一元二次不等式的解法

一元二次不等式的解法
一元二次不等式的解法

个性化教案

授课时间:备课时间:

年级:课时:

课题:

学员姓名:授课老师:教学

目标

掌握一元二次不等式,高次不等式和分式不等式的解法。

教学难点

正确理解二次方程、二次不等式和二次函数三者的关系,通过二次函数函数图象研究对应不等式解集的方法。

教学内容复习引入:

1.画出一次函数7

2-

=x

y的图象,并从图像上观察得到:

(1)当x为何值时,y=0? (2)当x为何值时,y>0?

(3)当x为何值时,y<0?

从该题中引出以下三者之间的密切联系

2.画出二次函数6

2-

-

=x

x

y的图像,函数图像与x 轴的位置关系,并从图像上观察得到:

(1)当x为何值时,y=0?(2)当x为何值时,y>0?

(3)当x为何值时,y<0?

方程的根不等式的解集

函数的零

若一般形式二次函数:)0(2>++=a c bx ax y 对应不等式又如何求解呢?

0>?

0=?

0

二次函数

c

bx ax y ++=2(0>a )的图象

c

bx ax y ++=2

c

bx ax y ++=2

c bx ax y ++=2

一元二次方程

()的根

00

2>=++a c bx ax

有两相异实根

)(,2121x x x x <

有两相等实根

a b x x 221-

==

无实根

的解集)0(0

2>>++a c bx ax {}2

1

x x x x x ><或

?

?????-≠a b x x 2

R

的解集)0(02><++a c bx ax

{}21

x x x

x <<

? ?

思考:不等式0)4)(2(>--x x 的解集是

如果二次项系数为负数时,先做等价转化,把二次项系数化为正数,再利用函数图象求解。

归纳:解一元二次不等式的基本步骤:

(1)化为一般式:,且二次项系数化为正数;(整理化正)

(2)判断对应方程是否有实根,如有实根则求出根;(判断求根) (3)根据对应的二次函数的大致图象以及不等号的方向,写出不等式的解集;(大于取两边,小于取中间) (若a

b ,则0))((>--b x a x <==>

,0))((<--b x a x <==>

例:利用数形结合思想写出下列不等式的解集:

1)02632

<+-x x 2)01442

>+-x x 3)0322

>-+-x x

题型归纳:

题型一.解一元二次不等式

1.解下列不等式

(1)0

2

3

22>

-

-x

x(2)0

2

62≥

+

-

-x

x(3)0

7

4

22<

+

-x

x(4)0

9

6

2>

+

-x

x

2.已知不等式0

2>

+

+c

bx

ax的解集为(2,3),求不等式0

2<

+

+a

bx

cx的解集

题型二.解高次不等式(方法:穿针引线法)

穿针引线法第一步:

通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证最高次数项的系数为正数)例如:将x3-2x2-x+2>0化为(x-2)(x-1)(x+1)>0

穿针引线法第二步:

将不等号换成等号解出所有根。例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1

穿针引线法第三步:

在数轴上从左到右按照大小依次标出各根。例如:-1 1 2

穿针引线法第四步:

画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根,满足奇穿偶不穿。(奇穿偶不穿:即假如有两个解都是同一个数字。这个数字要按照两个数字穿。如(x-1)2=0 两个解都是1 ,那么穿的时候不要透过1)

穿针引线法第五步:

观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”,则取数轴下方,穿根线以内的范围。

例如:若求(x-2)(x-1)(x+1)>0的根。在数轴上标根得:-1 1 2 画穿根线:由右上方开始穿根。

因为不等号为“>”则取数轴上方,穿根线以内的范围。即:-12。 可以简单记为秘籍口诀:或“自上而下,从右到左,奇穿偶不穿”。

例:用穿针引线法求下列不等式的解集

(1)0)6)(4(22≤--x x (2)0)2()1()1(3

2≥++-x x x x (3)x (x 2

-12)-4x <0

(4)(x+4)2(x-4)2(x+3)<0 (5)(x+1)4(x-3)3(x 2-3)<0 (6)(x-1) (x-2)3(x 2

-1)≥0

题型三.解分式不等式

方法:

0>--b x a

x ?0))((>--b x a x 0<--b

x a

x ?0))((<--b x a x 注意:若是

的分式不等式,分母的式子不能为零!

例:解下列不等式

(1)012<-+x x ; (2)22

1

≤-+x x ; (3)1273142

2<+-+-x x x x

(4) (5) (6)

(7)

(8)

(9)

【课后练习】 1.完成下列表格

判别式 △=ac b 42

- △>0

△=0

△<0

二次函数

)

0(2>++=a c bx ax y 的图象

一元二次方程)

0(02>=++a c bx ax 的根

)

0(02>>++a c bx ax 的解集

)

0(02>>++a c bx ax 的解集

2.求下列不等式的解集

(1)x+2>x 2

(2)4x 2+4x <-1 (3)(x 2-16)2(x 2

+2x+1)>0

(4) (5) 6)

(7)(8)(9)

(10)(x+2) (x-2)3(x2-4)≥0(11)x2-9≤9x2-6x+1 (12) x2+9≥6x

【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】

感谢您的支持与配合,我们会努力把内容做得更好!

