PCB走线要求

PCB走线要求
PCB走线要求

对于主板的PCB设计,各类型信号的走线是其中不得不引起重视的一个部分。由于主板上设计的信号类型众多,且各种信号走线有不同的规格与要求,因此,要确保主板设计的准确可行首先就必须对各类信号的走线有深入的了解。在这里,我们为大家详细介绍主板设计中集中常见信号类型的走线规格与要求。

1、CPU的走线:

CPU的走线一般情况下是走5/10 Control线间距要稍大些,在20mil左右,

<1>Data线(0-63)64根;

<2>Address线(3-31)REQ(0-4)等

<3>Control线(一般分布在data线和Address线的中间)

Data线走线时每16根线为一组走在一起,走同层。

(0-15)(16-31)(32-47)(48-63)且每组分布2-3 根控制线,

Address线走线时每16根为一组走在一起,走同层,所不同的是Address线是从(3-31)前面(0-2)没有。一般分2组,

<1> (3-16) 加5根REQ的线,18根;

<2> (17-31) 16根;

CPU信号走线时还应与其他信号用20-30mil的GND线分开,如DDR的信号,以方便打VIA下内层GND,起到包地的作用。

2、DDR信号:

DDR的线除Control线外,一般也是走5/10 Control线要保持20mil的线距,和CPU一样也主要分为以下3类:

<1>Data线(0-63)64根

<2>Address线(0-13)另外还有一些其他名字的address信号线,

<3>Control线(一般分布在data 和address的线中间)

Data线走线时每8根为一组另加DQM,DQS2根Control线走在一起,走同层,主要分组方式为:MD (0-7) 加 DQM0 DQS0

MD (8-15) 加 DQM 1 DQS 1

MD (16-23) 加 DQM 2 DQS 2

MD (24-31) 加 DQM3 DQS 3

MD (32-39) 加 DQM 4 DQS 4

MD (40-47) 加 DQM 5 DQS 5

MD (48-55) 加 DQM 6 DQS 6

MD (56-63) 加 DQM 7 DQS 7

Address线尽量全部走在一起;

另外DDR部分还有3对CLK 线如果是双通道的DDR则有6对CLK线,CLK配对走,与其他信号应至少保持20mil以上的间距。

DDR和CPU 一样也应与其他信号用20-30mil的GND信号隔开,主要是CPU和AGP的信号

3、CLK信号:

CLK信号是主板当中最为重要的信号,一般大至有以下几种:

<1>200兆

<2>100兆

<3>66 兆

<4>48 兆

<5>16 兆

一般前2种主要是用于CPU 和NB 当中,为高频CLK线,应至少保持25mil以上的间距,配对

走,一般走5/7,第3种主要用于DDR 和SB 当中,走20/7/5/7/20,第4种一般用于PCI 和AGP 当中,走20/7/5/7/20,第5种一般用得很少,主要是用于一些小的IC.和AUDIO 部分,这种CLK相对前几种要稍显得不是那么的重要,走15/5/15即可,CLK信号还应少打via,一般不可超过2个VAI.走线时尽量参考到GND.晶振在组件面不可走线,晶振的信号尽量要短。

4、IDE信号:

IDE信号主要有(pd0-15)16根线加2根控制线,还有一些其他信号的线,控制线一般在25pin,和27pin,Space走10/5/10即可,

5、USB信号:

USB1.0 走10/10/10.与其他信号空20mil以上即可;

USB2.0 走7.5/7.5/7.5与其他信号空20mil以上即可;

走线时尽量参考到GND层。少打VAI,尽量不要超过2个VAI.

6、LAN信号:

LAN,信号一般有2对信号,配对走,走20/7/5/7/20或20/10/10/10/20.走线时尽量参考到GND 层。少打VAI,尽量不要超过2个via.

7、AUDIO 信号:

AUDIO 信号一般走10/10即可,一般不能穿其他信号区过,其他信号区也不能穿AUDIO区过。

8、VLINK信号

VLINK信号一般有11根data线和2根控制线,2根控制线配对走,VLINK 信号的间距要大一些,至少要保持15mil 以上,2根对线与其他VLINK信号要保持20mil的线距。不要超过2个via,要包地。

9、PCI信号:

PCI信号要求不是那么的高,,走5/5/5即可。

10、电源信号:

电源信号走线时应注意线宽,主要是要分清电源的来源和电流量,一般我们1A走40mil线宽即可,线宽不够时可考虑铺铜或切到内层,应尽量不要与重要信号走太近。

高速信号布线技巧

高速信号布线技巧 原文引自夔牛的博客 https://www.360docs.net/doc/6714440490.html,/seutommy 1.多层布线 合理选择层数能大幅度降低印版那个中间层尺寸,能充分利用中间层来设置屏蔽,能更好的实现就近接地,能有效的降低寄生电感,能有效缩短信号的传输长度,能最大限度的降低信号间的交叉干扰。 2.引线弯折越少越好 高速电路器件管脚间的引线弯折越少越好。高速电路布线的引线最好采用全直线,需要弯折,可用45°折线或圆弧线。 3.引线越短越好 高速电路器件管脚间的引线越短越好。引线越长,带来的分布电感和分布电容值越大,对系统的高频信号通过产生很多的影响,同时也会改变电路的特性阻抗。 4.引线层间的交替越少越好 高速电路器件管脚间的引线层间交替越少越好。所谓“引线的层间交替越少越好”,是指元件连接过程中所用的过孔越少越好。据侧,一个过孔可带来约0.5pF的分布电容,导致电路的延迟明显增加,减少过孔数目能显著提高速度。 5.注意平行交叉干扰 高速电路布线要注意信号线近距离平行走线所引入的“交叉干扰”,若无法避免平行分布,可在平行信号的反面布置大面积“地”来大幅度减少干扰。同一层内的平行走线几乎无法避免,但是在相邻的两个层,走线的方向务必取为相互垂直。 6.底线包围 底线包围,也称地线隔离,对特别重要的信号线或局部单元实施地线包围的措施。有些信号对要求比较严格,要保证信号不受到干扰,比如时钟信号、告诉模拟信号、微小模拟信号等。为了保护这些信号尽量少受到周围信号线的串扰,可在这些信号走线的外围加上保护的地线,将要保护的信号线加在中间。 7.走线避免成环

