初二数学全等三角形知识点总结和题型归纳

初二数学全等三角形知识点总结和题型归纳
初二数学全等三角形知识点总结和题型归纳

全等三角形知识点总结和题型归纳

全等图形:

能够完全重合的两个图形就是全等图形. 全等多边形:

能够完全重合的多边形就是全等多边形.

相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角. 全等多边形的对应边、对应角分别相等.

如下图,两个全等的五边形,记作:五边形ABCDE ≌五边形'''''A B C D E . 这里符号“≌”表示全等,读作“全等于”.

全等三角形:

能够完全重合的三角形就是全等三角形. 全等三角形的对应边相等,对应角分别相等;

反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等. 全等三角形对应的中线、高线、角平分线及周长面积均相等. 全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”.

全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.

(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).

要想正确地表示两个三角形全等,找出对应的元素是关键.

板块一、全等三角形的认识与性质

【例1】 ①

判定两个三角形全等的方法是:⑴ ;⑵ ;⑶ ;⑷ ;

⑸ ;⑹ .

全等三角形的性质是对应边、对应角、周长、面积都分别 . ② 两个三角形具备下列( )条件,则它们一定全等. A .两边和其中一边的对角对应相等 B .三个角对应相等

C .两角和一组对应边相等

D .两边及第三边上的高对应相等 ③ 下列命题错误的是( )

A .全等三角形对应边上的高相等

B .全等三角形对应边上的中线相等

例题精讲

C .全等三角形对应角的角平分线相等

D .有两边和一个角对应相等的两个三角形全等

【例2】 ⑴ 考查下列命题:①有两边及一角对应相等的两个三角形全等;②两边和其中一

边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;④两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等.其中正确命题的个数有_________个.

⑵ 已知ABC ?中,AB BC AC =≠,作与ABC ?只有一条公共边,且与ABC ?全等的三角形,这样的三角形一共能作出 个.

⑶如图,在Rt ABC ?中,AB AC AD BC =⊥,,垂足为D .E F 、分别是CD AD 、上的点,且CE AF =.如果62AED ∠=?,那么DBF ∠=__________.

⑷ 如图,已知ABC ?中,90ABC AB BC ∠=?=,,三角形的顶点在相互平行的三条直线123l l l ,,上,且12l l ,之间的距离为2,23l l ,之间的距离为3,则AC 的长是______.

【巩固】如图所示,AB AD =,BC DC =,E F 、在AC 上,AC 与BD 相交于P .图中有

几对全等三角形?请一一找出来,并简述全等的理由.

F

D

B

A

C

B

A

l 3

l 2

l 1F

A

E P D

C

B

板块二、三角形全等的判定与应用(注意几何表达形式)

全等三角形的判定方法:

(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.

(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.

全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 奥数赛点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.

判定三角形全等的基本思路:

SAS HL SSS →??

→??→? 找夹角已知两边 找直角 找另一边

ASA AAS SAS AAS ??

??

??

??

??

?? 边为角的对边→找任意一角→ 找这条边上的另一角→已知一边一角 边就是角的一条边 找这条边上的对角→ 找该角的另一边→ ASA

AAS →??→?

找两角的夹边已知两角 找任意一边

全等三角形的图形归纳起来有以下几种典型形式: ⑴ 平移全等型

⑵ 对称全等型

⑶ 旋转全等型

由全等可得到的相关定理:

⑴ 角的平分线上的点到这个角的两边的距离相等. 性质: 判定:

⑵ 到一个角的两边的距离相同的点,在这个角的平分线上.

⑶ 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角). ⑷ 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合.

⑸ 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).

⑹ 线段垂直平分线上的点和这条线段两个端点的距离相等.

⑺ 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.

【例3】 如图,AC DE ∥,BC EF ∥,AC DE =.求证:AF BD =.

【巩固】如图所示:AB CD ∥,AB CD =.求证:AD BC ∥.

【例4】 已知:如图,AD BC =,AC BD =,求证:C D ∠=∠.

