量为m ,置于导轨上.导体棒以大小恒为I 的电流(由外接恒流源产生,图中未画出).线框的边长为d(d

返回,导体棒在整个运动过程中始终与导轨

垂直.重力加速度为g .求:

(1)装置从释放到开始返回的过程中,线

框中产生的焦耳热Q .

(2)线框第一次穿越磁场区域所需的时间

t1.

(3)经过足够长时间后,线框上边与磁场

区域下边界的最大距离xm .

[2009年高考·物理卷]

【解析】(1)设装置由静止释放到导体棒运动到磁场下边界的过程中,作用在线框上的安培力做功为W ,由动能定理得:

mg sin α·4d +W -BIld =0

且Q =-W

解得:Q =4mgd sin α-BIld .

(2)设线框刚离开磁场下边界时的速度为v 1,则接着向下运动2d ,由动能定理得:mg sin α·2d -BIld =0-12

mv 12 线框在穿越磁场中运动时受到的合力F =mg sin α-F ′

感应电动势E =Bdv

感应电流I ′=E

R

安培力F ′=BI ′d 由牛顿第二定律,在t 到(t +Δt )时间,有Δv =F

m

Δt 则Δv =∑[g sin α-B 2d 2v mR

]Δt 有v 1=gt 1sin α-2B 2d 3mR

解得:t 1=2m (BIld -2mgd sin α)+2B 2d 3R mg sin α

. (3)经过足够长时间后,线框在磁场下边界与最大距离x m 之间往复运动,由动能定理得:

mg sin α·x m -BIl (x m -d )=0

解得:x m =

BIld BIl -mg sin α

. [答案] (1)4mgd sin α-BIld (2)2m (BIld -2mgd sin α)+2B 2d 3R

mg sin α

(3)BIld BIl -mg sin α

●例5:如图,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上。整个空间存在匀强磁场,磁感应强度方向竖直向下。一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ’。球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(0

<θ<)2 。为了使小球能够在该圆周上运动,求磁感应强度大小的最小值及小球P 相应的速率。重力加速度为g 。

据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O ’。P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力

f =qvB ①

式中v 为小球运动的速率。洛仑兹力f 的方向指向O ’。根据牛顿第二定律

0cos =-mg N θ ②

θ

sin sin 2

R v m N f =- ③ 由①②③式得

0cos sin sin 22

=+-θ

θθqR v m qBR v ④ 由于v 是实数,必须满足 θθθcos sin 4sin 22

gR m qBR -??? ??=?≥0 ⑤ 由此得

B ≥θ

cos 2R g q m

⑥ 可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为 θcos 2min R g q

m

B = ⑦ 此时,带电小球做匀速圆周运动的速率为

m

R qB v 2sin min θ= ⑧ 由⑦⑧式得

θθ

sin cos gR v = ⑨

●例6:一倾角为θ=45°的斜血固定于地面,斜面顶端离地面的高度h0=1m ,斜面底端有一垂直于斜而的固定挡板。在斜面顶端自由释放一质量m =0.09kg 的小物块(视为质点)。小物块与斜面之间的动摩擦因数μ=0.2。当小物块与挡板碰撞后,将以原速返回。重力加速度g =10 m/s2。在小物块与挡板的前4次碰撞过程中,挡板给予小物块的总冲量是多少?

解法一:设小物块从高为h 处由静止开始沿斜面向下运动,到达斜面底端时速度为v 。

由功能关系得

θ

θμsin cos 212h mg mv mgh += ① 以沿斜面向上为动量的正方向。按动量定理,碰撞过程中挡板给小物块的冲量

)(v m mv I --= ②

设碰撞后小物块所能达到的最大高度为h ’,则

θ

θμsin cos 212h mg h mg mv '+'= ③ 同理,有 θ

θμsin cos 212h mg v m h mg '+'=' ④ )(v m v m I '--'=' ⑤

式中,v ’为小物块再次到达斜面底端时的速度,I ’为再次碰撞过程中挡板给小物块的冲量。由①②③④⑤式得

kI I =' ⑥

式中 μ

θμθ+-=tan tan k ⑦ 由此可知,小物块前4次与挡板碰撞所获得的冲量成等比级数,首项为

)cot 1(2201θμ-=gh m I ⑧

总冲量为

)1(3214321k k k I I I I I I +++=+++= ⑨

由 )11112k

k k k k n

n --=?+++- ⑩ 得 )cot 1(221104θμ---=gh m k

k I ⑾ 代入数据得 )63(43.0+=I N ·s ⑿

解法二:设小物块从高为h 处由静止开始沿斜面向下运动,小物块受到重力,斜面对它的摩擦力和支持力,小物块向下运动的加速度为a ,依牛顿第二定律得

ma mg mg =-θμθcos sin ①

设小物块与挡板碰撞前的速度为v ,则

θ

sin 22h a v = ② 以沿斜面向上为动量的正方向。按动量定理,碰撞过程中挡板给小物块的冲量为

)(v m mv I --= ③

由①②③式得

)cot 1(221θμ-=gh m I ④

设小物块碰撞后沿斜面向上运动的加速度大小为a ’, 依牛顿第二定律有

a m mg mg '=-θμθcos sin ⑤

数学知识在物理中的应用

高中物理中数学知识的应用

如图讨论绳子变长时,绳子的拉力和墙面的支持力如何变化?解析法: θ cos 2G F =如果绳子变长,θ角减小,θcos 变大,F 2减小;θtan 1 G F =,θ角减小,θtan 减小,F 1减小。此题图解法较容易在此省略。在力(速度、加速度)的合成与分解问 题中正弦、余弦、正切函数知识用的很多。 (2)正弦定理应用实例: 如图所示一挡板和一斜面夹住一球,挡板饶底端逆时针旋转直到水平,讨论挡板和斜面对球的弹力如何变化?此题图解法较容易在此省略。

