2020年浙江高三数学总复习:基本不等式 复习讲义

2020年浙江高三数学总复习:基本不等式  复习讲义
2020年浙江高三数学总复习:基本不等式  复习讲义

第三节 基本不等式

(对应学生用书第50页)

一、基本不等式 基本不等式2

a b +

(1)基本不等式成立的条件:a>0,b>0. (2)等号成立的条件:当且仅当a=b 时取等号.

(3)其中2

a b

+称为正数a,b 的算术平均数,a,b 的几何平均

数.

1.概念理解

(1)基本不等式成立的条件是a,b 都是正数,在解题时,如果a,b 为负数,可提取负号,创造变量为正数的条件,再利用基本不等式解题. (2)在运用基本不等式解题时,注意一定要验证它们成立的条件是否满足.

2.与之相关联的结论 几个常用的不等式 (1)a 2+b 2≥2ab(a,b ∈R).

(2)ab ≤(2a b +)2

(a,b ∈R). (3)(2

a b +)2≤2

2

2

a b +(a,b ∈R).

(4)b a +a

b

≥2(ab>0).

(5)2

1

1

a b

+2

a b

+≤

(6)a+1a ≥2(a>0),当且仅当a=1时取等号;a+1

a

≤-2(a<0),当且仅当a=-1时取等号.

二、利用基本不等式求最值问题

1.两个正数的和为定值时,它们的积有最大值,即若a,b 为正实数,且

a+b=M,M 为定值,则ab ≤24

M ,等号当且仅当a=b 时成立.(简记:和定积

最大)

2.两个正数的积为定值时,它们的和有最小值,即若a,b 为正实数,且ab=P,P 为定值,则a+b ≥

等号当且仅当

a=b 时成立.(简记:积定

和最小)

1.理解辨析

利用基本不等式求最值时,要注意其必须满足的三个条件:一正、二定、三相等.

(1)“一正”就是各项必须为正数;

(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值; (3)“三相等”即检验等号成立的条件,判断等号能否取到,只有等号能成立,才能利用基本不等式求最值. 2.与基本不等式相关联的结论 用f(x)+

()

b f x ≥或f(x)+

()

b f x ≤求最值时,若使等

号成立的条件不存在,常借助函数y=x+b x (b>0)的图象和单调性求式子的最值.

1.已知a,b ∈R,a,b ≠0,则“a>0,b>0”是“

2

a b +≥( C )

(A)充分不必要条件 (B)必要不充分条件 (C)充要条件

(D)既不充分也不必要条件

解析:当a>0,b>0时,显然

2a b +.

2

a b +,有两个结论出现:

0,

0,

a b ab ?+≥??

≥?? 所以a>0,b>0. 故选C.

2.已知a>0,b>0,a+b=2,则y=1a +4

b

的最小值是( C ) (A)72 (B)4 (C)92

(D)5 解析:依题意,得1a +4b =12(1a +4b )·(a+b)= 12[5+(b a

+4a b )]≥12

92

,

当且仅当2,4,

0,0,

a b b a

a b a b +=???=???>>?

即a=23,b=43时取等号,即1a +4b 的最小值是9

2

.故选C. 3.若实数x,y 满足xy=1,则x 2+2y 2的最小值为 . 解析:因为x 2+2y 2≥

当且仅当x 2=2y 2时取“=”, 所以x 2+2y 2的最小值为

答案

4.已知a,b 为正数且a+b=1,则(1+1a )(1+1b

)的最小值为 . 解析:因为a+b=1,

所以原式=(1+a b a +)(1+a b b +) =(2+b a )(2+a b ) =5+2(b a +a b

)≥9, 当且仅当a=b=12时取等号, 所以最小值为9. 答案

:9

(对应学生用书第50~52页)

考点一 利用基本不等式求最值

【例1】 (1)(2018·浙江六校联考)已知x>0,y>0,且x+y+1x

+1

y =5,则x+y 的最大值是( )

(A)3 (B)72 (C)4 (D)92

(2)(2018·嘉兴高三测试)已知a>0,b>0,且满足3a+b=a 2+ab,则2a+b 的最小值为 ;

(3)已知正实数a,b 满足1a +2b

=3,则(a+1)(b+2)的最小值是 ;

(4)已知实数x,y>0,且xy=2,则

33

22848

x y x y +++的最小值是 .

解析:(1)由x+y+1x

+1y =5, 得5=x+y+x y

xy +,

因为x>0,y>0, 所以5≥x+y+

2()2

x y

x y ++=x+y+4

x y

+, 所以(x+y)2-5(x+y)+4≤0, 解得1≤x+y ≤4,

所以x+y 的最大值是4.故选C. (2)由a>0,b>0,3a+b=a 2+ab,

可得b=2

31a a

a

-->0, 解得1

2a+b=2a+231a a

a --=a-1+21

a -+3 ≥

当且仅当a-1=21a -, 即

时取等号.

