第1章 热力学基本概念

合集下载

工程热力学-01 基本概念及定义

工程热力学-01 基本概念及定义

平衡状态1
p1 v1
p
p2
2
压容图 p-v图
平衡状态2
p1
1
p2 v2
O
v2
v1
v
12
1-4 状态方程式
在平衡状态下,由气态物质组成的系统,只要知道两个独立的 状态参数,系统的状态就完全确定,即所有的状态参数的数值随之 确定。这说明状态参数间存在某种确定的函数关系,状态参数之间 存在着确定的函数关系,这种函数关系就称为热力学函数。
(2)当系统处于热力学平衡状态时,只要没有外界的影响, 系统的状态就不会发生变化。
(3)整个系统可用一组具有确定数值的温度、压力及其他参
? 数来描述其状态。
10
经验表明,确定热力学系统所处平衡状态所需的独立状 态参数的数目,就等于系统和外界间进行能量传递方式的数 目。对于工程上常见的气态物质组成的系统,系统和外界间传递 的能量只限于热量和系统容积变化所作的功两种形式,因此只需 要两个独立的状态参数即可描述一个平衡状态。
3、平衡状态、稳定状态、均匀状态
(1)关于稳定状态与平衡状态
稳定状态时,状态参数虽不随时间改 变,但它是依靠外界影响来维持的。而平 衡状态是不受外界影响时,参数不随时间 变化的状态。
85℃ 20℃
90℃
15℃
铜棒
平衡必稳定,稳定未必平衡。
(2)关于均匀状态与平衡 水
质统称为外界。 通常选取工质作为热力学系统,把高温热源、低温热源
等其他物体取作外界。
3、边界 ——热力学系统和外界之间的分界面称为边界。
边界可以是固定的,也可以是移动的; 边界可以是实际的,也可以是假想的。
3
二、热力学系统的分类 依据——有无物质或能量的交换

热力学基本概念和公式

热力学基本概念和公式

第一章热力学基本概念一、基本概念热机:可把热能转化为机械能的机器统称为热力发动机,简称热机。

工质:实现热能与机械能相互转换的媒介物质即称为工质。

热力系统:用界面将所要研究的对象与周围环境分割开来,这种人为分割的研究对象,称为热力系统。

边界:系统与外界得分界面。

外界:边界以外的物体。

开口系统:与外界有物质交换的系统,控制体(控制容积)。

闭口系统:与外界没有物质的交换,控制质量。

绝热系统:与外界没有热量的交换。

孤立系统:与外界没有任何形式的物质和能量的交换的系统。

状态:系统中某瞬间表现的工质热力性质的总状况。

平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变,系统内外同时建立热和力的平衡,这时系统的状态就称为热力平衡状态。

状态参数:温度、压力、比容(密度)、内能、熵、焓。

强度性参数:与系统内物质的数量无关,没有可加性。

广延性参数:与系统同内物质的数量有关,具有可加性。

准静态过程:过程进行的非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近于平衡状态。

可逆过程:当系统进行正反两个过程后,系统与外界都能完全回复到出示状态。

膨胀功:由于系统容积发生变化(增大或者缩小)而通过系统边界向外界传递的机械功。

(对外做功为正,外界对系统做功为负)。

热量:通过系统边界向外传递的热量。

热力循环:工质从某一初态开始,经历一系列中间过程,最后又回到初始状态。

二、基本公式⎰⎰=-=02112dx x x dx理想气体状态方程式:RT pV m =循环热效率1q w nett =η 制冷系数netw q 2=ε 第二章 热力学第一定律一、基本概念热力学第一定律:能量既不能被创造,也不能被消灭,它只能从一种形式转换成另一种形式,或从一个系统转移到另一个系统,而其总量保持恒定。

热力学能:储存在系统内部的能量(内能、热能) 外储存能:宏观动能和重力位能。

物理化学1.1-热力学基本概念

物理化学1.1-热力学基本概念
第一章 化学热力学基础
●在确定条件下,变化是自发还是非自发?变化的 限度?从确定的自发变化可以获得多少功?要实现 确定的非自发变化,必须注入多少功?
三峡大坝 发电机组
化学电池 化学激光 ……
农田灌溉
电解反应 光化学反应 ……
§1.1 热力学基本概念
1.系统和环境
系统(system) ——热力学研究的对象,包括指定的物质和空间。
非均相系统(多相系统)
(heterogeneous system)
CaCO3 (s) =CaO(s)+CO2(g) NH4HCO3 (s) = NH3(g) + H2O(g) + CO2(g)
相变(phase transformation)
——物质从一种聚集形态转变为另一种聚集形态。
气体
液化
升华

封闭系统(Closed system) ×

隔离系统(Isolated system) ×
×
2.描述系统状态的热力学函数
抽开插板
n,p,V,T
n, p,V,T
Sy(I)
Sy(II)
强度性质函数(intensive properties) 数值大小与系统中所含物质的量无关, 无加和性(如 p,T);
p、V、T 变化过程 相变化过程 化学变化过程
典型p、V、T变化过程
① 定温过程:T1=T2=Tsu ② 定压过程: p1= p2= psu ③ 定容过程: V1=V2 ④ 绝热过程: Q = 0 ⑤ 对抗恒外压过程:psu=常数(包括0)
p1,T1 psu
⑥ 循环过程 :系统的始态和终态为同一状态。
1、苯的正常沸点为80.1 ℃。你知道苯在80.1 ℃ 的饱和蒸汽压吗?