其他不等式的解法

主 题 其他不等式的解法 教学内容 1. 掌握分式不等式的解法; 2. 掌握含绝对值不等式的解法。 一、分式不等式: 解一元二次不等式0)1)(4(<-+x x ,我们还可以用分类讨论的思想来求解 因为满足不等式组???<->+0104x x 或???>-<+0 104x x 的x 都能使原不等式0)1)(4(<-+x x 成立,且反过来也是对的,故原不等式的解集是两个一元二次不等式组解集的并集. 试着用这种方法解下列三个不等式,你发现和我们用图像解的答案一样吗? (1)0)3)(2(>-+x x (2)0)2(<-x x (3))(0))((b a b x a x >>-- 让学生说说是怎么讨论的,最终大家会发现,无论是哪种理解方法,最终的结论是一样的,当二次项系数为正时,小于零是两根之间,大于零是两根之外。 (1) ()()303202 x x x x ->-->-与解集是否相同,为什么? (2)()()303202x x x x -≥--≥-与解集是否相同,为什么? 通过转化为一元一次不等式组,进而进行比较。会发现(1)的解集是相同的,(2)的解集是不同的,由于分母不能为零,分式的不等式端点2不能取等。

练习:解不等式 (1) 073<+-x x (2)025152≤+-x x 解:(1)07 3<+-x x 与(3)(7)0x x -+<的解集相同, 解(3)(7)0x x -+<得:73x -<< 所以原不等式解集为:(7,3)- (2)025152≤+-x x 与(215)(52)0520x x x -+≤??+≠? 的解集相同 解(215)(52)0520x x x -+≤?? +≠? 得:51522x -<≤ 二、绝对值不等式: 1. a x >与a x <型的不等式的解法。 当0>a 时,不等式x a >的解集是 {},x x a x a ><-或 不等式a x <的解集是 {}x a x a -<<; 引导学生结合绝对值的几何意义,通过数轴求解 当0的解集是 R 不等式 a x <的解集是 ; φ 用绝对值的非负性很容易理解 2. c b ax >+与c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{}c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{}c b ax c x <+<-; 当0+的解集是{}R x x ∈

常见不等式通用解法

常见不等式通用解法总结 一、基础的一元二次不等式,可化为类似一元二次不等式的不等式 ①基础一元二次不等式 如2260x x --<,2210x x -->,对于这样能够直接配方或者因式分解的基础一元二次不等式,重点关注解区间的“形状”。 当二次项系数大于0,不等号为小于(或小于等于号)时,解区间为两根的中间。 2260x x --<的解为3 (,2)2 - 当二次项系数大于0,不等号为大于(或大于等于号)时,解区间为两根的两边。 2210x x --> 的解为(,1(1)-∞?+∞ 当二次项系数小于0时,化成二次项系数大于0的情况考虑。 ②可化为类似一元二次不等式的不等式(换元) 如1392x x +->,令3x t =,原不等式就变为2320t t -+<,再算出t 的范围,进而算出x 的范围 又如243 2 x ax >+ ,令2t x =,再对a 进行分类讨论来确定不等式的解集 ③含参数的一元二次不等式 解法步骤总结: 如不等式210x ax ++>,首先发现二次项系数大于0,而且此不等式无法直接看出两根,所以,讨论24a ?=-的正负性即可。 此不等式的解集为0,0,{|}20,()R a x R x ? ??-∞?+∞? 又如不等式223()0x a a x a -++>,发现其可以通过因式分解化为2()()0x a x a -->,所 以只需要判定2a 和a 的大小即可。 此不等式的解集为22 01,{|}01,(,)(,)01,(,)(,) a or a x R x a a a a a or a a a ==∈≠?? <<-∞?+∞??<>-∞?+∞?

一元二次不等式及其解法教学设计

一元二次不等式及其解法 【设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高;逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 【教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5第三章《不等式》第二节一元二次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 【学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 【教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 【教学重点】一元二次不等式的解法。 【教学难点】一元二次方程、一元二次不等式和二次函数的关系。 【教学策略】 探究式教学方法 (创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价) 【课前准备】 教具:“几何画板”及PPT课件. 粉笔:用于板书示范.

