循环冷却水的总碱度及其计算

循环冷却水的总碱度及其计算
循环冷却水的总碱度及其计算

水质总碱度检测方法完整版

水质总碱度检测方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

水质总碱度检测方法 1.目的 本方法规定了用酸式滴定法测定工厂生产用水及生活饮用水的总碱度。 2.范围 适用于工厂所有生产用水及生活饮用水。 3.原理 碱度是水介质与氢离子反应的定量能力,通过用强酸标准溶液将一定体积的水样滴定至pH 值为所测得的碱度称为总碱度.测定结果用相当于碳酸钙的质量浓度,mg/L 为单位表示。 5.试剂 5.1. L 甲基橙指示剂:称取甲基橙溶于,70℃的纯水中冷却定容至 100ml 。此试剂贮存于棕色玻璃瓶中,有效期3个月 5.2. L 盐酸标准溶液:吸取盐酸(ρ20=mL ),稀释至1000mL 。此试剂贮 存于玻璃瓶中,有效期2个月。按下述方法标定: 5.3. 称取在2500 C 烘箱中烘干过的无水碳酸钠~克于250mL 锥形瓶中,加50mL 纯水溶解,加4滴甲基橙指示剂,用配制的盐酸溶液滴定至溶液由黄色突变为橙色。同时做空白试验。 计算公式:c(HCl)= 0()0.05299 m V V -? 式中:c(HCl)—盐酸标准溶液的浓度,mol/L ; m —碳酸钠的质量,g ; V —滴定碳酸钠所消耗盐酸标准溶液的体积,mL ; Vo —空白试验消耗盐酸标准溶液的体积,mL 。 —与盐酸标准溶液[c(HCl)=L]相当的以克表示的碳酸钠的 质量。 6.仪器 6.1. 酸式滴定管 6.2. 移液管 6.3. 250mL 锥形瓶 7.操作规程

7.1. 吸取水样于250mL 锥形瓶中,加4滴甲基橙指示剂,用盐酸标准溶 液滴定至试液由黄色突变为橙色。 8.计算公式: ρ(CaCO3)= 1()50.041000c HCl V V ??? 式中:ρ(CaCO3) —水样的总碱度,mg/L ; c(HCl)—盐酸标准溶液的的浓度,mol/L ; V 1—滴定水样消耗标准盐酸溶液的体积,mL ; V —所取水样的体积,mL ; —与氢氧化钠标准溶液[c(NaOH)=L]相当的以克表示的总碱 度(CaCO3)的质量。

碱度的测定(全套步骤)

一.天平的使用 实验室电子天平:梅特勒-托利多AL204/01 1. 工作原理 电磁力平衡的原理 2. 基本操作 使用环境:首先,放置天平的工作台应稳定牢固,远离震动源;周围没有高强电磁场;没有排放有毒有腐蚀性气体的污染源;尽可能远离门、窗、散热器以及空调装置的出风口。其次,天平室温度和湿度应保持恒定,温度控制在20℃~28℃、湿度在40%RH-70%RH之间。 调整:开机前,首先检查天平是否处于水平状态,即天平水平仪中水平泡是否处于中心位置,如果天平未处于水平,则调节天平底脚两个水平旋钮加以校正。如果在称重过程中不可避免的要移动天平,则每次移动后,都要重新调整水平。 开机预热:连接电源,让秤盘空载,按“On/Off”按钮。天平开启并进行自检,自检通过显示0.0000g,进入预热。为保证获得精确的称量结果,必须至少在校准前60 分钟开机,以达到工作温度。但在一般情况下,天平开机后,让其保持在待机状态下,预热20 分钟,即可称量。 校准:在开机状态下,将天平称盘上的被称量物清除,按“->0/T<-”(清零/ 去皮)键,待显示器稳定显示。接着按住“Cal”键不放,直到显示“Cal 200.0000g”字样,放入标值200g 的校准砝码在秤盘中心位置,天平自动进行校准,当“Cal 0.0000g”闪烁时,移去砝码,随后显示屏上短时间出现“CAL donE”信息,紧接着又出现“0.0000g”时,天平校准结束。天平进入称量工作状态,等待称量。 称量:打开玻璃防风罩密封门,将待测物轻轻放在秤盘中心,关上密封门,待示值稳定后,记录下待测物的质量,再将被测物轻轻取出,关紧密封门;当称量过程中需要去皮,按去皮按钮(O/T),此时示值为“0.0000g”。 关机:称量完毕,确定天平秤盘上清洁无物后,按住“On/Off”按钮直至关机(屏幕上无显示)。如还需要继续使用,可以不关闭天平。 3.注意事项 应使用自带的电源适配器,并按说明书选择适当的电压(~220V 或110V)。 当称量易挥发和具有腐蚀性的物品时,要将物品盛放在密闭的容器内,以免称量不准和腐蚀天平。在称重过程,一定要避免用尖锐的物品接触天平的操作键盘。尽量避免裸指直接接触按键,否则日久天长,手指上的汗渍会侵蚀坏按键保护层。 4.维护和保养方法 经常对电子天平进行自校或定期外校,使其处于最佳工作状态。 当称量易挥发和具有腐蚀性的物品时,要将物品盛放在密闭的容器内,以免腐蚀和损坏电子天平。一般情况下,不要将过热或过冷的物体放在天平内称量,宜当物体的温度与天平室的温度达到一致后,方可进行称量。 在称重时,电子天平严禁超载,称量较重物品时,称量时间应尽可能短。 在对秤盘和外壳擦拭时,可以用一块柔软、没有绒毛的织物来轻轻擦拭,严禁使用具有强溶性的清洁剂清洗。对称量时撒落在称量室的物品要及时清理干净。如果电子分析天平长时间搁置不用,应定期对其进行通电检查,确保电子元器件的干燥。

碱度投加量的实例计算

碱度投加量的实例计算! 一、PH对硝化的影响 pH值酸碱度是影响硝化作用的重要因素。硝化细菌对pH反应很敏感,在pH中性或微碱性条件下(pH为8~9的范围内),其生物活性最强,硝化过程迅速。 当pH>9.6或<6.0时,硝化菌的生物活性将受到抑制并趋于停止。 若pH>9.6时,虽然NH4+转化为NO2—和NO3—的过程仍然异常迅速,但是从NH4的电离平衡关系可知,NH3的浓度会迅速增加。由于硝化菌对NH3极敏感,结果会影响到硝化作用速率。 在酸性条件下,当pH<7.0时硝化作用速度减慢, pH <6.5硝化作用速度显著减慢,硝化速率将明显下降。pH<5.0时硝化作用速率接近零。 pH下降的原因 pH下降的原因有两个,一是进水碱度不高。二是进水碳源不足,无法补充硝化消耗的一半的碱度。