工程热力学 第一章基本概念

工程热力学 第一章基本概念

简单可压缩系统
压缩功 膨胀功
简单可压缩系统的独立变量数
只交换热量和一种准静态的容积变化功
简单可压缩系统:N = n + 1 = 2
The state of a simple compressible system is completely specified by two independent properties
强度参数:与物质的量无关的参数
如压力 p、温度T
强度参数与广延参数
广延参数:与物质的量有关的参数可加性
如 质量m、容积 V、内能 U、焓 H、熵S
比参数:
V v m 比容
U u m 比内能
H h m 比焓
S s m 比熵
单位:/kg /kmol 具有强度参数的性质
强度参数变化量与路径无关,只与 初终态有关。 数学上:
2 2 2
点函数、态函数
1
point function
a b
2
dz dz dz z2 z1
1 1, a 1,b

dz 0
例:温度变化 山高度变化
状态参数的微分特征 dz是全微分 设 z =z (x , y)
O
5 t[ C ] (t[ F ] 32) 9
O
t[ F ] t[ R] 459.67
Temperature Measurement Devices
日常:水银温度计,酒精温度计, thermometer
工业:热电偶 Thermocouple 热电阻 Resistance temperature detector 辐射温度计Radiation thermometer
1、定义:
在不受外界影响的条件下(重力场除 外),如果系统的状态参数不随时间变化, 则该系统处于平衡状态。

《工程热力学》第一章 基本概念

《工程热力学》第一章  基本概念

9
1.3.1、基本术语-状态、状态参数
1、状态:工质在热力变化过程中某一瞬间所呈现的宏观 物理状况称状态
2、状态参数:表示状态特征的物理量称为状态参数
状态与状态参数是一一对应的
3、状态参数特点
数学特征为点函数: 微元变化的微增量具全微分性质
4、热力学基本状态参数为三个:比容、压力、 温度
10
1.3.2、基本状态参数--比容及密度
C 1 2 B B A
16
1-4
平衡状态、状态方程式、坐标图
1.4.1 平衡状态与非平衡态 平衡状态:系统在不受外界影响的条件下, 如果宏观热力性质不随时间而变化,系统 内、外同时建立了热平衡、力平衡(及 化学平衡),此时系统所处状态为平衡态 非平衡态: 系统与外界,系统内部各部分间 存在能量传递及相对位移,状态将随时间 变化,称系统处于非平衡态

受逐渐变化的压力作用下的活塞的移动过程 发生系统状态变化 (力作用)(NEXT)
受变化的恒温热源缓慢加热的活塞系统发生 系统状态变化(热的作用) (NEXT)

26
P3 P2
P1
工质 工 质
工质
受逐渐变化压力作用下的活塞移动过程发生系 统状态变化(P、V、T变化) (力作用)
27
工质
工质
工质
热源T
31
1-6
过程功与热量
1.6.1 功的定义: 1、功的力学定义: 将物体间通过力的作用而传递的能量称为功并 定义:功等于力F与物体在力作用方向上的位移X 的乘积(点积) dW = F ·dX 2、功的热力学定义: 热力学系统和外界通过边界而传递的能量, 其效果可表现为举起重物
区别:功与系统动能、重力位能等“储存能”变化传递 的机械能的本质区别

第01章-热力学基本定律1-资料

第01章-热力学基本定律1-资料
themegallery
[例题]:
在等压下,一定量理想气体B由10 dm3膨胀到16 dm3,并吸热700J,求W与ΔU ? 解: 初态,p 10 dm3 等 压 过 Q 程 7 0J, 0终态, p 16 dm3
Wp(V2V 1)[10136215 03]J60J8
themegallery
3. 准静态过程
定义:在过程进行中的任何时刻系统都处于平衡态 的过程。
4. 可逆过程
定义:由一系列非常接近于平衡的状态所组成 的,中间每一步都可以向相反的方向进行而不在环 境中任何痕迹的过程称为可逆过程。
themegallery
特点: ①可逆过程是由一系列非常接近于平衡的状态所 组成. ②过程中的任何一个中间态都可以从正、逆两个方 向到达。 ③经历可逆过程后,当系统复原时,环境也完全 复原而没有留下任何影响和痕迹。
1. 热力学第一定律表述: 热力学第一定律即能量守恒与转化定律:自然界 的一切物质都具有能量,能量有各种不同的形式, 能够从一种形式转化为另一种形式,在转化中, 能量的总值保持不变。 经验表述:第一类永动机是造不成的。
themegallery
2. 热力学第一定律的数学表达式
ΔU = Q + W 对一微小表化,
例题:教材第10页
在298.15K 下1mol C2H6 完全燃烧时,过程所 作的功是多少(反应系统中的气体视为理想气 体)?
解: C2H6 (g) + 3.5O2 (g) = 2CO2 (g) + 3H2O (l)
WRT B(g)= [- (2 - 3.5 - 1)×8.314×298.15]J
欢迎
第一章 热力学基本定律
1.1 热力学基本概念 1.2 热力学第一定律 与内能、焓、功、热 1.3 气体系统典型过程分析 与可逆过程、热机效率 1.4 热力学第二定律与熵、熵判据 1.5 熵变的计算与应用:典型可逆过程和可逆途径的设计 1.6 自由能函数与自由能判据:普遍规律与具体条件的结合 1.7 封闭系统热力学函数间的关系:4个基本方程 1.8 自由能函数改变值的计算及应用:可逆途径的设计