含参不等式解法举例

含参不等式专题(淮阳中学) 编写:孙宜俊 当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。解参数不等式一直是高考所考查的重点内容,也是同学们在学习中经常遇到但又难以顺利解决的问题。下面举例说明,以供同学们学习。 解含参的一元二次方程的解法,在具体问题里面,按分类的需要有讨论如下四种情况: (1) 二次项的系数;(2)判别式;(3)不等号方向(4)根的大小。 一、含参数的一元二次不等式的解法: 1.二次项系数为常数(能分解因式先分解因式,不能得先考虑0≥?) 例1、解关于x 的不等式0)1(2>++-a x a x 。 解:0)1)((2>--x a x 1,0)1)((==?=--x a x x a x 令 为方程的两个根 (因为a 与1的大小关系不知,所以要分类讨论) (1)当1或 (2)当1>a 时,不等式的解集为}1|{<>x a x x 或 (3)当1=a 时,不等式的解集为}1|{≠x x 综上所述: (1)当1或 (2)当1>a 时,不等式的解集为}1|{<>x a x x 或 (3)当1=a 时,不等式的解集为}1|{≠x x 变题1、解不等式0)1(2>++-a x a x ; 2、解不等式0)(322>++-a x a a x 。

各类不等式的解法

一、不等式的基本性质 不等式的基本性质有: (1) 对称性或反身性: a>b bb , b>c ,则 a>c ; (3)可加性: a>b a+c>b+c , 此法则又称为移项法则; (4) 可乘性: a>b , 当 c>0 时, ac>bc ;当 c<0 时, acb , c>d , 则 a+c>b+d ; (2)正数同向相乘:若 a>b>0, c>d>0,则 ac>bd 。 特例: (3)乘方法则:若 a>b>0,n ∈N +,则 a n b n ; 11 (4)开方法则:若 a>b>0,n∈N +,则 a n b n 11 (5)倒数法则:若 ab>0,a>b ,则 。 ab 例 1: 1)、 8 6 与 7 5 的大小关系为 . 2)、设 n 1,且 n 1, 则 n 3 1与 n 2 n 的大小关系是 1≤ ≤1 3)已知 , 满足 , 试求 3 的取值范围 1≤ 2 ≤ 3 例 2. 比较 a 1 2与 2 aa 1的大小。 例 3.解关于 x 的不等式 m(x 2) x m 二、一元二次不等式的解法 过二次函数与二次不等式的联系从而推证出任何一元二次不等式的解集 各类不等式的解法 元二次不等式 ax 2 bx c 0(a 0) 或 ax 2 bx c 0(a. 0) 的求解原理: 利用二次函数的图 象通

4 1)(x+1)(x-1)(x-2)>0 2)(-x-1)(x-1)(x-2)<0 三、分式不等式与高次不等式的解法 1.分式不等式解法 2.高次不等式解法:数轴标根法(奇穿偶切) 典型例题 例 1 解下列不等式 x - 3 2 (1) x + 7 <0 (2)3+ x <0 3) x -3 2-x > 3-x -3 3 4) x > 1 【例题讲解】 1.解下列不等式: (1)2x 2 3x 20 (2)9x 2 6x 1 0 (3)4x 2 x 5 (4)2x 2 x 1 0 2.解不等式组 3x 2 7x 10 0 2 x 2x 30 (1) 2 (2) 2 2x 2 5x 20 5 x 4x 3.若不等式 ax 2 bx c 0的解集为 (-2,3), 求不等式 2 cx ax b 0的解集. 2 3 4.当 k 为何值时,不等式 2kx 2 kx 38 0对于一切实数 x 都成立?

《一元二次不等式及其解法》典型例题透析

《一元二次不等式及其解法》典型例题透析 类型一:解一元二次不等式 例1. 解下列一元二次不等式 (1)2 50x x -<; (2)2 440x x -+>; (3)2 450x x -+-> 思路点拨: 转化为相应的函数,数形结合解决,或利用符号法则解答. 解析: (1)方法一: 因为2(5)410250?=--??=> 所以方程2 50x x -=的两个实数根为:10x =,25x = 函数25y x x =-的简图为: 因而不等式2 50x x -<的解集是{|05}x x <<. 方法二:2 50(5)0x x x x -???-? 解得05x x >?? ?,即05x <<或x ∈?. 因而不等式2 50x x -<的解集是{|05}x x <<. (2)方法一: 因为0?=, 方程2440x x -+=的解为122x x ==. 函数2 44y x x =-+的简图为: 所以,原不等式的解集是{|2}x x ≠ 方法二:2244(2)0x x x -+=-≥(当2x =时,2 (2)0x -=) 所以原不等式的解集是{|2}x x ≠ (3)方法一: 原不等式整理得2 450x x -+<.

因为0?<,方程2 450x x -+=无实数解, 函数245y x x =-+的简图为: 所以不等式2 450x x -+<的解集是?. 所以原不等式的解集是?. 方法二:∵2245(2)110x x x -+-=---≤-< ∴原不等式的解集是?. 总结升华: 1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力; 2. 当0?≤时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当0?>且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题). 3. 当二次项的系数小于0时,一般都转化为大于0后,再解答. 举一反三: 【变式1】解下列不等式 (1) 2 2320x x -->;(2) 2 3620x x -+-> (3) 2 4410x x -+≤; (4) 2 230x x -+->. 【答案】 (1)方法一: 因为2(3)42(2)250?=--??-=> 方程2 2320x x --=的两个实数根为:11 2 x =-,22x = 函数2 232y x x =--的简图为: 因而不等式2 2320x x -->的解集是:1 {|2}2 x x x <- >或. 方法二:∵原不等式等价于 21)(2)0x x +->(, ∴ 原不等式的解集是:1 {|2}2 x x x <->或. (2)整理,原式可化为2 3620x x -+<, 因为0?>, 方程2 3620x x -+=的解131x =231x =,