解析法:βθαsin sin sin 12F F G == α θ sin sin 2G F = 因为θ不变α从锐角变成90 大再变小,所以F 2先变小后变大; () ()θβθβθβ βθβαβοcos cot sin sin sin 180sin sin sin sin 1-= =+= --== G G G G F β角从钝角变为零的过程中,βcot 一直变大,所以F 1一直变小。 (用到了正弦定理、诱导公式、两角和的正弦函数这种解法理论性较强。 ) (3)化θθcos sin b a +为一个角的正弦应用实例 如图所示物体匀速前进时,当拉力与水平方向夹角为多少度时最省力?动摩擦因数设为μ。 解答:匀速运动合力为零()θμθsin cos F G F -= ()() θβμμθβθβμμθμμθμμμθ μθμ++= ++= ??? ? ??++++= += sin 1sin cos cos sin 1sin 1cos 111sin cos 22222G G G G F 所以当θβ+为直角时F 最小,也就是当1 1 arcsin 2 2 2 +-= -= μπ βπ θ时F 最小。 5.组合应用实例 如图所示一群处于第四能级的原子,能发出几种频率的光子?这个还可以用一个一个查数的办法解决,如果是从第五能级开始向低能级跃迁问可以发出几种频率的光子就很难一个一个地数了。 利用组合知识很容易解决,处于第四能级有623 42 4=?==! C N 种 处于第五能级有10! 24 5!3!2!52 5=?=?= =C N 种 6.平面几何(1)三角形相似应用实例 例题1:如图所示当小球沿着光滑圆柱缓慢上升时,讨论绳子的拉力 和支持力如何变化? 由三角形相似可得 l T h G R N ==可以N 不变T 减小。 例题2:(2013新课标)水平桌面上有两个玩具车A 和B ,两者用一轻质 橡皮筋相连,在橡皮绳上有一红色标记R 。在初始时橡皮筋处于拉直状态,A 、B 和R 分别位于直角坐标系中的(0,l 2),(0,l -)和(0,0)点。已 知A 从静止开始沿y 轴正向做加速度大小为a 的匀加速运动:B 平行于x 轴朝x 轴正向匀速运动。两车此

数学物理方法学习心得

竭诚为您提供优质文档/双击可除数学物理方法学习心得 篇一:数学物理方程的感想 数学物理方程的感想 通过对数学物理方程一学期的学习,我深深的感受到数学的伟大与博大精深。 当应用数学发展到一定高度时,就会变得越来越难懂,越来越抽象,没有多少实际的例子来说明;物理正好也要利用数学来进行解释和公式推导,所以就出现了数学物理方法。刚开始到结束这门课程都成了我的一大问题。很难理解它的真正意义(含义),做题不致从何入手,学起来越来越费劲。让我很是绞尽脑汁。 后来由于老师耐心的指导与帮助下我开始有了点理解。用数学物理方法来解释一些物理现象,列出微分方程,当然这些微分方程是以物理的理论列出来的,如果不借助于物理方法,数学也没有什么好办法来用于教学和实践,而物理的理论也借助于数学方法来列出方程,解出未知的参数。这就是数学物理方法的根本实质所在。真正要学好数学物理方程

不仅要数学好物理也不能够太差。 接下来我想先对数学物理方程做一个简单的介绍与解 释说明。数学物理方程——描述许多自然现象的数学形式都可以是偏微分方程式 特别是很多重要的物理力学及工程过程的基本规律的 数学描述都是偏微分方程,例如流体力学、电磁学的基本定律都是如此。这些反映物理及工程过程的规律的偏微分方程人们对偏微分方程的研究,从微分学产生后不久就开始了。例如,18世纪初期及对弦线的横向振动研究,其后,对热传导理论的研究,以及和对流体力学、对位函数的研究,都获得相应的数学物理方程信其有效的解法。到19世纪中叶,进一步从个别方程的深入研究逐渐形成了偏微分的一般理论,如方程的分类、特征理论等,这便是经典的偏微分方程理论的范畴。 然而到了20世纪随着科学技术的不断发展,在科学实践中提出了数学物理方程的新问题,电子计算机的出现为数学物理方程的研究成果提供了强有力的实现手段。又因为数学的其他分支(如泛函分析、拓扑学、群论、微分几何等等)也有了迅速发 展,为深入研究偏微分方程提供了有力的工具。因而,20世纪关于数学物理方程的研究有了前所未有的发展,这些发展呈如下特点和趋势:

数学在各方面的的应用

附录三关于数学在理科中应用的调查报告 我们对理科中物理、化学、计算机基础中数学知识的应用进行了相关的调查。调查过程中翻阅了大量的相关资料,并询问了不少相关的专家,现将结果公布如下: 一、物理学中的数学知识 数学是物理学的基础和工具。离开了数学,物理学几乎寸步难行。现行大学物理系的数学教材几乎囊括了所有高等数学的基础知识。理论物理和实验物理都必需具备相当高深的数学知识。 理论物理中所应用的数学知识有:空间及其拓朴、映射、实分析、群论、线性代数、方阵代数、微分流形和张量、黎曼流行、李导数、李群、矢量分析、积分变换(包括傅里叶变换和拉普拉斯变换)、偏微分方程、复变函数、球函数、柱函数、函数、格林函数、贝塞尔函数、勒让德多项式等。 实验物理中所应用的数学知识呈主要集中在概率统计学中。包括一维、多维随机变量及其分布、概率分布、大数定律、中心极限定理、参数估计、极大似然法等。其中概率分布包括伯努力分布、泊松分布、伽马分布、分布、t分布、F分布等。 从上可以看出,上述数学知识对物理专业来讲,必需了解,且有的需要深入了解。比如群论、空间及拓朴、积分变换、偏微分方程、概率分布、参数估计等。工科和理科、师范类和非师范类、物理专业和非物理专业、其物理学习中所应用的数学知识也有范围和程度上的变化。工科就没有理科要求高,物理专业中所涉及的数学知识也比非物理专业所学物理课本上的数学知识丰富的多。 二、化学中的数学知识 初等化学只是简单介绍物质的组成、结构、性质、变化及合成。除了相应的计算外,与数学的联系没有物理学那么紧密。高等化学需要更深入的研究物质,因此需要相应的高等数学知识为基础。下面我们就化学理论和化学实验两种课程来讨论。 化学理论中所应用的数学知识有:级数及其应用、幂级数与Taylor展开式、Fourier级数、Forbemus方法、Bessel方程、Euler-Maclaurh加法公式、String公式、有限差分、矩阵、一阶偏微分方程、二阶偏微分方程、常微分方程(包括一阶、二阶、线性、联立)、特殊函数(包括贝尔函数和勒让德多项式)积分变换、初步群论等。 化学实验中所应用的数学知识有:随机事件及其概率、随机变量的数字特征、随机分量及其分布、大数定理、中心极限定理、参数估计等。 从上面可以看出,化学中的数学知识主要应用于计算,因此大部分是一些数学公式和方程,并没有更深一步理论推导及逻辑思维、形象思维的要求。所以,化学专业中数学知识的要求不高,只限于了解并会套公式而已。

