第八章:统计检验的基本方法.

合集下载

医学统计学:第八章 t检验

医学统计学:第八章  t检验
作为总体指标)
(1)建立检验假设
H0:μ =μ0 ,即该托儿所男婴的体重发育状
况与全国九城市的同期水平相同。
H1: μ≠μ0 ,即该托儿所男婴的体重发育状
况与全国九城市的同期水平不同。
α =0.05(双侧)
(2)计算u值 本例因总体标准差σ已知,故
可用u检验。
本例n=47, 样本均数=11, 总体均数=11.18,总
验)
一、单样本t检验(样本均数与总体均数比较的t检验)
即样本均数代表的未知总体均数与已知的 总体均数(一般为理论值、标准值或经过大量 观察所得的稳定值等)进行比较。
这时检验统计量t值的计算在H0成立的前提
条件下为:
t X 0
Sn
例3.3 根据调查,已知健康成年男子脉搏的 均数为72次/分钟,某医生在一山区随机测量 了25名健康成年男子脉搏数,求得其均数为 74.2次/分钟,标准差为6.5次/分钟,能否认 为该山区成年男子的脉搏数与一般健康成年 男子的脉搏数不同?
二、配对资料的t检验
配对实验设计得到的资料称为配对资料。
医学科研中配对资料的四种主要类型: ➢ 同一批受试对象治疗前后某些生理、生化指标
的比较; ➢ 同一种样品,采用两种不同的方法进行测定,
来比较两种方法有无不同; ➢ 配对动物试验,各对动物试验结果的比较等。 ➢ 同一观察对象的对称部位。
配对资料的 t 检验
之间收缩压均数有无差别?
(1)建立检验假设
H0:μ1 =μ2 ,即该地20~24岁健康女子和
男子之间收缩压均数相同;
H1: μ1≠μ2 ,即该地20~24岁健康女子和男
子之间收缩压均数不同。 α =0.05(双侧)
(2)计算u值

概率论与数理统计(8)假设检验

概率论与数理统计(8)假设检验

概率论与数理统计(8)假设检验第八章假设检验第一节假设检验问题第二节正态总体均值的假设检验第三节正态总体方差的检验第四节大样本检验法第五节 p值检验法第六节假设检验的两类错误第七节非参数假设检验第一节假设检验问题前一章我们讨论了统计推断中的参数估计问题,本章将讨论另一类统计推断问题——假设检验.在参数估计中我们按照参数的点估计方法建立了参数的估计公式,并利用样本值确定了一个估计值,认为参数真值。

由于参数是未知的,只是一个假设(假说,假想),它可能是真,也可能是假,是真是假有待于用样本进行验证(检验).下面我们先对几个问题进行分析,给出假设检验的有关概念,然后总结给出检验假设的思想和方法.一、统计假设某大米加工厂用自动包装机将大米装袋,每袋的标准重量规定为10kg,每天开工时,需要先检验一下包装机工作是否正常. 根据以往的经验知道,自动包装机装袋重量X服从正态分布N( ).某日开工后,抽取了8袋,如何根据这8袋的重量判断“自动包装机工作是正常的”这个命题是否成立?请看以下几个问题:问题1引号内的命题可能是真,也可能是假,只有通过验证才能确定.如果根据抽样结果判断它是真,则我们接受这个命题,否则就拒绝接受它,此时实际上我们接受了“机器工作不正常”这样一个命题.若用H0表示“”,用H1表示其对立面,即“”,则问题等价于检验H0:是否成立,若H0不成立,则H1:成立.一架天平标定的误差方差为10-4(g2),重量为的物体用它称得的重量X服从N( ).某人怀疑天平的精度,拿一物体称n次,得n 个数据,由这些数据(样本)如何判断“这架天平的精度是10-4(g2)”这个命题是否成立?问题2记H0: =10-4,H1: ,则问题等价于检验H0成立,还是H1成立.某种电子元件的使用寿命X服从参数为的指数分布,现从一批元件中任取n个,测得其寿命值(样本),如何判定“元件的平均寿命不小于5000小时”这个命题是否成立?记问题3则问题等价于检验H0成立,还是H1成立.某种疾病,不用药时其康复率为,现发明一种新药(无不良反应),为此抽查n位病人用新药的治疗效果,设其中有s人康复,根据这些信息,能否断定“该新药有效”?记问题4则问题等价于检验H0成立,还是H1成立.自1965年1月1日至1971年2月9日共2231天中,全世界记录到震级4级及以上的地震共计162次,问相继两次地震间隔的天数X是否服从指数分布?问题5记服从指数分布,不服从指数分布.则问题也等价于检验H0成立,还是H1成立.在很多实际问题中,我们常常需要对关于总体的分布形式或分布中的未知参数的某个陈述或命题进行判断,数理统计学中将这些有待验证的陈述或命题称为统计假设,简称假设.如上述各问题中的H0和H1都是假设.利用样本对假设的真假进行判断称为假设检验。