各类信号走线不能形成环路,地线也不能形成电流环路。如果产生环路电路,将在系统中产生很大的干扰。 8.布置去耦电容 每个集成电路块的附近应该设置一个或者几个高频去耦电容。为集成片的瞬变电流提供就进的高频通道,使电流不至于通过环路面积较大的供电线路,从而大大减少了向外的辐射噪声。同时由于各集成片拥有自己的高频通道,相互之间没有公共阻抗,抑制了其阻抗耦合。 9.使用高频扼流环节 模拟地线、数字地线等接往公共地线时要用高频扼流环节。在实际装配高频扼流环节时用的网上是中心穿孔有导线的高频铁氧体磁珠. 10.避免分支和树桩 告诉信号布线应尽量避免分支或树桩。树桩对阻抗有很大影响,可以导致信号的反射和过冲,所以我们通常在设计时应避免树桩和分支。采用菊花链的方式,将对信号的影响降低。 11.信号线尽量走在内层 高频信号线走在表层容易产生较大电磁辐射,也容易受到外界电磁辐射或者因此的干扰。将高频信号先布线在电源和地线之间,通过电源还底层对电磁波的吸收,所产生的辐射将减少很多。

差分信号走线原则

设计规则1 我们处理差分信号的第一个规则是:走线必须等长。有人激烈地反对这条规则。通常他们的争论的基础包括了信号时序。他们详尽地指出许多差分电路可以容忍差分信号两个部分相当的时序偏差而仍然能够可靠地进行翻转。根据使用的不同的逻辑门系列,可以容忍500 mil 的走线长度偏差。并且这些人们能够将这些情况用器件规范和信号时序图非常详尽地描绘出来。问题是,他们没有抓住要点!差分走线必须等长的原因与信号时序几乎没有任何关系。与之相关的仅仅是假定差分信号是大小相等且极性相反的以及如果这个假设不成立将会发生什么。将会发生的是:不受控的地电流开始流动,最好情况是良性的,最坏情况将导致严重的共模EMI问题。 因此,如果你依赖这样的假定,即:差分信号是大小相等且极性相反,并且因此没有通过地的电流,那么这个假定的一个必要推论就是差分信号对的长度必须相等。差分信号与环路面积:如果我们的差分电路处理的信号有着较慢的上升时间,高速设计规则不是问题。但是,假设我们正在处理的信号有着有较快的上升时间,什么样的额外的问题开始在差分线上发生呢?考虑一个设计,一对差分线从驱动器到接收器,跨越一个平面。同时假设走线长度完全相等,信号严格大小相等且极性相反。因此,没有通过地的返回电流。但是,尽管如此,平面层上存在一个感应电流! 任何高速信号都能够(并且一定会)在相邻电路(或者平面)产生一个耦合信号。这种机制与串扰的机制完全相同。这是由电磁耦合,互感耦合与互容耦合的综合效果,引起的。因此,如同单端信号的返回电流倾向于在直接位于走线下方的平面上传播,差分线也会在其下方的平面上产生一个感应电流。 但这不是返回电流。所有的返回电流已经抵消了。因此,这纯粹是平面上的耦合噪声。问题是,如果电流必须在一个环路中流动,剩下来的电流到哪里去了呢?记住,我们有两根走线,其信号大小相等极性相反。其中一根走线在平面一个方向上耦合了一个信号,另一根在平面另一个方向上耦合了一个信号。平面上这两个耦合电流大小相等(假设其它方面设计得很好)。因此电流完全在差分走线下方的一个环路中流动(图3)。它们看上去就像是涡流。耦合电流在其中流动的环路由(a)差分线自身和(b)走线在每个端点之间的间隔来定义。 设计规则2 现在EMI 与环路面积已是广为人知了3。因此如果我们想控制EMI,就需要将环路面积最小化。并且做到这一点的方法引出了我们的第二条设计规则:将差分线彼此靠近布线。有人反对这条规则,事实上这条规则在上升时间较慢并且EMI 不是问题时并不是必须的。但是在高速环境中,差分线彼此靠得越近布线,走线下方所感应的电流的环路就越小,

高速PCB布线差分对走线

高速PCB布线差分对走线 为了避免不理想返回路径的影响,可以采用差分对走线。为了获得较好的信号完整性,可以选用差分对来对高速信号进行走线,如图1所示,LVDS电平的传输就采用差分传输线的方式。 图1 差分对走线实例 差分信号传输有很多优点,如: ·输出驱动总的dI/dr会大幅降低,从而减小了轨道塌陷和潜在的电磁干扰; ·与单端放大器相比,接收器中的差分放大器有更高的增益; ·差分信号在一对紧耦合差分对中传输时,在返回路径中对付串扰和突变的鲁棒性更好; ·因为每个信号都有自己的返回路径,所以差分新信号通过接插件或封装时,不易受 到开关噪声的干扰; 但是差分信号也有其缺点:首先是会产生潜在的EMI,如果不对差分信号进行恰当的平衡或滤波,或者存在任何共模信号,就可能会产生EMI问题;其次是和单端信号相比,传输差分信号需要双倍的信号线。 如图2所示为差分对走线在PCB上的横截面。D为两个差分对之间的距离;s为差分对两根信号线间的距离;W为差分对走线的宽度;Ff为介质厚度。

使用差分对走线时,要遵循以下原则: ·保持差分对的两信号走线之间的距离S在整个走线上为常数; ·确保D>25,以最小化两个差分对信号之间的串扰; ·使差分对的两信号走线之间的距离S满足:S=3H,以便使元件的反射阻抗最小化; ·将两差分信号线的长度保持相等,以消除信号的相位差; ·避免在差分对上使用多个过孔,过孔会产生阻抗不匹配和电感。 图2 PCB上的差分对走线 以前,只有不到50%的电路板采用可控阻抗互连线,而现在这一比例已超过90%。如今有不到50%的电路板使用了差分对,相信在不久的将来,随着对差分对原理和设计规则的了解加深,将会有超过90%的电路板使用它 欢迎转载,信息来源维库电子市场网(https://www.360docs.net/doc/6714440490.html,)

