MODBUS协议说明

智能三相电参数数据综合采集模块

MODBUS通讯协议说明

目录

一、Modbus通讯规约简介

二、Modbus-ASCII通讯协议说明

三、Modbus-RTU通讯协议说明

四、Modbus协议的功能码与所对应的数据表

五、数据计算

六、Modbus通讯规约介绍

(一)MODBUS通讯规约简介

(二)MODBUS的两种传输方式

(三)Modbus消息帧

(四)MODBUS通讯错误检测方法

一、Modbus通讯规约简介

支持的通讯规约有4种:(ASCII码)研华ADAM兼容通讯协议、十六进制LC-02协议、MODBUS-ASCII、MODBUS-RTU。

“MODBUS通讯协议说明”描述了串行口通讯的读、写命令格式及内部信息数据的定义,数据计算,以便第三方开发使用。

MODBUS通讯规约是与Modicon系统相兼容的Modbus通讯规约。

二、MODBUS-ASCII通讯协议说明

1、

2、MODBUS-ASCII协议中的通讯波特率:1200,2400,4800,9600,19200BPS。

3、

4、MODBUS-ASCII协议格式:

上位机发送:

:单元地址功能码起始地址读取点数LRC校验CR LF

下位机响应:

:单元地址功能码字节数数据LRC校验CR LF

命令格式:

呼叫:AA FF SSSS NNNN LL

应答:AA FF XX HHHH..... LL

其中::为起始符

AA 模块地址

FF 功能号

SSSS 起始通道

NNNN 通道数

XX 数据字节长度

HHHH 数据字节

LL 校验和

回车

换行

5、功能码03:读保持寄存器,读测量数据

数据起始地址:00~1E

数据长度:1~0C ,超出范围无效;数据起始地址+数据长度不大于1F,超过范围命令无效。

说明:读取的是16位数据,高位在前,低位在后。

数据定义:见功能码与数据对照表1。

例1、读测量数据:

命令: : 01 03 00 00 00 02 LRC 17字节

ADDR 功能开始地址寄存器个数 LRC校验

响应: : 01 03 04 64 05 01 01 LRC 19字节

ADDR 功能数据字节长度 U0 I0 UBB IBB LRC校验

6、功能码06:预臵单寄存器,设臵通讯地址、波特率、电压、电流变比

数据起始地址: 0000或0001

数据长度: 01 ,不等于01命令无效。

说明:设臵模块通讯地址、波特率或设臵模块电压、电流变比。

数据定义:见功能码与数据对照表2。

例2、预臵模块通讯地址、波特率(将1号模块地址设臵为2号,波特率为9600BPS)

命令: : 01 06 0000 0001 02 02 06 LRC

ADDR 功能开始地址寄存器个数字节计数预臵数据 LRC校验响应: : 01 06 0000 0001 LRC

ADDR 功能开始地址寄存器个数 LRC校验

例3、预臵电压、电流变比(将1号模块的电压变比设臵为60,电流变比设臵为20)

命令: : 01 06 0001 0001 02 3C 14 LRC

ADDR 功能开始地址寄存器个数字节计数预臵数据 LRC校验响应: : 01 06 0001 0001 LRC

ADDR 功能开始地址寄存器个数 LRC校验

7、功能码10:预臵多寄存器,设臵电能底数

数据起始地址: 0000

数据长度: 0C ,不等于0C命令无效。

说明:预臵电能底数

数据定义:见功能码与数据对照表3。

例4、预臵电能底数

命令:: 01 10 00 00 00 0C 18 (DATA 24*2字节) LRC ADDR 功能开始地址寄存器个数字节计数预臵数据 LRC校验响应:: 01 10 00 00 00 0C LRC

ADDR 功能开始地址寄存器个数 LRC校验

三、MODBUS-RTU通讯协议说明

1代码系统:

8位二进制,十六进制数0...9,A...F。每个8位的信息域中包含2个十六进制字符。

2、

3、。

4、MODBUS协议中的功能域代码:

5MODBUS-RTU的帧结构:

在RTU模式中,新的信息总是以至少3.5个字符的静默时间开始。紧接着传送第一个域:设备地址。

整帧的信息必须以一个连续的数据流进行传输。如果信息结束前存在超过1.5个字符以上的间隔时间,则出错。

一帧信息的标准结构如下:

开始地址域功能域数据域CRC校验结束

T1-T2-T3-T4 8位8位n*8位16位T1-T2-T3-T4

地址域:从机的有效地址范围为0~247 ,0为广播地址

功能域:有效编码为1~255

数据域:数据域由多组这样的数据构成:两个十六进制数为一组,范围在00-FF之间。这些数据产生于一个RTU字符。

主机发给从机的数据域中包括了从机完成功能域的动作时必须的附加信息。可能包括这样一些项目,

如:数字寄存器和保持寄存器地址,将要处理的项目数量,和实际的数据字节数。

例如:主机要求从机读一组保持寄存器,数据域就指定了起始寄存器,需要读多少个寄存器;

如果主机要向从机中的一组寄存器写入数值,数据域就规定了起始寄存器,要向多少个寄存器写入数据,数据字节数,以及写入寄存器什么样的数据。

CRC校验:CRC生成后,低字节在前,高字节在后。

5、功能码03:读保持寄存器,读测量数据

数据起始地址:0000~001E

数据长度:0001~000C ,超出范围无效;数据起始地址+数据长度不大于1F,超过范围命令无效。

说明:读取的是16位数据,高位在前,低位在后。

数据定义:见功能码与数据对照表1。

例1、读测量数据:

命令: 01 03 00 00 00 02 CRC 8字节

ADDR 功能开始地址寄存器个数 CRC校验

响应: 01 03 04 64 05 01 01 CRC 9字节

ADDR 功能字节计数 U0 I0 UBB IBB CRC校验

6、功能码06:预臵单寄存器,设臵通讯地址、波特率、电压、电流变比

数据起始地址: 00 00或00 01

数据长度: 01 ,不等于01命令无效。

说明:设臵模块通讯地址、波特率或设臵模块电压、电流变比。

数据定义:见功能码与数据对照表2。

例2、预臵模块通讯地址、波特率(将1号模块地址设臵为2号,波特率为9600BPS)

命令: 01 06 00 00 00 01 02 02 06 CRC

ADDR 功能开始地址寄存器个数字节计数预臵数据 CRC校验响应: 01 06 00 00 00 01 CRC

ADDR 功能开始地址寄存器个数 CRC校验

例3、预臵电压、电流变比(将1号模块的电压变比设臵为60,电流变比设臵为20)

命令: 01 06 00 01 00 01 02 3C 14 CRC ADDR 功能开始地址寄存器个数字节计数预臵数据 CRC校验响应: 01 06 00 01 00 01 CRC

ADDR 功能开始地址寄存器个数 CRC校验

7、功能码10:预臵多寄存器,设臵电能底数

数据起始地址: 0000

数据长度: 0C ,不等于0C命令无效。

说明:预臵电能底数

数据定义:见功能码与数据对照表3。

例4、预臵电能底数

命令: 01 10 0000 000C 18 (DATA 24字节) CRC ADDR 功能开始地址寄存器个数字节计数预臵数据 CRC校验响应: 01 10 0000 000C CRC

ADDR 功能开始地址寄存器个数 CRC校验

四、MODBUS协议的功能码与所对应的数据表

表2:功能码06H与数据对照表。

五、的数据计算

1、UA、IA、UB、IB、UC、IC、P、Q、COS、PA、PB、PC、QA、QB、QC,共15个参数。每个参数为2字节

(16位) 十六进制数据,高字节在前低字节在后;标称满量程值为10000(2710H)。其中P、Q、

COS、PA、PB、PC、QA、QB、QC等 9个参数为有符号数,其最高位(BIT15)为符号位,1为

负,0为正;计算时,先取出符号位(即判断最高位作为此参数的符号,然后将最高位臵为0)

后再计算。

各个参数的含义及计算公式如下:(以下带符号位的取出符号位)