数学方法在物理学中的应用一)

数学方法在物理学中的应用(一) 物理学中的数学方法是物理思维和数学思维高度融合的产物,借助数学方法可使一些复杂的物理问题显示出明显的规律性,能达到打通关卡、快速简捷地解决问题的目的。高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题。可以说任何物理试题的求解过程实质上都是一个将物理问题转化为数学问题,然后经过求解再次还原为物理结论的过程。复习中应加强基本的运算能力的培养,同时要注意三角函数的运用,对于图象的运用要重视从图象中获取信息能力的培养与训练。在解决带电粒子运动的问题时,要注意几何知识、参数方程等数学方法的应用。在解决力学问题时,要注意极值法、微元法、数列法、分类讨论法等数学方法的应用。 一、极值法 数学中求极值的方法很多,物理极值问题中常用的极值法有:三角函数极值法、二次函数极值法、一元二次方程的判别式法等。 1.利用三角函数求极值 y =acos θ+bsin θ = ( + ) 令sin φ= ,cos φ= 则有:y = (sin φcos θ+cos φsin θ) =sin (φ+θ) 所以当φ+θ=π2 时,y 有最大值,且y max =. 典例:在倾角θ= 30°的斜面上,放置一个重量为200 N 的物体,物体与斜面间的动摩擦因数为μ= 3 3,要使物体沿斜面匀速向上移动,所加的力至少要多大?方向如何?

【解析】设所加的外力F 与斜面夹角为α,物体受力情况如图所示。 由于物体做匀速直线运动,根据共点力的平衡条件,有 F cos α- mg sin θ-f = 0 N +F sin α - mg cos θ = 0 而f =μN 解得:F =α μαθμθsin cos cos (sin ++mg 因为θ已知,故分子为定值,分母是变量为α的三角函数 y=cos + = ( cos + sin ) = (sin cos + cos sin ) = sin(+ ) 其中 sin = ,cos = ,即 tan = 。 当+ = 90 时,即 = 90 - 时,y 取最大值 。 F 最小值为 ,由于 = ,即 tan = ,所以 = 60。 带入数据得 Fmin = 100 N,此时 = 30 。 【名师点睛】根据对物体的受力情况分析,然后根据物理规律写出相关物理量的方程,解出所求量的表达式,进而结合三角函数的公式求极值,这是利用三角函数求极值的常用方法,这也是数学中方程思想和函数思想在物理解题中的重要应用。 2.利用二次函数求极值 二次函数:y =ax 2+bx +c =a (x 2+b a x +b 24a 2)+c -b 24a =a (x +b 2a )2+4ac -b 2 4a (其中a 、b 、c 为实常数),当x =-b 2a 时,有极值y m =4ac -b 24a (若二次项系数a >0,y 有极小值;若a <0,y 有极大值)。 典例:在“十”字交叉互通的两条水平直行道路上,分别有甲、乙两辆汽车运动,以“十”字中心为原点,沿直道建立xOy 坐标系。在t = 0 时刻,甲车坐标为(1,0),以速度v 0=k m/s 沿 -x 轴方向做匀速直线运

考研数学之物理应用分析

Born To Win 人生也许就是要学会愚忠。选我所爱,爱我所选。 考研数学之物理应用分析 数学一和数学二的学生对物理应用这一块掌握的比较薄弱。物理应用不是数学一和数学二的常考点,但是一旦考了,学生往往都不会。2015年数学二的考研真题出了一道与物理应用有关的大题。这是个拉分题,很多同学都不会。所以希望大家能够对物理应用有足够的重视,特别是那些立志上名校,希望数学给力的学生。下面,跨考教育数学教研室的向喆老师就来和大家分享物理应用分析的学习方法。 一.明确知识框架 有句古语:知己知彼,百战不殆。物理应用可以说是比较难的知识点,所以大家就应该明了考研都考了那些物理应用。首先,只有数学一和数学二才考物理应用。然后,物理应用分布在导数应用,定积分应用,微分方程应用中,其中物理应用在定积分中考查的最多。最后,有关的物理知识的储备。比如说速率,做功,压强,压力等。 二.掌握学习方法 大家在明白了物理应用的体系后,就应该掌握相应的学习方法。首先是导数中的物理应用。通过对历年真题的研究,我发现导数的物理应用主要体现在对导数物理意义的理解,即速率。然后是定积分中的物理应用。这是考查的重点。主要包括:变力做功(变力对质点沿直线做功和克服重力做功);液体静压力;质心及形心。这三个部分求解的核心思想是微元法:分割,近似,求和,取极限。大家应该把定积分的定义即曲边梯形面积是怎么求得掌握。接着,大家就应该把这三部分的微元法思想推一遍,从而熟练掌握本质的含义。其中克服重力做功问题已经在真题中出现过。最后是微分方程中的物理应用。通过历年考题分析,我发现微分方程中的物理应用主要考察的是牛顿第二定律。据此联系了位移与速率;重力,浮力及阻力与加速度关系。总之,在学习这部分知识时候,应该有一些基本的思想。比如说:微元法思想,牛顿第二定律,压强及压力,位移与速率等。 三.熟练掌握题型 大家在明白了知识体系以及学习方法后就应该通过做题来巩固。不过现在出现了一个问题:数学一和数学二的同学有很多都不是学物理的。所以有必要对基本的物理知识进行回顾。大家可以参考下高中的物理课本就够了。针对做题,题目不求多,关键是把真题搞懂。大家可以看下从1989年到2014年的真题,找到其中的物理应用部分,然后仔细的思考下,做一下,总结题型,体会下思想方法。 总之:物理应用部分是高等数学中一个难点,虽不是热点问题,但是往往冷不丁的在真题中出现,它是制约着大家能否拿高分的瓶颈。所以,大家应该掌握物理应用的知识体系,学习方法及该做哪些题目。 文章来源:跨考教育

高考物理数学物理法解题技巧讲解及练习题

高考物理数学物理法解题技巧讲解及练习题 一、数学物理法 1.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为 37?,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的 拉力如何变化?(孩子:你可能需要用到的三角函数有: 3375 sin ?=,4cos375?=,3374tan ?=,4 373cot ?=) 【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】 试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解. 把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示 由平衡条件得:AO 绳上受到的拉力为21000sin 37 OA G F F N == = BO 绳上受到的拉力为1cot 37800OB F F G N === 若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示: 由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.