SATA高速差分信号设计规则

PCB设计挑战和建议作为PC、服务器和消费电子产品中重要的硬盘驱动器接口,串行ATA(SATA)发展迅猛并日益盛行。随着基于磁盘的存储在所有电子市场领域中变得越来越重要,系统设计工程师需要知道采用第一代SATA(1.5Gbps)和第二代SATA(3.0Gbps)协议的产品设计中的独特挑战。此外,系统设计工程师还需要了解新的SATA特性,以使其用途更广,功能更强,而不仅仅是简单地代替并行ATA。充分利用这些新特性并克服设计中存在的障碍,对成功推出采用SATA接口的产品非常关键。 日趋复杂的PCB布局布线设计对保证高速信号(如SATA)的正常工作至关重要。由于第一代和第二代SATA的速度分别高达1.5Gbps和3.0Gbps,因此铜箔蚀刻线布局的微小改动都会对电路性能造成很大的影响。SATA信号的上升时间约为100ps,如此快的上升时间,再加上有限的电信号传输速度,所以即使很短的走线也必须当成传输线来对待,因为这些走线上有很大部分的上升(或下降)电压。 高频效应处理不好,将会导致PCB无法工作或者工作起来时好时坏。为保证采用FR4 PCB板的SATA设计正常工作,必须遵守下面列出的FR4 PCB布局布线规则。这些规则可分为两大类:设计使用差分信号和避免阻抗不匹配。 高速差分信号设计规则包括: 1.SATA是高速差分信号,一个SATA连接包含一个发送信号对和一个接收 信号对,这些差分信号的走线长度差别应小于5mil。使差分对的走线长度保持一致非常重要,不匹配的走线长度会减小信令之间的差值,增加误码率,而且还会产生共模噪声,从而增加EMI辐射。差分信号线对应该 在电路板表层并排走线(微带线),如果差分信号线对必须在不同的层走 线,那么过孔两侧的走线长度必须保持一致。 2.差分信号线对的走线不能太靠近,建议走线间距是走线相对于参考平面高 度的6至10倍(最好是10倍)。 3.为减少EMI,差分对的走线间距不要超过150mil。 4.SATA差分对的差分阻抗必须为100欧姆。 5.为减少串扰,同一层其它信号与差分信号线对之间的间距至少为走线相对 于参考平面高度的10至15倍。 6.在千兆位传输速度的差分信号上不要使用测试点。 避免阻抗不匹配的设计规则包括:

高速信号走线规则

高速信号走线规则 随着信号上升沿时间的减小,信号频率的提高,电子产品的EMI问题,也来越受到电子工程师的关注。 高速PCB设计的成功,对EMI的贡献越来越受到重视,几乎60%的EMI问题可以通过高速PCB来控制解决。 规则一:高速信号走线屏蔽规则 在高速的PCB设计中,时钟等关键的高速信号线,走需要进行屏蔽处理,如果没有屏蔽或只屏蔽了部分,都是会造成EMI的泄漏。建议屏蔽线,每1000mil,打孔接地。如上图所示。 规则二:高速信号的走线闭环规则 由于PCB板的密度越来越高,很多PCB LAYOUT工程师在走线的过程中,很容易出现这种失误,如下图所示: 时钟信号等高速信号网络,在多层的PCB走线的时候产生了闭环的结果,这样的闭环结果将产生环形天线,增加EMI 的辐射强度。 规则三:高速信号的走线开环规则 规则二提到高速信号的闭环会造成EMI辐射,同样的开环同样会造成EMI辐射,如下图所示:

时钟信号等高速信号网络,在多层的PCB走线的时候产生了开环的结果,这样的开环结果将产生线形天线,增加EMI 的辐射强度。在设计中我们也要避免。 规则四:高速信号的特性阻抗连续规则 高速信号,在层与层之间切换的时候必须保证特性阻抗的连续,否则会增加EMI的辐射,如下图: 也就是:同层的布线的宽度必须连续,不同层的走线阻抗必须连续。 规则五:高速PCB设计的布线方向规则 相邻两层间的走线必须遵循垂直走线的原则,否则会造成线间的串扰,增加EMI辐射,如下图: 相邻的布线层遵循横平竖垂的布线方向,垂直的布线可以抑制线间的串扰。 规则六:高速PCB设计中的拓扑结构规则 在高速PCB设计中有两个最为重要的内容,就是线路板特性阻抗的控制和多负载情况下的拓扑结构的设计。在高速的情况下,可以说拓扑结构的是否合理直接决定,产品的成功还是失败。 如上图所示,就是我们经常用到的菊花链式拓扑结构。这种拓扑结构一般用于几Mhz的情况下为益。高速的拓扑结构我们建议使用后端的星形对称结构。

SDRAM 类高速器件布线规则

Learn to walk first before you want to run…SDRAM 类高速器件布线规则 一个优秀的Layout,一块好的板子,并不是随便布线连同就可以实现电路要求的,凡事都得谨慎,此处别处摘要,讲述SDRAM类高速器件布线规则: 如果你没有信号完整性的知识和对传输线的认识,恐怕你很难看懂,如果你看不懂,那么请按这样一个通用的基本法则做: (1)DDR和主控芯片尽量靠近 (2)高速约束中设置所有信号、时钟线等长(最多允许50mils的冗余),所有信号、时钟线长度不超过1000mils (3)尽量0过孔,元件层下面一定要有一个接地良好的地层,所有走线不能跨过地的分割槽,即从元件层透视地层看不到与信号线交叉的地层分割线。 这样的话200M的DDR基本上是没有太大问题。其它的一些3W 20H法则就能做到尽量做到吧 3W原则: 这里3W是线与线之间的距离保持3倍线宽。你说3H也可以。但是这里H指的是线宽度。不是介质厚度。是为了减少线间串扰,应保证线间距足够大,如果线中心距不少于3倍线宽时,