不等式解法举例

不等式解法举例 ?教学重点:不等式求解. ?教学难点:将已知不等式等价转化成合理变形式子. ?教学方法:创造教学法 为使问题得到解决,关键在于合理地将已知不等式变形,变形的过程也是一个创造的过程,只有这一过程完成好,本节课的难点也就突破. ?教学过程: 一、课题导入 1、由一元一次不等式、一元二次不等式、和简单的绝对值不等式式子,导出其不等式 解法. 2、一元二次不等式的解法. 3、数形结合思想运用. 二、新课讲授 例1:解不等式|x2-5x+5|<1 分析:不等式|x|0)的解集是{x|-a-1 解这个不等式组,其解集就是原不等式的解集. 解:原不等式可化为 -1< x2-5x+5<1 即 x2-5x+5< 1 ①

x 2-5x +5>-1 ② 解不等式①由 x 2-5x +5< 1 得 (x -1)(x -4)< 0 解集为{x |1- 1 得 (x -2)(x -3)> 0 解集为{x |x < 2或x >3}. 原不等式的解集是不等式①和不等式②的解集的交集,即 {x|13}={x|10 x2-2x-3<0 或 x2-3x+2<0 x2-2x-3>0 因此,原不等式的解集就是上面两个不等式组的解集的并集. 解:这个不等式的解集是下面个不等组(Ⅰ)、(Ⅱ)的解集的并集: x 2-3x +2>0 ① x 2-2x -3<0 ② x 2-3x +2<0 ③ x 2-2x -3>0 ④ 先解不等式(Ⅰ). 解不等式① x 2-3x +2>0, 得解集 {x |x <1,或x >2} 解不等式② x 2-2x -3<0, 得解集 {x |x <1,或x >2} 因此,不等式组(Ⅰ)的解集是 {x |x <1,或x >2}∩{x |x <1,或x >2}. 不等式解集在数轴上表示如下: 再解不等式(Ⅱ). x 2-3x +2 x 2-2x -3 (Ⅰ) (Ⅱ)

不等式的解法典型例题及详细答案

不等式的解法·典型例题 【例1】?(x+4)(x+5)2(2-x)3<0. 【例2】?解下列不等式: 【例3】?解下列不等式 【例4】?解下列不等式: 【例5】?|x 2-4|<x+2. 【例6】?解不等式1)123(log 2122<-+-x x x . 不等式·典型例题参考答案 【例1】?(x+4)(x+5)2(2-x)3<0. 【分析】?如果多项式f(x)可分解为n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“区间法”求解,但要注意处理好有重根的情况. 原不等式等价于(x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x <-5或-5<x <-4或x >2}. 【说明】?用“穿针引线法”解不等式时应注意: ①各一次项中x 的系数必为正; ②但注意“奇穿偶不穿”.其法如图(5-2). 【例2】?解下列不等式: 解:(1)原不等式等价于 用“穿针引线法” ∴原不等式解集为(-∞,-2)∪〔-1,2)∪〔6,+∞). (2) 【例3】?解下列不等式 解:(1)原不等式等价于 ∴原不等式解集为{x|x ≥5}. (2)原不等式等价于 【说明】?解无理不等式需从两方面考虑:一是要使根式有意义,即偶次根号下被开数大于或等于零;二是要注意只有两边都是非负时,两边同时平方后不等号方向才不变. 【例4】?解下列不等式: 解:(1)原不等式等价于 令2x =t(t >0),则原不等式可化为 (2)原不等式等价于 ∴原不等式解集为(-1,2〕∪〔3,6). 【例5】?|x 2-4|<x+2. 解:原不等式等价于-(x+2)<x 2-4<x+2. 故原不等式解集为(1,3). 这是解含绝对值不等式常用方法. 【例6】?解不等式1)123(log 2122<-+-x x x . 解:原不等式等价于 (1)当a >1时,①式等价于 ② (2)当0<a <1时,②等价于 ③

基本不等式的各种求解方法和技巧

基本不等式 一、知识梳理 二、极值定理 (1)两个正数的和为常数时,它们的积有 ; 若0,0,a b a b M >>+=,M 为常数,则ab ≤ ;当且仅当 ,等号成立.简述为,当0,0,a b a b M >>+= ,M 为常数,max ()ab = . (2)两个正数的积为常数时,它们的和有 ; 若0,0,a b ab P >>=,P 为常数,则a b +≥ ;当且仅当 ,等号成立.简述为,当0,0,a b ab P >>= ,M 为常数,min ()a b += . (,)2 a b a b R ++≤ ∈,求最值时应注意以下三个条件:

应用基本不等式的经典方法 方法一、直接利用基本不等式解题 例1、(1)若0,0,4a b a b >>+=,则下列不等式恒成立的是( ) A .1 1 2ab > B .1 1 1a b +≤ C 2≥ D. 2211+8a b ≤ (2)不等式2162a b x x b a +<+对任意(),0,a b ∈+∞ 恒成立,则实数x 的取值范围是( ) A .(2,0)? B .(,2)(0,)?∞?+∞ C .(4,2)? D .(,4)(2,)?∞?+∞ (3)设,,1,1x y R a b ∈>>,若3,x y a b a b +,则11 x y +的最大值为 ( ) A .2 B .32 C .1 D .12

方法二:凑项(增减项)与凑系数(利用均值不等式做题时,条件不满足时关键在于构造条件,通过乘或除常数、拆因式、平方等方式进行构造) 例2、(1)已知54x <,求函数1 445y x x =+?的最大值; (2)已知,则的取值范围是( ) A . B . C . D . 方法三:“1”的巧妙代换 命题点1、“1”的整体代换 例3、(1)若正数,x y 满足35x y xy +=,则34x y +的最小值是( ) A .245 B .285 C .5 D .6 (2)已知0,0,x y >>且21x y +=,求1 1 x y +的最小值. 0,2b a ab >>=2 2 a b a b +?(],4?∞?(),4?∞?(],2?∞?(),2?∞?

高二数学课件-《不等式的解法举例》

高二数学课件:《不等式的解法举例》 过去的一切会离你越来越远,直到淡出人们的视野,而空白却会越放越大,直至铺成一段苍白的人生。下面为您推荐高二数学课件:《不等式的解法举例》。 (1)能熟练运用不等式的基本性质来解不等式; (2)在巩固一元一次不等式和一元一次不等式组、一元二次不等式的解法基础上,掌握分式不等式、高次不等式的解法; (3)能将较复杂的绝对值不等式转化为简单的绝对值不等式、一元二次不等式(组)来解; (4)通过解不等式,要向学生渗透转化、数形结合、换元、分类讨论等数学思想; (5)通过解各种类型的不等式,培养学生的观察、比较及概括能力,培养学生的勇于探索、敢于创新的精神,培养学生的学习兴趣.【教学建议】一、知识结构 本节内容是在高一研究了一元一次不等式,一元二次不等式,简单的绝对值不等式及分式不等式的解法基础上,进一步深入研究较为复杂的绝对值不等式及分式不等式的解法.求解的基本思路是运用不等式的性质和有关定理、法则,将这些不等式等价转化为一次不等式(组)或二次不等式的求解,具体地说就是含有绝对值符号的不等式去掉绝对值符号,无理不等式有理化,分式不等式整式化,高次不等式一次化.其基本模式为: ; ; ;

二、重点、难点分析 本节的重点和一个难点是不等式的等价转化.解不等式与解方程有类似之处,但其二者的区别更要加以重视.解方程所产生的增根是可以通过检验加以排除的,由于不等式的解集一般都是无限集,如果产生了增根却是无法检验加以排除的,所以解不等式的过程一定要保证同解,所涉及的变换一定是等价变换.在学生学习过程中另一个难点是不等式的求解.这个不等式其实是一个不等式组的简化形式,当为一元一次式时,可直接解这个不等式组,但当为一元二次式时,就必须将其改写成两个一元二次不等式的形式,分别求解在求交集. 三、教学建议 (1)在学习新课之前一定要复习旧知识,包括一元二次不等式的解法,简单的绝对值不等式的解法,简单的分式不等式的解法,不等式的性质,实数运算的符号法则等.特别是对于基础比较差的学生,这一环节不可忽视. (2)在研究不等式的解法之前,应先复习解不等式组的基本思路以及不等式的解法,然后提出如何求不等式的解集,启发学生运用换元思想将替换成,从而转化一元二次不等式组的求解. (3)在教学中一定让学生充分讨论,明确不等式组中的两个不等式的解集间的交并关系,两个不等式的解集间的交并关系. (4)建议表述解不等式的过程中运用符号 . (5)建议在研究分式不等式的解法之前,先研究简单高次不等式(一端为0,另一端是若干个一次因式乘积形式的整式)的解法.可由学生讨论不同解法,师生共同比较诸法的优劣,最后落实到区间法. (6)分式不等式与高次不等式的等价原因,可以认为是不等式两端同乘

一元二次不等式及其解法例题分类

一对一个性化辅导教案

一元二次不等式及其解法 【要点梳理】 要点一、一元二次不等式及一元二次不等式的解集 只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.比如: 250x x -<.一元二次不等式的一般形式:20ax bx c ++>(0)a ≠或20ax bx c ++<(0)a ≠. 设一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x <,则不等式20ax bx c ++>的解集为 {}2 1 x x x x x ><或,不等式2 0ax bx c ++<的解集为{}21x x x x << 要点诠释:讨论一元二次不等式或其解法时要保证(0)a ≠成立. 要点二、一元二次不等式与相应函数、方程之间的联系 对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=?,它的解按照 0>?,0=?,0的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或 20ax bx c ++<(0)a >的解集.