(UA): A相电压值。实际值=(UA)/10000*(U0)*(UBB) V

(UB): B相电压值。实际值=(UB)/10000*(U0)*(UBB) V

(UC): C相电压值。实际值=(UC)/10000*(U0)*(UBB) V

(IA): A相电流值。实际值=(IA)/10000*(I0)*(IBB) A

(IB): B相电流值。实际值=(IB)/10000*(I0)*(IBB) A

(IC): C相电流值。实际值=(IC)/10000*(I0)*(IBB) A

(P):总有功功率值。实际值= +(P)/10000*3*(U0)*(I0)*(UBB)*(IBB) W

(Q):总无功功率值。实际值= +(Q)/10000*3*(U0)*(I0)*(UBB)*(IBB) Var

(COSФ):总功率因数值。实际值= +(COSФ)/10000 PF

(PA): A相有功功率值。实际值= +(PA)/10000*(U0)*(I0)*(UBB)*(IBB) W

(PB): B相有功功率值。实际值= +(PB)/10000*(U0)*(I0)*(UBB)*(IBB) W

(PC): C相有功功率值。实际值= +(PC)/10000*(U0)*(I0)*(UBB)*(IBB) W

(QA): A相无功功率值。实际值= +(QA)/10000*(U0)*(I0)*(UBB)*(IBB) Var

(QB): B相无功功率值。实际值= +(QB)/10000*(U0)*(I0)*(UBB)*(IBB) Var

(QC): C相无功功率值。实际值= +(QC)/10000*(U0)*(I0)*(UBB)*(IBB) Var

(F):频率值。实际值=(F)/100 Hz 为线电压UAB的频率

2、正向有功总电能、反向有功总电能、正向无功总电量、反向无功总电量,共24个字节,4个参数。

每个参数为6字节(48位)十六进制数。

(正向有功总电能):实际值=(正向有功总电能)/10000*9*(U0)*(I0)*(UBB)*(IBB)/3000/3600 度(反向有功总电能):实际值=(反向有功总电能)/10000*9*(U0)*(I0)*(UBB)*(IBB)/3000/3600 度(正向无功总电量):实际值=(正向无功总电量)/10000*9*(U0)*(I0)*(UBB)*(IBB)/3000/3600 度(反向无功总电量):实际值=(反向无功总电量)/10000*9*(U0)*(I0)*(UBB)*(IBB)/3000/3600 度(有功总电能)=(正向有功总电能)-(反向有功总电能)

(无功总电能)=(正向无功总电能)-(反向无功总电能)

3、配臵电量底数时输出电能的计算

每个参数为6字节(48位)十六进制数,各个参数的含义及计算如下:

(正向有功总电能):=正向有功总电能实际值(度) *3000*3600/(U0)/(I0)/(UBB)/(IBB)*10000/9 (反向有功总电能):=反向有功总电能实际值(度) *3000*3600/(U0)/(I0)/(UBB)/(IBB)*10000/9 (正向无功总电量):=正向无功总电量实际值(度) *3000*3600/(U0)/(I0)/(UBB)/(IBB)*10000/9 (反向无功总电量):=反向无功总电量实际值(度) *3000*3600/(U0)/(I0)/(UBB)/(IBB)*10000/9

六、MODBUS通讯规约介绍

(一)MODBUS通讯规约简介

Modbus 协议是应用于电子控制器上的一种通用语言。通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。它已经成为一通用工业标准。有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控。

此协议定义了一个控制器能认识使用的消息结构,而不管它们是经过何种网络进行通信的。它描述了一控制器请求访问其它设备的过程,如果回应来自其它设备的请求,以及怎样侦测错误并记录。它制定了消息域格局和内容的公共格式。

当在一Modbus网络上通信时,此协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。如果需要回应,控制器将生成反馈信息并用Modbus协议发出。在其它网络上,包含了Modbus协议的消息转换为在此网络上使用的帧或包结构。这种转换也扩展了根据具体的网络解决节地址、路由路径及错误检测的方法。

1、在Modbus网络上转输

标准的Modbus口是使用一RS-232C兼容串行接口,它定义了连接口的针脚、电缆、信号位、传输波特率、奇偶校验。控制器能直接或经由Modem组网。

控制器通信使用主—从技术,即仅一设备(主设备)能初始化传输(查询)。其它设备(从设备)根据主设备查询提供的数据作出相应反应。典型的主设备:主机和可编程仪表。典型的从设备:可编程控制器。

主设备可单独和从设备通信,也能以广播方式和所有从设备通信。如果单独通信,从设备返回一消息作为回应,如果是以广播方式查询的,则不作任何回应。Modbus协议建立了主设备查询的格式:设备(或广播)地址、功能代码、所有要发送的数据、一错误检测域。

从设备回应消息也由Modbus协议构成,包括确认要行动的域、任何要返回的数据、和一错误检测域。如果在消息接收过程中发生一错误,或从设备不能执行其命令,从设备将建立一错误消息并把它作为回应发送出去。

(二)MODBUS的两种传输方式

控制器能设臵为两种传输模式(ASCII或RTU)中的任何一种在标准的Modbus网络通信。用户选择想要的模式,包括串口通信参数(波特率、校验方式等),在配臵每个控制器的时候,在一个Modbus网络上的所有设备都必须选择相同的传输模式和串口参数。

位,以及决定怎样将信息打包成消息域和如何解码。

1、ASCII模式

当控制器设为在Modbus网络上以ASCII(美国标准信息交换代码)模式通信,在消息中的每个8Bit字节都作为两个ASCII字符发送。这种方式的主要优点是字符发送的时间间隔可达到1秒而不产生错误。

代码系统:

2、RTU模式

当控制器设为在Modbus网络上以RTU(远程终端单元)模式通信,在消息中的每个8Bit字节包含两个4Bit 的十六进制字符。这种方式的主要优点是:在同样的波特率下,可比ASCII方式传送更多的数据。

代码系统

8位二进制,十六进制数0...9,A...F

消息中的每个8位域都是一个字节的两个十六进制字符组成

每个字节的位

1个起始位

8个数据位,最小的有效位先发送

1个奇偶校验位,无校验则无

1个停止位(有校验时),2个Bit(无校验时)

错误检测域

CRC循环冗长检测

(三)Modbus消息帧

两种传输模式中(ASCII或RTU),传输设备以将Modbus消息转为有起点和终点的帧,这就允许接收的设备在消息起始处开始工作,读地址分配信息,判断哪一个设备被选中(广播方式则传给所有设备),判知何时信息已完成。部分的消息也能侦测到并且错误能设臵为返回结果。

1、ASCII帧

使用ASCII模式,消息以冒号(:)字符(ASCII码 3AH)开始,以回车换行符结束(ASCII码 0DH,0AH)。

其它域可以使用的传输字符是十六进制的0...9,A...F。网络上的设备不断侦测“:”字符,当有一个冒号接收到时,每个设备都解码下个域(地址域)来判断是否发给自己的。

消息中字符间发送的时间间隔最长不能超过1秒,否则接收的设备将认为传输错误。一个典型消息帧如下所示:

2、RTU

使用RTU模式,消息发送至少要以3.5个字符时间的停顿间隔开始。在网络波特率下多样的字符时间,这是最容易实现的(如下图的T1-T2-T3-T4所示)。传输的第一个域是设备地址。可以使用的传输字符是十六进制的0...9,A...F。网络设备不断侦测网络总线,包括停顿间隔时间内。当第一个域(地址域)接收到,每个设备都进行解码以判断是否发往自己的。在最后一个传输字符之后,一个至少3.5个字符时间的停顿标定了消息的结束。一个新的消息可在此停顿后开始。

整个消息帧必须作为一连续的流转输。如果在帧完成之前有超过1.5个字符时间的停顿时间,接收设备将刷新不完整的消息并假定下一字节是一个新消息的地址域。同样地,如果一个新消息在小于3.5个字符时间内接着前个消息开始,接收的设备将认为它是前一消息的延续。这将导致一个错误,因为在最后的CRC域

3、地址域

消息帧的地址域包含两个字符(ASCII)或8Bit(RTU)。可能的从设备地址是0...247 (十进制)。单个设备的地址范围是1...247。主设备通过将要联络的从设备的地址放入消息中的地址域来选通从设备。当从设备发送回应消息时,它把自己的地址放入回应的地址域中,以便主设备知道是哪一个设备作出回应。