由硝化方程式可知,随着NH3-N被转化成NO3—-N,会产生部分矿化酸度H+,这部分酸度将消耗部分碱度,每克NH3-N转化成NO3—-N约消耗7.14g 碱度(以CaC03计)。因而当污水中的碱度不足而TKN 负荷又较高时,便会耗尽污水中的碱度,使混合液中的pH值降低至7.0以下,使硝化速率降低或受到抑制。 如果无强酸排人,正常的城市污水应该是偏碱性的,即pH一般都大于7.0,此时的pH则主要取决于人流污水中碱度的大小。 所以,在生物硝化反应器中,应尽量控制混合液pH>7.0,制pH>7.0,是生物硝化系统顺利进行的前提。 而要准确控制pH,pH<6.5时,则必须向污水中加碱。应进行碱度核算。 二、脱氮需碱量的计算 在硝化过程中需要消耗一定量的碱度,如果污水中没有足够的碱度,硝化反应将导致pH值的下降,使反应速率减缓,所以硝化反应要顺利进行就必须使污水中的碱度大于硝化所需的碱度。在实际工程应用中,对于典型的城市污水,进水中NH3-N浓度一般为20~40mg

循环冷却水培训教材

循环xx培训教材 工业生产过程中,往往会产生大量热量,使生产设备或半成品(气体或液体)温度升高,必须及时冷却,以免影响生产的正常运行和产品质量。因水的热容量大,水是吸收和传递热量的良好介质,常用来冷却生产设备和产品。冷却水系统一般可分为直流水系统和循环水系统。 水通过换热器后即排放的称直流系统。若厂区附近水源充足且直接排放而不影响水体时,可采用直流系统。 循环冷却水系统又分为封闭式循环冷却水系统和敞开式循环冷却水系统。 冷却水在完全封闭的、由换热器和管路构成的系统中进行循环时称密闭式循环系统。在密闭式循环系统中,冷却水所吸收的热量一般借空气进行冷却,在水的循环过程中除渗漏外并无其它水量损失,也无排污所引起的环境问题,系统中含盐量及所加药剂几乎保持不变,故水质处理较单纯。但密闭式循环冷却水存在严重的腐蚀剂腐蚀产物问题。密闭式循环系统一般只用于小水量或缺水地区。 冷水流入换热器将热流体冷却,水温升高后,利用其余压流入冷却塔内进行冷却,冷却后的水再用水泵送入换热器循环使用,此系统称为敞开式循环冷却水系统。这种敞开式循环冷却水,由于在循环过程中要蒸发掉一部分水,还要排出一定的浓缩水,故要补充一定的新鲜水(通常称为补水),以维持循环水中的含盐量或某一离子含量在一定值上。 敞开式循环冷却水系统是应用最广泛的系统,也是水质处理技术最复杂的系统。 一水的冷却原理 循环水的冷却是通过水与空气接触,由蒸发散热、接触散热和辐射散热三个过程共同作用的结果。 1蒸发散热水在冷却设备中形成大小水滴或极薄水膜,扩大与其空气的接触面积和俄延长接触时间,使部分水蒸发,水气从水中带走气化所需的热量,从而使水冷却。

工业纯碱总碱度的测定

6工业纯碱总碱度的测定 一、实验目的 1.了解利用双指示剂法测定Na 2CO 3和NaHCO 3混合物的原理和方法。 2.学习用参比溶液确定终点的方法。 3.进一步掌握微量滴定操作技术。 二、实验原理 混合碱是NaCO 3与NaOH或NaHCO 3与Na 2CO 3的混合物。欲测定同一份试样中各组分的含 量,可用HCl标准溶液滴定,根据滴定过程中pH值变化的情况,选用酚酞和甲基橙为指示 剂,常称之为“双指示剂法”。 若混合碱是由Na 2CO 3和NaOH组成,第一等当点时,反应如下: HCl+NaOH→NaCl+H

2O HCl+Na 2CO 3→NaHCO 3+H 2O 以酚酞为指示剂(变色pH范围为8.0~10.0),用HCl标准溶液滴定至溶液由红色恰 好变为无色。设此时所消耗的盐酸标准溶液的体积为V 1(mL)。第二等当点的反应 为:HCl+NaHCO 3→NaCl+CO 2↑+H 2O 以甲基橙为指示剂(变色pH范围为3.1~4.4),用HCl标准溶液滴至溶液由黄色变为 橙色。消耗的盐酸标准溶液为V 2(mL)。 当V 1>V 2时,试样为Na 2CO

3与NaOH的混合物,中和Na 2CO 3所消耗的HCl标准溶液为2V 1 (mL),中和NaOH时所消耗的HCl量应为(V 1-V 2)mL。据此,可求得混合碱中Na 2CO 3和NaOH 的含量。 当V 1<V 2时,试样为Na 2CO 3与NaHCO 3的混合物,此时中和Na 2CO 3消耗的HCl标准溶液的 体积为2V 1mL,中和NaHCO 3消耗的HCl标准溶液的体积为(V

溶液PH的计算方法.