二次函数 c bx ax y ++=2(0>a )的图象 20(0)ax bx c a ++=>的根 有两相异实 根 )(,2121x x x x < 有两相等实根 a b x x 221- == 无实根 的解集 )0(02>>++a c bx ax {} 2 1 x x x x x ><或???? ??-≠a b x x 2 R 的解集 )0(02><++a c bx ax {}21 x x x x << ? ? 要点诠释: (1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线=y c bx ax ++2与x 轴的交点的横坐标; (2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决; (3)解集分0,0,0?>?=?<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集. 要点三、解一元二次不等式的步骤 (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程20ax bx c ++=(0)a >,计算判别式?: ①0?>时,求出两根12x x 、,且12x x <②0?=时,求根a b x x 221- ==;

一元二次不等式的解法

- 2 - 一元二次不等式的解法 一、选择题 1.不等式x 2<3x 的解集是 ( ). A .{x |x >3} B .{x |x <0或x >3} C .R D .{x |0<x <3} 2.不等式-x 2-x +2≥0的解集是 ( ). A .{x |x ≤-2或x ≥1} B .{x |-2<x <1} C .{x |-2≤x ≤1} D .? 3.不等式x (x -a +1)>a 的解集是{x |x <-1或x >a },则 ( ). A .a ≥1 B .a <-1 C .a >-1 D .a ∈R 4.已知全集U =R 集合A ={x |x 2-2x >0},则?U A 等于 ( ). A .{x |0≤x ≤2} B .{x |0<x <2} C .{x |x <0或x >2} D .{x |x ≤0或x ≤2} 5.不等式ax 2+5x +c >0的解集为? ??? ?? x ?? 13 <x <12,则a ,c 的值为 ( ). A .a =6,c =1 B .a =-6,c =-1 C .a =1,c =1 D .a =-1,c =-6 6.已知集合M =? ????? ??? ?x ??? x +3 x -1<0,N ={} x | x ≤-3,则集合{x |x ≥1}等于 ( ). A .M ∩N B .M ∪N C .?R (M ∩N ) D .?R (M ∪N ) 7.若产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240),若 每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是 ( ). A .100台 B .120台 C .150台 D .180台 8.若集合A ={x |ax 2-ax +1<0}=?,则实数a 的值的集合是 ( ). A .{a |0<a <4} B .{a |0≤a <4} C .{a |0<a ≤4} D .{a |0≤a ≤4} 9.关于x 的不等式a -x x +b <0, a +b >0的解集是 ( ). A .{x |x >a } B .{x |x <-b ,或x >a } C .{x |x <a ,或x >-b } D .{x |-b <x <a } 10.在R 上定义运算?:x ?y =x (1-y ).若不等式(x -a )?(x +a )<1对任意实数x 恒成立,则( ). A .-1<a <1 B .0<a <2 C .-12<a <32 D .-32<a <1 2 11、函数y =log 3(9-x 2)的定义域为A ,值域为B ,则A ∩B =________. 12、二次函数y =ax 2+bx +c (a ≠0,x ∈R )的部分对应值如下表: 13、设f (x )=x 2+bx +1且f (-1)=f (3),则f (x )>0的解集为________. 14、关于x 的不等式ax 2-2ax +2a +3>0的解集为R ,则实数a 的取值范围为________. 15、不等式(3x -4)(2x +1) (x -1)2 <0的解集为________. 三、解答题 16、解不等式1)-2x 2+103x -1 3>0; 2)x -1x -2≥0; 3)2x -13-4x >1.

高中数学常见题型解法归纳 不等式的解法

高中数学常见题型解法归纳 不等式的解法 【知识要点】 一、一元一次不等式的解法 任何一个一元一次不等式经过不等式的同解变形后,都可以化为(0)ax b a >≠的形式. 当0a >时,不等式的解集为b x x a ? ?>????;当0a <时,不等式的解集为b x x a ??)的解法:最好的方法是图像法,充分体现了数形结合 的思想.也可以利用口诀(大于取两边,小于取中间)解答. 2、当二次不等式()f x =2 0(0)ax bx c a ++≥<时,可以画图,解不等式,也可以把二次项的系数a 变成正数,再利用上面的方法解答. 3、温馨提示 (1)不要把不等式20ax bx c ++>看成了一元二次不等式,一定邀注意观察分析2x 的系数. (2)对于含有参数的不等式注意考虑是否要分类讨论. (3)如果运用口诀解一元二次不等式,一定要注意使用口诀必须满足的前提条件. (4)不等式的解集必须用集合或区间,不能用不等式,注意结果的规范性. 三、指数不等式和对数不等式的解法 解指数不等式和对数不等式一般有以下两种方法 (1)同底法:如果两边能化为同底的指数或对数,先化为同底,再根据指数、对数的单调性转化为代数不等式,底数是参数时要注意观察分析是否要对其进行讨论,并注意到对数真数大于零的限制条件. ①当1a >时, ()()()()f x g x a a f x g x >?>; ()0log ()log ()()0 ()()a a f x f x g x g x f x g x >??>?>??>? ②当01a <<时, ()()()()f x g x a a f x g x >?<; ()0log ()log ()()0 ()()a a f x f x g x g x f x g x >??>?>??