故2a+b 的最小值为

(3)因为a>0,b>0, 所以3 =1a

+2b

ab ≥89

.

当且仅当12,123,a b a b ?=????+=??即2,3

43a b ?

=???

?=??时等号成立, 所以ab 的最小值是89,又1a +2b

=2b a

ab +=3, 所以2a+b=3ab,所以(a+1)(b+2)=ab+2a+b+2=4ab+2≥4×89

+2=509. (4)因为x,y>0,且xy=2,所以

3322848x y x y +++=2222(2)(24)

44x y x xy y x y xy +-+++

=22(2)[(2)6]

(2)x y x y xy x y ++-+ =2(2)2x y x y

++

=(x+2y)-12

2x y

+, 令x+2y=t,则t=x+2y ≥

f(t)=t-12t

在[4,+∞)上单调递增, 所以当t=4时有最小值4-124=1,当且仅当x=2,y=1时,取等号. 答案:(1)C

(3)509

(4)1 (1)利用基本不等式解决最值问题的关键是构造和为定值或

乘积为定值,主要有两种思路:①对条件使用基本不等式,建立所求目标函数的不等式求解;②条件变形,进行“1”的代换求目标函数最值.

(2)有些题目虽然不具备直接用基本不等式求最值的条件,但可以通过变形使之能运用基本不等式,常用的方法还有:拆项法、变系数法、凑因数法、分离常数法、换元法、整体代换法等

.

1.(2018·杭州二中月考)若正数a,b 满足1a +1b

=1,则11a -+9

1b -的最小值为( B )

(A)1 (B)6 (C)9 (D)16

解析:因为正数a,b 满足1a +1b

=1, 所以b=1

a a ->0,解得a>1,同理b>1, 所以11a -+91

b -=11

a -+911

a

a --=11a -+9(a-1)≥

=6,

当且仅当11a -=9(a-1), 即a=43

时等号成立, 所以11a -+91

b -的最小值为6.故选B. 2.已知log 2(x+y)=log 2x+log 2 y,则1x

+1y = ,x+2y 的最小值为 .

解析:由log 2(x+y)=log 2 x+log 2 y 得, x+y=xy 且x>0,y>0,

所以1x

+1y =1. x+2y=(x+2y)(1x + 1y ) =3+x y +2y x

当且仅当x y =2y

x

,

. 答案:1

考点二 利用基本不等式证明不等式 【例2】 已知a>0,b>0,c>0,且a+b+c=1.

求证:1a +1b

+1

c

≥9. 证明:因为a>0,b>0,c>0,且a+b+c=1, 所以

1a

+1b +1c =a b c a +++a b c b +++a b c c ++=3+b a +c a +a b +c b +a c +b c =3+(b a +a b )+(c a +a c

)+(c b +b c

)≥3+2+2+2=9, 当且仅当a=b=c=13

时,取等号.

利用基本不等式证明不等式的策略

(1)若要证明的不等式不能直接使用基本不等式,则考虑利用拆项、配凑等方法对要证不等式进行变形,使之达到能使用基本不等式的条件;

(2)若题目中还有已知条件,则首先观察已知条件和要证不等式之间的联系,当已知条件中含有1时,要注意1的代换; (3)解题时要时刻注意取得等号的条件能否成立.

1.已知a>0,b>0,a+b=1,求证:1a +1b +1ab ≥8. 证明:1a +1b +1ab =2(1a +1b

), 因为a+b=1,a>0,b>0.

所以1a +1b =a b a ++a b b +=2+a b +b

a

≥2+2=4. 所以1a +1b +1ab ≥8(当且仅当a=b=12

时等号成立).

2.已知a>0,b>0,a+b=1,证明 2.

证明:因为a>0,b>0,且a+b=1,

1122a +

++1

122

b ++=32a b ++=4

2=2.

当且仅当a+12=1,b+1

2

=1, 即a=b=12

时等号成立. 考点三 基本不等式的综合应用

【例3】 运货卡车以每小时x(50≤x ≤100)千米的速度匀速行驶130

千米,假设汽油的价格是每升2元,而卡车每小时耗油(2+2360

x )升,司机

的工资是每小时14元.

(1)求这次行车总费用y 关于x 的表达式;

(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 解:(1)设所用时间为t=130x (小时), y=130

x

×2×(2+2

360

x )+14×130x

,x ∈[50,100]. 所以,这次行车总费用y 关于x 的表达式是y=2340x +13

18x,x ∈[50,100]. (2)y=2340

x +1318x=13018x ?+2130360?x ≥,

当且仅当13018x ?=2130360?x,

时,等号成立.

故当

千米/时时,这次行车的总费用最低,最低费用的值为

元.