溶 液 PH 的 计 算 方 法 内蒙古赤峰市松山区当铺地中学024045白广福 众所周知,溶液的酸碱度可用c(H +)或c(OH -)表示,但当我们遇到较稀的溶液时,这时再用 C(H +)或C(OH -)表示是很不方便的,为此丹麦化学家索伦森提出了PH 。它的定义为氢离子浓 度的负常用对数.PH=-lgc(H +)。在高中阶段,以水的电离和溶液PH 计算为考查内容的试题 能有效的测试考生的判断、推理、运算等思维能力;在近几年的高考试题中也是屡见不鲜。 下面介绍几种关于溶液PH 的计算方法。 1、单一溶液PH 的计算 (1)强酸溶液:如H n A,设物质的量浓度为cmoL/L,则c(H +)=ncmoL/L, PH=-lgc(H +)= - lgnc 例1、求0.1 mo1/L 盐酸溶液的pH ? 解析:盐酸是强酸,所以 0.1moL/L 盐酸的c(H +)为0.1moL/L ,带入PH=-lgc(H +)即得PH=1 (2)强碱溶液,如B(OH)n,设溶液物质的量浓度为cmoL/L,则c(H +)=14 10nc -moL/L,PH=-lgc(H +)=14+lgnc 2、两两混合溶液的PH 计算 (1)强酸与强酸混合 由C(H + )混=112212()()c H V c H V V V ++++先求出混合后的C(H +)混,再根据公式求出PH. 技巧一:若两强酸等体积混合,可用速算法:混合后的PH 等于混合前溶液PH 小的加0.3如: (2)强碱与强碱混合 由c(OH - )混=112212()()c OH V c OH V V V --++先求出混合后C(OH -),再通过K w 求出(H +). 技巧二:若两强碱溶液等体积混合,可采用速算法:混合扣溶液的PH 等于混合前溶液PH 大的减去0.3. 例2、(93年高考题)25mLPH=10的氢氧化钾溶液跟50mLPH=10的氢氧化钡溶液混合, 混合液的PH 是( ) A、9.7 B 、10 C 、10.3 D 、10.7 解析:根据技巧二、可得出答案为B (3)强酸与强碱混合 强酸与强碱混合实质为中和反应,可以有以下三种情况: ①若恰好中和,PH=7。 例3、(04年全国新老课程11题)1体积pH=2.5的盐酸与10体积某一元强碱溶液恰好完 全反应,则该碱溶液的pH 等于( ) A 。9.0 B 。9.5 C 。10.5 D 。11.0 解析:因为是恰好中和,则中和后溶液的PH=7,设碱的PH=X,则有 2.5141101010X --?=?,解得X=10.5,答案为C。 ②若酸剩余,先求出中和后剩余的c(H +),再求出PH ③若碱剩余,先求出中和后剩余的c(OH -), 再通过K w 求出c(H +),最后求PH。 3、溶液稀释后的PH求法

循环冷却水系统和开式冷却水系统概述

循环冷却水系统和开式冷却水系统概述 第一节概述 机组的循环冷却水来自凝汽器循环水进口管和矿井水升压泵出口管,经旋转滤网过滤后,向机房内布置标高较低的被冷却设备提供冷却水。正常运行中,机组循环冷却水由循环水提供,夏季可由矿井水升压泵提供温度较低的补充水做为冷却水源。循环冷却水系统各用户回水因压力较低,汇集后排至循环水塔池内。 设备规范如下: 第二节系统用户 循环冷却水系统用户有:汽轮机润滑油冷油器,闭式水冷却器,电动给水泵电机空冷器,电动给水泵润滑油冷油器,电动给水泵工作油冷油器,汽泵前置泵机械密封冷却器,汽泵机械密封冷却器,小机润滑油冷油器,凝结水泵电机轴承冷却器,发电机定子冷却水冷却器,真空泵循环液冷却器。 三、系统运行 1、投运 ①选择循环水或矿井水升压泵出水做为水源,开相应来水电动门; ②开旋转滤网进口门,旋转滤网排气门对滤网进行注水; ③空气放净后,开旋转滤网出口门,循环冷却水管道排空气门进行管道排空; ④管道空气排净后,根据需要投入循环冷却水用户。 2、运行维护 正常运行中,旋转滤网在投入运行后,检测前后压差在0.05MPa时开启下部排污电磁阀,并转动上部步进电机使滤网内各滤芯得到反冲清洗。 3、系统停运 当确认系统无用户时,可关闭水源电动门将系统停运。冬季停运后应放尽管道存水进行防冻处理。 开式冷却水系统 第一节概述 机组的开式冷却水来自凝汽器循环水进口管和矿井水升压泵出口管,经旋转滤网过滤后,由两台开

式冷却水泵送至机房内布置较高的被冷却设备和锅炉侧各用户。各用户回水因压力较高,汇集后排至循环水回水管道排至水塔。 第二节系统运行 1、投运(水源选择及排空气、投运时的用户选择) ①选择循环水或矿井水升压泵出水做为水源,开相应来水电动门; ②开旋转滤网进口门,旋转滤网排气门对滤网进行注水; ③空气放净后,打开旋转滤网出口门、开冷泵入口门和出口门、开式冷却 水管道排空气门进行管道排空; ④管道空气排净后,关闭开冷泵出口门,部分投入开式水用户(),启动一 台开冷泵正常后,根据需要投入开式冷却水用户。 2、运行维护(包括滤网排污) 正常运行中,旋转滤网在投入运行后,检测前后压差在0.05MPa时开启下部排污电磁阀,并转动上部步进电机使滤网内各滤芯得到反冲清洗。 开冷泵运行中应注意压力,声音,振动正常,备用泵备用良好,开式冷却水母管压力正常。 3、系统停运 当确认系统无用户时,可停运开式冷却水泵,关闭水源电动门后将系统停运。冬季停运后应放尽管道存水进行防冻处理。 第三节系统运行注意事项 1、切泵注意事项(防逆止门不严引起倒流) 切换开冷泵时,先启动备用泵,检查备用泵运行正常后,停运运行开冷泵。当运行泵出口门关闭后,投入备用,查出口门开启正常,泵出口压力为其入口压力(确认其出口逆止门严密),切换开冷泵完毕。 2、两台泵均故障时的应对措施 两台开冷泵同时故障时,应立即开启两台开冷泵出口门,利用泵入口

工业纯碱中总碱度的测定

工业纯碱中总碱度的测定 一、实验原理 1、HCl标准溶液标定 常用标定HCl溶液的基准物有:硼砂(Na2B4O7·10H2O)、无水碳酸钠(Na2CO3)。 本实验采用无水碳酸钠作为基准物质标定HCl 溶液。其标定反应为: Na2CO3+2HCl = 2NaCl+ H2O+CO2↑ 计量点时,为H2CO3饱和溶液,pH为3.9,可选用甲基橙指示剂。 滴定终点颜色变化:黄橙色 2、纯碱中总碱度测定 工业碳酸钠俗称纯碱或苏打,其中可能含有少量NaCl、Na2SO4、NaOH或NaHCO3等成分。用酸滴定时,除主要成分Na2CO3被中和外,其他碱性杂质如NaOH或NaHCO3等也被中和,所以称为总碱度的测定。 以甲基橙为指示剂,用HCl标准溶液滴定至溶液由黄色变为橙色时,可能发生的反应包括: Na2CO3+2HCl = 2NaCl+ H2O+CO2↑ NaOH+HCl = NaCl+ H2O NaHCO3+HCl = NaCl+ H2O+CO2↑ 滴定终点颜色变化:黄橙色。 二、实验步骤