工程热力学和传热学课后答案(前五章)

工程热力学和传热学课后答案(前五章)
37页脚内容
页眉内容
对于可逆过程,都正确。
3.某封闭系统经历了一不可逆过程,系统向外界放热为10kJ,同时外界对系统作功为20kJ。
1)按热力学第一定律计算系统热力学能的变化量;
2)按热力学第二定律判断系统熵的变化(为正、为负、可正可负亦可为零)。
4.判断是非(对画,错画×)
1)在任何情况下,对工质加热,其熵必增加。()
2.下列说法是否正确,为什么?
1)熵增大的过程为不可逆过程;
只适用于孤立系统
2)工质经不可逆循环,S0;
S =0
3)可逆绝热过程为定熵过程,定熵过程就是可逆绝热过程;
定熵过程就是工质状态沿可逆绝热线变化的过程
4)加热过程,熵一定增大;放热过程,熵一定减小。
根据ds≥△q/T,前半句绝对正确,后半句未必,比如摩擦导致工质温度升高的放热过程。
w123>w143
14
谁大谁小?又如2和3在同一条等温线上呢?
所以
P
v
图4-2
2
2->3为绝热膨胀过程,内能下降。所以
u2>u3。
4.讨论1<n<k的多变膨胀过程中绝气热体线温度的变化以及气体与外界热传递的方向,并用热力学第一
(3)绝热系统。

1-1
5.判断下列过程中那些是不可逆的,并扼要说明不可逆原因。
(1)在大气压力为0.1013MPa时,将两块0℃的冰互相缓慢摩擦,使之化为0℃的水。
耗散效应
(2)在大气压力为0.1013MPa时,用(0+dt)℃的热源(dt→0)给0℃的冰加热使之变为0℃的水。
可逆
(3)一定质量的空气在不导热的气缸中被活塞缓慢地压缩(不计摩擦)。
800kJ。从状态2到状态3是一个定压的压缩过程,压力为p=400kPa,气体向外散热450kJ。并且已

普通化学 第一章 化学热力学基础

普通化学 第一章  化学热力学基础

1 1 (91.8kJ mol-1 ) 30.6 kJ mol-1 Δr H Δ H m,2 3 r m 3
(3)
NH3 ( g )
Δr H m,3
3 1 H2 ( g) N2 ( g ) 2 2 1 1 (91.8 kJ mol-1 ) 45.9 kJ mol-1 Δ r H m 2 2
体系由始态到终态,状态发生了变化,则称体系经历 了一个热力学过程,简称过程。 在状态发生了变化过程中,若体系的始态和终态温度
相等并且等于恒定的环境温度,称为“恒温过程”;同
样,若体系的始态和终态压力相等并且等于恒定的环境 压力,称为“恒压过程”;若体系的体积保持不变称为 “恒容过程”。若体系变化时和环境之间无热量交换, 则称之为“绝热过程”。
“生成”之意。例如:
1 H 2 ( g ) O 2 ( g ) H 2 O(l ) 2
1 Δr H ( 298 .15 K) 285.8 kJ mol m
普通化学
1.3.2 化学反应的标准摩尔焓变的计算
对任一个化学反应来说 dD eE gG hH 其反应物和生 成物的原子种类和个数是相同的,因此我们可以用同样 的单质来生成反应物和生成物,如图1.5所示。
与Q之和。
U Q W
(1.2)
式(1.2)为封闭体系中热力学第一定律的数学表达式。
普通化学
1.2.1 热力学第一定律
例1.1 设能量状态为U1的体系,体系输出200 J的热量,
Q 200 J
环境对体系做了350 J的功,求体系能量变化和终态能量U2。 解: 由题意
W 350 J
普通化学
普通化学
目 录

热力学基本原理(一)讲解

热力学基本原理(一)讲解

δ W pex dV;
① 向真空膨胀(自由膨胀)
p ex = 0, W=0 ② 等容过程 dV=0,W=0 ③ 恒外压膨胀 pex= 常量, W= – pex (V2 -V1)
④ 恒温可逆过程
W nRT ln V2 nRT ln p2
V1
p1
2019/6/10
1-3 体积功的计算、可逆过程
数值可连续变化,数学上有全微分
p f (T ,V )
dp p dT p dV T V V T
2019/6/10
1-1 热力学基本概念
三、过程和途径
过程:系统由一个始态到一个终态的状态变化。 途径:实现过程的具体步骤。
几种重要过程:
(1)等温过程:系统的始终态温度相等,且等于恒定的环境温度。 (2)等压过程:系统的始终态压力相等,且等于恒定的环境压力。 (3)等容过程:在整个过程中,系统的体积保持不变。 (4)绝热过程:在整个过程中,系统与环境之间无热量的交换。 (5)循环过程:系统经历一个过程后,又回到原来的状态。
ΔU = U2 - U1= Q + W
例1-1:某封闭系统中充有气体,吸收了45 kJ的热,又对环境做 了29 kJ的功,计算系统的热力学能的变化。
解:吸热 Q = 45kJ 失功 W= - 29kJ △U= Q + W = 45 + (-29) = 16 kJ 该系统的热力学能增加了16kJ。
2019/6/10
第 1 章 热力学基本原理(一)
1.1 热力学基本概念 1.2 热力学第一定律 1.3 体积功的计算、可逆过程 1.4 焓与热容 1.5 热力学第一定律在单纯物理变化过程中的应用 1.6 热力学第一定律对化学反应的应用——热化学