地址0是用作广播地址,以使所有的从设备都能认识。当Modbus协议用于更高水准的网络,广播可能不允许或以其它方式代替。

4、如何处理功能域

消息帧中的功能代码域包含了两个字符(ASCII)或8Bits(RTU)。可能的代码范围是十进制的1...255。

当然,有些代码是适用于所有控制器,有此是应用于某种控制器,还有些保留以备后用。

当消息从主设备发往从设备时,功能代码域将告之从设备需要执行哪些行为。例如去读取输入的开关状态,读一组寄存器的数据内容,读从设备的诊断状态,允许调入、记录、校验在从设备中的程序等。

当从设备回应时,它使用功能代码域来指示是正常回应(无误)还是有某种错误发生(称作异议回应)。

对正常回应,从设备仅回应相应的功能代码。对异议回应,从设备返回一等同于正常代码的代码,但最重要的位臵为逻辑1。

例如:一从主设备发往从设备的消息要求读一组保持寄存器,将产生如下功能代码:

0 0 0 0 0 0 1 1 (十六进制03H)

对正常回应,从设备仅回应同样的功能代码。对异议回应,它返回:

1 0 0 0 0 0 1 1 (十六进制83H)

除功能代码因异议错误作了修改外,从设备将一独特的代码放到回应消息的数据域中,这能告诉主设备发生了什么错误。

主设备应用程序得到异议的回应后,典型的处理过程是重发消息,或者诊断发给从设备的消息并报告给操作员。

5、数据域

数据域是由两个十六进制数集合构成的,范围00...FF。根据网络传输模式,这可以是由一对ASCII字符组成或由一RTU字符组成。

从主设备发给从设备消息的数据域包含附加的信息:从设备必须用于进行执行由功能代码所定义的所为。这包括了象不连续的寄存器地址,要处理项的数目,域中实际数据字节数。

例如,如果主设备需要从设备读取一组保持寄存器(功能代码03),数据域指定了起始寄存器以及要读的寄存器数量。如果主设备写一组从设备的寄存器(功能代码10十六进制),数据域则指明了要写的起始寄存器以及要写的寄存器数量,数据域的数据字节数,要写入寄存器的数据。

如果没有错误发生,从从设备返回的数据域包含请求的数据。如果有错误发生,此域包含一异议代码,主设备应用程序可以用来判断采取下一步行动。

在某种消息中数据域可以是不存在的(0长度)。例如,主设备要求从设备回应通信事件记录(功能代码0B十六进制),从设备不需任何附加的信息。

6、错误检测域

标准的Modbus网络有两种错误检测方法。错误检测域的内容视所选的检测方法而定。

ASCII

当选用ASCII模式作字符帧,错误检测域包含两个ASCII字符。这是使用LRC(纵向冗长检测)方法对消息内容计算得出的,不包括开始的冒号符及回车换行符。LRC字符附加在回车换行符前面。

RTU

当选用RTU模式作字符帧,错误检测域包含一16Bits值(用两个8位的字符来实现)。错误检测域的内容是通过对消息内容进行循环冗长检测方法得出的。CRC域附加在消息的最后,添加时先是低字节然后是高字节。

故CRC的高位字节是发送消息的最后一个字节。

7、字符的连续传输

当消息在标准的Modbus系列网络传输时,每个字符或字节以如下方式发送(从左到右):

最低有效位...最高有效位

使用ASCII字符帧时,位的序列是:

有奇偶校验

使用RTU字符帧时,位的序列是:

无奇偶校验

(四)MODBUS通讯错误检测方法

标准的Modbus串行网络采用两种错误检测方法。奇偶校验对每个字符都可用,帧检测(LRC或CRC)应用于整个消息。它们都是在消息发送前由主设备产生的,从设备在接收过程中检测每个字符和整个消息帧。

用户要给主设备配臵一预先定义的超时时间间隔,这个时间间隔要足够长,以使任何从设备都能作为正常反应。如果从设备测到一传输错误,消息将不会接收,也不会向主设备作出回应。这样超时事件将触发主设备来处理错误。发往不存在的从设备的地址也会产生超时。

1、奇偶校验

用户可以配臵控制器是奇或偶校验,或无校验。这将决定了每个字符中的奇偶校验位是如何设臵的。

如果指定了奇或偶校验,“1”的位数将算到每个字符的位数中(ASCII模式7个数据位,RTU中8个数据位)。

例如RTU字符帧中包含以下8个数据位:

1 1 0 0 0 1 0 1

整个“1”的数目是4个。如果便用了偶校验,帧的奇偶校验位将是0,便得整个“1”的个数仍是4个。如果便用了奇校验,帧的奇偶校验位将是1,便得整个“1”的个数是5个。

如果没有指定奇偶校验位,传输时就没有校验位,也不进行校验检测。代替一附加的停止位填充至要传输的字符帧中。

2、LRC检测

使用ASCII模式,消息包括了一基于LRC方法的错误检测域。LRC域检测了消息域中除开始的冒号及结束的回车换行号外的内容。

LRC域是一个包含一个8位二进制值的字节。LRC值由传输设备来计算并放到消息帧中,接收设备在接收消息的过程中计算LRC,并将它和接收到消息中LRC域中的值比较,如果两值不等,说明有错误。

LRC方法是将消息中的8Bit的字节连续累加,丢弃了进位。

3、CRC检测

使用RTU模式,消息包括了一基于CRC方法的错误检测域。CRC域检测了整个消息的内容。

CRC域是两个字节,包含一16位的二进制值。它由传输设备计算后加入到消息中。接收设备重新计算收到消息的CRC,并与接收到的CRC域中的值比较,如果两值不同,则有误。

CRC是先调入一值是全“1”的16位寄存器,然后调用一过程将消息中连续的8位字节各当前寄存器中的值进行处理。仅每个字符中的8Bit数据对CRC有效,起始位和停止位以及奇偶校验位均无效。

CRC产生过程中,每个8位字符都单独和寄存器内容相异或(XOR),结果向最低有效位方向移动,最高有效位以0填充。LSB被提取出来检测,如果LSB为1,寄存器单独和预臵的值(A001H)异或一下,如果LSB为0,则不进行。整个过程要重复8次。在最后一位(第8位)完成后,下一个8位字节又单独和寄存器的当前值相异或。最终寄存器中的值,是消息中所有的字节都执行之后的CRC值。

CRC添加到消息中时,低字节先加入,然后高字节。

通讯格式、传输方式及MODBUS协议简介

MODBUS协议、通讯格式、传输方式 淘宝店铺: MODBUS简介 MODBUS是一种单主站的主/从通信模式。MODBUS网络上只能有一个主站存在,主站在MODBUS网络上没有地址,从站的地址范围为 0 - 247,其中 0 为广播地址,从站的实际地址范围为 1 - 247。 MODBUS通信标准协议可以通过各种传输方式传播,如 RS232C、RS485、光纤、无线电等。 MODBUS具有两种串行传输模式,ASCII和RTU。它们定义了数据如何打包、解码的不同方式。支持MODBUS协议的设备一般都支持 RTU 格式。 通信双方必须同时支持上述模式中的一种。 实际也就是发送与接收双方商量一下,定好规则,发送方想要接收方做某件事,就发送某种格式的信息给接收方,接收方收到信息后,按照事先约定好的规则分析信息,执行命令。 您如果愿意,也可以自己定义一个通讯规范,用PLC 或是VB 语言按照您自己定义的这个规范处理,如果您定义的这个规范可靠性、便于分析性超过MODBUS,那您的通讯规范就是最流行的了! MODBUS 的通讯规范: 起始符 + 设备地址 + 功能代码 + 数据 + 校验和 + 结束符