几种常见不等式的解法

题目高中数学复习专题讲座几种常见解不等式的解法 高考要求 不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式 重难点归纳 解不等式对学生的运算化简等价转化能力有较高的要求,随着高考命题原则向能力立意的进一步转化,对解不等式的考查将会更是热点,解不等式需要注意下面几个问题 (1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法 (2)掌握用零点分段法解高次不等式和分式不等式,特别要注意因式的处理方法 (3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法 (4)掌握含绝对值不等式的几种基本类型的解法 (5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式 (6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论 典型题例示范讲解 例1已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m 、n ∈[- 1,1],m +n ≠0时 n m n f m f ++) ()(>0 (1)用定义证明f (x )在[-1,1]上是增函数; (2)解不等式 f (x + 21)<f (1 1-x ); (3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求 实数t 的取值范围 命题意图 本题是一道函数与不等式相结合的题目,考查学生的分析能力与化归能力 知识依托 本题主要涉及函数的单调性与奇偶性,而单调性贯穿始终,把所求问题分解转化,是函数中的热点问题;问题的要求的都是变量的取值范围,不等式的思想起到了关键作用 错解分析 (2)问中利用单调性转化为不等式时,x + 21∈[-1,1],1 1-x ∈[-1,1]必不可少,这恰好是容易忽略的地方

常见不等式的解法

常见不等式的解法 【知识要点】 一、一元一次不等式的解法 任何一个一元一次不等式经过不等式的同解变形后,都可以化为(0)ax b a >≠的形式. 当0a >时,不等式的解集为b x x a ??> ????;当0a <时,不等式的解集为b x x a ? ? < ???? . 二、一元二次不等式20(0)ax bx c a ++≥≠的解法 1、二次不等式2 ()0f x ax bx c =++≥(0a >)的解法:最好的方法是图像法,充分体现了数形结合 的思想.也可以利用口诀(大于取两边,小于取中间)解答. 2、当二次不等式()f x =2 0(0)ax bx c a ++≥<时,可以画图,解不等式,也可以把二次项的系数a 变成正数,再利用上面的方法解答. 3、温馨提示 (1)不要把不等式2 0ax bx c ++>看成了一元二次不等式,一定邀注意观察分析2x 的系数. (2)对于含有参数的不等式注意考虑是否要分类讨论. (3)如果运用口诀解一元二次不等式,一定要注意使用口诀必须满足的前提条件. (4)不等式的解集必须用集合或区间,不能用不等式,注意结果的规范性. 三、指数不等式和对数不等式的解法 解指数不等式和对数不等式一般有以下两种方法 (1)同底法:如果两边能化为同底的指数或对数,先化为同底,再根据指数、对数的单调性转化为代数不等式,底数是参数时要注意观察分析是否要对其进行讨论,并注意到对数真数大于零的限制条件. ①当1a >时, ()() ()()f x g x a a f x g x >?>; ()0log ()log ()()0 ()()a a f x f x g x g x f x g x >?? >?>??>? ②当01a <<时, ()() ()()f x g x a a f x g x >?<; ()0log ()log ()()0 ()()a a f x f x g x g x f x g x >?? >?>??

不等式解法15种典型例题

不等式解法15种典型例题 典型例题一 例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(3 2<-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根 3,2 5,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为? ????? ><<-3025x x x 或 (2)原不等式等价于 0)2()5)(4(32>-++x x x ???>-<-≠????>-+≠+?2 450)2)(4(05x x x x x x 或 ∴原不等式解集为 {}2455>-<<--

常见不等式的解法归纳总结

常见不等式的解法归纳总结 知识点精讲 一.一元一次不等式(ax b >) (1)若0a >,解集为|b x x a ??> ????. (2) 若0a <,解集为|b x x a ??< ??? ? (3)若0a =,当0b ≥时,解集为?;当0b <时,解集为R 二、一元一次不等式组(αβ<) (1)x x αβ>??>?,解集为{}|x x β>.(2)x x αβ?? ??≠,其中24b ac ?=-,12,x x 是方程2 0(0)ax bx c a ++>≠的两个根,且12x x < (1)当0a >时,二次函数图象开口向上. (2)①若0?>,解集为{} 21|x x x x x ><或. ②若0?=,解集为|2b x x R x a ??∈≠- ???? 且. ③若0?<,解集为R . (2) 当0a <时,二次函数图象开口向下. ①若0?>,解集为{}12|x x x x << ②若0?≤,解集为? 四、简单的一元高次不等式的解法 简单的一元高次不等式常用“穿根法”求解,其具体步骤如下. 例如,解一元高次不等式()0f x > (1)将()f x 最高次项系数化为正数 (2)将()f x 分解为若干个一次因式或二次不可分因式(0?<) (3)将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线(注意重根情况,偶次方根切而不过,奇次方根既穿又过,简称“奇穿偶切”).