2.[选修模块3-5]如图所示,玻璃砖的折射率2 3 n = ,一细光束从玻璃砖左端以入射角i 射入,光线进入玻璃砖后在上表面恰好发生全反射.求光速在玻璃砖中传播的速度v 及入射角i .(已知光在真空中传播速度c =3.0×108 m/s ,计算结果可用三角函数表示). 【答案】83310/v m s =?;3 sin i = 【解析】 【分析】 【详解】 根据c n v = ,83310/v m s =? 全反射条件1 sin C n =,解得C=600,r =300, 根据sin sin i n r = ,3 sin 3 i = 3.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止). (1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1 sin 42 mg θ 【解析】 【分析】 (1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解. (2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】 木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:

数学学科前沿讲座报告

数学学科前沿讲座 通过一个学期的学习和学校数位专家教授的耐心讲解,产生了一些自己对数学学科的体会。下面就简要谈谈,通过听取前沿讲座我对数学学科的理解与变化。近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。因有数学,才有今天科技的繁荣,在我们身边到处都有数学问题。今天科技领域也以数学为基础。如计算机的发展,一切理论都是数学家提出的,某个物理学家要研究某个项目,都要以丰厚 的数学功底为前提。在人们的生活中,时刻与数学打交道,可谓世界因数学而精彩。既然数学有如此大的魅力,下面将粗略的介绍一下。数学曾出现三次危机:无理数的发现——第一次数学危机;无穷小是零吗——第二次数学危机;悖论的产生---第三次数学危机。数学历来被视为严格、和谐、精确的学科,纵观数学发展史,数学发展从来不是完全直线式的,他的体系不是永远和谐的,而常常出现悖论。在悖论中逐渐成熟,进而到现在出现多个分支,分为:基础数学、数论、代数学、几何学、拓扑学、函数论、常微分方程、偏微分方程、概率论、应用数学、运筹学。 一、应用数学应用数学属于数学一级学科下的二级学科。应用数学是应用目的明确的数学理论和方法的总称,它是数学理论知识与应用科学、工程技术等领域联系的重要纽带。应用数学主要研究具有实际背景或应用前景的数学理论或方法,以数学各个分支的应用基础理论为研究主体,同时也研究自然科学、工程技术、信息、经济、管理等科学中的数学问题,包括建立相应的数学模型、利用数学方法解决实际问题等。主要研究方向: (1) 非线性偏微分方程非线性偏微分方程是现代数学的一个重要分支,无论在理论中 还是在实际应用中,非线性偏微分方程均被用来描述力学、控制过程、生态与经济系统、化工循环系统及流行病学等领域的问题。利用非线性偏微分方程描述上述问题充分考虑到空间、时间、时滞的影响,因而更能准确的反映实际。本方向主要研究非线性偏微分方程、H-半变分不等式、最优控制系统的微分方程理论及其在电力系统的应用。 (2)拓扑学拓扑学,是近代发展起来的一个研究连续性现象的数学分支。中文名称起 源于希腊语Τοπολογ的音译。Topology 原意为地貌,于 19 世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。拓扑学是数学中一个重要的、基础的分支。起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓

中学物理教学的数学思想运用

中学物理教学的数学思想运用 摘要:现阶段随着我国教育事业的全面发展,加上新课程教育改革事业的不断完善,对中学物理教学提出了更多更高的要求。在中学物理教学中,运用数学思想能够有效解决物理问题,使得物理表达公式更加简洁,能够对各项物理问题进行分析计算,辅助学生更好的解答各项问题。本文对中学物理教学中数学思想的运用进行探析,在物理教学过程中融入数学思想,更好地促进物理教学事业的发展,提高教学质量。 关键词:中学;物理;数学思想;应用 近些年来随着新课改进程不断加快,对于中学教学活动提出了更多更高的要求。从目前教材内容以及各项考试试题来看,物理学科中对于学生数学知识也做出了相应考查。如何在物理教学过程中,将物理问题有效转换为数学问题,是相关教育工作者关注的重点问题,对学生数学语言能力进行培育,让学生能够在物理理论以及实践学习的基础上通过数学知识点建立物理概念,培养学生推理和论证能力,让学生学习能力有效提升,便于教学活动的有序开展。 一、中学物理教学中应用数学思想的重要作用分析 物理学主要对物体运动形式以及基本结构进行研究,数学是探究现实空间形式以及数量关系之间的学科,虽然二者对不同的对象进行研究,但是实际目的却存在一定相似性。物理与数学都是对自然界中各项变化规律进行研究,从实践活动中更好的应用,二者之间相互影响,共同促进。新课程标准中针对物理学科的科学性做出了明确要求,通过科学化的物理实验以及数学思想方法是研究物理学的重要工具,更好的发现物理学中各项变化过程,找寻最常见的发展规律。从物理学长期发展历史中可以看出,将物理学相关知识与数学方法有效结合,能够使得物理学从定性描述转为实际计算。数学思想以及数学知识在物理教学中有效应用,能促进力学相关知识以及统计物理学的发展。数学思想是进行有效推理论证的重要手段,在现阶段物理教学中,有大多数公式能够全面反映出各项实验规律以及定义知识,通过数学方法进行推算,能够总结出更多公式。这样不仅能够让学生获取更多全新的理论知识,还能强化物理知识之间的内在联系,使得各个现象的实际本质有效显现。 二、中学物理教学中数学思想的运用探析 (一)逆向思维在物理教学中的应用