通讯格式 通讯格式设置举例:9600,o,8,1 即: 波特率为9600; 校验方式为奇校验; 数据位为八位; 停止位为一位; ------------------------------------------------------------ 1、波特率: 波特率是每秒钟传输的数据位数;什么是位数呢? 计算机处理的语言是"0"和"1"组合而成的信息,即机器语言! 一个"0"或是一个"1"就是一个位; 设置波特率的作用? 如果把波特率设为9600,即一秒钟之内能够传输9600个"0"或是"1",它决定了通讯的数据传输速度。 常用的波特率数值有:2400、4800、9600、19200、38400、57600、115200;

modbus协议及modbus_RTU的C51程序

查看完整版本: [-- modbus协议及modbus RTU的C51程序--] 电子工程师之家-> 51单片机论坛-> modbus协议及modbus RTU的C51程序[打印本页]登录-> 注册-> 回复主 题-> 发表主题 一线工人2007-11-15 21:44 modbus协议及modbus RTU的C51程序 完整的程序请下载[attachment=1488] Modbus通讯协议 Modbus协议最初由Modicon公司开发出来,在1979年末该公司成为施耐德自动化(Schneider Automation)部门的一部分,现在Modbus已经是工业领域全球最流行的协议。此协议支持传统的RS-232、RS-422、RS-485和以太网设备。许多工业设备,包括PLC,DCS,智能仪表等都在使用Modbus协议作为他们之间的通讯标准。有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控。 当在网络上通信时,Modbus协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。如果需要回应,控制器将生成应答并使用Modbus协议发送给询问方。 Modbus 协议包括ASCII、RTU、TCP等,并没有规定物理层。此协议定义了控制器能够认识和使用的消息结构,而不管它们是经过何种网络进行通信的。标准的Modicon控制器使用RS232C实现串行的Modbus。Modbus的ASCII、RTU协议规定了消息、数据的结构、命令和就答的方式,数据通讯采用Maser/Slave方式,Master端发出数据请求消息,Slave端接收到正确消息后就可以发送数据到Master端以响应请求;Master端也可以直接发消息修改Slave端的数据,实现双向读写。 Modbus 协议需要对数据进行校验,串行协议中除有奇偶校验外,ASCII模式采用LRC校验,RTU模式采用16位CRC校验,但TCP模式没有额外规定校验,因为TCP协议是一个面向连接的可靠协议。另外,Modbus采用主从方式定时收发数据,在实际使用中如果某Slave站点断开后(如故障或关机),Master端可以诊断出来,而当故障修复后,网络又可自动接通。因此,Modbus协议的可靠性较好。 下面我来简单的给大家介绍一下,对于Modbus的ASCII、RTU和TCP协议来说,其中TCP和RTU协议非常类似,我们只要把RTU协议的两个字节的校验码去掉,然后在RTU 协议的开始加上5个0和一个6并通过TCP/IP网络协议发送出去即可。所以在这里我仅介绍一下Modbus的ASCII和RTU协议。

Modbus RTU通讯协议

要实现Modbus RTU通信, 一、需要STEP 7-Micro/WIN32 V3.2以上版本的编程软件,而且须安装STEP 7-Micro/WIN32 V3.2 Instruction Library(指令库)。Modbus RTU功能是通过指令库中预先编好的程序功能块实现的。 Modbus RTU从站指令库只支持CPU上的通信0口(Port0) 基本步骤: 1. 检查Micro/WIN的软件版本,应当是STEP 7-Micro/WIN V3.2以上版本。 2. 检查Micro/WIN的指令树中是否存在Modbus RTU从站指令库(图1),库中应当 包括MBUS_INIT和MBUS_SLAVE两个子程序。 如果没有,须安装Micro/WIN32 V3.2的Instruction Library(指令库)软件包; 1. 西门子编程时使用SM0.1调用子程序MBUS_INIT进行初始化,使用SM0.0调用 MBUS_SLAVE,并指定相应参数。 关于参数的详细说明,可在子程序的局部变量表中找到; 调用Modbus RTU通信指令库图中参数意义如下: a. 模式选择:启动/停止Modbus,1=启动;0=停止 b. 从站地址:Modbus从站地址,取值1~247 c. 波特率:可选1200,2400,4800,9600,19200,38400,57600,115200 d. 奇偶校验:0=无校验;1=奇校验;2=偶校验 e. 延时:附加字符间延时,缺省值为0 f. 最大I/Q位:参与通信的最大I/O点数,S7-200的I/O映像区为128/128, 缺省值为128 g. 最大AI字数:参与通信的最大AI通道数,可为16或32 h. 最大保持寄存器区:参与通信的V存储区字(VW) i. 保持寄存器区起始地址:以&VBx指定(间接寻址方式) j. 初始化完成标志:成功初始化后置1

MODBUS协议简介

第一章MODBUS协议简介 MODBUS协议详细定义了校验码、数据序列等,这些都是特定数据交换的必要内容。 MODBUS协议在一根通讯线上使用RS485应答式连接(半双工),这意味着在一根单独的通讯线上信号沿着相反的两个方向传输。首先,主计算机的信号寻址到一台唯一的终端设备(从机),然后,在相反的方向上终端设备发出的应答信号传输给主机。 MODBUS协议只允许在主计算机和终端设备之间,而不允许独立的设备之间的数据交换,这就不会在使它们初始化时占据通讯线路,而仅限于响应到达本机的查询信号。 1.1传输方式 传输方式是一个数据帧内一系列独立的数据结构以及用于传输数据的有限规则,下面定义了与MODBUS 协议– RTU方式相兼容的传输方式。 ◆Coding System 二进制编码8位 ◆Start bit 起始位1位 ◆Data bits 数据位8位 ◆Parity 校验无奇偶校验 ◆Stop bit 停止位1位 ◆Error checking 错误检测CRC(循环冗余校验) [注]瑞士DAE公司的网络电力仪表响应查询信号的时间为0.1 ~ 1.0秒(典型值为0.4秒) 1.2协议 当数据帧到达终端设备时,它通过一个简单的“口”进入寻址到的设备,该设备去掉数据帧的“信封”(数据头),读取数据,如果没有错误,就执行数据所请求的任务,然后,它将自己生成的数据加入到取得的“信封”中,把数据帧返回给发送者。返回的响应数据中包含了以下内容:终端从机地址(Address)、被执行了的命令(Function)、执行命令生成的被请求数据(Data)和一个校验码(Check)。发生任何错误都不会有成功的响应。 1.2.1数据帧格式 图 1 – 1 .数据帧格式 1.2.2地址(Address)域 地址域在帧的开始部分,由一个字节8位(0 ~ 255)组成,这些位标明了用户指定的终端设备的地址,该设备将接收来自与之相连的主机数据。每个终端设备的地址必须是唯一的,仅仅被寻址到的终端会响应包含了该地址的查询。当终端发送回一个响应,响应中的从机地址数据便告诉了主机哪台终端正与之进行通信。

什么是ModBusRTU通讯协议

什么是ModBusRTU通讯协议 Modbus协议最初由Modicon公司开发出来,在1979年末该公司成为施耐德自动化(Schneider Automation)部门的一部分,现在Modbus已经是工业领域全球最流行的协议。此协议支持传统的RS-232、RS-422、RS-485和以太网设备。许多工业设备,包括PLC,DCS,智能仪表等都在使用Modbus协议作为他们之间的通讯标准。有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控。 当在网络上通信时,Modbus协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。如果需要回应,控制器将生成应答并使用Modbus协议发送给询问方。 Modbus协议包括ASCII、RTU、TCP等,并没有规定物理层。此协议定义了控制器能够认识和使用的消息结构,而不管它们是经过何种网络进行通信的。标准的Modicon控制器使用RS232C实现串行的Modbus。Modbus的ASCII、RTU协议规定了消息、数据的结构、命令和就答的方式,数据通讯采用Maser/Slave方式,Master端发出数据请求消息,Slave端接收到正确消息后就可以发送数据到Master端以响应请求;Master端也可以直接发消息修改Slave 端的数据,实现双向读写。

Modbus协议需要对数据进行校验,串行协议中除有奇偶校验外,ASCII模式采用LRC校验,RTU模式采用16位CRC校验,但TCP模式没有额外规定校验,因为TCP协议是一个面向连接的可靠协议。另外,Modbus采用主从方式定时收发数据,在实际使用中如果某Slave站点断开后(如故障或关机),Master端可以诊断出来,而当故障修复后,网络又可自动接通。因此,Modbus协议的可靠性较好。 对于Modbus的ASCII、RTU和TCP协议来说,其中TCP和RTU协议非常类似,我们只要把RTU协议的两个字节的校验码去掉,然后在RTU协议的开始加上5个0和一个6并通过TCP/IP 网络协议发送出去即可。 (一)、通讯传送方式: 通讯传送分为独立的信息头,和发送的编码数据。以下的通讯传送方式定义也与ModBusRTU通讯规约相兼容: 初始结构= ≥4字节的时间 地址码= 1 字节 功能码= 1 字节 数据区= N 字节 错误校检= 16位CRC码