1、0.1mol·L -1HCl 溶液的配制 用10mL 量筒量取6mol/LHCl5.0mL ,倒入装有295mL 蒸馏水的试剂瓶,摇匀。 2、0.1mol·L -1HCl 溶液的标定 准确称取无水碳酸钠1.08~1.12 g 于100mL 烧杯中,加入40mL 蒸馏水溶解,定量转移至250mL 容量瓶中,用蒸馏水稀释至刻度,摇匀。 用移液管移取上述溶液25.00mL 于250mL 锥形瓶中,加1~2滴甲基橙指示剂,用待标定的HCl 溶液滴定至溶液由黄色变为橙色为终点。平行标定三份。 3、纯碱中总碱度的测定 准确称取纯碱2.8~2.9 g ,置于100mL 烧杯中,加约50mL 蒸馏水溶解,定量转入250mL 容量瓶中,用蒸馏水稀至刻度,摇匀。 用移液管移取上述溶液25.00mL 于锥形瓶中,加甲基橙1滴,用0.1 mol·L -1 HCl 标准溶液滴定至溶液由黄色变为橙色为终点。平行滴定三份。 计算公式: ()%1000.25000.25102110/0.25000.2523 2232333????=??? = --S CO Na HCl HCl CO Na CO Na HCl m M CV V M m C ω

电厂循环冷却水系统中的问题解决

电厂循环冷却水系统中的问题解决 2011年7月31日FJW提供 1.概述 电厂的循环水冷却处理系统是由以下几部分组成:①生产过程中的热交换器;②冷却构筑物(冷却塔);③循环水泵及集水池。该系统是利用冷却水进行降温和水质处理。冷却水在冷却生产设备或产品的过程中,水温升高,虽然其物理性状变化不大,但长期循环使用后,水中某些溶解物浓缩或消失、尘土积累、微生物滋长,造成设备、管道内垢物沉积或对金属设备管道腐蚀。因此,必须对其进行降温和稳定处理等解决方案,才能使循环水系统正常进行,使上述问题得到解决或改善。 2.敞开式循环冷却水系统存在的问题 2.1循环冷却水系统中的沉积物 2.2.1沉积物的析出和附着 一般天然水中都含有重碳酸盐,这种盐是冷却水发生水垢附着的主要成分。 在直流冷却水系统中,重碳酸盐的浓度较低。在循环冷却水系统中,重碳酸盐的浓度随着蒸发浓缩而增加,当其浓度达到过饱和状态时,或者在经过换热器传热表面使水温升高时,会发生下列反应 Ca(HCO3)2=CaCO3+CO0 +H2O 冷却水在经过冷却塔向下喷淋时,溶解在水中的CO2要逸出,这就促使上述反应 向右进行 CaCO沉积在换热器传热表面,形成致密的碳酸钙水垢,它的导热性能很差。不同的水垢其导热系数不同,但一般不超过1.16W/(m.K), 而钢材的导热系数为46. 4-52.2 W/(m.K),可见水垢形成,必然会影响换热器的传热效率。 水垢附着的危害,轻者是降低换热器的传热效率,影响产量;严重时,则管道被堵。 2.2设备腐蚀循环冷却水系统中大量的设备是金属制造的换热器。对于碳钢制成的换热器, 长期使用循环冷却水,会发生腐蚀穿孔,其腐蚀的原因是多种因素造成的。 2.2.1冷却水中溶解氧引起的电化学腐蚀敞开式循环冷却水系统中,水与空气能充分的接触,因此水中溶解的氧气可达饱和状态。当碳钢与溶有氧气的冷却水接触时,由于金属表面的不均一性和冷却水的导电性,在碳钢表面会形成许多腐蚀微电池,微电池的阳极区和阴极区分别会发生下列氧化反应和还原反应。

总碱度的测定

总碱度的测定 -----乙二胺四乙酸二钠滴定法 一、测定范围 1、本规范规定了用乙二胺四乙酸二钠(Na2EDTA)滴定法测定生活饮用水及其水源水的总硬度。 2、本规范适用于生活饮用水及其水源水总硬度的测定。 3、本规范主要用于干扰元素铁、锰、铝、铜、镍、钴等金属离子,能使指示剂褪色,或终点不明显。硫化钠及氰化钾可隐蔽重金属的干扰,盐酸羟胺可使高铁锰离子还原为低价离子而消除其干扰。 4、由于钙离子与铬黑T指示剂在滴定到达终点时的反应不能呈现出明显的颜色转变,所以当水样中镁含量很少时,需要加入已知量镁盐,以使滴定终点颜色转变清晰,在计算结果时,再减去加入的镁盐量,或者在缓冲溶液中加入少量MgEDTA,以保证明显的终点。 5、若取50mL水样,本规范最低检测质量浓度为1.0mg/L。 二、测定原理 当水样中有铬黑T指示剂存在时,与钙、镁离子形成紫红色螯合物,这些螯合物的不稳定常数大于乙二胺四乙酸钙和镁螯合物不稳定常数。当pH=10时,乙二胺四乙酸二钠先与钙离子,再与镁离子形成螯合物,滴定至终点时,溶液呈现出铬黑T指示剂的天蓝色。 三、试剂 1、缓冲溶液(pH=10)。 1.1 称取16.9g氯化胺,溶于143mL氨水(ρ20=0.88g/mL)中。