有关函数最值的实际问题的解题技巧

(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值;

(2)设变量时一般要把求最大值或最小值的变量定义为函数;

(3)解应用题时,一定要注意变量的实际意义及其取值范围;

(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.

1.某单位用2 160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2 000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).

(1)写出楼房每平方米的平均综合费用y关于建造层数x的函数关系式;

(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平

)

均购地费用=购地总费用

建筑总面积

解:(1) 依题意得

y=(560+48x)+216010000

2000x

=560+48x+10800

(x≥10,x∈N*).

x

(2)因为x>0,

所以48x+10800

x

≥当且仅当48x=10800x

,即x=15时取到“=”, 此时,楼房每平方米的平均综合费用的最小值为560+1 440=2 000(元).

故当该楼房建造15层时,可使楼房每平方米的平均综合费用最少,最少值为2 000元.

2.为响应国家扩大内需的政策,某厂家拟在某年年初举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用t(t ≥0)万元满足x=4-21k t +(k 为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知这一年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分).

(1)将该厂家这一年该产品的利润y 万元表示为年促销费用t 万元的函数;

(2)该厂家这一年的年促销费用投入多少万元时,厂家利润最大?

解:(1)由题意有1=4-1k ,得k=3,故x=4-321t +. 故y=1.5×612x x +·x-(6+12x)-t

=3+6x-t =3+6(4-321t +)-t =27-1821

t +-t(t ≥0). (2)由(1)知,y=27-1821

t +-t=27.5-[912

t +

+(t+1

2

)].

91

2

t +

+(t+1

2

)≥2故y=27-1821t +-t=27.5-[912

t +

+(t+1

2

)]≤27.5-6=21.5. 当且仅当

912

t +

=t+1

2

,即t=2.5时,等号成立,y 有最大值21.5. 所以,该厂家这一年的年促销费用投入2.5万元时,厂家利润最大,最大利润为21.5万元. 考点四 易错辨析

【例4】 已知x<54

,求函数y=4x-2+1

45x -的最大值. 解:因为x<54,所以5-4x>0. y=4x-2+145x - =-(5-4x+154x -)+3

≤当且仅当5-4x=154x -,

即x=1时,上式等号成立,故当x=1时,y max =1.

运用基本不等式求最值,当条件不满足和或积为定值时,可

以通过“拆、拼、凑”的技巧把求最值的代数式化为ax+b x (ab>0)等形式,本题就是一个典型例子,盲目使用条件是本题的易错点.

1.(2017·天津卷)若a,b ∈R,ab>0,则4441

a b ab ++的最小值

为 .

解析:因为a,b ∈R,ab>0,

所以4441a b ab ++≥2241a b ab +=4ab+1

ab

=4,

当且仅当222,

14,a b ab ab ?=??=?

?

即2

2a b ?=???

???

时取得等号. 故4441

a b ab ++的最小值为

4.

答案:4 2.设常数a>0,若

9x+2

a x

≥a+1对一切正实数x 成立,求a 的取值范围.

解:常数a>0,若9x+2

a x ≥a+1对一切正实数x 成立,故(9x+2

a x )min ≥a+1, 又

9x+2

a x

≥6a,当且仅当

9x=2

a x

,即x=3

a 时,等号成立. 故6a ≥a+1,解得a ≥15. 即a 的取值范围为[15

,+∞

).

(对应学生用书第53页)

类型一 利用基本不等式比较大小

1.设0

2a b

+

2a b +

2

a b +

2

a b +

解析:因0

又因a+b<2b,所以2

a b

+

2

a b

+,

所以

2

a b +

类型二 利用基本不等式求最值

2.(2018·金华模拟)已知x>0,y>0,且x+2y=xy,若x+2y-m 2-2m>0恒成立,则实数m 的取值范围是( B )

(A)[-4,2) (B)(-4,2) (C)(-3,3) (D)[-3,3]

解析:由x>0,y>0,x+2y=xy 变形得,2x

+ 1

y =1,所以x+2y=(x+2y)(2x +1y )=4y x +x y +4≥4+4=8,当且仅当4y x =x y ,即x=2y 时等号成立,又2x

+1y =1,得x=4,y=2,即当x=4,y=2时,x+2y 取得最小值,且最小值为8.由x+2y-m 2-2m>0恒成立,得(x+2y)min >m 2+2m,从而8>m 2+2m,解得-4

3.(2018·杭州质检)已知正数x,y 满足x 2+2xy-3=0,则2x+y 的最小值是 . 解析:由题意得y=2

32x x

-,

所以

2x+y=2x+2

32x x -=2332x x +=32

(x+1x

)≥3, 当且仅当x=y=1时,等号成立. 答案:3

4.函数f(x)=lg 2x x -,若f(a)+f(b)=0,则3a +1

b

的最小值为 .