MODBUS-RTU通讯协议简介

MODBUS-RTU通讯协议简介 2008-10-10 17:27 1.1 Modbus协议简述 ACRXXXE系列仪表使用的是Modbus-RTU通讯协议,MODBUS协议详细定义了校验码、数据序列等,这些都是特定数据交换的必要内容。MODBUS协议在一根通讯线上使用主从应答式连接(半双工),这意味着在一根单独的通讯线上信号沿着相反的两个方向传输。首先,主计算机的信号寻址到一台唯一的终端设备(从机),然后,终端设备发出的应答信号以相反的方向传输给主机。 Modbus协议只允许在主机(PC,PLC等)和终端设备之间通讯,而不允许独立的终端设备之间的数据交换,这样各终端设备不会在它们初始化时占据通讯线路,而仅限于响应到达本机的查询信号。 1.2 查询—回应周期 1.2.1 查询 查询消息中的功能代码告之被选中的从设备要执行何种功能。数据段包含了从设备要执行功能的任何附加信息。例如功能代码03是要求从设备读保持寄存器并返回它们的内容。数据段必须包含要告之从设备的信息:从何寄存器开始读及要读的寄存器数量。错误检测域为从设备提供了一种验证消息内容是否正确的方法。 1.2.2 回应 如果从设备产生一正常的回应,在回应消息中的功能代码是在查询消息中的功能代码的回应。数据段包括了从设备收集的数据:如寄存器值或状态。如果有错误发生,功能代码将被修改以用于指出回应消息是错误的,同时数据段包含了描述此错误信息的代码。错误检测域允许主设备确认消息内容是否可用。 1.3 传输方式 传输方式是指一个数据帧内一系列独立的数据结构以及用于传输数据的有限规则,下面定义了与Modbus 协议– RTU方式相兼容的传输方式。 每个字节的位: · 1个起始位 · 8个数据位,最小的有效位先发送 ·无奇偶校验位 · 1个停止位 错误检测(Error checking):CRC(循环冗余校验) 1.4 协议 当数据帧到达终端设备时,它通过一个简单的“端口”进入被寻址到的设备,该设备去掉数据帧的“信封”(数据头),读取数据,如果没有错误,就执行数据所请求的任务,然后,它将自己生成的数据加入到取得的“信封”中,把数据帧返回给发送者。返回的响应数据中包含了以下内容:终端从机地址(Address)、被执行了的命令(Function)、执行命令生成的被请求数据(Data)和一个校验码(Check)。发生任何错误都不会有成功的响应,或者返回一个错误指示帧。 1.4.1 数据帧格式 Address Function Data Check 8-Bits 8-Bits N x 8-Bits 16-Bits 1.4.2 地址(Address)域 地址域在帧的开始部分,由一个字节(8位二进制码)组成,十进制为0~255,

MODBUS-TCP协议介绍

MODBUS-TCP ~ ~~ IEEE 802.3 CSMA/CD 10Mb/s (1)10 Base 5 RG-8 500m (2)10 Base 2 RG-58 185m (3)10 Base T UTP STP 100m ~~ 100Mb/s 802.3a 100 Base Tx 100 Base Fx ~~ 10/100M 100M “ ” (UTP) 100m 2 3km 100km 1000Mb/s 802.3z/802.3ab 10Gb/s 802.3ae ~ ~~ IEEE802.3 EN50081-2 EN50082-2 1 DIN UTP STP( ) ~TCP/IP 1. TCP/IP ~~ TCP/IP 20 80 X.25 TCP/IP ( ) TCP/IP TCP/IP TCP/IP

Internet TCP/IP TCP/IP ~~ TCP/IP OSI OSI TCP/IP 1 TCP/IP 2. Internet Protocol(IP) ~~IP Internet https://www.360docs.net/doc/643475401.html, RFC79 ( RFC: Request For Comments ) ~~IP IP “ ” I/O IP IP IP “IP ” “ ” “ ” “ ” IP IP ~~IP IP 2

~~IP 4 ( 3 ) A 16387064 (1 126) B 64516 ( 128 191) C 254 ( 192 223) D (“0.0.0.0”) 1 (“255.255.255.255”) 3. Transmission Control Protocol (TCP) ~~TCP ( 4 ) RFC793 TCP TCP TCP

Modbus+RTU+标准通讯协议格式

HLP_SV Modbus RTU 标准通讯协议格式 通信资料格式 Address Function Data CRC check 8 bits 8 bits N×8bits 16bits 1)Address通讯地址:1-247 2)Function:命令码8-bit命令 01 读线圈状态 上位机发送数据格式: ADDRESS 01 ADDRH ADDRL NUMH NUML CRC 注: ADDR: 00000 --- FFFF(ADDR=线圈地址-1);NUM: 0010-----0040 (NUM为要读线圈状态值的二进制数位数) 正确时变频器返回数据格式: ADDRESS 01 BYTECOUNT DA TA1 DA TA2 DA TA3 DA TAN CRC 注: BYTECOUNT:读取的字数 错误时变频器返回数据格式: ADDRESS 0X81 Errornum CRC 注: Errornum为错误类型代码 如:要检测变频器的输出频率 应发送数据:01 01 00 30 00 10 3D C9(16进制) 变频器返回数据:01 01 02 00 20 B8 24(16进制) 发送数据:0030hex(线圈地址49) 返回的数据位为“0020”(16进制),高位与低位互换,为2000。即输出频率为 303(Max Ref)的50%。关于2000对应50%,具体见图1。

03读保持寄存器 上位机发送数据格式: ADDRESS 03 ADDRH ADDRL NUMH NUML CRC 注:ADDR: 0 --- 0XFFFF;NUM: 0010-----0040 (NUM为要读取数据的字数) ADDR=Parameter Numbe r×10-1 正确时变频器返回数据格式: ADDRESS 03 BYTECOUNT DA TA1 DA TA 2 DA TA 3 DA TAN CRC 注: BYTECOUNT:读取的字节数 错误时变频器返回数据格式: ADDRESS 0X83 Errornum CRC 如:要读变频器参数303的设定值 应发送数据:01 03 0B D5 00 02 95 BC (16进制) Parameter 303(3029)=0BD5HEX 变频器返回数据:“:”01 03 04 00 00 EA 60 B5 7B 返回的数据位为“00 00 EA 60”(16进制)转换为10进制数为60000, 表示303设置值为60.000 ※当参数值为双字时,NUM的值必须等于2。否则无法读取或读取错误。 05 写单个线圈状态 上位机发送数据格式: ADDRESS 05ADDRH ADDRL DA TAH DA TAL CRC 注:ADDR: 0 ---- 0XFFFF(ADDR=线圈地址-1);DATA=0000HEX(OFF) OR FF00(ON) HEX 正确时变频器返回数据格式: ADDRESS 05 DATAH DATAL BYTECOUNT CRC 错误时变频器返回数据格式: ADDRESS 0X85 Errornum CRC 如:要使写参数为写入RAM和EEPROM 应发送数据:01 05 00 40 FF 00 CRC(16进制) 变频器返回数据:01 05 FF 00 00 01 CRC(16进制) 发送数据:0040hex(线圈地址65) 06 写单个保持寄存器值(只能写参数值为单个字的参数) 上位机发送数据格式: ADDRESS 06 ADDRH ADDRL DA TAH DA TAL CRC 注:ADDR: ADDR=Parameter Numbe r×10-1 正确时变频器返回数据格式: ADDRESS 06 ADDRH ADDRL DA TAH DA TAL CRC 错误时变频器返回数据: ADDRESS 0X86 Errornum CRC 如:要对变频器参数101写入1 应发送数据:01 06 00 03 F1 00 01 19 BD(16进制) 变频器返回数据:01 06 03 F1 00 01 19 BD(16进制) PARAMETER 101(1009)=03F1 HEX