1.2 称取0.780g硫酸镁(MgSO4·7H2O)及 1.178g乙二胺四乙酸二钠(Na2EDTA·2H2O),溶于50mL纯水中,加入2mL氯化胺-氢氧化胺溶液(1.1)和5滴铬黑T指示剂(此时溶液应呈紫红色。若为天蓝色,应再加极少量硫酸镁使呈紫红色),用Na2EDTA标准溶液(5)滴定至溶液由紫红色变为天蓝色。合并1.1及1.2溶液,并用纯水稀释至250mL。合并后如溶液又变为紫红色,在计算结果时应扣除试剂空白。 注:①此缓冲溶液应储存于聚乙烯瓶或硬质玻璃瓶中。防止使用中应反复开盖便氨水浓度降低而影响pH值。缓冲溶液放置时间较长,氨水浓度降低时,应重新配制。 ②配制缓冲溶液时加入MgEDTA是为了使某些含镁较低的水样滴定终点更为敏锐。如果备有市售MgEDTA试剂,则可直接称取1.25gMgEDTA,加入250mL 缓冲溶液中。 ③以铬黑T为指示剂,用Na2EDTA滴定钙、镁离子时,在pH值9.7~11范围内,溶液愈偏碱性,滴定溶液愈敏锐。但可使碳酸钙和氢氧化镁沉淀,从而造成滴定误差。因此滴定pH值以10为宜。 2、硫化钠溶液(50g/L):称取5.0g硫化钠(Na2S·9H2O),溶于纯水中,并稀释至100mL。 3、盐酸羟胺溶液(10g/L):称取1.0g盐酸羟胺(NH2OH·HCI),溶于纯水中,并稀释至100mL。 4、氰化钾溶液(10g/L):称取10.0g氰化钾(KCN),溶于纯水中,并稀释至100mL。注意,此溶液剧毒! 5、Na2EDTA标准溶液[c(Na2EDTA)=0.01mol/L]:称取3.72g乙二胺四乙酸

盐酸标准溶液浓度的标定及碱灰中总碱度的测定实验报告

盐酸标准溶液浓度的标定及碱灰中总碱度 的测定实验报告 摘要:练习了配制盐酸,以Na2CO3为基准物质标定盐酸,并以该盐酸滴定来测定碱灰总碱度的实验操作。熟悉了滴定操作,学习了将酸碱滴定运用于实际测定的方法. 关键词:标定盐酸酸碱滴定碱灰总碱度测定 1、综述:标定盐酸溶液的常用基准物质是硼砂或污水碳酸钠.考虑到碱灰的测定实验要用本实验制备的盐酸标准溶液测定混合碱(Na2CO3/NaOH、Na2CO3/ NaHCO3),因此本实验选用无水碳酸钠作为基准物质标定盐酸,以保证标定和测量条件一致,减少实验误差.无水碳酸钠容易提纯,价格便宜,但具有吸湿性。因此Na2CO3固体需先在烘箱中于180℃高温下烘2~3h,然后置于干燥器中冷却后备用.Na2CO3与HCl的反应如下: Na2CO3+2HCl= 2NaCl+H2O+CO2↑ 计量点时溶液的pH值约为4,可选用甲基橙作指示剂。滴定终点,溶液由黄色变为橙色.根据Na2CO3的质量和所消耗的HCl的体积,即可计算出准确浓度. 碱灰为不纯的Na 2CO 3 ,其中混有少量的NaOH或NaHCO 3 杂质。用酸滴定,以甲 基橙为指示剂,以上组分均被中和,测定的结果是碱的总量,常用Na 2 O含量来表 示。HCl滴定Na 2CO 3 的反应如下 Na 2CO 3 +HCl====NaHCO 3 +NaCl NaHCO 3 +HCl====NaCl+CO 2 +H 2 O 可见反应到第一化学计量点pH值约为8。3,第二化学计量点pH值约为 3.9。测定总碱度时,化学计量点的pH值突跃在3。9附近。 2、仪器与试剂:0.1mol/L的HCl标准溶液、无水碳酸钠、甲基橙指示剂、碱灰试样。 3、试验方法:(1)盐酸标定:配制0。1mol/LHCl500mL:取6nol/L浓盐酸8。3mL稀释至500mL转移至细口瓶中。Na2CO3标定HCl:称取适量Na2CO3(消耗HCl20—30mL,0.106~0.16g),加入约30mL水溶解,若不溶

分析化学实验 碱度的测定 实验报告

实验报告 姓名:班级:同组人: 项目碱度的测定课程:分析化学学号: 一、实验目的 1、掌握酸碱滴定法测定碱度的原理和方法。 2、掌握碱度测定结果的计算。 3、熟练滴定操作及相关仪器的操作方法。 二、实验原理 水的碱度主要由碳酸盐、重碳酸盐、及氢氧化物组成,但在某些情况下,如水中存在磷酸盐、硅酸盐、硼酸盐等也会产生一定的碱度。 碱度的测定是在水样中加入适当的指示剂,用酸标准溶液进行滴定,可分别测出水样 中各种碱度,其反应如下: OH- + H+= H2O CO32- + H+= HCO3- HCO3-+ H+= H2O + CO2 根据上述到达终点时所用酸的量可计算出溶液中碳酸盐、重碳酸盐及总碱度。 三、仪器和药品 仪器:250mL锥形瓶3个;50mL酸式滴定管1支、20、50 mL移液管、50mL量筒。试剂:0.1%酚酞指示剂、0.1%甲基橙指示剂、0.1mol/L盐酸标准溶液、0.05000mol/L Na2CO3 四、内容及步骤 (一)0.1mol/L盐酸标准溶液浓度的标定 准确量取20.00mL 已配好的0.05000mol/L Na2CO3标准溶液置于3只250mL锥形瓶中,加水约30mL,温热,摇动使之溶解,以甲基橙为指示剂,以0.lmol/LHCl标准液滴定至溶液由黄色转变为橙色,记下HCl标准溶液的消耗用量(3份测定的平均偏差应小于0.2%,否则应重复测定),并计算出HCl标准溶液的浓度。 (二)碱度的测定(双指示剂法) 准确移取水样l00mL于250mL锥形瓶中,加人酚酞指示剂三滴,如呈红色,用0.1mol/L 盐酸溶液滴定至颜色刚好消失,记下盐酸溶液的消耗体积(V1);在此溶液中,再加入2滴甲基橙指示剂,继续用标准盐酸溶液滴定至橙色为止,记下盐酸的消耗量(V)。判断水样中碱度的组成及含量。 五、实验结果记录与计算 (一)盐酸标准溶液浓度的标定