医学统计学 -第08章 方差分析

医学统计学  -第08章  方差分析

第一节 方差分析的基本思想
看一个例子
例8-1 为研究钙离子对体重的影响作用,某研究者将36 只肥胖模型大白鼠随机分为三组,每组12只,分别给 予高脂正常剂量钙(0.5%)、高脂高剂量钙(1.0%)和高 脂高剂量钙(1.5%)三种不同的饲料,喂养9周,测其 喂养前后体重的差值。问三组不同喂养方式下大白鼠 体重改变是否不同?
• 三种喂养方式体重改变的平均值各不相同,这种变异 称为组间变异

是组内均值
X
与总均值
i
X
之差的平方和
360
340
组间变异反映了:
320
三种喂养方式的差异(影响), 300
同时也包含了随机误差。
280
260
240
k ni
220
SS组间
(Xi X )2
200
i1 j
180
X甲
X
X乙
X丙



3、组内变异(SS组内,variation within groups)
0.05
2、根据公式计算SS、MS及F值,列于方差分析表内(计 算过程省略)
变异来源 总变异 组间 组内(误差)
完全随机设计的方差分析表
平方和 SS 自由度
均方MS
47758.32
35
31291.67
2
15645.83
16466.65
33
498.99
F值
31.36
3、确定P值,作出判断
分子自由度=k-1=2,分母自由度=n-k=33,查F 界值表(方差分析用)
表 8-1 三种不同喂养方式下大白鼠体重喂养前后差值(g)
正常钙(0.5%) 高剂量钙(1.0%) 高剂量钙(1.5%)

第八章成对数据的统计分析小结课件(人教版)

第八章成对数据的统计分析小结课件(人教版)

R 1
2

i
y y
【参考数据】 y y 226 .
8
—0.5
i
i 1
n
2

N
i 1
n
yi y i
y
i 1
i
y


2
2
1
21.2
0.91 .
226
所以解释变量(身高)对于响应变量(体重)变化的决定系数 R 2 约为 0.91.
②通过残差分析,对于残差的绝对值最大的那组数据,需要确认在样本点的采集中是否有人为的错误,已知通过
善下列残差表,并求解释变量(身高)对于响应变量(体重)变化的决定系数(保留两位有效数字)R 2 ;
y y
n
编号
体重
残差
(kg ) y
e
1
2
3
4
5
6
7
8
57
58
53
61
66
57
50
66
0.1
0.3
0.9
—1.5
【参考公式】 R 1
2
i 1
解析: (2)
对编号为 6 的数据: e 6 57 0.8 169 75.9 2.3 ,
身高较矮
身高较高
合计
体重较轻
6
15
21
体重较重
6
5
11
合计
12
20
32
零假设 H0:男生的身高与体重的 BMI 指数无关
32(6 5 6 15) 2 160
由于 K

3 3.841 ,
12 20 21 11

统计检验的方法

统计检验的方法

统计检验的方法
统计检验是一种根据样本数据对总体做出推断的方法,是统计学中非常重要的一部分。

它主要用于检验样本数据是否符合某种假设,或者比较不同样本之间的差异是否显著。

下面将介绍一些常见的统计检验方法。

首先是T检验,这是一种用于比较两组数据或检验单个样本平均数与已知值之间的差异的方法。

T检验可以分为单样本T检验、双样本T检验和配对样本T检验。

其中,单样本T 检验用于检验单个样本的平均数是否与已知值存在显著差异;双样本T检验则用于比较两组独立样本的平均数差异;配对样本T检验则用于比较两组配对样本的平均数差异。