MODBUS TCPIP协议 介绍

1.该规范的发展概况 原始版本1997年9月3日作为公共评论的草案。 再版1999年3月29日,即修订版1.0。 没有大的技术改动,仅作了补充说明。增加了附录A和B作为对一些常用执行问题的回应。 该Modbus/TCP规范在万维网上公开发行。它表明开发者的意愿是把它作为工业自动化领域具有互用性的标准。 既然MODBUS和MODBUS/TCP作为事实上的“实际”标准,而且很多生产商已经实现了它的功能,此规范主要是阐述在互连网上具有普遍可用性的基于TCP通讯协议的MODBUS 报文的特殊编码。 2. 概述 MODBUS/TCP是简单的、中立厂商的用于管理和控制自动化设备的MODBUS系列通讯协议的派生产品。显而易见,它覆盖了使用TCP/IP协议的“Intranet”和“Internet”环境中MODBUS报文的用途。协议的最通用用途是为诸如PLC’s,I/O模块,以及连接其它简单域总线或I/O模块的网关服务的。 MODBUS/TCP协议是作为一种(实际的)自动化标准发行的。既然MODBUS已经广为人知,该规范只将别处没有收录的少量信息列入其中。然而,本规范力图阐明MODBU S中哪种功能对于普通自动化设备的互用性有价值,哪些部分是MODBUS作为可编程的协议交替用于PLC’s的“多余部分”。

它通过将配套报文类型“一致性等级”,区别那些普遍适用的和可选的,特别是那些适用于特殊设备如PLC’s的报文。 2.1 面向连接 在MODBUS中,数据处理传统上是无国界的,使它们对由噪音引起的中断有高的抵抗力,而且在任一端只需要最小的维护信息。 编程操作,另一方面,期望一种面向连接的方法。这种方法对于简单变量通过唯一的“登录”符号完成,对于Modbus Plus变量,通过明确的“程序路径”容量来完成,而“程序路径”容量维持了一种双向连接直到被彻底击穿。 MODBUS/TCP处理两种情况。连接在网络协议层很容易被辨认,单一的连接可以支持多个独立的事务。此外,TCP允许很大数量的并发连接,因而很多情况下,在请求时重新连接或复用一条长的连接是发起者的选择。 熟悉MODBUS的开发者会感到惊讶:为什么面向连接TCP协议比面向数据报的UDP 要应用广泛。主要原因是通过封装独立的“事务”在一个连接中,此连接可被识别,管理和取消而无须请求客户和服务器采用特别的动作。这就使进程具有对网络性能变化的适应能力,而且容许安全特色如防火墙和代理可以方便的添加。 类似的推理被最初的万维网的开发者所采用,他们选用TCP及端口80去实现一个作为单一事务的最小的环球网询问。 2.2 数据编码

MODBUS_RTU通讯协议

精品文档 . ?MODBUS通讯协议 使用手册

1. RTU 方式通讯协议 1.1. 硬件采用RS -485,主从式半双工通讯,主机呼叫从机地址,从机应答方式通讯。 1. 2. 数据帧10位,1个起始位,8个数据位,1个停止位,无校验。 波特率:9600;19200 38400 1.3. 功能码03H : 读寄存器值 主机发送: 第1字节 ADR : 从机地址码(=001~254) 第2字节 03H : 读寄存器值功能码 第3、4字节 : 要读的寄存器开始地址 要读FCC 下挂仪表, 第5、6字节 : 要读的寄存器数量 第7、8字节 : 从字节1到6的CRC16校验和 从机回送: 第1字节 ADR : 从机地址码(=001~254) 第2字节 03H : 返回读功能码 第3字节 : 从4到M (包括4及M )的字节总数 第4到M 字节 : 寄存器数据 第M +1、M+2字节 : 从字节1到M 的CRC16校验和 当从机接收错误时,从机回送: 第1字节 ADR : 从机地址码(=001~254) 第2字节 83H : 读寄存器值出错 第3字节 信息码 : 见信息码表 第4、5字节 : 从字节1到3的CRC16校验和 1.4. 功能码06H : 写单个寄存器值 主机发送:

当从机接收正确时,从机回送: 当从机接收错误时,从机回送: 第1字节 ADR :从机地址码(=001~254) 第2字节 86H :写寄存器值出错功能码 第3字节 错误数息码 : 见信息码表 第4、 5字节 : 从字节1到3的CRC16校验和 1.5. 功能码10H : 连续写多个寄存器值 当从机接收正确时,从机回送: 当从机接收错误时,从机回送: 第1字节 ADR : 从机地址码(=001~254) 第2字节 90H : 写寄存器值出错 第3字节 错误信息码 : 见信息码表

Modbus通讯协议(TCP和RTU)

1MODBUS RTU 读寄存器请求序号意义所占字节字节存放格式 1从设备地址1个字节0x00?0xff 2功能码1个字节0x03 3起始寄存器基地址两个字节高字节在前 4寄存器个数两个字节高字节在前 5CRC校验码两个字节低字节在前 读寄存器回应序号意义所占字节字节存放格式1从设备地址1个字节0x00?0xff 2功能码1个字节0x03 3数据长度1个字节寄存器个数×2 4数据寄存器个数×2个字节每个寄存器高字节在前5CRC校验码两个字节低字节在前 写单个寄存器请求序号意义所占字节字节存放格式1从设备地址1个字节0x00?0xff 2功能码1个字节0x06 3起始寄存器地址两个字节高字节在前 4寄存器值两个字节 高字节在前 5CRC校验码 两个字节 低字节在前 写单个寄存器回应序号意义所占字节字节存放格式1从设备地址1个字节0x00?0xff 2功能码1个字节0x10 3起始寄存器地址两个字节高字节在前 4寄存器值两个字节 高字节在前 5CRC校验码 两个字节 低字节在前 1

写多个寄存器请求序号意义所占字节字节存放格式1从设备地址1个字节0x00?0xff 2功能码1个字节0x10 3起始寄存器地址两个字节高字节在前 4寄存器个数两个字节 高字节在前 5数据长度 1个字节 寄存器个数×2  6数据寄存器个数×2个字节每个寄存器高字节在前7CRC校验码 两个字节 低字节在前 写多个寄存器回应序号意义所占字节字节存放格式1从设备地址1个字节0x00?0xff 2功能码1个字节0x10 3起始寄存器地址两个字节高字节在前 4寄存器个数两个字节 高字节在前 5CRC校验码 两个字节 低字节在前 错误返回序号意义所占字节字节存放格式1从设备地址1个字节0x00?0xff 2功能码1个字节请求功能码+0x80 3错误码1个字节 其代号见下面表格4CRC校验码 两个字节 低字节在前 错误代号错误代号意义 0x01不支持该功能码 0x02越界 0x03寄存器数量超出范围 0x04读写错误 2