工程热力学简答题

工程热力学简答题

⒈ 闭口系与外界无物质交换,系统内质量将保持恒定,那末,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。

当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统) ,系统内的质量将保持恒定不变。

⒉ 有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。

这种观点 对不对,为什么?答:不对。

“绝热系”指的是过程中与外界无热量交换的系统。

热量是指过程中系统与外界间以热的方式交换的能量, 是过程量,过程一旦结束就无所谓“热量” .物质并不“拥有"热量。

一个系统能否绝热与其边界是否对物质流开放无 关。

⒊ 平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系?答: “平衡状态"与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没 有外界作用下保持不变;而平衡状态则普通指在外界作用下保持不变,这是它们的区别所在.⒋ 倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式 中,当地大气压是否必然是环境大气压?答:可能会的。

因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。

环境介质压力,譬如大气压力, 是地面以上空气柱的分量所造成的,它随着各地的纬度、高度温和候条件不同而有所变化,因此,即使工质的绝对压 力不变,表压力和真空度仍有可能变化。

“当地大气压”并非就是环境大气压.准确地说,计算式中的 P b 应是“当地环境介质”的压力,而不是随便任何其它意 义上的“大气压力”,或者被视为不变的“环境大气压力”。

⒌ 温度计测温的基本原理是什么?答:温度计对温度的测量建立在热力学第零定律原理之上。

它利用了“温度是相互热平衡的系统所具有的一种同一热 力性质”,这一性质就是“温度”的概念。

⒍ 经验温标的缺点是什么?为什么?答:由选定的任意一种测温物质的某种物理性质,采用任意一种温度标定规则所得到的温标称为经验温标。

热力学基本概念汇总

热力学基本概念汇总
27
(5)等温过程T1=T2=Tex,Tex=const.
1mol理想气体,在273K,P1=4Pθ,V1=5.6dm3 ,分 三个不同的途径等温膨胀到P2=Pθ,V2=22.4dm3,比较 它们所做的功。假设气缸上放置的是既没有摩擦又无 重量的的活塞。 Ⅰ:反抗恒外压,Pex= Pθ一次膨胀到终态
第一章 热力学第一定律
§1.1 §1.2 §1.3 §1.4 §1.5 §1.6 §1.7 §1.8 §1.9
热力学基本概念 热和功 热力学第一定律 功的计算、可逆过程 等容热、等压热和焓 热容及热的计算 热力学第一定律的应用Ⅰ——简单参量变化 热力学第一定律的应用Ⅱ——相变化 热力学第一定律的应用Ⅲ——热化学
19
含义:
体系内质点间的势能:吸引能,排斥能 体系分子间的动能: 平动能,转动能,振动能 体系内质点的运动能:核能 电子运动能
20
特点:
(1)热力学能的绝对值无法确定
(2)热力学能是状态函数
(3)热力学能是容量性质
其微小变量可表示为某几个自变量的全微分形式。对 纯物质单相封闭系可有:
U f (T ,V );
18
2.能量转化与守恒定律
到1850年,科学界公认能量守恒定律是自然界 的普遍规律之一。能量守恒与转化定律可表述为:

自然界的一切物质都具有能量,能量有各
种不同形式,能够从一种形式转化为另一种形
式,但在转化过程中,能量的总值不变。
3.热力学能
E= EK + Ep + U
动能 势能 热力学能 -系统内部 能量的总和。
系统(包括孤立系统)的形式。叙述为: ➢ 封闭系统中的热力学能不会自行产生或消灭,只 能以不同的形式等量地相互转化。 ➢ 第一类永动机(无需环境供给能量而能连续对环境 做功的机器)不能制造。

第一章 热力学基础

第一章 热力学基础
例:分析系统在下面变化过程中的Q、W和ΔU。 1) 化学反应在绝热钢筒中进行; 2) 循环过程。
例: 一热力学系统在等温定容的条件下发生变 化时,放热15 kJ,同时做电功35 kJ,假 若系统在发生变化时,不做非体积功(其 它条件不变),计算系统能放出多少热。
例: 在101.3 kPa及298 K时,液态溴的气化热 为30.7 kJ/mol,计算该条件下1 mol溴完 全气化时系统热力学能的变化值。
p = ΣpB
如:组分气体B的物质的量为nB 混合气体的物质的量为n
混合气体的体积为V
则它们的压力: pB = nBRT/V p = nRT/V
将两式相除,得
pB nB p =n
nB nΒιβλιοθήκη 则pB =nB p n
为组分气体B的摩尔分数
同温同容,气态物质的分压与其物质的量成正比。
物质 氮气 氧气 氩气 二氧化碳 水
热(heat):系统和环境之间因温度不同而传递 或交换的能量的形式。 用符号Q 表示。单位:J、kJ。
功(work) :除了热之外其它传递或交换的能量 形式。 用符号W 表示。单位:J、kJ。
热的本质:系统与环境间因内部粒子无序运动 强度不同而造成的能量传递。
热的正负符号规定:以系统为中心,系统 吸热,Q 为正值,系统放热,Q 为负值。
热是途径函数,不是状态函数。 • 热不仅与始末态有关,还与过程经历的具
体途径有关。 • 微量热记作δQ,一定量的热记作Q,而不
是ΔQ。
功是系注统意与: 环功境和间热因都内不部是粒状子态有函序运数动。而交换 的其能数量值。与变化途径有关。都是过程的产物。
功的符号规定:以系统为中心,环境对系统做 功,W为正值;系统对环境做功,W为负值。