则可保持70%的线间电场不互相干扰,称为3W规则。如要达到98%的电场不互相干扰,可使用10W规则。针对EMI(电磁干扰:eg传导、辐射、谐波) 20H原则: 是指电源层相对地层内缩20H的距离,当然也是为抑制边缘辐射效应。在板的边缘会向外辐射电磁干扰。将电源层内缩,使得电场只在接地层的范围内传导。有效的提高了EMC。若内缩20H则可以将70%的电场限制在接地边沿内;内缩100H则可以将98%的电场限制在内。针对EMC(电磁兼容) 五---五规则: 印制板层数选择规则,即时钟频率到5MHz或脉冲上升时间小于5ns,则PCB板须采用多层板,这是一般的规则,有的时候出于成本等因素的考虑,采用双层板结构时,这种情况下,最好将印制板的一面做为一个完整的地平面层。 对于“五五规则”的时钟频率到5MHz或脉冲上升时间小于5ns,此处我严重不理解。。。时钟信号:以地平面为参考,给整个时钟回路的走线提供一个完整的地平面, 给回路电流提供一个低阻抗的路径。由于是差分时钟信号,在走线前应预先设计好线宽线距,计算好差分阻抗,再按照这种约束来进行布线。所有的DDR差分时钟信号都必须在关键平面上走线,尽量避免层到层的转换。线宽和差分间距需要参考DDR控制器的实施细则,信号线的单线阻抗应控制在50~60 Ω,差分阻抗控制在100~120 Ω。时钟信号到其他信号应保持在20 mil*以上的距离来防止对其他信号的干扰。蛇形走线的间距不应小于20 mil。串联终端电阻RS值在15~33Ω,可选的并联终端电阻RT值在25~68 Ω,具体设定的阻值还是应该依据信号完整性仿真的结果。 数据信号组:以地平面为参考,给信号回路提供完整的地平面。特征阻抗控制在50~60 Ω。线宽要求参考实施细则。与其他非DDR信号间距至少隔离20 mil。长度匹配按字节通道为单位进行设置,每字节通道内数据信号DQ、数据选通DQS和数据屏蔽信号DM长度差应控制在±25 mil内(非常重要),不同字节通道的信号长度差应控制在1 000 mil 内。与相匹配的DM和DQS串联匹配电阻RS值为0~33 Ω,并联匹配终端电阻RT值为25~68Ω。如果使用电阻排的方式匹配,则数据电阻排内不应有其他DDR信号。 地址和命令信号组:保持完整的地和电源平面。特征阻抗控制在50~60 Ω。信号线宽参考具体设计实施细则。信号组与其他非DDR信号间距至少保持在20 mil

Router布线详细设置-有图解

Router高级布线技巧 当设计高速信号PCB或者复杂的PCB时,常常需要考虑信号的干扰和抗干扰的问题,也就是设计这样的PCB时,需要提高PCB的电磁兼容性。为了实现这个目的,除了在原理图设计时增加抗干扰的元件外,在设计PCB时也必须考虑这个问题,而最重要的实现手段之一就是使用高速信号布线的基本技巧和原则。 高速信号布线的基本技巧包括控制走线长度、蛇形布线、差分对布线和等长布线,使用这些基本的布线方法,可以大大提高高速信号的质量和电磁兼容性。下面分别介绍这些布线方法的设置和操作。 10.5.1 控制走线长度 为了控制布线长度,可以对需要走线的网络或引脚对设置走线长度限制,将走线长度控制在一定的范围之内。控制走线长度的操作步骤如下: (1) 首先选择需要控制走线长度的网络。在项目浏览器中展开网络,然后选择需要控制走线长度的网络,例如本实例的CLKIN网络。 (2) 然后单击鼠标右键,并执行弹出快捷菜单中的Properties命令。执行该命令后,系统会弹出网络属性对话框,此时选择Length(长度)选型卡,如图10-57 所示。 此时可以设置走线长度的限制。选择Restrict length选项,然后分别在Minimum length编辑框中输入最小的长度值,如本实例设置为500mil;在Maximum length 编辑框中输入最大的长度值,如本实例设置为2000mil。 (3)设置了长度限制值后,单击OK按钮退出设置对话框。 设置网络走线长度限制后,走线时将遵守该长度设置,将走线控制在设置范围内。 设置长度限制规则后,在布线时就会显示走线长度监视器,动态显示布线的实际长度。 图10-57 长度选择卡 走线长度监视器能以图形的方式来帮助控制走线的长度。当设置长度限制规则后,走线长度信息成为走线时光标的一部分显示出来,这样可以很好地控制走线的长度,如图10-58所示。走线长度监视器会显示最小的和最大的允许布线长度,以及当前的实际长度,走线长度监视器在获得小于最大设置长度和大于最大设置长度的长度后,会显示不同的颜色。

PCI-E的高速PCB布线规则

PCI-E 布线规则 1、从金手指边缘到PCIE芯片管脚的走线长度应限制在4英寸(约100MM)以内。 2、PCIE的PERP/N,PETP/N,PECKP/N是三个差分对线,注意保护(差分对之间的距离、差分对和所有非PCIE信号的距离是20MIL,以减少有害串扰的影响和电磁干扰(EMI)的影响。芯片及PCIE信号线反面避免高频信号线,最好全GND)。 3、差分对中2条走线的长度差最多5MIL。2条走线的每一部分都要求长度匹配。差分线的线宽7MIL,差分对中2条走线的间距是7MIL。 4、当PCIE信号对走线换层时,应在靠近信号对过孔处放置地信号过孔,每对信号建议置1到3个地信号过孔。PCIE差分对采用25/14的过孔,并且两个过孔必须放置的相互对称。 5、PCIE需要在发射端和接收端之间交流耦合,差分对的两个交流耦合电容必须有相同的封装尺寸,位置要对称且要摆放在靠近金手指这边,电容值推荐为0.1uF,不允许使用直插封装。 6、SCL等信号线不能穿越PCIE主芯片。 合理的走线设计可以信号的兼容性,减小信号的反射和电磁损耗。PCI-E 总线的信号线采用高速串行差分通信信号,因此,注重高速差分信号对的走线设计要求和规范,确保PCI-E 总线能进行正常通信。 PCI-E是一种双单工连接的点对点串行差分低电压互联。每个通道有两对差分信号:传输对Txp/Txn,接收对Rxp/Rxn。该信号工作在2.5 GHz并带有嵌入式时钟。嵌入式时钟通过消除不同差分对的长度匹配简化了布线规则。 随着PCI-E串行总线传输速率的不断增加,降低互连损耗和抖动预算的设计变得格外重要。在整个PCI-E背板的设计中,走线的难度主要存在于PCI-E的这些差分对。图1提供了PCI-E高速串行信号差分对走线中主要的规范,其中A、B、C和D四个方框中表示的是常见的四种PCI-E差分对的四种扇入扇出方式,其中以图中A所示的对称管脚方式扇入扇出效果最好,D为较好方式,B和C为可行方式。接下来本文将对PCI-E LVDS信号走线时的注意事项进行总结:

布线原则

1、[问]高频信号布线时要注意哪些问题? [答] 1.信号线的阻抗匹配; 2.与其他信号线的空间隔离; 3.对于数字高频信号,差分线效果会更好; 2、[问] 在布板时,如果线密,过孔就可能要多,当然就会影响板子的电气性能,请问怎样提高板子的电气性能? [答] 对于低频信号,过孔不要紧,高频信号尽量减少过孔。如果线多可以考虑多层板; 3、[问]是不是板子上加的去耦电容越多越好? [答] 去耦电容需要在合适的位置加合适的值。例如,在你的模拟器件的供电端口就进加,并且需要用不同的电容值去滤除不同频率的杂散信号; 4、[问]一个好的板子它的标准是什么? [答] 布局合理、功率线功率冗余度足够、高频阻抗阻抗、低频走线简洁. 5、[问]通孔和盲孔对信号的差异影响有多大?应用的原则是什么? [答] 采用盲孔或埋孔是提高多层板密度、减少层数和板面尺寸的有效方法,并大大减少了镀覆通孔的数量。但相比较而言,通孔在工艺上好实现,成本较低,所以一般设计中都使用通孔。 6、[问]在涉及模拟数字混合系统的时候,有人建议电层分割,地平面采取整片敷铜,也有人建议电地层都分割,不同的地在电源源端点接,但是这样对信号的回流路径就远了,具体应用时应如何选择合适的方法? [答] 如果你有高频>20MHz信号线,并且长度和数量都比较多,那么需要至少两层给这个模拟高频信号。一层信号线、一层大面积地,并且信号线层需要打足够的过孔到地。这样的目的是: 1、对于模拟信号,这提供了一个完整的传输介质和阻抗匹配; 2、地平面把模拟信号和其他数字信号进行隔离; 3、地回路足够小,因为你打了很多过孔,地有是一个大平面。 7、[问]在电路板中,信号输入插件在 PCB最左边沿,MCU在靠右边,那么在布局时是把稳压电源芯片放置在靠近接插件(电源IC输出5V经过一段比较长的路径才到达 MCU),还是把电源 IC放置到中间偏右(电源 IC的输出 5V的线到达MCU就比较短,但输入电源 线就经过比较长一段 PCB板)?或是有更好的布局? [答] 首先你的所谓信号输入插件是否是模拟器件?如果是是模拟器件,建议你的电源布局应尽量不影响到模拟部分的信号完整性.因此有几点需要考虑(1)首先你的稳压电源芯片是否是比较干净,纹波小的电源.对模拟部分的供电,对电源的要求比较高. (2)模拟部分和你的MCU是否是一个电源,在高精度电路的设计中,建议把模拟部分和数字部分的电源分开. (3)对数字部分的供电需要考虑到尽量减小对模拟电路部分的影响.

九条高速PCB信号走线规则

规则一高速信号走线屏蔽规则 在高速得PCB设计中,时钟等关键得高速信号线,走线需要进行屏蔽处理,如果没有屏蔽或只屏蔽了部分,都会造成EMI得泄漏。建议屏蔽线,每1000mil,打孔接地。 规则二高速信号得走线闭环规则 由于PCB板得密度越来越高,很多PCB LAYOUT工程师在走线得过程中,很容易出现一种失误,即时钟信号等高速信号网络,在多层得PCB走线得时候产生了闭环得结果,这样得闭环结果将产生环形天线,增加EMI得辐射强度。

规则三高速信号得走线开环规则 规则二提到高速信号得闭环会造成EMI辐射,然而开环同样会造成EMI辐射。时钟信号等高速信号网络,在多层得PCB走线得时候一旦产生了开环得结果,将产生线形天线,增加EMI得辐射强度。

规则四高速信号得特性阻抗连续规则 高速信号,在层与层之间切换得时候必须保证特性阻抗得连续,否则会增加EMI得辐射。也就就是说,同层得布线得宽度必须连续,不同层得走线阻抗必须连续。 规则五高速PCB设计得布线方向规则 相邻两层间得走线必须遵循垂直走线得原则,否则会造成线间得串扰,增加EMI辐射。简而言之,相邻得布线层遵循横平竖垂得布线方向,垂直得布线可以抑制线间得串扰。

规则六高速PCB设计中得拓扑结构规则 在高速PCB设计中,线路板特性阻抗得控制与多负载情况下得拓扑结构得设计,直接决定着产品得成功还就是失败。图示为菊花链式拓扑结构,一般用于几Mhz 得情况下为益。高速PCB设计中建议使用后端得星形对称结构。 规则七走线长度得谐振规则