很好的威纶通MODBUS RTU通讯协议与变频器通讯案例

本文研究的是触摸屏通过MODBUS RTU通讯协议与变频器通讯实现变频器的控制。触摸屏采用威纶通TK6070IP,变频器用汇川MD380通用系列。通过触摸屏编程软件,编辑控制画面实现变频器的启动、停止、速度调节、多段速速度设置,通过宏指令实现工程值与实际值的转换。 一、MODBUS RTU 简介: 为了在自动化系统之间、自动化系统和所连接的分散的现场设备之间进行信息交换,如今串行现场总线被主要用作通讯系统。成千上万的应用已经强烈地证明了通过使用现场总线技术,可以节省多至40%的接线、调试及维护的费用。仅仅使用两根电线就可以传送现场设备的所有相关信息,比如输入和输出数据、参数、诊断数据。过去使用的现场总线往往是制造商的特定现场总线,并且同其它现场总线不兼容。如今使用的现场总线几乎是完全公开和标准化的。这就意味者用户可以以最合理的价格选择最好的产品,而不用依赖于每个独立的制造商。Modbus RTU是一种国际的、开放的现场总线标准。作为一种很容易实现的现场总线协议,在全世界范围内,Modbus得到了成功的应用。应用领域包括生产过程中的自动化、过程控制和楼宇自控。MODBUS RTU通讯协议的报文如图1。 图1 MODBUS RTU 通讯协议的报文功能码如下: 01H 读取线圈状态。从执行机构上读取线圈(单个位)的内容; 02H 读取离散量输入。从执行机构上读取离散量输入(多个位)的内容; 03H 读取保持寄存器。从执行机构上读取保持寄存器(16位字)的内容; 04H 读取输入寄存器。从执行机构上读取输入寄存器(16位字)的内容; 05H 强置单线圈。写数据到执行机构的线圈(单个位)为“通”(“1”)或 “断”(“0”); 06H 预置单寄存器。写数据到执行机构的单个保持寄存器(16位字); 0FH 强置多线圈。写数据到执行机构的几个连续线圈(单个位)为“通”(“1”) 或“断”(“0”); 10H 预置多寄存器。写数据到执行机构的几个连续的保持寄存器(16位字)。 二、威纶通编程软件介绍: EB8000软件中MODBUS协议的设备类型为0x、1x、3x、4x、5x、6x,还有3x_bit,4x_bit,6x_bit,0x_multi_coils等,下面分别说明这些设备类型在MODBUS协议中支持哪些功能码。0x:是一个可读可写的设备类型,相当于操作PLC的输出点。该设备类型读取位状态的时候,发出的功能码是01H,写位状态的时候发出的功能码是05H。写多个寄存器时发出的功能码是0fH。 1x:是一个只读的设备类型,相当于读取PLC的输入点。读取位状态的时候发出的功能码为02H。 3x:是一个只读的设备类型,相当于读取PLC的模拟量。读数据的时候,发出的功能码是04H。 4x:是一个可读可写的设备类型,相当于操作PLC的数据寄存器。当读取数据的时候,发出的功能码是03H,当写数据的时候发出的功能码时10H,可写多个寄存器的数据。

MODBUSRTU通讯协议

? MODBUS通讯协议 使用手册

1. RTU 方式通讯协议 1.1. 硬件采用RS -485,主从式半双工通讯,主机呼叫从机地址,从机应答方式通讯。 1. 2. 数据帧10位,1个起始位,8个数据位,1个停止位,无校验。 波特率:9600;19200 38400 1.3. 功能码03H : 读寄存器值 主机发送: 第1字节 ADR : 从机地址码(=001~254) 第2字节 03H : 读寄存器值功能码 第3、4字节 : 要读的寄存器开始地址 要读FCC 下挂仪表, 第5、6字节 : 要读的寄存器数量 第7、8字节 : 从字节1到6的CRC16 校验和 从机回送:

第1字节ADR :从机地址码(=001~254) 第2字节03H :返回读功能码 第3字节:从4到M(包括4及M)的字节总数 第4到M字节:寄存器数据 第M+1、M+2字节:从字节1到M的CRC16校验和 当从机接收错误时,从机回送: 第1字节ADR :从机地址码(=001~254) 第2字节83H :读寄存器值出错 第3字节信息码:见信息码表 第4、5字节:从字节1到3的CRC16校验和 1.4.功能码06H:写单个寄存器值 主机发送:

当从机接收正确时,从机回送: 当从机接收错误时,从机回送: 第1字节ADR :从机地址码(=001~254) 第2字节86H :写寄存器值出错功能码 第3字节错误数息码:见信息码表 第4、5字节:从字节1到3的CRC16校验和 1.5.功能码10H:连续写多个寄存器值

当从机接收正确时,从机回送: 当从机接收错误时,从机回送: 第1字节ADR :从机地址码(=001~254) 第2字节90H :写寄存器值出错 第3字节错误信息码:见信息码表 第4、5字节:从字节1到3的CRC16校验和1.8 寄存器定义表:(注:寄存器地址编码为16进制)

modbus协议介绍

ModBus 协议 1.Modbus是由Modicon(现为施耐德电气公司的一个品牌)在1979年发明的,是全球第一个真正用于工业现场的总线协议,在中国,Modbus已经成为国家标准GB/T19582-2008。 2.ModBus网络:系统结构既包括硬件、亦包括软件。它可应用于各种数据采集和过程监控。 3.Modbus协议:控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。当在同一Modbus网络上通信时,此协议决定了每个控制器需要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。如果需要回应,控制器将生成反馈信息并用Modbus协议发出。在其它网络上,包含了Modbus协议的消息转换为在此网络上使用的帧或包结构。这种转换也扩展了根据具体的网络解决节地址、路由路径及错误检测的方法。 支持传统的RS-232、RS-422、RS-485和以太网设备。许多工业设备,包括PLC,DCS,智能仪表等都在使用Modbus协议作为他们之间的通信标准。控制器能直接或经由Modem组网。

4.标准的Modbus口是使用RS-232-C兼容串行接口,它定义了连接口的针脚、电缆、信号位、传输波特率、奇偶校验。 5.Modbus协议建立了主设备查询的格式:设备(或广播)地址、功能代码、所有要发送的数据、错误检测域。 6.从设备回应消息也由Modbus协议构成,包括:确认要行动的域、任何要返回的数据、和一错误检测域。 如果在消息接收过程中发生一错误,或从设备不能执行其命令,从设备将建立一错误消息并把它作为回应发送出去。 7.查询:数据段包含了从设备要执行功能的任何附加信息:从何寄存器开始读、要读的寄存 器数量,错误检测域为从设备提供了一种验证消息内容是否正确的方法 回应:查询消息中的功能代码的回应。数据段包括了从设备收集的数据:像寄存器值或状

MODBUS_RTU通信协议_

MODBUS RTU通信协议 本通信协议采用标准ModBus协议,采用RTU(十六进制数)传输模式。ModBus协议是一种主---从式协议。任何时刻只有一个设备能够在线路上进行发送。由主站管理信息交换,且只有主站能发起。主站会依次对从站进行轮流查询。只有当从站地址与轮询地址相匹配,从站才能回复消息。从站之间不能进行直接通信。协议桢中不包含任何消息报头及消息结束符,消息的开始和结束依靠间隔时间来识别,当间隔时间长于或等于3.5个字符时,即作为检测到桢结束。如果网络内没有与查询地址相一致的从站或从站接收时CRC校验出错,主站将不会接收到返回桢,这时主站根据超时设定判断是否超时,如超时,作出重发或弹出异常错误窗口动作。 协议桢定义如下: 从站地址功能代码数据区CRC16 从站地址:地址必须在1---247之间。 在同个主站网络中每个从站地址必须唯一。 设定仪表二级参数DE。 功能代码:包含读、写多个寄存器。 数据:以二进制代码传输。 CRC16:循环冗余校验,校验从从站地址到数据区最后一个字节,计算多项式码为A001(hex)。 通讯口设置 通讯方式异步串行通讯接口,如RS-485,RS-232,RS-422等 波特率1200~9600bps(可由设定仪表二级参数自由更改,设定仪表二级参数BT,默认9600)见表10 字节数据格式 HEX . 一位起始位 . 八位数据位 . 一位停止位 . 无校验 起始位数据位(从低到高)停止位 消息桢格式(读、写功能是从主站角度定义的) 读寄存器桢

读寄存器返回桢 写寄存器桢 写寄存器返回桢 错误返回桢 功能代码表:1 错误代码表:2 寄存器 0x03,0x10命令对应的保持寄存器地址表,MODBUS地址40001 对应于寄存器地址0。

modbus协议简述

MODBUS通信协议 HZR、HZC系列产品采用RS485、RS232、CAN、EtherNet(TCPIP)等通信方式与当地监控系统或上一级调度自动化系统连接。MODBUS是应用层协议,可基于上述通信媒介进行系统互连。MODBUS采用直接内存访问的模式,其基本协议定义了内存访问的具体细节,各应用程序或系统互连时只须提供内存地址表即可。 一、HZR、HZC系列产品支持的MODBUS命令 1、连续读n个字(功能码03H) 下行: 设备地址(BYTE):01H~FFH 功能码(BYTE):03H 起始地址(WORD):0000H~FFFFH 读的字数(WORD):0001H~007DH 校验码(WORD):以上所有字节的CRC16校验和 上行: 设备地址(BYTE):01H~FFH 功能码(BYTE):03H 数据长度(BYTE):01H~FAH 数据内容(BYTE):读到的具体数据 数据内容(BYTE):读到的具体数据 。。。 数据内容(BYTE):读到的具体数据 校验码(WORD):以上所有字节的CRC16校验和 2、写1个字(功能码06H) 下行: 设备地址(BYTE):01H~FFH 功能码(BYTE):06H 起始地址(WORD):0000H~FFFFH 写入数据(WORD):0001H~FFFFH 校验码(WORD):以上所有字节的CRC16校验和 上行: 设备地址(BYTE):01H~FFH 功能码(BYTE):06H 起始地址(WORD):0000H~FFFFH 写入数据(WORD):0001H~FFFFH 校验码(WORD):以上所有字节的CRC16校验和 3、连续写n个字(功能码10H)