《高等数学》知识在物理学中的应用举例

《高等数学》知识在物理学中的应用举例 一 导数与微分的应用 分析 利用导数与微分的概念与运算,可解决求变化率的问题。求物体的运动速度、加速度的问题是典型的求变化率问题。在求解这类问题时,应结合问题的物理意义,明确是在对哪个变量求变化率。在此基础上,灵活运用各类导数和微分公式解决具体问题。 例 1 如图,曲柄,r OA =以均匀角速度ω饶定点O 转动.此曲柄借连杆AB 使滑块B 沿直线Ox 运动.求连杆上C 点的轨道方程及速度.设,a CB AC == ,?=∠AOB .ψ=∠ABO y 解 1) 如图,点C 的坐标为: ψ?cos cos a r x +=, (1) .sin ψa y = (2) 由三角形的正弦定理,有 ,sin 2sin ? ψa r = o x 故得 .2sin 2sin r y r a == ψ? (3) 由(1)得 r y a x r a x 2 2cos cos --= -=ψ? (4) 由,1cos sin )4()3(2222=+=+??得 ,12422 222222=---++r y a x y a x r y 化简整理,得C 点的轨道方程为: .)3()(422222222r a y x y a x -++=- 2) 要求C 点的速度,首先对(1),(2)分别求导,得 ,sin cos 2cos sin ψψ?ω?ωr r x --=' ,2 cos ? ωr y =' 其中.?ω'=

又因为,sin 2sin ψ?a r = 对该式两边分别求导,得 .cos 2cos ψ ? ωψa r = ' 所以C 点的速度 2 2 y x V '+'=4 cos )sin cos 2cos sin (2222 ?ωψψ?ω?ωr r r + --= .)sin(cos sin 4cos cos 22ψ?ψ??ψ ω ++= r 例2 若一矿山升降机作加速度运动时,其加速度为),2sin 1(T t c a π-=式中c 及 T 为常数,已知升降机的初速度为零,试求运动开始t 秒后升降机的速度及其所走过的路程. 解: 由题设及加速度的微分形式dt dv a = ,有 ,)2sin 1(dt T t c dv π-= 对等式两边同时积分 ? ?-=v t dt T t c dv 0 ,)2sin 1(π 得: ,2cos 2D T t T c ct v ++=ππ 其中D 为常数. 由初始条件:,0,0==t v 得,2c T D π - =于是 )].12(cos 2[-+ =T t T t c v ππ 又因为,dt ds v = 得 ,)]12(cos 2[dt T t T t c ds -+ =ππ 对等式两边同时积分,可得: )].2sin 2(221[2t T t T T t c s -+=πππ

物理学中的逻辑.

物理学中逻辑 内容提要 本文探讨了形式逻辑,经典物理学逻辑,近代物理学逻辑。认为近代物理学的两大柱石即相对论和量子力学在理论完备性和可靠性存在问题。 李鑫2017年6月28日 目录 1形式逻辑 2经典物理学逻辑 2.1牛顿的理论体系 2.2经典电磁学理论体系 3近代物理学逻辑 3.1相对论 3.2量子力学

1形式逻辑 形式逻辑研究的推理中的前提和结论之间的关系,是由作为前提和结论的命题的逻辑形式决定的,而命题的逻辑形式(简称命题形式)的逻辑性质则是由逻辑常项决定的。要弄清逻辑常项的性质,系统地揭示推理规律,就要通过建立逻辑演算,进行元逻辑的研究。研究元逻辑的方法是形式化的公理方法。 形式逻辑的规则:同一律、矛盾律、排中律和理由充足律。这四条规律要求思维必须具备确定性、无矛盾性、一贯性和论证性。 形式逻辑是人们思维的法则,人的思维要把握全貌,辩证分析, 2经典物理学逻辑 2.1牛顿的理论体系 牛顿的理论体系包括牛顿绝对时空观、牛顿动力学三定律和牛顿万有引力规律。 牛顿的绝对时空观念认为空间三维坐标架是绝对静止的,空间坐标表示事件发生的地点和区域的大小,时间是永恒均匀流逝的,时间表示事件发生的先后次序和过程的久暂。 牛顿的动力学三定律包括惯性定律、作用力与质量和加速度乘积成正比和作用力和反作用大小相等,方向相反。 牛顿万有引力定律是引力作用力与质量乘积成正比,和距离平方成反比。 牛顿认为空间是空虚的,作用力是瞬时超距的。校时信号传播速度是无限大,各地的时钟都指向同一时刻,事件发生的同时性是绝对的。 Newton把他的力学理论命名为《自然哲学的数学原理》,可见牛顿对哲学和逻辑学重视。牛顿理论体系自成系统,符合形式逻辑。 牛顿的理论被后来的物理学家拉格朗日和哈密顿等人发展成理论力学。 2.2经典电磁学理论体系 19世纪中叶,描述电磁现象的基本实验规律:库仑定律、毕-萨-拉定律、安培定律、欧姆定律、法拉第电磁感应定律等已经先后提出,建立统一电磁理论的课题摆在了物理学家面前。J.C。Maxwell审查了当时已知的全部电磁学定律、定理的基础,提取了其中带有普遍意义的内容,提出了有旋电场的概念和位移电流的假设,揭示了电磁场的内在联系和相互依存,完成了建立电磁场理论的关键性突破。1865年Maxwell建立了包括电荷守恒定律、介质方程以及电磁场方程在内的完备方程组。麦克斯韦方程组关于电磁波等的预言在三十年后为德国物理学家H.-R.Hertz的实验所证实,证明了位移电流假设和电磁场理论的正确性。它是物理学继牛顿力学之后的又一伟大成就。荷兰物理学家H.-A.Lorentz于1895年提出了著名的洛伦兹力公式,完善了经典电磁理论。经典电磁理论被包括在经典电动力学理论体系之中。 经典理论力学和电动力学是人类认识自然界的两大丰碑,是形式逻辑典范。 3近代物理学逻辑 3.1相对论 1905年9月,德国《物理学年鉴》发表了爱因斯坦的《论动体的电动力学》,这篇论文包含了狭义相对论的基本思想和基本内容。[2]狭义相对论两个基本假设是物理规律在所有惯性系中都具有相同的形式和光速不变原理。光速不变原理有确定函义:第一,光在真空传播