检查信号线得长度与信号得频率就是否构成谐振,即当布线长度为信号波长1/4得时候得整数倍时,此布线将产生谐振,而谐振就会辐射电磁波,产生干扰。 规则八回流路径规则 所有得高速信号必须有良好得回流路径。尽可能地保证时钟等高速信号得回流路径最小。否则会极大得增加辐射,并且辐射得大小与信号路径与回流路径所包围得面积成正比。 规则九器件得退耦电容摆放规则

pads高速布线规则

高速布线规则 SDRAM的布线规则 该嵌入式系统使用64M字节的SDRAM扩展数据存储区,由两片K4S561632组成工作在32位模式下。最高频率可达100M以上,对于SDRAM的数据线、时钟线、片选及其它控制信号需要进行线长匹配,由此提出以下布线要求: 1. SDRAM时钟信号:时钟信号频率较高,为避免传输线效应,按照工作频 率达到或超过75MHz时布线长度应在1000mil以内的原则及为避免与相邻信号产生串扰。走线长度不超过1000mil,线宽10mil,内部间距5mil,外部间距30mil,要求差分布线,精确匹配差分对走线。误差允许在20mil以内。 2. 地址,片选及其它控制信号:线宽5mil,外部间距12mil,内部间距10mil。 尽量走成菊花链拓补。可有效控制高次谐波干扰,可比时钟线长,但不能短。 3. SDRAM数据线:线宽5mil,内部间距5mil,外部间距8mil,尽量在同 一层布线,数据线与时钟线的线长差控制在50mil内。 根据布线要求,在Allegro中设置不同的约束:针对线宽设置3 个约束SDRAM_CLK,SDRAM_ADDDR,SDRAM_DATA,设置完约束后将约束添加到 对应的net上。使得各个net都具有线宽、线距约束属性。最后为不同的信号组选择合适的约束即可。但是设置的约束在系统CPU内部是无法达到的。因为EP9315为BGA封装。pin间距1.27毫米,显然在CPU内部,线宽线距无法达到上述要求,利用Allegro设置CPU特殊走线区域cpu_area。并加上area属性,在此区域中另 设置适合BGA内部走线的约束。 Xnet在IDE总线等长布线中的应用 系统中的IDE接口设计 EP9315强大的外设接口能力能够直接驱动IDE硬盘,布线时需要注意IDE总线的等长设置,但是IDE总线这类高速线需要端接匹配,可以防止信号反射和回流。如图2所示其中的排阻起到了端接匹配的作用,但使得整个走线被分为好几个NET,而Allegro中常用的走线长度设置propagation_delay和relative_propagation_delay只能针对同一NET设置.IDE总线信号由EP9315扇出,要求EP9315到IDE接口走线DD*+UBDD*(如图2中NET)等长,误差为+/-20mil,最简单的方法是分别设置DD*等长和UBDD*等长,误差各位+/-10mil,就可以达到要求,但是增加了布线难度,特别当DD*有较大绕线空间。而UBDD*没有足够绕线空间时。这样设置等长不可行。Allegro提供了一种方法,将DD*和UBDD* 走线相加再进行等长比对,这就要用到Xnet。

高速PCB设计EMI规则探讨(转)

高速PCB设计EMI规则探讨(转)[建议加精] 随着,信号上升沿时间的减小,信号频率的提高,电子产品的EMI 问题,也来越受到电子工程师的光注。 高速PCB设计的成功,对EMI的贡献越来越受到重视,几乎60%的EMI问题可以通过高速PCB来控制解决。 做了,4年的EMI设计,一些心得和大家交流、交流。 规则一:高速信号走线屏蔽规则 此主题相关图片如下: 如上图所示: 在高速的PCB设计中,时钟等关键的高速信号线,走需要进行屏蔽处理,如果没有屏蔽或只屏蔽了部分,都是会造成EMI的泄漏。建议屏蔽线,每1000mil,打孔接地。 [此贴子已经被作者于2004-9-21 8:53:35编辑过],一次收费,永远享受收费会员服务 规则二:高速信号的走线闭环规则 由于PCB板的密度越来越高,很多PCB LAYOUT工程师在走线的过程中,很容易出现这种失误,如下图所示: 此主题相关图片如下: 时钟信号等高速信号网络,在多层的PCB走线的时候产生了闭环的结果,这样的闭环结果将产生环形天线,增加EMI的辐射强度。

规则三:高速信号的走线开环规则 规则二提到高速信号的闭环会造成EMI辐射,同样的开环同样会造成EMI辐射,如下图所示: 此主题相关图片如下: 时钟信号等高速信号网络,在多层的PCB走线的时候产生了开环的结果,这样的开环结果将产生线形天线,增加EMI的辐射强度。在设计中我们也要避免。 规则四:高速信号的特性阻抗连续规则 高速信号,在层与层之间切换的时候必须保证特性阻抗的连续,否则会增加EMI的辐射,如下图: 此主题相关图片如下: 也就是:同层的布线的宽度必须连续,不同层的走线阻抗必须连续。 规则五:高速PCB设计的布线方向规则 相邻两层间的走线必须遵循垂直走线的原则,否则会造成线间的串扰,增加EMI辐射,如下图:

高速PCB设计规则集锦

高速PCB设计 第一篇PCB布线 在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。PCB布线有单面布线、双面布线及多层布线。布线的方式也有两种:自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。 自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。一般先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。并试着重新再布线,以改进总体效果。 对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。 1电源、地线的处理 既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述: (1)、众所周知的是在电源、地线之间加上去耦电容。 (2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5mm 对数字电路的PCB可用宽的地导线组成一个回路,即构成一个地网来使用(模拟电路的地不能这样使用) (3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。 2数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。 数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在PCB上不共地的,这由系统设计来决定。 3信号线布在电(地)层上 在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是保留地层的完整性。

PCI-E布线规则

PCI-E 布线规则 合理的走线设计可以信号的兼容性,减小信号的反射和电磁损耗。PCI-E 总线的信号线采用高速串行差分通信信号,因此,注重高速差分信号对的走线设计要求和规范,确保PCI-E 总线能进行正常通信。 PCI-E是一种双单工连接的点对点串行差分低电压互联。每个通道有两对差分信号:传输对Txp/Txn,接收对Rxp/Rxn。该信号工作在2.5 GHz并带有嵌入式时钟。嵌入式时钟通过消除不同差分对的长度匹配简化了布线规则。 随着PCI-E串行总线传输速率的不断增加,降低互连损耗和抖动预算的设计变得格外重要。在整个PCI-E背板的设计中,走线的难度主要存在于PCI-E的这些差分对。图1提供了PCI-E高速串行信号差分对走线中主要的规范,其中A、B、C和D四个方框中表示的是常见的四种PCI-E差分对的四种扇入扇出方式,其中以图中A所示的对称管脚方式扇入扇出效果最好,D为较好方式,B和C为可行方式。接下来本文将对PCI-E LVDS信号走线时的注意事项进行总结: 图 1 PCI-E 差分线布线规范 (1)对于插卡或插槽来说,从金手指边缘或者插槽管脚到PCI-E Switch 管脚的走线长度应限制在4英寸以内。另外,长距离走线应该在PCB上走斜线。 (2)避免参考平面的不连续,譬如分割和空隙。