热力学的基本概念和定律

热力学的基本概念和定律

● 04
第四章 熵和熵增原理
熵的概念和特点
01 熵的物理意义和计算方法
探讨熵的实际意义和计算方式
02 熵在热力学系统中的应用
分析熵在系统中的作用和应用场景
03
熵增原理的表述
熵增原理的数学表 达式和物理意义
介绍熵增原理的数学公式 解释熵增原理的物理意义
熵增原理与热力学 第二定律的关系
探讨熵增原理与第二定律 的联系 分析两者之间的关联和区 别
内能变化计算方法
内能变化可以通过系统吸 收的热量和对外做的功来 计算,ΔU = Q - W。内能 的改变直接反映了系统所 进行的热量和功的转化情 况。
在工程实践中的应 用
热力学第一定律在工程实 践高效 能量系统等。工程师们经 常利用热力学第一定律来 解决能量转化和利用方面 的问题。
01 热平衡
系统与周围没有温度差
02 热力学平衡
系统内部各部分达到平衡状态
03
热力学过程
绝热过程
没有热量交换 系统内无外界影响
等温过程
温度恒定 在可逆条件下进行
等容过程
体积恒定 一般是理想气体的压缩膨 胀
绝热过程
没有熵交换 系统内无耗散
热力学的基本概 念
热力学是研究能量转 化和工作关系的科学。 热力学主要研究热、 功和能量之间的关系, 包括热力学系统的分 类以及热平衡和热力 学平衡的概念。
● 02
第2章 热力学第一定律
热力学第一定律 的表述
热力学第一定律是能 量守恒的基本表达形 式,数学上可以表示 为ΔU Q - W。其中, ΔU表示系统内能的 改变,Q表示系统吸 收的热量,W表示系 统对外做的功。这个 定律揭示了热量和功 之间的关系,是热力 学基本定律之一。

热力学基础

热力学基础

p1V1 p2V2 恒量 T1 T2
(质量不变)
p,V , T p0 ,V0 , T0 (标准状态)
标准状态:
p0 1.01325 10 Pa
5
m V0 Vmol M
其中:
T0 273.15 K
Vmol 22.4 10 m
3
3
m 为气体的总质量。
M 为气体的摩尔质量。
H m T

式中m是磁化强度,H是磁场强度,a是与物质有关的 常数,式又称为居里(Curie)定律.
五、与物态方程有关的三个系数
定压膨胀系数
1 V ( )p V T

表示在压强不变的条件下,温度升高1K所引起的物体体积 的相对变化.
定容压强系数
1 p ( )V p T
1准静态过程和非静态过程 2可逆过程和不可逆过程
1 准静态过程和非静态过程

如果过程进行得非常缓慢,致使系统在过程进行
中所经历的每一个状态都可以看成是平衡态,这 样的过程称为准静态过程.反之,若过程进行中 系统平衡态被破坏的程度大到不可忽略时,这样 的过程称为非静态过程.通常准静态过程又叫平 衡过程,非静态过程又叫非平衡过程.
热力学基本概念

体系(System)与环境(Surroundings) 系统的状态(State)与状态函数(State Function) 系统的过程(Process)与途径(Path) 体系的性质(Property) 热力学平衡态(thermodynamic equilibrium state )

热力学系统的宏观状态是由一些独立的物理量 完全确定的. 可以用这些物理量的连续函数来描述系统的状 态,如简单系统的自由能F(T,V),当系统的温 度T和体积V确定时,系统的状态就完全确定了.

01基本概念及定义热力学2013-文档资料

01基本概念及定义热力学2013-文档资料
终态 p' A G' pb A
第一章 基本概念及定义
12
2. 准静态过程 quasi-static state process
过程中系统经历的是一系列平衡状态,并在 每次状态变化时仅是无限小地偏离平衡状态。 实现准静态过程的条件: 系统和外界△→0 大部分实际过程可以近似地当作准静态过程。
在状态参数坐标图上,可用一条过 程曲线定性地表示该准静态过程。
第一章 基本概念及定义
6
3. 温度 Temperature , T ( t )
温度是标志系统冷、热程度的参数。 温度的建立以及测量是以热力学第零定律为基础的。
热力学第零定律(热平衡定律)The Zeroth Law of Thermodynamics : 两个系统分别与第三个系统处于热平衡,则这两个系统彼此也
是衡量可逆过程中工质与外 界是否发生热交换的标志。
在p-v图上: 一点:一个平衡状态 一实线:一个准静态过程
在T-s图上:一点:一个平衡状态 一实线:一个准静态过程
曲线下面积:
可逆过程中系统所 做的容积变化功。
功是过程量
第一章 基本概念及定义
曲线下面积:
可逆过程中系统与 外界所交换热量。
热量是过程量
状态参数坐标图:
应用两个独立状态参数,可组成状态参数坐标图。
ex: P-V, T-s, h-s, p-h
注意:①图上任意一点代表一个平衡状态;
②若系统处于不平衡状态, 则无法在状态参数坐标图上描述。
第一章 基本概念及定义
10
1-4 状态方程式
1. 状态方程式
三个基本状态参数(p、v、T)之间的函数关系。即:
• 功量是过程量,仅存在于过程中,过程 一旦结束,功量这种能量形式就不复存在。