其次是卡方检验,这是一种用于比较实际观测频数与期望频数之间差异的统计方法。

卡方检验常用于检验分类变量,如比较两个分类变量之间的关联程度或检验分类变量的分布是否符合预期。

此外,还有F检验,它主要用于检验两个或两个以上总体的方差是否存在显著差异,或者用于回归分析中检验模型的显著性。

除了上述几种常见的统计检验方法外,还有Z检验、U检验、秩和检验等多种方法,它们各有特点和适用场景。

在实际应用中,需要根据具体的研究问题和数据类型选择合适的统计检验方法。

总之,统计检验是统计学中非常重要的一部分,它能够帮助我们根据样本数据对总体做出推断,从而得出科学的结论。

在实际应用中,需要掌握各种统计检验方法的原理和应用场景,并根据具体情况选择合适的方法进行数据分析。

概率论与数理统计第八章假设检验

概率论与数理统计第八章假设检验
当总体分布函数完全未知或只知其形式、但 不知其参数的情况,为推断总体的性质,提出 某些关于总体的假设。
为判断所作的假设是否正确, 从总体中抽取 样本, 根据样本的取值, 按一定的原则进行检 验, 然后, 作出接受或拒绝所作假设的决定.
整理课件
2
我们主要讨论的假设检验的内容有
参数检验 总体均值、均值差的检验 总体方差、方差比的检验
H0: Θ0 vs H1: Θ1,
根据样本,构造一个检验统计量T 和检验法则: 若与T的取值有关的一个小概率事件W发生,则 否定H0,否则接受H0,而且要求
P(W|H0)
此时称W为拒绝域,整为理课检件 验水平。
11
例 3. 某厂生产的螺钉,按标准强度为68克/mm2,
而实际生产的螺钉强度 X 服从 N ( ,3.6 2 ). 若 E ( X ) = = 68, 则认为这批螺钉符合要求,否
7
所以我们否定H0, 认为隧道南的路面发生交 通事故的概率比隧道北大.
做出以上结论也有可能犯错误。这是因为 当隧道南北的路面发生交通事故的概率相同, 而3起交通事故又都出现在隧道南时, 我们才犯 错误。这一概率正是P=0.043.
于是, 我们判断正确的概率是1-0.043=95.7%
整理课件
8
假设检验中的基本概念和检验思想 (1) 根据问题的背景, 提出原假设
再作一个备择假设
H1: p> 0.35. 在本问题中,如果判定H0不对,就应当承认H1.
检验: 三起交通事故的发生是相互独立的, 他们
之间没有联系.
如果H0为真, 则每一起事故发生在隧道南的 概率都是0.35, 于是这三起交通事故都发生在隧
道南的概率是
P= 0.353 ≈ 0.043.

统计学-第八章 假设检验

统计学-第八章  假设检验
验和单侧检验。以总体均值μ 的检验为例:
假设 原假设
双侧检验
单侧检验
左侧检验 右侧检验
H0 : m =m0 H0 : m m0 H0 : m m0
备择假设 H1 : m ≠m0 H1 : m <m0 H1 : m >m0
三、假设检验的程序---
4.例题分析
[例8.1] 某品牌洗衣粉在它的产品说明书中声称:平 均净含量不少于1250克。从消费者的利益出发,有关研 究人员要通过抽检其中的一批产品来验证该产品制造商 的说明是否属实。试写出用于检验的原假设与备择假设。
2.接受域:概率P>的区域,为大概率区域,称之 为原假设的接受区域。
3.拒绝域:概率P≤的区域,为小概率区域,称之 为原假设的拒绝区域。
三、假设检验的程序---
1.拒绝原假设H1 原则:临界值
2.接受原假设H0 原则:临界值
检验统计值的绝 对值大于临界值;
检验统计值的绝 对值小于临界值;
假设 H0为真实 H0为不真实
接受H0 判断正确
采伪错误()
拒绝H0 弃真错误()
判断正确
四、假设检验中的两类错误
第I类()错误和第II类()错误的关系
和的关系就像 翘翘板,小就 大, 大就小。
你要同时减少两类 错误的惟一办法是 增加样本容量!
关乎决策:三个与其
与其,人为地把显著性水平固定按某一水平上,不 如干脆选取检验统计量的P值;
第二节 一个正态总体的假设检验
二、均值m的假设检验
3.给出显著性水平(0.01、0.05或0.1)
4.确定接受域和拒绝域(以双侧检验为例)

2已知:当Z Z 2
,则拒绝原假设,反之则接受H0;

生物统计-8第八章单因素方差分析

生物统计-8第八章单因素方差分析

01
确定因子和水平
确定要分析的因子(独立变量) 和因子水平(因子的不同类别或 条件)。
建立模型
02
03
模型假设
根据因子和水平,建立方差分析 模型。模型通常包括组间差异和 组内误差两部分。
确保满足方差分析的假设条件, 包括独立性、正态性和同方差性。
方差分析的统计检验
01
F检验
进行F检验,以评估组间差异是否 显著。F检验的结果将决定是否拒
生物统计-8第八章单因素方差分析
目录
• 引言 • 方差分析的原理 • 单因素方差分析的步骤 • 单因素方差分析的应用 • 单因素方差分析的局限性 • 单因素方差分析的软件实现
01
引言
目的和背景
目的
单因素方差分析是用来比较一个分类变量与一个连续变量的关系的统计分析方法。通过此分析,我们可以确定分 类变量对连续变量的影响是否显著。
VS
多元性
单因素方差分析适用于单一因素引起的变 异,如果存在多个因素引起的变异,单因 素方差分析可能无法准确反映实际情况。 此时需要考虑使用其他统计方法,如多元 方差分析或协方差分析等。
06
单因素方差分析的软件 实现
使用Excel进行单因素方差分析
打开Excel,输入数据。
点击“确定”,即可得到单因素方差分析 的结果。
输出结果,并进行解释和 解读。
谢谢观看
背景
在生物学、医学、农业等领域,经常需要研究一个分类变量对一个或多个连续变量的影响。例如,研究不同品种 的玉米对产量的影响,或者不同治疗方式对疾病治愈率的影响。
方差分析的定义
定义
方差分析(ANOVA)是一种统计技术,用于比较两个或更多组数据的平均值 是否存在显著差异。在单因素方差分析中,我们只有一个分类变量。