(3)当LVDS 信号线变化层时,地信号的过孔应放得靠近信号过孔,对每对信号的一般要求是至少放1 至3个地信号过孔,并且永远不要让走线跨过平面的分割。 (4)应尽量避免走线的弯曲,避免在系统中引入共模噪声,这将影响差分对的信号完整性和EMI。所有走线的弯曲角度应该大于等于135度,差分对走线的间距保持20mil以上,弯曲带来的走线最短应该大于1.5倍走线的宽度。 当一段蛇形线用来和另外一段走线来进行长度匹配,如图2所示,每段长弯折的长度必须至少有15mil(3倍于5mil的线宽)。蛇形线弯折部分和差分线的另一条线的最大距离必须小于正常差分线距的2倍。 图 2 蛇形走线 (5)差分对中两条数据线的长度差距需在5mil以内,每一部分都要求长度匹配。在对差分线进行长度匹配时,匹配设计的位置应该靠近长度不匹配所在的位置,如图3所示。但对传输对和接收对的长度匹配没有做具体要求,即只要求差分线内部而不是不同的差分对之间要求长度匹配。在扇出区域可以允许有5mil和10mil的线距。50mil内的走线可以不需要参考平面。长度匹配应靠近信号管脚,并且长度匹配将能通过小角度弯曲设计。

高速PCB布线注意

问:高速系统的定义? 答:高速数字信号由信号的边沿速度决定,一般认为上升时间小于4 倍信号传输延迟时可视为高速信号。而平常讲的高频信号是针对信号频率而言的。设计开发高速电路应具备信号分析、传输线、模拟电路的知 识。错误的概念:8kHz帧信号为低速信号。 问:在高速PCB设计中,经常需要用到自动布线功能,请问如何能卓有成效地实现自动布线? 答:在高速电路板中,不能只是看布线器的速度和布通率,这时,还要看它能否接受高速的规则,比如要求从T型接点到各个终端等长,这时Cadence的SPECCTRA能很好的解决高速的布线问题。很多布线 器不能接收或只能接受很少的高速规则。 问:在高速PCB设计中,串扰与信号线的速率、走线的方向等有什么关系?需要注意哪些设计指标来避免 出现串扰等问题? 答:串扰会影响边沿速率,一般来说,一组总线传输方向相同时,串扰因素会使边沿速率变慢。一组总线传输方向不相同时,串扰因素会使边沿速率变快。控制串扰可以通过控制线长、线间距、走线的叠层以及 源端的匹配来实现。 问:对于高速系统,多层电路板在布线时应该注意些什么?各层的功能定义有什么原则? 答:要注意电源、地平面的安排,走线层保证阻抗一致。关键信号尽量走两边都有平面层的走线层,不要跨平面分割,一般根据实际情况来定。电源、地就近打过孔与电源、地平面相连。 问:在多层电路板上,什么措施可以降低层间的相互干扰,提高信号质量? 答:主要是解决好阻抗控制、匹配、走线回流、电源完整性、EMC等方面的问题。降低层间干扰可以减小走线层与平面层的距离,加大走线层间的距离,并且相邻走线层尽量不去走平行走线,方法很多,不能一 一列举。 问:针对数字电源、模拟电源、数字地和模拟地,请问在PCB设计中如何对他们进行划分? 答:电源通过滤波电路相连接,数字与模拟分开。数字和模拟地要看具体的芯片,有些要求分开,单点连 接,有些不需要分开。 问:背板只提供了一个地,且为数字地,而插卡上既有模拟部分也有数字部分,那么这种模拟地如何接呢? 答:看你插卡模拟部分的芯片要求,一般可以把插卡上数字、模拟地分开,在插卡上单点相连,插卡地数 字地与背板数字地相连。 问:在高速PCB设计中,如何考虑阻抗匹配的问题?在多层电路板设计中,内部信号层的特性阻抗如何计 算?输入阻抗50Ω与输出阻抗75Ω如何匹配? 答:阻抗匹配需要自己根据线宽、线厚、板材结构等计算,有时必须加串联或并联电阻来达到匹配。内部信号层阻抗计算也是一样考虑这些参数。输入阻抗50Ω与输出75Ω不可能完全匹配,只要能保证信号的完 整性和时序的问题就可以。 问:在EMC测试中发现时钟信号的谐波超标十分严重,在PCB设计中除在电源引脚上连接去耦电容,还 需要注意哪些方面以抑止电磁辐射? 答:可以把时钟信号走在内层,或时钟线上连一小电容到地(当然会影响时钟边沿速率)。 过孔与焊盘

PCB设计高速走线原则

高速走线指南(Creating High-speed Traces) PADS Router 包含的高速走线功能模块可以使你对高速部分的设计做很好的规划和控制。 在该课程中 ·控制走线长度 ·蛇形走线 ·差分走线 ·导航窗口的图形回馈 ·等长线规则 ·设置元件高级规则 限制: 该指南需要动态走线编辑(Dynamic Route Editing),扩展规则(Extended Rules) 和基本编辑功能(General Editing),高速走线(High-speed Routing) 和走线安全模块(Route Security) ,你可以通过Help>Installed Options来查看你是否有这些模块可 以操作。 准备 在PADS 安装路径下的Samples 目录中打开preview.pcb文件。 控制走线长度(Trace Length Monitor) 走线长度控制器用来帮助你控制走线的长度。当你将走线长度控制器打开 后,走线长度信息成为走线时光标的一部分显示出来,这样可以很好的控制走线 的长度。 有两种方式可以用来控制走线长度,一种是不通过走线规则来控制长度,另 一种就是通过走线规则来控制。该课程中我们将学习在走线规则打开状态下对走 线长度进行控制。 打开走线规则 选项>General 在Option>General 中选择Length monitor或快捷键Ctrl+L打开长度控制器。 打开长度控制器 1、Pointer setting 中选择Length monitor打开长度控制器。 2、在高亮对象显示区域,区分高亮目录下选择Turning off highlighting