《工程热力学》 第一章—基本概念

《工程热力学》 第一章—基本概念

状态参数的分类
★ 基本状态参数:可以直接测量的状态参数。 如压力p、温度T、比体积v。 ★ 导出状态参数:由基本状态参数间接求得的 参数。 如内能U、焓H、熵S等。
1. 压力
● 压力的定义
◆ 沿垂直方向作用在单位面积上的力称为压
力(即物理中压强)。
◆ 对于容器内的气态工质来说,压力是大量 气 体分子作不规则运动时对器壁单位面积撞 击 作用力的宏观统计结果。
压力的单位
压力的单位是N/m2 ,符号是帕(Pa)
常用压力单位的换算见附表1(222页)
1 atm = 760 mmHg = 1.013105 Pa
1 at = 1 kgf/ cm2 = 9.8067 104 Pa
1 MPa = 106Pa= 103kPa= 10bar
压力的表示方法
◆ 绝对压力(p)、表压力(pg)、
如果系统的宏观状态不随时间变化,则该系
统处于平衡状态。
● 不能把平衡态简单地说成不随时间而改变的状态, 也不能说成外界条件不变的状态。
平衡态是指系统的宏观性质不随时间变化的状态。 ● 平衡与均匀:均匀系统一定处于平衡状态,
反之则不然。
● 实现平衡的条件
◆ 热平衡 ◆ 力平衡 ◆ 相平衡 ◆ 化学平衡 温度相等 压力相等 各相间化学位相等 反应物与生成物化学 位相等
2. 温度
◆ 传统:温度是物体冷热程度的标志。
◆ 微观:温度是衡量分子平均动能的量度。
T 0.5 m c2 T=0 0.5 m c2=0 分子一切运动停止,零动能。
● 热力学第零定律
◆ 热平衡:不同物体的冷热程度相同,则它们处于热平衡。 ◆ 热力学第零定律(热力学中的一个基本实验结果): 若两个热力系分别与第三个热力系处于热平衡,那么这 两个热力系也处于热平衡。

工程热力学-1第一章 基本概念

工程热力学-1第一章 基本概念

例1-2 P23 可逆过程功的计算关键:找到p和v之间的关系
三、过程热量
系统与外界之间依靠温差传递的能量称为热量。 符号:Q ;单位:J 或kJ。
单位质量工质所传递的热量用q 表示,单位为 J/kg 或 kJ/kg。
热量正负的规定: 系统吸热:q > 0 系统放热:q < 0
热量和功量都是系统与外界在相互作用的过程 中所传递的能量,都是过程量而不是状态量
热量如何表达?
热量是否可以用类似于功的
? 式子表示?
Entropy
引入“熵”
清华大学刘仙洲教授 命名为“熵”
在可逆过程中,系统与外界交换的热量与功量
的计算公式具有相的形式。
功量:
热量:
w pdv
qqTTds?
2
w 1 pdv
2
q 1 Tds
条件 准静态或可逆
可逆
s 称为比熵。比熵同比体积 v 一样是工质的状态 参数。
比熵的定义式:ds q
T
(可逆过程)
比熵的单位为J/ (kg·K) 或 kJ/ (kg·K)
对于质量为m的工质,
Q TdS
2
Q 1 TdS
S为质量为 m 的工质的熵,单位是 J/K。
示热图
2
w 1 pdv
2
q 1 Tds
在可逆过程中单位 质量工质与外界交换 的 热 量 可 以 用 T-s 图 (温熵图)上过程曲 线下的面积来表示。
消除一种 不平衡势差
达到某一 方面平衡
消除一种能量 传递方式
状态公理 对于组成一定的物质系统,该系统平衡态的
独立状态参数有 n +1
n-表示系统与外界进行准静功交换的数目
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章热力学的基本概念1.1 热力系及其描述 (1)1.1.1 热力系 (1)1.1.2 热力系的状态、平衡状态及状态参数 (2)1.1.3 状态参数的特性 (3)1.2 基本状态参数 (4)1.2.1 密度及比体积 (4)1.2.2 压力 (4)1.2.3 温度及热力学第零定律 (7)1.3 状态方程式,状态参数坐标图 (12)1.3.1 状态公理 (12)1.3.2 纯物质的状态方程式 (12)1.3.3 状态参数坐标图 (13)1.4 热力过程及热力循环 (14)1.4.1 准平衡过程 (14)1.4.2 热力循环 (16)思考题及答案 (19)1.1 热力系及其描述1.1.1 热力系在对一个现象或—个过程进行分析时为了确定研究的对象,规划出研究的范围,常从若干物体中取出需要研究的部分.这种被取出的部分叫做热力学系统,简称热力系。