解析:依题意得0

且lg (2a a -·2b b

-)=0, 即ab=(2-a)(2-b),2a b +=1, 3

a

+1b =2a b +(3a +1b )=12(4+3b a +a b )≥12

,当且仅当

3b

a =a

b ,即

-1时取等号,因此3a +1

b 的最小值是答案

5.若a>0,b>0,不等式3a +1b ≥3m

a b

+恒成立,则m 的最大值为 .

解析:因为a>0,b>0,不等式3a +1b ≥3m a b +恒成立, 所以m ≤[(a+3b)( 3a +1b )]min .

因为(a+3b)(3a +1b

)=6+9b a +a b ≥=12,

当且仅当a=3b 时取等号, 所以m 的最大值为12. 答案:12

类型三 基本不等式的综合应用

6.(2018·天津卷)已知a,b ∈R,且a-3b+6=0,则2a +18b

的最小值

为 .

解析:因为a-3b+6=0,所以a-3b=-6, 所以2a +1

8b

=2a +2-3b ≥×2-3=14

, 当且仅当3,

360

a b a b =-??

-+=?时等号成立,

即3,1

a b =-??

=?时取到等号. 答案:14

7.规定一种运算:a ?

为正实数).若1?k=3,则k 的值

为 ,此时函数

的最小值为 .

解析:1?

+1+k=3,即-2=0,

=1=-2(舍去),

所以k=1,

≥1+2=3,

当且仅当x=1时取“=”. 答案:1 3

8.已知a>0,b>0,设M=max(a,b a +9

ab

),则M 的最小值为 . 解析:在同一坐标系中作出函数y=a,y=9b b

a

+的图象(图略),

可得

M=09,,,

b b a a a a ?

+????>??0

9

b b

a +图象的交点横坐标,

即20

a =b+9

b ≥6(当且仅当b=3时,取得“=”),所以M 的最小值为a 0,

而a 0

所以M

答案

最新高三数学专题复习资料函数与方程

第八节 函数与方程 1.函数f(x)=ln(x +1)-2 x 的一个零点所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 2.若x 0是方程? ????12x =x 13的解,则x 0属于区间( ) A.? ????23,1 B.? ???? 12,23 C.? ????13,12 D.? ? ???0,13 3.(A.金华模拟)若函数f(x)=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是( ) A.? ????-12,14 B.? ???? -14,12 C.? ????14,12 D.???? ??14,12 4.(A.舟山模拟)设函数f 1(x)=log 2x -? ????12x ,f 2(x)=log 12x -? ???? 12x 的零点分 别为x 1,x 2,则( ) A .0

A .7 B .8 C .9 D .10 7.函数f(x)=?? ? x 2 +2x -3,x ≤0 -2+ln x ,x>0 的零点个数为________. 8.(A.杭州模拟)已知函数f(x)=??? x ,x ≤0, x 2 -x ,x>0, 若函数g(x)=f(x)-m 有三个不同的零点,则实数m 的取值范围为__________. 9.(A.义乌模拟)已知函数f(x)=ln x +3x -8的零点x 0∈[a ,b],且b -a =1,a ,b ∈N *,则a +b =________. 10.设函数f(x)=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f(x)的零点; (2)若对任意b ∈R ,函数f(x)恒有两个不同零点,求实数a 的取值范围. 11.已知函数f(x)=-x 2 +2ex +m -1,g(x)=x +e 2 x (x>0). (1)若g(x)=m 有实数根,求m 的取值范围; (2)确定m 的取值范围,使得g(x)-f(x)=0有两个相异实根. 12.是否存在这样的实数a ,使函数f(x)=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴有且只有一个交点.若存在,求出a 的范围,若不存在,说明理由. [冲击名校] 1.已知函数f(x)满足f(x)+1= 1 f x +1 ,当x ∈[0,1]时,f(x)=x ,若 在区间(-1,1]内,函数g(x)=f(x)-mx -m 有两个零点,则实数m 的取值范围是( ) A.??????0,12 B.??????12,+∞ C.??????0,13 D.? ? ???0,12 2.已知函数f(x)=?? ? kx +1,x ≤0,ln x ,x>0,则下列关于函数y =f(f(x))+1的 零点个数的判断正确的是( )

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

高三数学第二轮复习教案 不等式的问题 人教版

高三数学第二轮复习教案不等式问题的题型与方法三 (3课时) 一、考试内容 不等式,不等式的基本性质,不等式的证明,不等式的解法,含绝对值不等式 二、考试要求 1.理解不等式的性质及其证明。 2.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。 3.掌握分析法、综合法、比较法证明简单的不等式。 4.掌握简单不等式的解法。 5.理解不等式|a|-|b|≤|a+b|≤|a|+|b|。 三、复习目标 1.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力;2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式; 3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题; 4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力; 5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题. 6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.四、双基透视 1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰. 2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用. 4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形→判断符号(值). 5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的. 6.证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点. 7.不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