统计抽样检验的方法

统计抽样检验的方法
n=10
0.6
0.4
n=20
0.2 n=50
n=30
0 5 10 15 20 25
P(%)
第一节 质量的概念与意义
OC曲线的特征: OC曲线是方案的接收概率 ( Pa ) 与批质量水平 ( p )[批不合格 品率]的关系曲线。 OC曲线越接近理想曲线时,抽样检验方案对批质量好坏的辨别能 力越强。 OC曲线越陡,抽样检验方案越严格,OC 曲线越平,抽样检验方案 越松。 在座标系中,OC曲线越靠左,抽样检验方案越严格,OC曲线越靠 右,抽样检验方案越松。
(2) 二次抽样检验。是指第一次按规定样本大小抽样并进行检 验后,
做不出合格与否的判定时,需继续抽取第二个样本予以检 验,根
据两次检验结果做出合格与否的判定。 (3) 多次抽样检验。 (4) 序贯抽样检验。规定在抽样时,每次只能抽取一个单位产
第一节 质量的概念与意义
二、抽样检验的原理
(一)抽样方案及接收性判断 1.抽样方案 定义:确定样本容量n和判定如何接收和拒收产品的规则。 抽样方案的参数: 批量(N) 抽取样本中的个体量(n) 合格判定数(Ac) 不合格判定数(Re) 检验方案的形式(n, Ac , Re )或(n,c)
第一节 质量的概念与意义
一、统计抽样检验的概念 (一)统计抽样检验的定义
统计抽样检验是按照规定的抽样方案,随机地从一批产品或一个 过程中抽取少量个体(作为样本)进行的检验。其目的验。
第一节 质量的概念与意义
(二)抽样检验适用的场合
L(P) α
1.0
O
Po
P1
β P(%)
第一节 质量的概念与意义
•生产方风险α
•对于给定的抽样方案,当批质量水平(如不合格品率)为某一指 定的可接收值(如可接受质量水平)时的拒收概率。即好的质量批 被拒收时生产方所承担的风险,一般取0.05;

第八章 假设检验 (《统计学》PPT课件)

第八章  假设检验  (《统计学》PPT课件)
与其,为选取“适当的”的而苦恼,不如干脆 把真正的(P值)算出来。
第二节 一个正态总体的假设检验
一、正态总体
设总体X ~ N(m, 2),抽取容量为n的样本 x1, x2, xn
样本均值 X 与方差S2 计算公式分别为:
2
1 n 1
n i1
(xi
X)
我们将利用上述信息,来检验关于未知参数均值 和方差的假设。
总体参数
均值
方差
总体方差已知
z 检验
(单尾和双尾)
总体方差已知
t 检验
(单尾和双尾)
2 检验
(单尾和双尾)
第二节 一个正态总体的假设检验
二、均值m的假设检验
1.H0:m=m0
2.选择检验统计量:
2已知: Z X m0 ~ N(0,1)
/ n
2未知:
小样本: t X m0 ~ t(n 1)
这个值不像我 们应该得到的 样本均值 ...
...因此我们拒绝 原假设μ=50
... 如果这是总 体的假设均值
60
μ=80
H0
样本均值
第一节 假设检验概述
三、假设检验的程序
一个完整的假设检验过程,通常包括以下几个步骤:
首先,设立原假设H0与备选假设H1; 第二步,构造检验统计量,并根据样本观察数据
小样本:当 t t
2
,则拒绝原假设,反之则接受H0;
5.得出结论。
二、均值m的假设检验
6.例题分析
[例8.3] 某广告公司在广播电台做流行歌曲磁带广告 ,它的插播广告是针对平均年龄为21岁的年轻人的,标 准差为16。这家广告公司经理想了解其节目是否为目标 听众所接受。假定听众的年龄服从正态分布,现随机抽 取400多位听众进行调查,得出的样本结果为x 25 岁S2,18 。以0.05的显著水平判断广告公司的广告策划是否符合 实际?