高年级初中中学物理中常用的数学方法

初中物理中常用的数学方法简介 江苏省南通市第三中学:江宁 数学计算是指人们根据利用已有的知识,对一定的现象、规律进行数学计算,发现各个量之间的数学关系,从深一层次去认识新的事物的方法。 数学计算是研究性学习中必备的手段,是初中物理研究性学习中进一步认识事物中最可靠的工具。通过数学计算,学生可以从定性认识事物发展到定量认识事物,使感性认识上升到理性认识,从而更准确地认识事物各个量之间的内在规律。 以下所列是初中物理中常用的一些数学方法: 1、代入法 “代入法”是指在研究物理问题中,已知因变量与自变量之间关系公式,将物理量直接代入公式进行计算的方法。学会利用公式直接进行计算是学生解决问题的基本能力之一,它可以促进学生掌握物理量之间的来龙去脉,熟悉物理量在日常生活中的应用。 例:质量为的水,温度从 60℃降至40℃,会放出______J 的热量。若将这部分热量全部被初温为10℃、质量为的酒精吸收,则酒精的温度将上升______℃。[酒精的比热容为×103 J /(kg ·℃),水的比热容为 ×103 J /(kg ·℃)] 解:物体升、降温时吸、放的热量计算公式为:Q=c ·m ·Δt 应用“代入法”进行解题时,可以根据公式用自变量求因变量,也可以根据公式用因变量求自变量,但要注意在计算过程中,物理单位必统一。 2、比例法 “比例法”是指用两个已知的物理量的比值来表示第三个物理量的方法。比值法可以充分体现出在两个物理量同时变化的条件下影响物理过程的真正因素。 例:现有两杯质量不同的液体酒精和水,若两者的质量之比为2∶3,求两种液体的体积比?(ρ酒 精 = ×103kg/m 3,ρ水= ×103kg/m 3) 解:6 58.0132=?=?==酒水水酒水 水酒酒 水酒ρρρρm m m m V V 另外,初中物理中的许多物理量是通过比值来介绍的,如:速度、密度、热值、电阻等等。是中学生在初中物理学习中学到的第一个数学方法。 3、近似法 “近似法”是指在数学计算过程中,当个别量的微小变化并不影响整体结果时,为了计算与分析的方便,将个别量进行一定程度的近似代换或取舍的方法。利用近似法可以降低复杂的数学计算,帮助学生用最根本的数据去认识事物的内在规律,从而抓住各种物理现象中最本质的特征。 例:一位同学从一楼跑到三楼用了10s 时间,他的功率大概是多少? 解:根据生活经验,一位中学生的质量约为50kg ,一层楼的高度约为3m ,g 取10N/kg 。 事实上,只要在误差允许范围内,任何一种测量和计算都是对所求物理量的实际情况的一个近似。运用近似法可以帮助学生理解物理研究中绝对性与相对性的真正含义。 4、方程法 “方程法”是指在求解某个物理量时,根据因变量与自变量之间的因果对应关系,列出方程,通过求解方程从而求出物理量的方法。方程法可以减少学生的数学过程思维,解决问题简捷明了,方便于学生发现因变量与自变量的因果关系。 W s m kg N kg t Gh t W P 300106/1050=??===

高中物理数学物理法技巧(很有用)及练习题含解析

高中物理数学物理法技巧(很有用)及练习题含解析 一、数学物理法 1.两块平行正对的水平金属板AB ,极板长0.2m L =,板间距离0.2m d =,在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场,磁感应强度3510T B -=?,方向垂直纸面向里。两极板间电势差U AB 随时间变化规律如右图所示。现有带正电的粒子流以 5010m/s v =的速度沿水平中线OO '连续射入电场中,粒子的比荷 810C/kg q m =,重力忽略不计,在每个粒子通过电场的极短时间内,电场视为匀强电场(两板外无电场)。求: (1)要使带电粒子射出水平金属板,两金属板间电势差U AB 取值范围; (2)若粒子在距O '点下方0.05m 处射入磁场,从MN 上某点射出磁场,此过程出射点与入射点间的距离y ?; (3)所有粒子在磁场中运动的最长时间t 。 【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -? 【解析】 【分析】 【详解】 (1)带电粒子刚好穿过对应偏转电压最大为m U ,此时粒子在电场中做类平抛运动,加速大小为a ,时间为t 1。水平方向上 01L v t =① 竖直方向上 2 1122 d at =② 又由于 m U q ma d =③ 联立①②③得 m 100V U = 由题意可知,要使带电粒子射出水平金属板,两板间电势差 100V 100V AB U -≤≤ (2)如图所示

从O '点下方0.05m 处射入磁场的粒子速度大小为v ,速度水平分量大小为0v ,竖直分量大小为y v ,速度偏向角为θ。粒子在磁场中圆周运动的轨道半径为R ,则 2 mv qvB R =④ 0cos v v θ=⑤ 2cos y R θ?=⑥ 联立④⑤⑥得 2 0.4m mv y qB ?== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。如图所示 粒子进入磁场速度大小为v 1,速度水平分量大小为01v ,竖直分量大小为v y 1,速度偏向角为α,则对粒子在电场中 011L v t =⑦ 11022 y v d t +=⑧ 联立⑦⑧得 101y v v = 101 tan y v v α= 得