热力系以外的物质世界统称为外界(或环境)。

热力系与外界的分界面叫做界面(或边界)。

所谓热力系,即是由界面包围着的作为研究对象的物体的总和。

热力系与外界之间的界面可以是真实的,也可以是假拟的,可以是固定的,也可以是运动的。

在一般情况下,热力系与外界处于相互作用中,彼此可交换能量(如热量及各种形式的功)及物质。

按热力系与外界进行物质交换的情况可将热力系分类为:闭口系(或闭系)——热力系与外界无物质交换,或者说没有物质穿过边界。

此时.热力系内部的质量将保持不变,称为控制质量(C.M.),故闭口系即是我们所研究的某“控制质量”。

开口系(或开系)——热力系与外界之间有物质交换,或者说有物质穿过边界。

这种热力系内部的质量可以是变化的。

这时,我们可以把研究的对象规划在一定的空间范围内,这种空间范围叫作控制容积(C.V.),或称控制体,故开口系即是我们所研究的某“控制体”。

相应地,控制质量或控制容积与外界的分界面也可称为控制面。

按热力系与外界进行能量交换的情况常将热力系分类为:简单热力系——热力系与外界只交换热量及一种形式的准静功(准静功的概念将在2-2节中讨论);绝热系——热力系与外界无热交换;孤立系——热力系与外界既无能量交换又无物质交换。

以上是按热力系与外界的相互关系所作的分类。

热力系也可按其内部状况的不同而分类为:单元系(只包含一种化学成分的物质)、多元系(包含两种以上的物质)、均匀系(各部分具有相同的性质,如单相系)、非均匀系(各部分具有不同的性质,如复相系);等等。

在热力工程上,能量转换是通过工作物质的状态变化来实现的。

最常用的工质是一些可压缩流体(如蒸汽动力装置中的水蒸气,燃气动力装置中的燃气,等等)。

由可压缩流体构成的热力系称为可压缩系统。

若可压缩系统与外界只有准静容积变化功(膨胀功或压缩功)的交换,则此系统称为简单可压缩系统。

工程热力学中讨论的大部分系统都是简单可压缩系统。

另外,在热力学中还会遇到一些特殊的系统,例如某种具有无限大热容量的系统,它对外放出或吸入有限的热量时其自身的温度维持不变,这种系统称为热源(或冷源)。

正确地选择热力系是进行正确的热力学分析的前提。

没有明确选定热力系之前,对力、质量、热、功等任何问题的讨论都是不可能进行的。

1.1.2 热力系的状态、平衡状态及状态参数所谓热力系的状态,即是热力系在某一瞬间所呈现的宏观物理状况。

在热力学中我们一般取设备中的流体工质(主要是气体)作为研究对象,这时热力系的状态即是指气体所呈现的物理状况。

热力系可能呈现各种不同的状态,其中具有特别重要意义的是所谓平衡状态。

平衡状态是指,在没有外界影响的条件下系统的各部分在长时间内不发生任何变化的状态。

处于平衡状态的热力系各处的温度、压力等参数是均匀一致的。

试设想系统中各物体之间有温差存在而发生热接触,则必然有热自发地从高温物体传向低温物体,这时系统不会维持状态不变,而是不断产生状态变化直至温差消失而达到平衡。

这种平衡称为热平衡。

可见,温差是驱动热流的不平衡势,而温差的消失则是系统建立起热平衡的必要条件。

同样,如果物体间有力的相互作用(例如由压力差引起),则将引起宏观物体的位形变化,这时系统的状态不断变化直至力差消失而建立起平衡。

这种平衡称为力学平衡。

所以,力差也是驱使系统状态变化的一种不平衡势,而力差的消失是使系统建止起力学平衡的必要条件。

对于有相变或化学反应的系统,还可能出现由某些势差引起的相转变或化学组成变化,而在达到平衡时也应以相应的势差的消失作为平衡的必要条件(相平衡和化学平衡条件将在后续有关章节中讨论)。

这样,对于一个状态可以自由变化的热力系而言,如果系统内或系统与外界之间的一切不平衡势都不存在,则热力系的一切可见宏观变化均将停止,此时热力系所处的状态即是平衡状态。

各种不平衡势的消失是系统建立起平衡状态的必要条件。

由上所述,处于平衡状态的热力系应具有均匀一致的温度(T)、压力(P)等。

因此,对于任意给定的平衡热力系可以用确定的T,P 等物理量来描述。

这些用来描述热力系平衡状态的物理量称为状态参数。

处于平衡状态的热力系其状态参数具有确定的数值,而非平衡热力系的状态参数是不确定的。

在对非平衡热力系进行热力学分析时常将热力系分割为一些小的微团。

当所分的微团宏观上足够小而微观上足够大,以致可将微团视为一平衡热力系时,对这样的微团也可用状态参数来描述。

在热力学中,把介质视为连续体。

在此连续体内所谓一点处的热力参数,实际上是指围绕此点的某微团所具有的热力参数。

1.1.3 状态参数的特性描述热力系状态的物理量可分为两类:凡把热力系视为一个整体来定义,即与系统中所含物质的数量有关的物理量称尺度量,例如系统的总容积V、总质量m、总能量E 等。