统计学第八章

统计学第八章
19
8.1.3 两类错误
项目
没有拒绝H0
拒绝H0
H0为真
1-α(正确)
α(弃真错误)
H0为假
β(取伪错误)
1-β(正确)
假设检验中各种可能结果的概率
20
8.1.3 两类错误
α和β的关系: 1、 α和β的关系就像跷跷板, α小β就大, α大β就小。因为, 要减少弃真错误α,就要扩大接受域。而扩大接受域,就必然导致取 伪错误的可能性增加。因此,不能同时做到犯两种错误的概率都很 小。要使α和β同时变小,唯一的办法就是增大样本量。 α和β两者的 关系就像是区间估计当中可靠性和精确性的关系一样。 2、在假设检验中,大家都在执行这样一个原则,即首先控制犯α错 误原则。
一般来说,在研究问题的过程中,我们想要予以反对的那个结论, 我们就把它作为原假设。
比如,一家研究机构估计,某城市当中家庭拥有汽车的比例超过 30%。为了验证这种估计是否正确,该研究机构随机的抽取了一个样本 进行检验。试陈述用于检验的原假设和备择假设。
解:研究者想要收集证据予以支持的假设是:“该城市中家庭拥有 汽车的比例超过30%”。因此,原假设是总体比例小于等于30%,备择 假设是总体比例大于30%。可见,通常我们应该先确定备择假设,再确 定原假设。
6
8.1.2 假设的表达式
在假设检验中,一般要先设立一个假设(比如从来没做过坏事),然 后从现实世界的数据中找出假设与现实的矛盾,从而否定该假设。所以, 在多数统计教材当中,假设检验都是以否定事先设定的那个假设为目标的。
如果搜集到的数据分析结构不能否定该假设,只能说明我们掌握的现 实不足以否定该假设,但不能说明该假设一定成立。这是假设检验做结论 的时候尤其要注意的一点。比如一个人在数次的观察中都没有干坏事,但 并不说明他从来都没干过坏事。

第八章 t检验

第八章    t检验
S n 7.2 16 1.8 查 附 表 2 t 界 值 表 得 , t0.05/2(15)= 2.131, t > t0.05/2(15),
P<,拒 绝 H0, 接 受 H1。 认 为 常 年 锻 炼 的 中 学 男 生 心 率
与一般中学男生不同。
f (t)
P =0.0003
-4.65
0t
4.65
H1: 孪 生 兄 弟 体 重 不 同 , 即 d 0。
双 侧 检 验 ,=0.05
d
=0.063,
s d
=0.027,
n=15。






(5-3)得
t 0.063 0 0.063 2.33
0.104 15 0.027
, =n-1=14
查 附 表 2t 界 值 表 得 , t0.05/2(14)=, t t0.05/2(14) =2.145,
尚不能认为两种药的疗效不等。
第四节 正态性检验与方差齐性检验
正态性检验:即检验样本是否来自正态 总体。
检验方法:
1.图示法:方格坐标纸图
正态概率纸图
P-P图:若所分析数据服从 正态分布,则在P-P图上数据点应在左 下到右上的对角直线上。
优点:简单易行。 缺点:较粗糙。
2.统计检验方法 (1)W检验:适用于n≤50 (2) 矩法检验:分别对总体的偏度和 分度进行检验
当t<t/2()时,P>,不拒绝H0。
例 5-5 表 5-2 国 产 与 进 口 两 药 物 治 疗 绝 经 后 妇 女
骨 质 疏 松 症 第 2-4 腰 椎 骨 密 度 改 善 值 (mg/cm2)
国产药
进口药

9第八章 卡方检验

9第八章 卡方检验
Chi第八章 χ2检验 (Chi-square test)
也称卡方检验。 检验也称卡方检验 χ2 检验 也称卡方检验 。 是英国统计 学家Pearson于 1900年提出的一种应 于 学家 年提出的一种应 用范围很广的假设检验方法, 用范围很广的假设检验方法,可用于 检验两个率间的差异; 检验两个率间的差异 ; 检验多个率 (或构成比 间的差异;判断两种属性 或构成比)间的差异 或构成比 间的差异; 或现象间是否存在关联性; 或现象间是否存在关联性;了解实际 分布与某种理论分布是否吻合; 分布与某种理论分布是否吻合;判断 两个数列间是否存在差异等。 两个数列间是否存在差异等。
计算公式
(a + b)!(c + d )!(a + c)!(b + d )! P= a!b!c!d!n!
式中a、b、c、d 和n的意义同前 , !为阶乘符号。0!= 1, 为阶乘符号。 1!= 1 ,3!= 3×2×1 = 6。
(三)求P值的步骤
• 1 . 列四格表 。 使四格表周边合计数 列四格表。 不变, 不变 , 依次增减四格表中任一格子 的数据,列出所有可能的四格表。 的数据,列出所有可能的四格表。 • 列四表格的数量 = 最小合计数 + 1 。 列四表格的数量= 最小合计数+ • 如例 8 -3 , 增减 a 格的数据 ,得 9 个 如例8 格的数据, 四格表。 四格表。
χ2分布的特点
• ⑴ χ2 分布的形状依赖于 ν 的大小 : 当 ν≤2 时 , 曲线呈 L 型 ; 随着 ν 的增加 , 曲线呈L 的增加, 曲线逐渐趋于对称; →∞时 曲线逐渐趋于对称 ; 当 ν→∞ 时 , 分布 趋近于正态分布。 趋近于正态分布。 • ⑵χ2分布具有可加性:如果两个独立的 分布具有可加性: 随机变量X1和X2分别服从ν1和ν2的χ2分 那么它们的和( 也服从( 布,那么它们的和(X1+X2)也服从(ν1+ ν2)的χ2分布。 分布。