【例5】 已知:如图,B 、E 、F 、C 四点在同一条直线上,AB DC =,BE CF =,

B C ∠=∠.求证:OA OD =.

F

E

D

C

B

A

D

C

B

A O

D

C

B

A F E O

D

C

B A

【巩固】如图,在梯形ABCD 中,AD BC ∥,E 为CD 中点,连结AE 并延长AE 交BC 的

延长线于点F .求证:FC AD =.

【例6】 已知,如图,AB AC =,CE AB ⊥,BF AC ⊥,求证:BF CE =.

【巩固】如图,AB CD ,相交于点O ,OA OB =,E 、F 为CD 上两点,AE BF ∥,CE DF =.求证:AC BD ∥.

【例10】 如图,设ABC ?和CDE ?都是正三角形,且62EBD ∠=?,则AEB ∠ 的度数是( )

A .124?

B .122?

C .120?

D .118?

B .

【例11】 E 、F 分别是正方形ABCD 的BC 、CD 边上的点,

且BE CF =.求证:AE BF ⊥. F

E

D

C

B

A

F E C

B

A

O

F E D

C

B

A 图1

A

D

B

C

E

【巩固】E 、F 、

G 分别是正方形ABCD 的BC 、CD 、AB 边上的点,GE EF ⊥,GE EF =.求证:BG CF BC +=.

【例12】 如图,ABC ?中,AB BC =,90ABC ∠=?,D 是AC 上一点,且CD CB AB ==,

DE AC ⊥交AB 于E 点.求证:AD DE EB ==.

【例13】 ABC ?中,90B ∠=?,M 为AB 上一点,使得AM BC =,N 为BC 上一点,使得

CN BM =,连AN 、CM 交于P 点.试求APM ∠的度数,并写出你的推理证明的过程.

P

F

E

D

C

B

A

G

A B

C

D

E

F

C

B D

E

A

N

P M

C

B

A

【例14】 如图,I 是ABC △的内心,且CA AI BC +=.若80BAC ∠=?,求ABC ∠和AIB ∠的

大小.

【例15】 已知:BD CE 、是ABC ?的高,

点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =,求证:⑴AP AQ =;⑵AP AQ ⊥.

【例16】 ⑴ 如左下图,在矩形ABCD 中,E 为CB 延长线上一点且AC CE =,F 为AE 的

中点.求证:BF FD ⊥.

⑵ 如右下图,在ABC ?中,BE 、CF 分别为边AC 、AB 的高,D 为BC 的中点,DM EF ⊥于M .求证:FM EM =.

A

B

C

I

F

Q

P

E

D

C

B

A

F E

D

C

B

A M

F

E

D C

B A

【例17】 如图,在ABC ?中,B ∠,C ∠为锐角,,,M N D 分别为边AB 、AC 、BC 上的

点,满足AM AN =,BD DC =,且BDM CDN ∠=∠.求证:AB AC =.

【例18】 如图,已知60ABD ACD ∠=∠=?,且1

902

ADB BDC ∠=?-∠.求证:ABC ?是等

腰三角形.

【例19】 如图,ABC ?为边长是1的等边三角形,BDC ?为顶角()BDC ∠是120?的等腰三角

形,以D 为顶点作一个60?角,角的两边分别交AB 于M ,AC 于N ,连接MN ,形成一个AMN ?.求AMN ?的周长.

A

B

C

D M

N

E

F

N

M D C

B

A

B

A

A

M N

B

C

D

【例20】 我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么

在什么情况下,它们会全等?

⑴ 阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.

对于这两个三角形均为钝角三角形,可证它们全等(证明略). 对于这两个三角形均为锐角三角形,它们也全等, 可证明如下:已知:ABC ?、111A B C ?均为锐角三角形,11AB A B =,11BC B C =,

1C C ∠=∠.

求证:111ABC A B C ??≌.

(请你将下列证明过程补充完整.)