尺度量具有可加性,在系统中其总量等于各部分分量之和。

例如∑∑∑===i ii iiiEEmmVV,,,等等。

对于平衡热力系而言,尺度量与系统的体积或质量成正比。

对于任意给定的平衡及非平衡热力系,尺度量一般均具有确定的数值。

凡与系统中所含物质的数量无关,在热力系中任一点具有确定的数值的物理量称为强度量。

压力p、温度T 即是强度量的例子。

强度量不具有可加性。

就整个系统而言,强度量对于平衡状态才具有确定的数值,对于非平衡状态一般没有确定的数值。

还有一些强度量是由尺度量转化得出的。

尺度量对质量(或体积)的微商具有强度量的性质,例如尺度量V 对m 的微商vmV=δδ即是如此。

ν称为系统的比体积。

比体积v 可视为强度量。

以后还要讲到另一些比参数,它们也具有这样的性质。

上面讲到的一些状态参数,是由系统本身的内部热力状态决定的,称为热力状态参数。

此外,还有一些参数,它们与热力系的内部状态无关,而需借助外部参考系来决定,例如热力系作为一个整体的运动速度,热力系整体的重力位能,等等。

它们描述热力系的力学状态,称为力学状态参数,或者叫做外参数。

状态参数是状态的单值函数,热力系状态一定,其状态参数的数值也一定。

确定状态参数的函数称为状态函数或点函数,它们具有以下数学特征。

在任意过程中,当热力系从初态1过渡到终态2时,任意状态参数的变化量均等于初、终状态下该状态参数的差值,而与过程如何进行无关,即1221ξξξ-=⎰d (1-1)式中, ξ表示任意状态参数。

当热力系经历一封闭的状态变化过程而又回复到原始状态时,其状态参数的变化为0,即⎰=0ξd (1-2)可见,状态函数的微分是全微分。

1.2 基本状态参数简单可压缩平衡系的状态常用状态参数比体积v 、压力P 、温度T 来描述。

这些物理量都是可以测量的,称为基本状态参数。

1.2.1 密度及比体积密度是单位容积内所含物质的质量,其法定计量单位为千克每立方米(kg/m 3)。

若质量为m 的物质占有的体积为 V ,则其密度 ρ为V m=ρ (1-3)比体积是单位质量的物质所占有的体积,其单位为立方米每千克(m 3/kg)。

若质量为m 的物质占有的体积为 V ,则其比体积为m Vv =不难看出,比体积与密度互为倒数,即1=ρυ (1-4)总容积V 、总质量m 为具有可加性的尺度量,但 ρ、 v 则为强度量而不具有可加性。

从微观意义上讲,对一定气体而言,密度、比体积均为描绘分子聚集疏密程度的物理量。

1.2.2 压力单位面积上所受到的垂直作用力称为压力(或压强)。

若总力F 垂直作用于面积 上,则其压力p 为A Fp = (1-5)根据分子运动论,气体的压力是气体分子运动撞击表面,而在单位面积上所呈现的垂直于壁面的平均作用力,23220mw n p = 式中, 0n 为单位容积内的分子数, 22mw 为分子的平均移动动能。

液体系统除传递压力外,在重力场中还有由于液体的重量而产生的静压力。

静压力与液柱的垂直高度有关。

1.压力的测量、表压力和绝对压力流体的压力用压力计测量。

工程上常用的压力计有两种,即弹簧管压力计及测量微小压力的U 形管压力计。

它们实际上是测量压差的仪器,故又称压差计。

弹簧管压力计的基本结构如图1-1所示。

它利用弹簧管在内外压差作用下产生变形,从而拨动指针转动来指示工质与环境间的压差。

图1—1 弹簧管压力计 图1—2 U 形管压力计U 形管压力计如图1-2所示,其主要部件为一U 形玻璃管,管内盛有用来测压的液体,例如水银或水。

U 形管的一端与被测系统相连,另一端与环境(例如大气)相通。

当系统压力与环境压力不等时,即可由U 形管两边液柱的高度差读出系统与环境之间的压差。

根据流体静力学原理,在连通容器内同一高度上的压力相等。

于是,对于A -A 等压面可写出力平衡方程如下:gH p p b ρ+=或 g p p H bρ-= (1-6)式中: H 为U 形管两边的液柱高度差,m ;p 为被测系统的压力,Pa ;b p 为环境压力(一般情况下为大气压力),Pa ;ρ为测压液体的密度,kg/m 3;g 为重力加速度, 2/s m .由式(1-6)可见,当选定测压液体,且将 g ,ρ视为常数时,液柱高度差H 与压差( b p p -)成正比,故可用高度差H 单值地度量压差 p ∆。

这就是U 形管压差计的工作原理。

式(1-6)反映了压力与液柱高度差H 间的数量关系。

工程上常用水或水银作为测压液体,其密度随温度变化而变化。

它们在4℃及0℃时的密度分别为33)4(/102m kg C O H o=ρ 3)0(/595.13m kg C Hg o =ρ 同时假定重力加速度 g 为常数,其数值为2/80665.9s m g =在公制中, g ρ称为重度,用 γ表示。

水在4℃,水银在0℃时的重度分别为33)4(/9806/10002m N m kgf C O H o==γ 33)0(/133321/13595m N m kgf C Hg o ==γ 当水的温度不为4℃或水银的温度不为0℃时,液体密度 ρ发生变化,但在工程近似计算中常忽略 ρ随温度的变化而仍取上述数值。

相关文档
最新文档