概率论与数理统计第八章假设检验

概率论与数理统计第八章假设检验

对于(a)小概率P{X 0 u }
u是所选取合适的统计量 U 的分位点
1
单侧检验
P{ X 0 u } x 0 u为拒绝区域
其含义是依这样本x所推断的

概率

件H
发生
0



绝H
0
u
拒绝

1
u 拒绝
对于(b)小概率P{X 0 u } (密度函数为对称时)
由 经 验 知 0.015公 斤 , 为 了 检 验 某 天 机器 工 作 是 否 正 常 , 抽 取其 所
包 装 的9袋 称 得 重 量 分 别 为0:.497,0.506,0.518,0.524,0.488,0.511,0.510,0.515,0.519; 问这天机器正常否?
现在另一天任然抽取9袋得样本均值x 0.511公斤,推断这天机器是否工作正常?
小 概 率 事 件 是: 样 本 均 值X与 所 假 设 的 期 望0相 差 X 0
不 能 太 大, 若 相 差 太 大 则 拒 绝H0
小概率事件P{ X 0 u }
u

2








量U
2


2



1
P{ X 0 u } x 0 u 为拒绝区域 2
较大、较小是一个相对的概念,合理的界限在何 处?应由什么原则来确定?
问题是:如何给出这个量的界限? 这里用到人们在实践中普遍采用的一个原则:
小概率事件在一次试验 中基本上不会发生(若发 生了则认为假设是错 )
在假设检验中,称这个小概率为显著性水平,用 表示.

医学统计学第八章-t检验

医学统计学第八章-t检验
随机数:494 567
随机数:206 126
……
试验
对照
试验
对照
对照
试验
对子号
试验组
对照组
1
门诊6
门诊1
2
门诊4
门诊2
3
门诊3
门诊5
……
……
试验组与对照组的两个观察对象均按照一定的条件配成对子, 同一对子中的“混杂”因素在二者间几乎相同;而在不同对子 间这些“混杂”因素则有可能差别很大
01
02
03
单样本资料的t检验
单样本资料的t检验
P/ 2
P / 2
t39
0
-2.023
2.023
-1.294
1.294
1/2α
1/2 α
由于t=-1.294>t0.05/2,35=-2.023,因此虽然无法准确得出P值,但仍然可以推断P>0.05(经过计算机软件得出结果P=0.203 )
在a=0.05的水准上,不拒绝H0,尚不认为农村新生儿的出生体重与该地平均水平不同。
2
样本对应的总体均数等于3.36,仅仅是由于抽样误差所致这种差别;
3
非抽样误差,二者的确有别?
4
两种情况只有一个是正确的,且二者必居其一,需要我们作出推断。
单样本资料的t检验
H0:=3.36,农村新儿体重与该地平均水平相同
H1:≠3.36,二者不同 (有可能高也有可能低,总之不相等即可)
检验水准a=0.05(双侧)
02
假设检验与区间估计的关系
2.018
前面阐述了方差齐性的情况下,如何进行两个样本均数比较的t检验
如果方差不齐,很多学者建议在这样的情况下采用自由度校正的方法计算t分布的概率,或者直接采用非参数检验

第八章 卡方检验

第八章  卡方检验

20(25.8) 24(18.2) 21(15.2) 5(10.8) 41 29
表8-1中是两组样本的频数分布。我们的问题是 这两个频数分布的总体分布是否相等?或者这 两份样本是否来自同一个总体? 因为这里是二分类变量,问两个总体分布是否 相等就相当于问两组样本的总体有效率是否相 等。 四个格子的数据20、24、21、5是基本数据,其 余的数据44、25、41、29、70都是从这四个数 据计算得来的,因此,该表称为四格表 (fourfold table ),又称为2 × 2列联表。 在此四格表中, 20、24、21、5是实际频数A, 在这四个数字旁边括号内的数字是理论频数T, 通过实际频数和理论频数的差异的大小可以确 定 χ2 检验中检验统计量的大小。
2(d)0.85 14(固定值) 5 (固定值) 82 (固定值)
假设检验的过程
1.建立假设: H0 : π 1 = π 2 H1 : π 1 ≠ π 2 2.确定显著性水平, α取0.05。 3.确定比当前表格更极端表格的组合数,并计算 概率值P。 4.做出结论
在边缘合计数不变的条件下,比当前四 格表更极端的组合情况可根据最小的理 论频数所在的格子来寻找。本例中为d。 实际频数为2,理论频数为0.8536。差值 为1.15。所以d取值为2,3,4,5,这4 种组合就是满足条件的四格表。计算它 们的概率之和为0.20。 因为P > 0.05;不拒绝H0,差异无 统计学意义,还不能认为两组患者的 病死率存在差异。
42 2 ( 2 × 9 − 26 × 5 − ) × 42 2 2 χ = 28 × 14 × 7 × 35 = 3.62
V=(2-1)( ( )(2-1)=1 )( )
=3.62 < 3.84, P > 0.05;不拒绝H0, 差异无统计学意义,还不能认为两个年级学生 的近视眼患病率有差异。