水质总碱度检测方法

水质总碱度检测方法 1.目的 本方法规定了用酸式滴定法测定工厂生产用水及生活饮用水的总碱度。 2.范围 适用于工厂所有生产用水及生活饮用水。 3.原理 碱度是水介质与氢离子反应的定量能力,通过用强酸标准溶液将一定体积的水 样滴定至pH 值为4.0所测得的碱度称为总碱度.测定结果用相当于碳酸钙的质量浓度,mg/L 为单位表示。 5.试剂 5.1. 0.5g/L 甲基橙指示剂:称取0.050g 甲基橙溶于,70℃的纯水中冷却 定容至100ml 。此试剂贮存于棕色玻璃瓶中,有效期3个月 5.2. 0.05mol/L 盐酸标准溶液:吸取4.2mL 盐酸(ρ20=1.19g/mL ),稀 释至1000mL 。此试剂贮存于玻璃瓶中,有效期2个月。按下述方法标定: 5.3. 称取在2500C 烘箱中烘干过的无水碳酸钠0.1~0.2克于250mL 锥形 瓶中,加50mL 纯水溶解,加4滴甲基橙指示剂,用配制的盐酸溶液滴定至溶 液由黄色突变为橙色。同时做空白试验。 计算公式:c(HCl)= 0()0.05299 m V V -? 式中:c(HCl)—盐酸标准溶液的浓度,mol/L ; m —碳酸钠的质量,g ; V —滴定碳酸钠所消耗盐酸标准溶液的体积,mL ; Vo —空白试验消耗盐酸标准溶液的体积,mL 。 0.05299—与1.00mL 盐酸标准溶液[c(HCl)=1.000mol/L]相当的 以克表示的碳酸钠的质量。

6.仪器 6.1. 酸式滴定管 6.2. 移液管 6.3. 250mL 锥形瓶 7.操作规程 7.1. 吸取50.00mL 水样于250mL 锥形瓶中,加4滴甲基橙指示剂,用盐酸标准溶液滴定至试液由黄色突变为橙色。 8.计算公式: ρ(CaCO3)= 1()50.041000c HCl V V ??? 式中:ρ(CaCO3) —水样的总碱度,mg/L ; c(HCl)—盐酸标准溶液的的浓度,mol/L ; V 1—滴定水样消耗标准盐酸溶液的体积,mL ; V —所取水样的体积,mL ; 50.04—与1.00mL 氢氧化钠标准溶液 [c(NaOH)=1.000mol/L]相当的以克表示的总碱度(CaCO3)的质量。

硝化反硝化碱度平衡

污水生物硝化处理工艺pH值控制及碱度核算 污水生物硝化处理工艺pH值控制及碱度核算 一、影响硝化的重要因素 1、pH和碱度对硝化的影响 pH值酸碱度是影响硝化作用的重要因素。硝化细菌对pH反应很敏感,在pH中性或微碱性条件下(pH为8~9的范围内),其生物活性最强,硝化过程迅速。 当pH>9.6或<6.0时,硝化菌的生物活性将受到抑制并趋于停止。 若pH>9.6时,虽然NH4+转化为NO2—和NO3—的过程仍然异常迅速,但是从NH4的电离平衡关系可知,NH3的浓度会迅速增加。由于硝化菌对NH3极敏感,结果会影响到硝化作用速率。 在酸性条件下,当pH<7.0时硝化作用速度减慢,pH<6.5硝化作用速度显著减慢,硝化速率将明显下降。pH<5.0时硝化作用速率接近零。 pH下降的原因 pH下降的原因可能有两个,一是进水中有强酸排入,导致人流污水pH降低,因而混合液的pH也随之降低。 由硝化方程式可知,随着NH3-N被转化成NO3—-N,会产生部分矿化酸度H+,这部分酸度将消耗部分碱度,每克NH3-N转化成NO3—-N约消耗7.14g碱度(以CaC03计)。因而当污水中的碱度不足而TKN负荷又较高时,便会耗尽污水中的碱度,使混合液中的pH值降低至7.0以下,使硝化速率降低或受到抑制。 如果无强酸排人,正常的城市污水应该是偏碱性的,即pH一般都大于7.0,此时的pH 则主要取决于人流污水中碱度的大小。 所以,在生物硝化反应器中,应尽量控制混合液pH>7.0,制pH>7.0,是生物硝化系统顺利进行的前提。 而要准确控制pH,pH<6.5时,则必须向污水中加碱。应进行碱度核算。 2、有机负荷的影响 在采用曝气生物滤池工艺进行硝化除氮时,NH4-N的去除在一定程度上取决于有机负荷。当有机负荷稍高于3.0kgBOD/(m3滤料·d)时,NH3-N的去除受到抑制;当有机负荷高于4.0kgBOD/(m3滤料·d)时,NH3-N的去除受到明显抑制。因此采用曝气生物滤池进行同步除碳和硝化时,必须降低有机负荷。 根据上述分析,在采用曝气生物滤池工艺进行针对去除有机物的工程设计时,首先必须针对处理水类型和排水水质要求选择合适的BOD容积负荷,BOD容积负荷的选取应根据同类型污水处理厂的实际运行数据加以分析后确定,并在设计时留有一定余量。在采用曝气生物滤池进行同步除碳和硝化时,必须降低有机负荷,最好使有机负荷控制在2.0kgBOD/(m3滤料·d)以下。 二、生物滤池硝化需碱量的计算

循环冷却水系统调试方案

印尼南加海螺水泥2×18MW燃煤自备电厂项目#1汽轮机循环水系统调试方案编制: 审核: 批准: 中电 2014年8月18日

目录

1 目的 (4) 2 依据 (4) 3 系统说明及设备规: (4) 4 .循环泵启动前应具备的条件 (5) 5 组织分工 (6) 6 使用仪器设备 (6) 7 .循环水泵启动 (6) 8 联锁保护试验 (7) 9 安全注意事项 (7) 10. 停泵操作 (7) 11. 空冷器、冷油器的冲洗 (8) 12. 冷水塔风机试转: (8)

循环冷却水系统调试方案 1 目的 1.1 检验循环水系统设备运行可靠性,保证系统试运顺利进行; 1.2 为凝汽器和辅机设备正常运行提供符合要求的冷却水。 2 依据 2.1 《火电机组达标投产考核标准》 2.2 《火力发电厂基本建设工程启动及竣工验收规程》 2.3 《火电工程调整试运质量检验及评定标准》 2.4 《电力建设施工及验收技术规》 2.5 《火电工程启动调试工作规定》。 2.6 《电力基本建设工程质量监督规定》。 2.7 《电力建设安全健康与环境管理工作规定》 2.8 《电业建设安全工作规程》(热力机械部分) 2.9 设备厂家、设计单位提供的有关图纸资料。 3 系统说明及设备规: 循环水系统的作用是冷却汽轮机的排汽,维持凝结器的真空,并向闭式循环冷却系统提供水源。 3.1 系统说明 循环水系统基本流程:

3.2 设备规 3.2.1循环水泵 型号:HS600-500-550-A 转速:980r/min 流量:3000m3/h 扬程:23m 3.2.2泵电机 型号:YKK450-6TH 转速:990r/min 功率:250KW 额定电压:10000V 标称电流:19.5A 4 .循环泵启动前应具备的条件 4.1 循环水系统的所有设备均已安装完毕; 4.2 系统的阀门挂牌、标注名称正确,阀门动作灵活、无卡涩、开关指示正确; 4.3 热工仪表安装校验完毕,具备投入条件; 4.4 有关热工、电气回路的调试工作已结束; 4.5 现场已清扫,道路通畅,试运区照明充足,通讯施工完善可靠;

彻底根治循环冷却水系统四大难题

彻底根治循环冷却水系统四大难题 一、方案特点 在工业冷却循环水方面,均采用水为能量的传递介质,在循环使用时,水质会浓缩、恶化,产生水垢、污垢、腐蚀、菌藻等,严重影响系统的效率,加大能耗,减少设备使用寿命。 以往通用的化学水处理方式不仅每年需要经费,而且会造成大量含有化学药剂的污水,加大 环境污染,同时会腐蚀管道,甚至造成冷却器穿孔报废。例如,一个保有水量100T的冷冻、冷 却、采暖循环水为例,如果采用传统化学处理方法,一年要用化学药剂10吨、每吨药剂会形成500 立方米的污染水。 针对以上问题,罗德斯尔?循环水水质深度净化方案引进国外先进成熟的变频磁场技术,采用“以水治水、物理吸垢”方式,不仅解决了循环水净化、除垢、杀菌、灭藻、去锈等一系列难题,而且每年保养经费很少,不会产生污染,节电节水,是一种环保节能的新型循环水水质深度净化方案。 循环水优化设备图片 二、罗德斯尔?循环水水质深度净化方案的优势 除垢防垢,使热交换表面始终无垢状态,提高热交换效率 除锈防腐,解决水体红锈问题,延长管道和热交换器使用年限 杀菌灭藻,尤其对军团菌的杀灭,提高安全性能,提高冷却效率 无需停机,提高水资源利用效率和生产连续性 保留原管,即无需改变原有循环水管道 节水环保,大幅减少循环水排放,节省用水,没有污染,保养经费很少 三、设备构成和原理 概述 罗德斯尔?循环水系统优化方案体现的是一种综合性、多功能、环保、节水节能的循环水处理理念和技术,具有补水净化、去垢、灭藻、除锈、杀菌、环保、节能、节水等多重功效,本方案的主要设备为LT系列循环水系统优化设备。 LT系列循环水系统优化设备工作原理 LT 系列循环水系统优化设备是罗德斯尔?循环水系统解决方案的核心设备,该装置由高频发

碱灰中总碱度的测定

碱灰中总碱度的测定 【作者】:零创润四川农业大学应用化学0902班 【指导老师】:吴明君(副教授) 【摘要】:本实验通过已知的0.1008mol/L HCl标准溶液来标定碱灰中的总碱度。 【关键词】:碱灰HCl标准溶液测定 Alkali ashes total basicity determination The author : Ling Chuang Run Sichuan agricultural university of applied chemistry 0902 class Abstract : This experiment through known 0.1008 mol/L HCl in standard solution to calibrate the total alkali ash basicity. Keywords : Alkali ash HCl in standard solution Determination 【综述】:碱灰又称工业纯碱,为不纯的。碱灰虽然不纯,但用酸(HCl)测定的结果是碱的总量,通常以的质量分数来表示:﹪。 【实验方法】: 准确称量碱在试样约1.6~2.2g置于250ml烧杯中。 烧杯中加少许水溶解。 溶液移入250ml容量瓶,并以洗瓶吹洗烧杯内壁和搅拌3次,洗液都要全注入容量瓶。 用水稀释到刻度线处,摇均。 用移液管吸取25.00ml上述试液,置于250ml锥形瓶中,加1~2滴甲基橙。 用HCl标准溶液滴定至溶液呈橙色为终点。 平行滴定4份。 1 2 3 4 碱灰的质量(g) 1.6885

HCl体积终读数(ml) 32.70 32.53 33.00 32.79 HCl体积初读数(ml) 0.00 0.00 0.00 0.00 (ml) 32.70 32.53 33.00 32.79 0.6050 0.6018 0.6105 0.6066

循环冷却水操作规程

循环冷却水操作规程 1。 前言 造气循环冷却水长期以来受到循环水品质得影响,循环水腐蚀、结垢情况较为严重。为解决循环水得腐蚀结垢问题,经过实验室配方筛选试验工作确认通过化学水处理得方法就是可以解决上述技术问题。根据配方操作要求,提供本操作规程仅供造气分厂造气循环水装置从事水处理工作与管理人员进行操作管理使用。 本操作规程中所记载得内容乃就是一些基本得东西,当设备得运行条件变动时水处理得方法也要作些相应得变更、因此,双方有必要加强经常性得技术上得联系,定期交换技术情报、?2.?系统概况?2。1 补充水质状况,补充水为自备水厂,水质见表一。 表一补充水质

2.2 运行条件:循环水系统运行条件见表二。 表二循环水系统得运行条件 2、3 循环水运行水质:循环水运行水质控制标准见表三

表三循环水冷却水质监控制指标 2、4 系统材质:碳钢、不锈钢 3.1补充水(M) 2。5?地沟流量:400m3/h(絮凝沉降)?3。?术语解释?因蒸发、排污、风吹飞溅而从系统中损失得水量,需要进行补充得水、 3.2蒸发损失(E)?在敞开式循环冷却水系统中,循环冷却水在冷却塔中蒸发而损失得水量。 3.3飞溅与风吹损失(W) 被通风时得气流从系统中带入大气得水量。