高三数学解析几何专题复习讲义(含答案解析)

二轮复习——解析几何 一.专题内容分析 解析几何:解析几何综合问题(椭圆或抛物线)及基本解答策略+圆锥曲线的定义和几何性质+直线与圆+极坐标、参数方程+线性规划 二.解答策略与核心方法、核心思想 圆锥曲线综合问题的解答策略: 核心量的选择: 常见的几何关系与几何特征的代数化: ①线段的中点:坐标公式 ②线段的长:弦长公式;解三角形 ③三角形面积: 2 1底×高,正弦定理面积公式 ④夹角:向量夹角;两角差正切;余弦定理;正弦定理面积公式 ⑤面积之比,线段之比:面积比转化为线段比,线段比转化为坐标差之比 ⑥三点共线:利用向量或相似转化为坐标差之比 ⑦垂直平分:两直线垂直的条件及中点坐标公式 ⑧点关于直线的对称,点关于点,直线关于直线对称 ⑨直线与圆的位置关系 ⑩等腰三角形,平行四边形,菱形,矩形,正方形,圆等图形的特征 代数运算:设参、消参 重视基本解题思路的归纳与整理但不要模式化,学会把不同类型的几何问题转化成代数形式.

三.典型例题分析 1.(海淀区2017.4)已知椭圆C :22 221(0)x y a b a b +=>>的左、右顶点分别为A ,B ,且||4AB =,离心率为12 . (Ⅰ)求椭圆C 的方程; (Ⅱ)设点(4,0)Q , 若点P 在直线4x =上,直线BP 形APQM 为梯形?若存在,求出点P 解法1:(Ⅰ)椭圆C 的方程为22 143 x y +=. (Ⅱ)假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ AP MQ k k =. 设点0(4,)P y ,11(,)M x y ,06 AP y k =,114MQ y k x = -, ∴ 01164y y x =-① ∴直线PB 方程为0(2)2 y y x =-, 由点M 在直线PB 上,则0 11(2)2 y y x = -② ①②联立,0 101(2) 264y x y x -=-,显然00y ≠,可解得11x =. 又由点M 在椭圆上,211143y + =,所以132y =±,即3 (1,)2 M ±, 将其代入①,解得03y =±,∴(4,3)P ±. 解法2:(Ⅰ)椭圆C 的方程为22 143 x y +=. (Ⅱ)假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ 平行, AP MQ k k =, 显然直线AP 斜率存在,设直线AP 方程为(2)y k x =+. 由(2)4y k x x =+??=? ,所以6y k =,所以(4,6)P k ,又(2,0)B ,所以632PB k k k ==. ∴直线PB 方程为3(2)y k x =-,由22 3(2) 34120 y k x x y =-?? +-=?,消y , 得2222(121)484840k x k x k +-+-=.

高三数学不等式选讲 知识点和练习

不等式选讲 一、绝对值不等式 1.绝对值三角不等式 定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立。 注:(1)绝对值三角不等式的向量形式及几何意义:当a,b不共线时,|a+b|≤|a|+|b|,它的几何意义就是三角形的两边之和大于第三边。 (2)不等式|a|-|b|≤|a±b|≤|a|+|b|中“=”成立的条件分别是:不等式|a|-|b|≤|a+b|≤|a|+|b|,在侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|。 定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立。 2.绝对值不等式的解法 (1)含绝对值的不等式|x|<a与|x|>a的解集 注:|x|以及|x-a|±|x-b|表示的几何意义(|x|表示数轴上的点x到原点O的距离;| x-a |±|x-b|)表示数轴上的点x到点a,b的距离之和(差) (2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法 ①|ax+b|≤c?-c≤ax+b≤c; ②| ax+b|≥c? ax+b≥c或ax+b≤-c. (3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法 方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 方法二:利用“零点分段法”求解,体现了分类讨论的思想; 方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想。

艺术生高考数学专题讲义:考点37 直线及其方程

考点三十七 直线及其方程 知识梳理 1.直线的倾斜角 (1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,把x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角.当直线l 和x 轴平行或重合时,规定它的倾斜角为0°. (2)倾斜角的范围为[0°,180°). 2.直线的斜率 (1)定义:当直线l 的倾斜角α≠π 2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率 通常用小写字母k 表示,即k =tan α. (2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1 . (3) 直线的倾斜角α和斜率k 之间的对应关系 每条直线都有倾斜角,但不是每条直线都有斜率,倾斜角是90°的直线斜率不存在.它们之间的关系如下: 3.直线方程的五种形式 4.过P 1(11222(1)若x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1; (2)若x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1; (3)若x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为x =0; (4)若x 1≠x 2,且y 1=y 2=0时,直线即为x 轴,方程为y =0.