《概率论与数理统计》第八章2均值与方差的检验

《概率论与数理统计》第八章2均值与方差的检验

2 = i1

2 0
当σ2=σ02 为真时, 2 ~ 2 (n)。
例 1 一细纱车间纺出的某种细纱支书标准差为 1.2.从某 日纺出的一批细纱中随机取 16 屡进行支数测量,算得样 本的标准差为 2.1,问纱的均匀度有无显著变化?取
0.05, 并假设总体是正态分布.
解 要检验的假设为
H0
假如这时一个人主张选显著性水平 α=0.05,而另 一个人主张选显著性水平 α=0.01,则第一个人的结论 是拒绝 H0 ,而第二个人的结论是接受 H0 ,如何处理这 一问题呢?
例 1 一支香烟中的尼古丁含量 X N(,1) ,质量标准规定 不 能超过 1.5mg,现从某厂生产的香烟中随机地抽取 20 支,测 得平均每支香烟尼古丁含量为 x 1.97 mg,试问该厂生产的 香烟尼古丁含量是否符合标准的规定?
由此得
k1
2 1
/
2
(n
1)
n 1
k2
2
/
2
(n
1)
n 1
拒绝域为:
2
(n 1)S 2
2 0
2 1
/
2
(n
1)

2
2
/
2
(n
1)
以上讨论的是在均值未知的情况下,对方差的假设检验,这种情况在 实际问题中较多。而当均值已知的时候,对方差的假设检验,其方法类似, 只是所选的统计量为
n
(Xi )2ຫໍສະໝຸດ 这里1,2 1
,
2
,
2 2
未知,能否判定工作时
机器 B 比机器 A 更稳定. 取 0.01.
解 由题意检验假设
H0
:
2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》
【例3】设某异常区磁场强度服从正态分布N~
(56,20)现有一台新型号的仪器,用它对该区 进行磁测,抽测了41个点,其平均数为=61.1,今 以α=0.05检验用此仪器测出的结果,是否符合要 求? 解:双侧检验, Z=(61.1-56)/4.47/
经济、管理类基础课程 《统计学原理》
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》
(三)、单侧检验与双侧检验 1、双侧检验:只强调差异而不考虑方向性的 检验称为双侧检验。 (显著性概率集中于概
率分布两侧)
①临界值:取双侧临界值,检验中临界值常 =±1.96、 记为 、t 。 Z 分布中, 2 2 0.01 =±2.58。 2 ②假设符号:“=、≠”。
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》
【检验结果】
H0: 40000 H1: < 40000 = 0.05 df = 20 - 1 = 19
x 0 41000 40000 t 0.894 s n 5000 20
结论:该制造商的产品同他所说的标准相符。
经济、管理类基础课程 《统计学原理》
(二)、假设检验的两类错误 1、α错误:拒绝属于真实的H0所犯的错误 (弃真)。 2、β错误:接受错误的H0所犯的错误(纳 伪)。
为避免α类错误,可尽量增大置信区间,减 小显著性水平,但同时增大了犯β错误的可 能性;反之则增大犯α错误的可能性。
黔南民族师范学院管理科学系
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》
统计检验的思路: 进行统计检验,就是首先假定H0成立, 然后运用概率论的原理,计算H0成立的概 率P有多大,P大则接受,P小(一般小于 0.05或0.01)则说明H0成立的可能性极小, 此时要拒绝或否定H0 。
黔南民族师范学院管理科学系
(二)目的: 判断研究对象之间的差异性质及差异程度。
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》
二、假设的建立 (一)基本假设(虚无假设、原假设、零假设): 即没有差异的假设。1、当前样本所属总体与原总 体没有差异。2、两样本所属总体没有差异。记为: “H0”。 表示法:如均数差异检验: H0 :μ=μ0 H0:u1=u2 (二)备择假设(对立假设):即有差异的假设。 是研究者希望接受的假设。1、当前样本所属总体 与原总体有差异。2、两样本所属总体有差异。记 为: “H1” 。 表示法:如均数差异检验: H1 :μ≠μ0 H1 :u1 ≠ u2
=7.31 41
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》
【例4】今从某地区抽取100个成年人,测
得其平均身高=170cm,标准差为30cm, 已知该地区以前成年人平均身高为167cm。 试问该地区成年人的平均身高是否有显著 提高? 检验过程(略)
黔南民族师范学院管理科学系
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》
单侧检验的否定域与临界值
置信度 拒绝域

1- 接受域
临界值
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》
◆单侧检验与双侧检验的选用 ——逻辑判断法 某地某年龄段儿童智商平均为100,该年龄段某普通 班为103,检验差异。 某地某年龄段儿童智商平均为100,该年龄段某重点 班为103,检验差异。 ◆单侧检验与双侧检验的选用 ——备选假设判断法 “是否有显著差异”:双侧检验。如某种材料的尺寸。 “是否显著低于”:左侧检验。 “是否显著高于”:右侧检验。如某种新技术的实施 效果。 一般情况选用双侧较为稳妥
0.05 (8 ) 2
1.75
=2.306,|t|<