(完整word版)MODBUS_RTU通讯协议

百特工控 福州福光百特自动化设备有限公司MODBUS通讯协议 使用手册

1. RTU 方式通讯协议 1.1. 硬件采用RS -485,主从式半双工通讯,主机呼叫从机地址,从机应答方式通讯。 1. 2. 数据帧10位,1个起始位,8个数据位,1个停止位,无校验。 波特率:9600;19200 38400 1.3. 功能码03H : 读寄存器值 主机发送: 第1字节 ADR : 从机地址码(=001~254) 第2字节 03H : 读寄存器值功能码 第3、4字节 : 要读的寄存器开始地址 要读FCC 下挂仪表, 第5、6字节 : 要读的寄存器数量 第7、8字节 : 从字节1到6的CRC16校验和 从机回送: 第1字节 ADR : 从机地址码(=001~254) 第2字节 03H : 返回读功能码 第3字节 : 从4到M (包括4及M )的字节总数 第4到M 字节 : 寄存器数据 第M +1、M+2字节 : 从字节1到M 的CRC16校验和 当从机接收错误时,从机回送: 第1字节 ADR : 从机地址码(=001~254) 第2字节 83H : 读寄存器值出错 第3字节 信息码 : 见信息码表 第4、5字节 : 从字节1到3的CRC16校验和 1.4. 功能码06H : 写单个寄存器值 主机发送:

当从机接收正确时,从机回送: 当从机接收错误时,从机回送: 第1字节 ADR :从机地址码(=001~254) 第2字节 86H :写寄存器值出错功能码 第3字节 错误数息码 : 见信息码表 第4、 5字节 : 从字节1到3的CRC16校验和 1.5. 功能码10H : 连续写多个寄存器值 当从机接收正确时,从机回送: 当从机接收错误时,从机回送: 第1字节 ADR : 从机地址码(=001~254) 第2字节 90H : 写寄存器值出错 第3字节 错误信息码 : 见信息码表 第4、5字节 : 从字节1到3的CRC16校验和

威纶通触摸屏和s通过MODBUSRTU协议通讯

威纶通触摸屏和s7-200通过MODBUS RTU协议通讯 一般情况下,威纶通触摸屏通过PPI协议与西门子S7-200 CPU直接通讯。 另外,由于西门子PLC也支持MODBUS协议,下面就介绍一下怎么使用Modbus协议建立威纶通触摸屏与S7-200之间的通讯: 硬件连接 在使用Modbus协议时,计算机与S7-200之间通讯直接使用PPI通讯电缆即可。 选配一触摸屏通讯端口 我们这里以MT6070IH2和s7-200进行通讯 S7-200的通讯端口是一个9孔(famel)D型插头,针脚分布如下所示: S7-200通讯端口(端口0)与威纶通触摸屏的通讯连接,如下图所示: S7-200编程及设置 在缺省情况下S7-200的通讯端口是不支持Modbus协议的,要想实现Modbus通讯必需在PLC的主程序模块中调用Modbus通讯子程序。Modbus通讯子程序可以从“STEP 7-Micro/WIN Add-On: Instruction Library (STEP 7-Micro/WIN附件:指令库)”中获得。在安装了“STEP 7-Micro/WIN附件:指令库”后,在导航树“指令/库”下面我们可以找到“Modbus Protocol”。在其下面包含了MBUS_INIT 和MBUS_SLAVE两个子程序,MBUS_INIT用于对Modbus通讯进行初始化,MBUS_SLAVE用于在

指定端口上提供Modbus从站通讯服务。下在介绍如何在主程序中调相关子程序及环境参数设置: 调用Modbus通讯初始化命令 首先为MBUS_INIT命令建立一个触发条件(只触发一次),如:SM0.1;从导航树“指令/库/ Modbus Protocol”下面,将MBUS_INIT指令拖拽到主程序块中。再就是正确设置MBUS_INIT各项调用参数和执行结果输出地址,我们可以建立一下如下图所示初始化调用过程: Mode:协议类型,1-Modbus协议;0-PPI协议。 Addr: PLC地址,1~247,。 Baud: 通讯波特率,1200、2400、4800、9600、19200、38400、57600或11520。 Parity: 校验方式,0-无校验;1-奇数校验;2-偶数校验。 Delay:信息结束超时时间,0~32767,有线连接设置为0即可。 MaxIQ:0~128,映射在离散输入寄存器或离散输出寄存器中的I或Q数。建议为:128。 MaxAI:0~32;映射在模拟输入寄存器中AIW数;CPU 221为0,CPU 222为16,CPU 224、226和226XM为32。 MaxHold:V内存映射在保持寄存器中的寄存器数。 HoldStart:V内存的映射时的起始地址。 Done:初始化指完成时,输出为开状态;开关量(Bit)。 Error:初始化错误代码,请参阅Modbus从机协议执行错误代码;输出为字节。 调用Modbus从机通讯命令 初始化完成后,就可以调用Modbus从机通讯命令(MBUS_SLAVE)了。通常Modbus从机通讯命令在主程序块的每个执行周期都要初执行(始终保持通讯状态),因为可以用一个常开量作为命令的触发条件,如:SM0.0。从导航树“指令/库/ Modbus Protocol”下面,将MBUS_SLAVE指令拖拽到主程序块中。调用过程如下图所示:

Modbus标准通讯协议格式【最新】

Modbus通讯协议 下表是Modbus的功能格式: 1、读可读写数字量寄存器(线圈状态): 计算机发送命令:[设备地址] [命令号01] [起始寄存器地址高8位] [低8位] [读取的寄存器数高8位] [低8位] [CRC校验的低8位] [CRC校验的高8位] 例:[11][01][00][13][00][25][CRC低][CRC高] 意义如下: <1>设备地址:在一个485总线上可以挂接多个设备,此处的设备地址表示想和哪一个设备通讯。例子中为想和17号(十进制的17是十六进制的11)通讯。 <2>命令号01:读取数字量的命令号固定为01。 <3>起始地址高8位、低8位:表示想读取的开关量的起始地址(起始地址为0)。比如例子中的起始地址为19。 <4>寄存器数高8位、低8位:表示从起始地址开始读多少个开关量。例子中为37个开关量。

<5>CRC校验:是从开头一直校验到此之前。在此协议的最后再作介绍。此处需要注意,CRC校验在命令中的高低字节的顺序和其他的相反。 设备响应:[设备地址] [命令号01] [返回的字节个数][数据1][数据2]...[数据n][CRC 校验的低8位] [CRC校验的高8位] 例:[11][01][05][CD][6B][B2][0E][1B][CRC低][CRC高] 意义如下: <1>设备地址和命令号和上面的相同。 <2>返回的字节个数:表示数据的字节个数,也就是数据1,2...n中的n的值。 <3>数据1...n:由于每一个数据是一个8位的数,所以每一个数据表示8个开关量的值,每一位为0表示对应的开关断开,为1表示闭合。比如例子中,表示20号(索引号为19)开关闭合,21号断开,22闭合,23闭合,24断开,25断开,26闭合,27闭合...如果询问的开关量不是8的整倍数,那么最后一个字节的高位部分无意义,置为0。 <4>CRC校验同上。 2、读只可读数字量寄存器(输入状态): 和读取线圈状态类似,只是第二个字节的命令号不再是1而是2。 3、写数字量(线圈状态):

相关文档
最新文档