现代数学的特点和现状-丁伟岳

我主要回答同学们的一些问题。这些问题中大部分都是关系现代数学大局的问题,很深刻,也很难回答。这种问题是没有标准答案的,每个人会有不同的答案。我今天讲的是我的个人意见,同学们可以参考,但不一定正确。 1.现代数学的特点和现状 有的同学问:听说现代数学分支非常细,不同分支的人彼此不了解,这样还能出现总揽全局的数学大师吗?此外,数学的复杂是否使它远离“简单性”这个朴素的自然法则? 这是一个很大的问题,提这个问题的同学希望从总体上了解现代数学,这是非常好,非常值得鼓励的。但是要把这个问题说清楚并不容易。确实,现代数学分支繁多。按美国数学会的分类,数学科目可以分成60多个大类,每个大类下面又有几十个子类,总计有3500个以上的子类。肯定没有人能把所有这些分支都了如指掌,甚至于一个分支的专家也很难把分支里的所有数学了解得一清二楚。 但是,真正影响大局的数学却没有那么多。这就像世界上有200多个国家,但是影响全球格局的却只有少数大国。这种影响大局的数学可以叫做“主流数学”。即便在主流数学中也不是所有的问题都是平等的,还有主次之分。因此,如果能抓住主流数学中的主流问题,大体上就可以说是“总揽全局”了。至于说“大师”,他不仅能总揽全局,而且能通过他的工作影响全局。这样的人肯定很少,但也不能说一个没有,这要由历史来做定论。那么,为什么现在出不了牛顿,欧拉,高斯,黎曼这样的大师了呢?这有两个原因。首先,时势造英雄;不是每个时代都会出旷世英雄的。其次,即便是这样的英雄,他的历史地位也要经过历史的考验,并不是在当时就能确立的。 那么哪些是主流数学呢?回顾历史,现代基础数学从17世纪开始发源,经过18-19世纪的大发展和20世纪的完善,现代数学的基础部分,包括代数和数论,几何与拓扑,分析学的所有主要分支,我们叫这些为经典分支,都进入了成熟期。所谓成熟是指,理论已经十分完善,而内在的发展动力则减弱了。因此,基础数学的单独分支的自身发展已不再是主流。取而代之的是综合与交叉,集多个分支的方法来解决以前无法解决的重要问题。费尔马猜想和庞加莱猜想相继被证明就是最好的例证。在我看来,现代数学的另一个特点是应用数学的兴起,随着现代科学技术的迅速发展各个方面对数学的需求日益增长,推动了应用数学的崛起,它正成长为数学中一个不可忽视的主流。 从重要问题的来源看,基础数学内部一些最主要的问题是来自数论,拓扑以及几何,例如克莱研究所的7大问题中4个是关于纯数学的,两个来自数论(黎曼猜想,BSD猜想),一个拓扑(庞加莱猜想),一个代数几何(Hodge猜想)。[另外3个多少与应用有关:Navior-Stokes方程(流体力学),P-NP问题(计算复杂性),Yang-Mills理论(理论物理)。] 近年来,理论物理对基础数学的影响越来越大,这是值得注意的。 数学的复杂性不在于它的分支繁多,而在于它的深度和难度越来越大。世界既有简单的一面,又有复杂的一面。科学家的任务是把复杂的东西分析和解剖,化繁为简,找出对

高中物理解题中涉及的数学知识

高中物理解题中涉及的数学知识 物理和数学是联系最密切的两门学科。运用数学工具解决物理问题的能力,是中学物理教学的最基本的要求。高中物理中用到的数学方法有:方程函数的思维方法,不等式法,极限的思维方法,数形结合法,参数的思维方法,统计及近似的思维方法,矢量分析法,比例法,递推归纳法,等等。现就“力学”与“电磁学”中常用数学知识进行归纳。 Ⅰ.力学部分:静力学、运动学、动力学、万有引力、功和能量与几何、代数知识相结合,从而增大题目难度,更注重求极值的方法。 Ⅱ.电磁学部分:电磁学中的平衡、加速、偏转及能量与圆的知识、三角函数,正余弦定理、相似三角形的对应比、扇形面积、二次函数求极值(配方法或公式法)、均值不等式 、正余弦函数、积化和差、和差积化、半角倍角公式、直线方程(斜率,截距)、对称性、)sin(cos sin 22?θθθ++=+b a b a a b =?tan 、数学归纳法及数学作图等联系在一起。 第一章 解三角形 三角函数 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,则有2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 变形公式: ::sin :sin :sin a b c C =A B ; 2、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 3、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:222 cos 2b c a bc +-A = 4、均值定理: 若0a >,0b >,则a b +≥,即2 a b +≥ ()2 0,02a b ab a b +??≤>> ??? ; 2 a b +称为正数a 、b a 、b 的几何平均数. 5、均值定理的应用:设x 、y 都为正数,则有 ⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值 2 4 s . ⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值 1、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l r α= . 2、弧度制与角度制的换算公式:2360π= ,1180 π = . 3、若扇形的圆心角为()α α为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=, 2C r l =+,2112 2 S lr r α==. 4、角三角函数的基本关系:()221sin cos 1αα+=;()sin 2tan cos α αα =. 5、函数的诱导公式:

数学分支之数学物理学

数学物理学是以研究物理问题为目标的数学理论和数学方法。它探讨物理现象的数学模型,即寻求物理现象的数学描述,并对模型已确立的物理问题研究其数学解法,然后根据解答来诠释和预见物理现象,或者根据物理事实来修正原有模型。 物理问题的研究一直和数学密切相关。作为近代物理学始点的牛顿力学中,质点和刚体的运动用常微分方程来刻画,求解这些方程就成为牛顿力学中的重要数学问题。这种研究一直持续到今天。例如,天体力学中的三体问题和各种经典的动力系统都是长期研究的对象。 在十八世纪中,牛顿力学的基础开始由变分原理所刻画,这又促进了变分法的发展,并且到后来,许多物理理论都以变分原理作为自己的基础。 十八世纪以来,在连续介质力学、传热学和电磁场理论中,归结出许多偏微分方程通称数学物理方程(也包括有物理意义的积分方程、微分积分方程和常微分方程)。直到二十世纪初期,数学物理方程的研究才成为数学物理的主要内容。 此后,联系于等离子体物理、固体物理、非线性光学、空间技术核技术等方面的需要,又有许多新的偏微分方程问题出现,例如孤立子波、间断解、分歧解、反问题等等。它们使数学物理方程的内容进一步丰富起来。复变函数、积分变换、特殊函数、变分法、调和分析、泛函分析以至于微分几何、代数几何都已是研究数学物理方程的有效工具。 从二十世纪开始,由于物理学内容的更新,数学物理也有了新的面貌。伴随着对电磁理论和引力场的深入研究,人们的时空观念发生了根本的变化,这使得闵科夫斯基空间和黎曼空间的几何学成为爱因斯坦狭义相对论和广义相对论所必需的数学理论。许多物理量以向量、张量和旋量作为表达形式在探讨大范围时空结构时,还需要整体微分几何。 量子力学和量子场论的产生,使数学物理添加了非常丰富的内容。在量子力学中物质的态用波函数刻画,物理量成为算子,测量到的物理量是算子的谱。在量子场论中波函数又被二次量子化成为算子,在电磁相互作用、弱相互作用和强相互作用中描述粒子的产生和消灭。 因此,必须研究各种函数空间的算子谱、函数的谱分析和由算子所形成的代数。同时还要研究微扰展开和重正化(处理发散困难)的数学基础。此外,用非微扰方法研究非线性场论也是一个令人注目的课题。 物理对象中揭示出的多种多样的对称性,使得群论显得非常有用。晶体的结构就是由欧几里得空间运动群的若干子群给出。正交群和洛伦茨群的各种表示对讨论具有时空对称性的许多物理问题有很重要的作用。 基本粒子之间,也有种种对称性,可以按群论明确它们的某些关系。对基本粒子的内在对称性的研究更导致了杨-米尔斯理论的产生。它在粒子物理学中意义重大,统一了弱相互作用和电磁相互作用的理论,提供了研究强子结构的工具。这个理论以规范势为出发点,而它就是数学家所研究的纤维丛上的联络(这是现代微分几何学中非常重要的一个概念)。有关纤维丛的拓扑不变量也开始对物理学发挥作用。 微观的物理对象往往有随机性。在经典的统计物理学中需要对各种随机过程的统计规律

物理学中的数学

物理学中的数学 物理学中的数学,这是一个论述范围十分宽广的话题。我是数学系的,学的是纯数学,可我对物理学从小就有着莫大的兴趣,至今对他仍是念念不忘,时刻关注着它的发展。所以,对于物理学中的数学这一话题,也有着浅浅的思考和感悟。物理学和数学是我一生最为感兴趣的学科,鉴于此,我想写一篇关于它们之间的论述,一点也许不着边际的泛泛之谈,以泄自己心头之爱。 数学对于整个自然科学(甚至社会科学也可以算在内)的重要性,我想任何语言都是无法言明的。上帝是数学家,唯一能够描述的语言是数学,这句话却一点也没错。往小一点说,如果没有数学,也就没有今天的现代科技。当然,现在要说的仅仅是物理学中的数学。 事实胜于雄辩,真实的历史往往能反映这一点。所以我们将跟随物理学这一门学科的发展历程,穿过历史的层层迷雾,从中我们可以发现,物理学的建立与发展应用了哪些数学工具,而数学又是如何对物理产生重要影响和推动的,从中我们也可以看到,整个的物理学大厦是如何建立在这些简洁优美的数学法则之上的。 近代物理学都沿袭了希腊古典科学的血统,延续着古希腊式的精神文明。古希腊人从以思辨为主的哲学逐渐地发展出了众多分支学科,其中最重要的分支就是数学和物理学。从很多的事例我们可以看出,古希腊那些有才学的人,当时对数学是非常之重视,例如,毕达哥拉斯学派曾提出了一个重要的理念,数即万物,光从字面意思理解,这句话是很有问题的,但从世界是按照数学逻辑运转的角度看的话,这句话是对于当时是很有前瞻性的,但不管如何,他们还是隐约地发现了数学逻辑在物质运转所诠释的作用。又一个例子,柏拉图在自己新开设的柏拉图学园的门口立了一块牌子:不懂数学者不得入内。以此种种表明他们对数学非常之看重。古希腊的百科全书式学者,亚里士多德,从日常的观察实践,凭借经验总结出万物运行的一套理论,虽然现在看来有些显得非常之荒谬和幼稚,但这至少是人类认识世界和改造世界的一个起始,是物理学的雏形。 伽利略,这位近代物理学之父,创造出了数学推理与实验相结合的科学传统,这是历史上数学与物理学第一次的大融合。数学推导加上物理实验,此后一直是科学发现的一把神器,合称双剑,后来,牛顿利用这把神器大刀阔斧地建立了他的经典物理学,人类也有史以来第一次建立起了整个物理世界的体系(牛顿很幸运,因为机会只有一次),万物毕恭毕敬地遵守着这些法则(laws)运转。这次帮助牛顿建立起的经典物理学大厦的数学工具就是它自己独自发明的流数和反流数(微积分)。今天,我们仍可以回顾那一段令人激动的历史,“1685年牛顿应用微积分证明了,地球吸外部物体时,恰像全部的质量集中在球心(球对称)一样。”其实这是发现万有引力定律很关键的一步,胡克就因为不懂微积分而与发现万有引力定律而无缘。有了万有引力定律,以后再利用数学上的微积分则可以随时计算出各行星的运行轨道(各类双曲线形)。这是多么美妙的一件事,上帝运行这个宇宙的法则和奥秘终于被发现了,有了牛顿,一切都光明了。 分析力学,牛顿力学的另一种表述,或者说是它的推广和严格化,不过这次登场的主要是数学家。其实可以看出,很多时候,数学家和物理学家是互通的,所谓数理不分家,以前的科学家动不动就是数学家兼物理学家,后面还有什么家家的,真的是牛人一个,不过自彭加莱以后,就再也没有这样的通才了(知识爆炸的今天,任何一个小领域都能吞噬一个人一辈子的时间)。18世纪的数学家们创立了分析力学,以先进的数学工具重新表述了牛顿力学体系,用独特的数学形式重新刷新了整个力学系统。数学家欧拉所发明的变分法(其实后来拉格朗日也独自发明了变分法,之间还有他们两人之间的一段小故事)则直接孕育了力学中的最小作用原理。其实上帝在创造宇宙必定是按照这个原理进行的,因为这是最为经济和实惠的创造方式。“分析力学最终的成就是拉格朗日方程。由虚功原理和达朗贝尔原理,可以得到所谓的力学普遍方程,在此基础上,拉格朗日进一步引进了广义坐标,广义速度和广义

相关文档
最新文档