5、统计决断:因|t|=1.75,t
t 0.05 P>0 。保留H0,拒绝H1。 ( 8.05 ) 2 6、结论:统计检验表明这天自动包装机工作正常
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》
【例3】一个汽车轮胎制造商声称,某一
(一)否定域的构建: —小概率事件与显著性水平
1、小概率事件:落入置信区间的事件称为大概率 事件;落入置信区间之外的事件称为小概率事 件。即,H0成立的可能性小于0.05或0.01的事 件称为小概率事件。 如果 x 与μ无显著差异,则落入置信区间内的可 能性极大,而落入置信区间外的可能性极小。
黔南民族师范学院管理科学系
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》
【检验过程】 1、已知: 0=0.081mm、 =0.076mm n=200、 = 0.025 、 =0.05 2、确定检验形式:双侧检验。 3、建立假设:H0: =0=0.081mm H1: ≠0≠0.081mm 4、计算统计量Z(总体标准差已知)
第1节:统计假设检验的基本原理
一、统计检验的目的 问题1:某已知样本,其统计量与已知总体参数 之间的差异是实质性的还是由误差造成。(部份 与整体) 问题2:两种现象之间的差异是实质性的还是非 实质性的。(整体与整体)
(一)概念: • 事先对总体参数或分布形式作出某种假设, 然后利用样本信息来判断原假设是否成立。
【检验过程】 1、已知: 0=1000、 x = 986 n=9、 S= 24、df=9-1=8 2、确定检验形式:双侧检验。 3、建立假设:H0: =0=1000 H1: ≠0≠1000 4、计算统计量t(总体标准差未知)
t
x 0 s n

986 1000 24 9
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》
假设检验 主要内容
单总体的检验
均值
Z 检验 t 检验
比例
Z 检验
方差
c2检验
双总体的检验 多总体检验
均值
独立 样本
配对 样本
比例
t检 验
方差
均数检验
Z检 验
Z检 验
F检 验
方差分析
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》
经济、管理类基础课程 《统计学原理》
2、显著性水平(否定域):
拒绝H0的概率称为显著性水平。常用的有 0.05与0.01,用α=0.05,α=0.01表示。显著 性水平与置信度相对应,0.05→0.95, 0.01→0.99。 以上两个显著性水平相比,0.05比0.01更容易 拒绝H0
黔南民族师范学院管理科学系
【例2】某厂采用自动包装机分装产品,
假定每包产品的重量服从正态分布,每 包标准重量为1000克。某日随机抽查9包, 测得样本平均重量为 986克,样本 S校正 标准差为 24 克。试问在 0.05 的显著性水 平上,能否认为这天自动包装机工作正 常?
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》
经济、管理类基础课程 《统计学原理》
平均数之差抽样分布的Z值或t值:
( x1 x2 ) (1 2 ) z (t ) SED
x
z
0.01 2
x 0

n

0.076 0.081 0.025 200
0.01
2
2.83
=2.58,|Z|>

5、统计决断:因|Z|=2.83,
P<0 .01。否定H0,接受H1。 6、结论:新机床加工的零件的椭圆度与以前有显著差异。
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》
x1 1 : x2 2

x1与x2 的 先假定u1=u2,再通过样本 抽样误差来论证其成立的概率。
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》
(一)平均数之差的抽样分布 从μ1与μ2中随机抽出N对平均数,可算出N 对差数,即 D 值不会完全 X 1 X,这些 D 2 相同,同样可以形成一个围绕u1-u2的抽样 分布,其抽样分布的标准误记为:“SED”, 该抽样分布仍遵循平均数抽样分布的基本原 理,仍然有Z分布与t分布.
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》
统计量Z值或t值的计算公式
x 0 z n
x 0 t s n
(总体标准差已知)
(总体标准差已知)
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》
三、假设检验的过程(检验实例)
【例1】某机床厂加工一种零件,根据经验知道, 该厂加工零件的椭圆度近似服从正态分布,其 总体均值为 0=0.081mm ,总体标准差为 = 0.025 。 今 换 一 种 新 机 床 进 行 加 工 , 抽 取 n=200 个 零 件 进 行 检 验 , 得 到 的 椭 圆 度 为 0.076mm 。试问新机床加工零件的椭圆度的 均值与以前有无显著差异?(=0.05)
经济、管理类基础课程 《统计学原理》
第八章:统计检验的基本方法
第1节:统计假设检验的基本原理 第2节:样本平均数与总体平均数的差异检验 第3节:两个总体平均数的差异检验 第4节:比率差异的显著性检验 第5节:多个平均数的差异检验-方差分析初步
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》

2
0.05
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》
双侧检验的否定域与临界值
置信度 否定域 否定域 1- /2 接受域
/2
临界值
临界值
黔南民族师范学院管理科学系
经济、管理类基础课程 《统计学原理》
相关文档
最新文档