5.线段的中点坐标公式 若点P 1、P 2的坐标分别为(x 1,y 1)、(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y ),则??? x =x 1+x 2 2y =y 1 +y 2 2 ,此公式为线段P 1P 2的中点坐标公式. 典例剖析 题型一 直线的倾斜角和斜率 例1 已知两点A (-3,3),B (3,-1),则直线AB 的倾斜角等于__________. 答案 56π 解析 斜率k = -1-33-(-3) =-3 3, 又∵θ∈[0,π), ∴θ=5 6 π. 变式训练 经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π 4,则y =__________. 答案 -3 解析 由2y +1-(-3)4-2=2y +4 2=y +2, 得y +2=tan 3π 4=-1.∴y =-3. 解题要点 求斜率的常见方法: 1.若已知倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率. 2.若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1 x 2-x 1(x 1≠x 2)求斜率. 3.若已知直线的一般式方程ax +by +c =0,一般根据公式k =-a b 求斜率. 题型二 直线方程的求解 例2 已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程; (2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程. 解析 (1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2 -2-2, 即x +2y -4=0.

高三数学一轮复习 18 基本不等式及其应用学案 文

学案18 基本不等式及其应用 班级________姓名________ 【导学目标】 1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】 1.基本不等式 ab ≤ a +b 2 (1)基本不等式成立的条件:____________. (2)等号成立的条件:当且仅当________时取等号. 2.几个重要的不等式 (1)a 2+b 2≥__________(a ,b ∈R ). (2)b a +a b ≥____(a ,b 同号). (3)ab ≤? ?? ?? a + b 22 (a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为________,几何平均数为________; 基本不等式可叙述为:________________________________________________. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当________时,x +y 有最____值是________(简记:积定和最小). (2)如果和x +y 是定值p ,那么当且仅当________时,xy 有最____值是__________(简记:和定积最大). 5.一个结论:11 02; 0 2.x x x x x x >+ ≥<+≤-当时,则当时,则 【自我检测】 1.若x >0,y >0,且x +y =18,则xy 的最大值是________. 2.已知t >0,则函数y = t 2-4t +1 t 的最小值为________.

【经典】高三数学基本不等式题型精讲精练

基本不等式 基本不等式知识 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2.(1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则2 2??? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 5.若,,,+∈R c b a a b c c b a 3333≥++, 33abc c b a ≥++(当且仅当c b a ==时取等) 应用一 直接求最值 例1 求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x (3)(理科)已知+∈R y x ,,且满足232x y =,则x y +的最小值为( ) A .1 B .2 C .6 D .4 (4)已知+∈R c b a ,,且满足132=++c b a ,则c b a 31211++的最小值为 (5)若b a ,是不相等的正数,b a y b a x +=+=,2 ,则y x ,的大小关系是 (6)若,0,0>>b a 且,72=++b a ab 则b a +的最小值是 技巧一 凑项 例1 已知54x <,求函数14245 y x x =-+-的最大值 1.函数y =log 2(x +1x -1 +5)(x >1)的最小值为( ) A .-3 B .3 C .4 D .-4 技巧二 凑系数 例2 当40<

高中数学专题讲义-线性规划

【例1】 设O 为坐标原点,(1,1)A ,若点B 满足2222101212x y x y x y ?+--+????≥≤≤≤≤, 则OA OB ?u u u v u u u v 的最小值为( ) A .2 B .2 C .3 D .22+ 【例2】 已知变量,x y 满足120x y x y ????-? ≥≤≤,则x y +的最小值为( ) A .2 B .3 C .4 D .5 【例3】 不等式组0,10, 3260x x y x y ??--??--?≥≥≤所表示的平面区域的面积等于 . 典例分析 线性规划

【例4】设变量,x y满足约束条件 3 1 x y x y + ? ? -- ? ≥ ≥ ,则目标函数2 z y x =+的最小值为() A.1B.2C.3D.4 【例5】设变量,x y满足 0, 10 3260 y x y x y ? ? -- ? ?-- ? ≥ ≥ ≤ ,则该不等式组所表示的平面区域的面积等 于,z x y =+的最大值为. 【例6】目标函数2 z x y =+在约束条件 30 20 x y x y y +- ? ? - ? ? ? ≤ ≥ ≥ 下取得的最大值是________. 【例7】下面四个点中,在平面区域 4 y x y x <+ ? ? >- ? 内的点是() A.(0,0)B.(0,2)C.(3,2) -D.(2,0) -

【例8】已知平面区域 1 ||1 (,)0,(,) 1 y x y x x y y M x y y x ?? + ? ?? -+ ? ?? ??? Ω== ?????? ? ?? ????? ? ?? ≤ ≤ ≥ ≥ ≤ ,向区域Ω内 随机投一点P,点P落在区域M内的概率为() A.1 4 B. 1 3 C. 1 2 D. 2 3 【例9】若x,y满足约束条件 30 03 x y x y x + ? ? -+ ? ? ? ≥ ≥ ≤≤ ,则2 z x y =-的最大值为. 【例10】已知不等式组 y x y x x a ? ? - ? ? ? ≤ ≥ ≤ ,表示的平面区域的面积为4,点() , P x y在所给平面区 域内,则2 z x y =+的最大值为______.