3。4排污损失(B排)?为维持系统中一定得浓缩倍数而排出系统得水量、 3。5冷却范围(或温度降)(ΔT)?冷却塔入口与塔底冷水池之间得水温差。 3。6循环量(R):系统中循环得冷却水量。 3。7浓缩倍数(N)?循环水中某种离子(Cl-或K+)得浓度与补充水中对应得某离子(Cl-或K+)得浓度之比;或循环水中电导率与补充水中电导率之比。 3.8系统容积(V)?包括冷却塔、水池、换热器、管道及辅助设备在内得整个系统得容水量。 3。9停留时间(T)?循环水在系统中停留得时间。 4。 配方得现场运行与管理 4、1管理得目得?“三分配方,七分管理”就是长期从事水处理工作得专业工作者从工作中总结出得一条很重要得经验。为了防止冷却水得腐蚀、结垢、粘泥(菌藻)等三种危害造成系统得不必要得损害,必须加强对循环水系统进行正确有序得管理与操作。 4.2一次回水水池(地沟)高浊水处理: 造气循环水经过生产装置后,有80%得水回到一次水池,每小时流量为400m3/h,该回水浊度较高。由于一次回水池沉降速度较慢,有一部分悬浮物来不及沉降就带到二次回水池中,二次回水池得水在打到凉水塔上,大量得悬浮物沉积在凉水塔得填料中,严重影响循环水得冷

水分析化学总碱度的测定

实验名称:水样的碱度测定(双指示剂连续滴定法) 指导老师:曹晓霞专业:给排水科学与工程班级:1302姓名:吕嘉杰 一、目的要求 1. 学习分析天平的使用和样品的称量; 2. 学习标准溶液的配制和标定; 3. 学习和掌握滴定分析的基本操作; 4. 掌握酸碱滴定法测水中碱度的原理和方法。 二、实验原理 1. 盐酸溶液的标定 首先配制约0.1mol/L 的盐酸溶液,以甲基橙为指示剂,用已知准确浓度的Na 2CO 3标准溶液来标定盐酸的准确浓度,溶液由黄色变至橙红色即为滴定终点。 反应式:Na 2CO 3+2HCl =2NaCl+H 2O+CO 2 2. 水中碱度的测定 碱度是指水中含有能与强酸发生中和作用的物质的总量,是衡量水体变化的重要指标,是水的综合性特征指标。碱度主要来自水样中存在的碳酸盐、重碳酸盐及氢氧化物。 1) 酚酞碱度 酚酞作指示剂,用盐酸标准溶液滴定至溶液颜色由红色变为无色为止,盐酸滴定体积为V 1mL 。等当点时的pH 约为8.3,酚酞的变色范围pH 为8-10。 反应式: OH -+H +=H 2O CO 32-+H +=HCO 3- ()水样 = 酚酞碱度V V ?C L /mol 1 HCl ()1000×V V ?C L /mg CaO 1 HCl 水样 = 计,以酚酞碱度 2) 总碱度 再加入甲基橙指示剂,用盐酸标准溶液继续滴定至溶液由黄色变为橙红色为止,设盐酸滴定体积为V 2 mL 。等当点时的pH 约为4.4,甲基橙的变色范围为3.1-4.4。 反应式:HCO 3-+H +=H 2O+CO 2 ()水样 += 总碱度V ) V V (?C L /mol 21HCl ()1000×V ) V V (?C L /mg CaO 21HCl 水样 += 计,以总碱度 三、主要仪器及试剂 主要仪器: 电子天平(0.0001g ),称量瓶,烧杯,玻璃棒,250mL 容量瓶,锥形瓶,酸式滴定管(50mL ),25mL 移液管,250 mL 移液管,吸耳球 主要试剂: 12mol/L 浓盐酸 0.1%甲基橙指示剂 0.1%酚酞指示剂

闭式循环冷却水系统

第三章闭式循环冷却水系统 第一节闭式冷却水系统投运前的检查与操作 3.1.1 检修工作已结束,所有工作票终结,系统完好、现场整洁。 3.1.2 闭式冷却水泵与电机对轮连接完好,地脚螺栓坚固,联轴器防护罩完整牢固,电机接线良好,接地线连接完好。 3.1.3 热工各种表计齐全完整,并投入运行,确证热工保护投入运行。 3.1.4 闭式冷却水系统电动门送电,气动门控制气源送上,压缩空气压力不低于0.5MPa,各阀门开关正常。 3.1.5 关闭闭式冷却水系统所有放水门,开启闭式冷却水系统所有放空气门,系统各用户阀门根据具体情况投入。 3.1.6 开启膨胀水箱出口门及两台闭式冷却水泵入口门。 3.1.7 检查辅机冷却水系统已投入运行20分钟以上,投入一台闭式冷却水冷却器,另一台闭式冷却水冷却器备用。闭式冷却水冷却器投入时先投开式冷却水侧,再投闭式冷却水侧。 3.1.8 检查除盐水正常,凝结水补水系统已准备好。 3.1.9 开启除盐水向膨胀水箱补水门,闭式冷却水系统开始注水。 3.1.10 闭式冷却水系统各空气门见水后关闭。 3.1.11 膨胀水箱水位补至 1000—1600mm,投入膨胀水箱补水调门自动。 3.1.12 按规定进行闭式冷却水泵联锁试验合格。 3.1.13 闭式冷却水泵电机测绝缘合格后送电。 3.1.14 检查闭式冷却水泵出口电动门关闭。 3.1.15 检查投入部分闭式冷却水用户。 3.1.16 通知化学准备化验闭式冷却水水质。 第二节闭式冷却水系统的报警、联锁与保护 3.2.1 报警条件 1. 闭式膨胀水箱水位≤1000mm, 水位低报警, 联开补水调门; ≥1600mm, 联关补水调门; ≥1800mm,水位高报警。 2. 闭式循环水冷却器出口母管压力≤0.35MPa 报警,延时3s 联启备用泵。 3. 闭式循环水冷却器出口母管温度≥38℃报警。 4. 闭式循环泵电机线圈温度≥110℃报警。 5. 闭式循环泵电机轴承温度≥75℃报警,≥80℃延时3s 跳泵。 6. 闭式循环泵轴承温度≥75℃报警,≥80℃延时3s 跳泵。 7. 闭冷水膨胀水箱液位≤200,延时5s跳泵; 8. 闭式循环冷却水泵运行且出口电动门关,延时5S跳泵; 9. 闭式循环冷却水泵运行且入口电动门关,延时3S跳泵。 3.2.2 闭式冷却水泵允许启的条件: 1. 电机各相线圈温度低于110℃;

相关文档
最新文档