证明:分别过点B ,1B 作BD AC ⊥于D ,1111B D AC ⊥于1D .则

11190BDC B D C ∠=∠=?,

∵11BC B C =,1C C ∠=∠,

∴111BCD B C D ??≌ ∴11BD B D =

⑵ 归纳与叙述:

由⑴可得到一个正确结论,请你写出这个结论.

【习题1】如图,已知AC BD =,AD AC ⊥,BC BD ⊥,求证:AD BC =.

D

C

B

A D 1

C 1

B 1

A 1

D

C B

A

家庭作业

【习题2】已知:如图,AB DE ∥,AC DF ∥,BE CF =. 求证:AB DE =.

【习题3】如图,矩形ABCD 中,E 是AD 上一点,CE EF ⊥交AB 于F 点,若2DE =,矩形周长为16,且CE EF =,求AE 的长.

板块一、截长补短

【例1】 已知ABC ?中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点

O ,试判断BE 、CD 、BC 的数量关系,并加以证明.

F

E

D

C B A

E

D

C

B

F A

D

O

E

C

B A

4321

F

D

O

E C

B A

【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作

60DMN ∠=?,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?

【例3】 如图2-9所示.已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且∠BAE =2

∠DAM .求证:AE =BC +CE .

【例4】 以ABC ?的AB 、AC 为边向三角形外作等边ABD ?、ACE ?,连结CD 、BE 相交

于点O .求证:OA 平分DOE ∠.

N

E

B M A

D

M E

D C

B

A

F

A

B

C

D

E

O

O

E

D

C

B

A

板块二、全等与角度

【例10】 如图,在ABC ?中,60BAC ∠=,AD 是BAC ∠的平分线,且AC AB BD =+,求

ABC ∠的度数.

【例11】 在等腰ABC ?中,AB AC =,顶角20A ∠=?,在边AB 上取点D ,使AD BC =,

求BDC ∠.

【例12】 如图所示,在ABC ?中,AC BC =,20C ∠=,又M 在AC 上,N 在BC 上,且

满足50BAN ∠=,60ABM ∠=,求NMB ∠.

【例13】 在四边形ABCD 中,已知AB AC =,60ABD ?∠=,76ADB ?∠=,28BDC ?∠=,

求DBC ∠的度数.

【例14】 如图所示,在四边形ABCD 中,12DAC ?∠=,36CAB ?∠=,48ABD ?∠=,

24DBC ?∠=,求ACD ∠的度数.

【例15】 在正ABC ?内取一点D ,使DA DB =,在ABC ?外取一点E ,使DBE DBC ∠=∠,

且BE BA =,求BED ∠.

【例16】 如图所示,在ABC ?中,44BAC BCA ?∠=∠=,M 为ABC ?内一点,使得

30MCA ?∠=,16MAC ?∠=,求BMC ∠的度数.

如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交

于点N ,MD 与MN 有怎样的数量关系?

N

C

D

E

B M A

角平分线的两个性质:

⑴角平分线上的点到角的两边的距离相等; ⑵到角的两边距离相等的点在角的平分线上. 它们具有互逆性.

角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线,

2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB =,这种对称的图形应用得也较为普遍,

【例1】 如图,已知ABC ?的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于

D ,且3OD =,求ABC ?的面积.

【例2】 在ABC ?中,D 为BC 边上的点,已知BAD CAD ∠=∠,BD CD =,求证:AB AC =.

【例3】 如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠.

A

D

O

C B

D C

B

A

【例4】 已知ABC ?中,AB AC =,BE 、

CD 分别是ABC ∠及ACB ∠平分线.求证:CD BE =.

【例5】 已知ABC ?中,60A ∠=,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点

O ,试判断BE 、CD 、BC 的数量关系,并加以证明.

【例6】 如图,在ABC ?中,60B ∠=?,AD 、CE 分别平分BAC ∠、BCA ∠,且AD 与CE

的交点为F .求证:FE FD =.

【例7】 如图,已知E 是AC 上的一点,又12∠=∠,34∠=∠.求证:ED EB =.