高三数学(理科)二轮复习-不等式

2014届高三数学第二轮复习 第3讲 不等式 一、本章知识结构: 实数的性质 二、高考要求 (1)理解不等式的性质及其证明。 (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数定理,并会简单应用。 (3)分析法、综合法、比较法证明简单的不等式。 (4)掌握某些简单不等式的解法。 (5)理解不等式|a|﹣|b| ≤|a+b|≤|a| +|b|。 三、热点分析 1.重视对基础知识的考查,设问方式不断创新.重点考查四种题型:解不等式,证明不等式,涉及不等式应用题,涉及不等式的综合题,所占比例远远高于在课时和知识点中的比例.重视基础知识的考查,常考常新,创意不断,设问方式不断创新,图表信息题,多选型填空题等情景新颖的题型受到命题者的青眯,值得引起我们的关注. 2.突出重点,综合考查,在知识与方法的交汇点处设计命题,在不等式问题中蕴含着丰富的函数思想,不等式又为研究函数提供了重要的工具,不等式与函数既是知识的结合点,又是数学知识与数学方法的交汇点,因而在历年高考题中始终是重中之重.在全面考查函数与不等式基础知识的同时,将不等式的重点知识以及其他知识有机结合,进行综合考查,强调知识的综合和知识的内在联系,加大数学思想方法的考查力度,是高考对不等式考查的又一新特点. 3.加大推理、论证能力的考查力度,充分体现由知识立意向能力立意转变的命题方向.由于代数推理没有几何图形作依托,因而更能检测出学生抽象思维能力的层次.这类代数推理问题常以高中代数的主体内容——函数、方程、不等式、数列及其交叉综合部分为知识背景,并与高等数学知识及思想方法相衔接,立意新颖,抽象程度高,有利于高考选拔功能的充分发挥.对不等式的考查更能体现出高观点、低设问、深入浅出的特点,考查容量之大、功能之多、能力要求之高,一直是高考的热点. 4.突出不等式的知识在解决实际问题中的应用价值,借助不等式来考查学生的应用意识. 不等式部分的内容是高考较为稳定的一个热点,考查的重点是不等式的性质、证明、解法及最值方面的应用。高考试题中有以下几个明显的特点: (1)不等式与函数、数列、几何、导数,实际应用等有关内容综合在一起的综合试题多,单独考查不等式的试题题量很少。

高三数学不等式题型总结全

不等式的解题归纳第一部分含参数不等式的解法 例1解关于x的不等式2x2? kx _ k岂0 例2 .解关于x的不等式:(x-x2+12)(x+a)<0. 2x2+2k x +k 例3、若不等式2x 2 2kx 1 :::1对于x取任何实数均成立,求k的取值范围. 4x +6x +3 例4若不等式ax2+bx+1>0的解集为{x | -3 (x- 1)2对一切实数x都成立,a的取值范围是____________________ 2 .如果对于任何实数x,不等式kx2—kx+ 1>0 (k>0)都成立,那么k的取值范围是 3.对于任意实数x,代数式(5 —4a—a2)x2—2(a —1)x—3的值恒为负值,求a的取值范围+ 2 2 口 2 4 .设a、B是关于方程x —2(k —1)x + k+仁0的两个实根,求y=> + ■关于k的解析式,并求y 的取值范围. 第二部分绝对值不等式

1. (2010年高考福建卷)已知函数f(x) = |x —a|. (1)若不等式f(x)w 3的解集为{x|—K x< 5},求实数a的值; ⑵在(1)的条件下,若f(x) + f(x+ 5)> m对一切实数x恒成立,求实数m的取值范围. 2. 设函数f (x) =|x-1| |x-a|, (1 )若a = -1,解不等式f(x)_3 ;(2)如果- x R , f(x) —2,求a的取值范围 3. 设有关于x的不等式lg(j x + 3+|x-7?a