高速电路设计参考(包含器件选择以及走线)概要

高速电路设计规则参考(初稿) 张工 2015/3/8 高速电路完整性分析: 信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。(引用于博士对信号完整性的理解)同时,归根到底,信号失真源自于信号传输过程的阻抗变化,因此假如一个信号的传输途径处处阻抗匹配且均衡,这信号的质量可以很好保留,不过实际中不能完全做到,但可以通过注意这些问题从而是信号质量有所改善,另外在多次阻抗改变和跌落之后信号会出现信号振铃、信号反射、上冲以及下冲等现象,此时可以通过一些有效的方法避免。 以下将从信号完整性的层面出发,介绍以下一些高速电路的设计规则参考: 一、器件选型及布局 1电容选型 1.1不同容值电容搭配 通常情况下有经验的工程师都知道一般电源入口处都会搭配容量大小不一样的 电容进行去耦或储能,但经常一知半解,因为从理论计算,大小电容并联就是两 个电容的容值相加,没有什么作用。不过现实中由于制作工艺以及封装的不同, 不同容值的电容其ESL和ESR是不同的,其谐振频率也不同。 因此在信号频率小于其器件的谐振频率时电容表现出容性,当信号频率大于器件的 谐振频率时电容表现为感性,因此高速电路中大电容常常由于谐振频率较低,表现 出感性特性,此时电路中的电容将被大大削弱了去耦特性。因此通过搭配不同容值 的电容可以在较大范围内满足电路的需求。同时尽量选用小ESL的电容。

通常设计中可以通过搭配不同数量级的电容改善去耦效果。 1.2电容封装 同样容量的不同封装形式的电容其谐振频率也不同,通常小封装的电容等效串联电感更低,效串联电感基本相同电容有更低的等效串联电感。某型号陶瓷电容的ESL和ESR 测量值如下: 因此高速电路中尽量选用小封装的器件进行设计。 2电容的布局 2.1电容去耦半径和电容的摆放位置 有经验的工程师都会知道电容布局时小电容需要尽量靠近电源入口,大电容就可以放的远一点,这是因为电容对电源进行去耦时其存在一个去耦范围,即“去耦半径”。超过该电容的去耦半径时的其将起不到去耦半径。同时大容值的电容的去耦半径大,小电容的去耦半径小。例如某电路中0.001UF的陶瓷电容的去耦半径大概为2.4厘米。其去耦半径大小不仅与器件本身,同时还跟焊接的电路有关,不过起主导作用的是容值。 2.2降低EMI时电容的连线 随着工作频率升高,滤波器件的感抗和PCB线路感抗开始呈现,且频率越高感抗越大,对供电回路的纹波影响越明显,因此需要选用感抗小的小容量电容提供良好的去耦。同时还应缩短滤波电容两端到负载的电源与地的距离,尽可能将去耦电容和负载器件放置在同一层。为降低EMI,也应尽量减小电源线和地回路之间包围的面积。 以下图例都是说明如何设计良好的去耦电路拓扑结构和布线策略。

九条高速PCB信走线规则

九条高速P C B信走线 规则 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

规则一高速信号走线屏蔽规则 在高速的PCB设计中,时钟等关键的高速信号线,走线需要进行屏蔽处理,如果没有屏蔽或只屏蔽了部分,都会造成EMI的泄漏。建议屏蔽线,每1000mil,打孔接地。 规则二高速信号的走线闭环规则 由于PCB板的密度越来越高,很多PCB LAYOUT工程师在走线的过程中,很容易出现一种失误,即时钟信号等高速信号网络,在多层的PCB走线的时候产生了闭环的结果,这样的闭环结果将产生环形天线,增加EMI的辐射强度。 规则三高速信号的走线开环规则 规则二提到高速信号的闭环会造成EMI辐射,然而开环同样会造成EMI辐射。时钟信号等高速信号网络,在多层的PCB走线的时候一旦产生了开环的结果,将产生线形天线,增加EMI的辐射强度。 规则四高速信号的特性阻抗连续规则 高速信号,在层与层之间切换的时候必须保证特性阻抗的连续,否则会增加EMI的辐射。也就是说,同层的布线的宽度必须连续,不同层的走线阻抗必须连续。 规则五高速PCB设计的布线方向规则 相邻两层间的走线必须遵循垂直走线的原则,否则会造成线间的串扰,增加EMI辐射。简而言之,相邻的布线层遵循横平竖垂的布线方向,垂直的布线可以抑制线间的串扰。

规则六高速PCB设计中的拓扑结构规则 在高速PCB设计中,线路板特性阻抗的控制和多负载情况下的拓扑结构的设计,直接决定着产品的成功还是失败。图示为菊花链式拓扑结构,一般用于几Mhz的情况下为益。高速PCB设计中建议使用后端的星形对称结构。 规则七走线长度的谐振规则 检查信号线的长度和信号的频率是否构成谐振,即当布线长度为信号波长1/4的时候的整数倍时,此布线将产生谐振,而谐振就会辐射电磁波,产生干扰。 规则八回流路径规则 所有的高速信号必须有良好的回流路径。尽可能地保证时钟等高速信号的回流路径最小。否则会极大的增加辐射,并且辐射的大小和信号路径和回流路径所包围的面积成正比。 规则九器件的退耦电容摆放规则 退耦电容的摆放的位置非常的重要。摆放不合理根本起不到退耦的效果。其原则是:靠近电源的管脚,并且电容的电源走线和地线所包围的面积最小。

相关文档
最新文档