不等式分类型的解法全

不等式 题型一、一元二次不等式的解法:1、解下列不等式 (1)-10;(2)x2-mx-m<0。 题型三、利用根与系数的关系解不等式 3、(1)若x2-ax-b<0的解集为{x/20的解集。 (2)若不等式ax2+bx+c>0的解集为{x/2

题型四、不等式恒成立问题 4、(1)已知不等式2≤3x2+px+6 对任意的x∈R都成立,求实数p的值; x2-x+1≤6 a的取值范围。 (2)若x∈R,ax2+4x+4≥-2x2+1恒成立,求 5、(1)已知不等式2x-1>m(x2-1),若对于m∈[-2,2],不等式恒成立,求实数x的求职范围。 a的取值范围。(2)函数f(x)=(2-a2)x+a在区间[0,1]上恒为正,求实数 题型五:作二元一次不等式表示平面区域 6、画出下列不等式表示的平面区域 (1)2x-3y+1>0;(2)2x+y+4≤0; (3)2y-x>0;(4)y≤1;(5)x<-3。

?3x + 2 y ≥ 6 ?3x + 4 y - 12 < 0 ( ( 题型六:平面区域内的点与不等式 7、若直线 ax + y + 2 = 0 与连接点 A(-2,3) 和 B(3,2) 的线段有公共点,求 a 的取值范围。 变式:给出下列命题:1)原点和点(3,1)在直线 2 x + y - 6 = 0 的两侧;2)原点和点 (-3,1) 在直线 2 x + y - 6 = 0 的同侧;(3)点 (3,2)和(2,3) 在直线 2 x + y - 3 = 0 的两侧;(4)点 (-2,3) 和点 (-3,2) 在直线 2 x + y - 3 = 0 的同侧。其中正确的有 。 题型七:作出二次不等式组所表示的平面区域 8、用平面区域表示下列不等式组: ?x < 3 ?2 y ≥ x ?x ≥ y (1) ? (2) ? ??3 y < x + 9 题型八:绝对值、二元二次不等式表示的平面区域 9、画出下列不等式表示的平面区域 (1) x - 2 + y - 2 ≤ 2 (2) y ≤ x ≤ 2 y (3) (x - 2 y + 2)( x + y - 3) < 0 题型九:平面区域面积问题

一元二次不等式解法习题及答案

创作编号:BG7531400019813488897SX 创作者: 别如克* 一元二次不等式解法练习 例若<<,则不等式--<的解是1 0a 1(x a)(x )01 a [ ] A a x B x a .<<.<<11a a C x a D x x a .>或<.<或>x a a 1 1 例有意义,则的取值范围是 .2 x x 2--x 6 例3 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________. 例4 不等式3129x -≤的整数解的个数是 ( ) A .7 B .6 C .5 D .4 例不等式+>的解集为5 1x 1 1-x [ ] A .{x|x >0} B .{x|x ≥1} C .{x|x >1} D .{x|x >1或x =0} 例与不等式 ≥同解的不等式是6 0x x --3 2 [ ] A .(x -3)(2-x)≥0 B .0<x -2≤1 C . ≥23 0--x x D .(x -3)(2-x)≤0 例不等式 <的解为<或>,则的值为7 1{x|x 1x 2}a ax x -1 [ ] A a B a C a D a .< .> .= .=- 1 21 21 2 1 2

例解不等式 ≥. 8 237 232x x x -+- 例 9 解关于x 的不等式 (x -2)(ax -2)>0. 1、 分析比较与的大小后写出答案. a 1 a 解∵<<,∴<,解应当在“两根之间”,得<<. 选. 0a 1a a x A 11 a a 2、分析 求算术根,被开方数必须是非负数. 解 据题意有,x 2-x -6≥0,即(x -3)(x +2)≥0,解在“两根之外”,所以x ≥3或x ≤-2. 3、 分析 根据一元二次不等式的解公式可知,-1和2是方程ax 2+bx -1=0的两个根,考虑韦达定理. 解 根据题意,-1,2应为方程ax 2+bx -1=0的两根,则由韦达定理知 -=-+=-=-=-?? ?????b a a ()()1211122 ×得 a b ==-121 2,. 4、答案 A 5、 分析 直接去分母需要考虑分母的符号,所以通常是采用移项后通分. 解不等式化为+- >,通分得>,即>, 1x 0001 11122 ----x x x x x ∵x 2>0,∴x -1>0,即x >1.选C . 说明:本题也可以通过对分母的符号进行讨论求解. 6、 解法一原不等式的同解不等式组为≥, ≠. ()()x x x ---???32020 故排除A 、C 、D ,选B .

相关文档
最新文档