高中数学专题讲义-数学归纳法

题型一:数学归纳法基础 【例1】已知n 为正偶数,用数学归纳法证明111 111112()234 1242n n n n -+-++ =+++-++L L 时,若已假设2(≥=k k n 为偶数)时命题为真,则还需要用归纳假设再证 ( ) A .1+=k n 时等式成立 B .2+=k n 时等式成立 C .22+=k n 时等式成立 D .)2(2+=k n 时等式成立 【例2】已知n 是正偶数,用数学归纳法证明时,若已假设n=k (2≥k 且为偶数)时命 题为真,,则还需证明( ) A.n=k+1时命题成立 B. n=k+2时命题成立 C. n=2k+2时命题成立 D. n=2(k+2)时命题成立 【例3】某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当 1+=k n 时命题也成立. 现已知当7=n 时该命题不成立,那么可推得 ( ) A .当n=6时该命题不成立 B .当n=6时该命题成立 C .当n=8时该命题不成立 D .当n=8时该命题成立 【例4】利用数学归纳法证明 “*),12(312)()2)(1(N n n n n n n n ∈-???????=+???++ ”时,从“k n =”变到“1+=k n ”时,左边应增乘的因式是 ( ) A 12+k B 112++k k C 1)22)(12(+++k k k D 1 3 2++k k 【例5】用数学归纳法证明),1(1112 2 *+∈≠--=++++N n a a a a a a n n Λ,在验证n=1时,典例分析 板块三.数学归纳法

左边计算所得的式子是( ) A. 1 B.a +1 C.21a a ++ D. 421a a a +++ 【例6】用数学归纳法证明n n n n n 2)()2)(1(=+++Λ))(12(31*∈+????N n n Λ,从“k 到k+1”左端需乘的代数式是( ) A.2k+1 B.)12(2+k C. 112++k k D.1 3 2++k k 【例7】用数学归纳法证明:1+ 21+3 1+)1,(,121 >∈<-+*n N n n n Λ时,在第二步证明 从n=k 到n=k+1成立时,左边增加的项数是( ) A.k 2 B.12-k C.12-k D.12+k 【例8】设 )1()2()1()(-++++=n f f f n n f Λ,用数学归纳法证明 “)()1()2()1(n nf n f f f n =-++++Λ”时,第一步要证的等式是 【例9】用数学归纳法证明“)12(212)()2)(1(-????=+++n n n n n n ΛΛ”(+∈N n ) 时,从 “n k =到1n k =+”时,左边应增添的式子是__ __。 【例10】用数学归纳法证明不等式 24 13 12111> ++++++n n n n Λ的过程中,由k 推导到k+1时,不等式左边增加的式子是 【例11】是否存在常数c b a ,,是等式22222421(1)2(2)()n n n n n an bn c ?-+?-+???+?-=++对 一切)*N n ∈成立?证明你的结论。 题型二:证明整除问题 【例12】若存在正整数m ,使得)(93)72()(*∈+-=N n n n f n 能被m 整除,则m = 【例13】证明:)(,)3(1*∈+-N n x n 能被2+x 整除 【例14】已知数列{}n a 满足1201a a ==,,当*n ∈N 时,21n n n a a a ++=+.

高考数学一轮复习不等式知识点讲解

2019年高考数学一轮复习不等式知识点讲 解 不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。下面是不等式知识点讲解,请考生掌握。 1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。 2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学 生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可

记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。 3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。 观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编

考点48 基本不等式——2021年高考数学专题复习讲义

考点48 基本不等式(讲解) 【思维导图】 【常见考法】 考法一:直接型 1.若,则取最大值时的值是 。 103x << ()13x x -x 2.已知正数a 、b 满足,则ab 的最大值为 。 23a b += 3的最大值为 。 )63a -≤≤

考法二:换1型 1.已知实数,则的最小值为 。 0,0,31x y x y >>+=11x y + 2.已知,则的最小值是 。 0,0,1x y x y >>+=11x y + 3.已知,,且,若恒成立,则实数的取值范围是______. 0x >0y >211x y +=222x y m m +>+m 考法三:配凑型 1.已知,则的最小值为 。 1x >41x x +- 2.已知,且 ,则的最小值为 。 1,1a b >>11111a b +=--4a b +

3.函数的最小值为 。 233(1)1 x x y x x ++=>-+ 4.若a 、b 、c >0且a (a +b +c )+bc =4-,则2a +b +c 的最小值为 。 考法四:消元型 1.若正数满足,则的最小值是 。 ,x y 220x xy +-=3x y + 2.若正数满足,则的最小值为 。 ,a b 111a b +=1411a b +-- 3.若实数满足,则的最大值为 、 ,x y 0xy > 考法五:求参数

1.设、、都是正实数,且、满足,则使恒成立的的范围是。 a b c a b 191a b +=a b c +≥c 2.已知,,且,若不等式恒成立,则实数的范围是 。 0x >0y >280x y xy +-=a x y ≤+a 考法六: 综合运用 1.已知中,角,,的对边分别为,,,且,,成等比数列,则角ABC A B C a b c sin A sin B sin C 的取值范围为 。 B 2.已知正项等比数列满足:,若存在两项、,则的最{}n a 7652a a a =+m a n a 14a =14m n +小值为 。 3.已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则 +的最小值是 。 4b 1c 4.若直线过△的重心,且,,其中,,则的 MN ABC G AM mAB = AN nAC = 0m >0n >2m n +最小值是 。如何学好数学

相关文档
最新文档