E

D C

B A

O

E

D C

B

A

F

B

E

D

C

A E D

C B A

4

32

1

【例8】 如图所示,OP 是AOC ∠和BOD ∠的平分线,OA OC =,OB OD =.求证:AB CD =.

【例9】 长方形ABCD 中,AB =4,BC =7,∠BAD 的角平分线交BC 于点E ,EF ⊥ED 交AB

于F ,则EF =__________.

【例10】 如图,在ABC ?中,2B C ∠=∠,BAC ∠的平分线AD 交BC 与D .求证:

AB BD AC +=.

【例11】 如图,ABC ?中,AB AC =,BD 、CE 分别为两底角的外角平分线,AD BD ⊥于

D ,A

E CE ⊥于E .求证:AD AE =.

P

D

B

O

C

A

F

E

D

C

B

A D

C B A

如图所示,在ABC ?中,90BAC ∠=?,AD BC ⊥于D ,BCA ∠的角平分线交AD 与F ,交AB 于E ,FG 平行于BC 交AB 于G . AE =4,AB =14,则BG =______.

板块三 倍长中线法

H

G D A

B C E

G

F

E D

C

B A

三角形中线的定义:三角形顶点和对边中点的连线

三角形中线的相关定理: 直角三角形斜边的中线等于斜边的一半

等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合) 三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.

中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边. 中线中位线相关问题(涉及中点的问题) 见到中线(中点),我们可以联想的内容无非是倍长中线以及中位线定理(以后还要学习中线长公式),尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见.

版块一、倍长中线

【例1】 已知:ABC ?中,AM 是中线.求证:1

()2

AM AB AC <+.

【巩固】在ABC ?中,5,9AB AC ==,则BC 边上的中线AD 的长的取值范围是什么?

【例2】 如图,已知在ABC ?中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC

于F ,AF EF =,求证:AC BE =.

【例3】 如图,在ABC ?中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长

线于点F ,交EF 于点G ,若BG CF =,求证:AD 为ABC ?的角平分线.

M

C

B A

F

E

D

C B

A

【例4】 已知△ABC ,∠B =∠C ,D ,E 分别是AB 及AC 延长线上的一点,且BD =CE ,连

接DE 交底BC 于G ,求证GD =GE .

【例5】 如图,在ABC ?中,D 是BC 边的中点,F ,E 分别是AD 及其延长线上的点,

CF BE ∥.求证:BDE CDF ??≌.

【例10】 在Rt ABC ?中,F 是斜边AB 的中点,D 、E 分别在边CA 、CB 上,满足

90DFE ∠=?.若3AD =,4BE =,则线段DE 的长度为_________.

【例11】 如图所示,在ABC ?和A B C '''?中,AD 、A D ''分别是BC 、B C ''上的中线,且

AB A B ''=,AC A C ''=,AD A D ''=,求证ABC A B C '''??≌.

F G

E D

C

B

A

G

E

D

C

B

A

F

E

D

C

B

A

F

E

D

C

B

A

【例12】 如图所示,90BAC DAE ∠=∠=?,M 是BE 的中点,AB AC =,AD AE =,求证

AM CD ⊥.

版块二、中位线的应用

D C B A D'

C'

B'

A'

M

E

C

B

A

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADCBD=DC ∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即 4-2<2AD <4+21<AD <3∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 5. 证明:连接BF 和EF ∵BC=ED,CF=DF,∠BCF=∠EDF ∴三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF 连接BE 在三 角形BEF 中,BF=EF ∴∠EBF=∠BEF 。 ∵∠ABC=∠AED 。∴∠ABE=∠AEB 。∴AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF 和三角形AEF 全等。∴∠BAF=∠ EAF(∠1=∠2)。 6. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又EF =CG ∴EF =AC 7. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 8. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE ,∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 9. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCECE 平分∠BCDCE=CE ∴⊿DCE ≌⊿FCE (AAS )∴CD=CF ∴BC=BF+CF=AB+CD 10. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB ‖ED ,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE , B A C D F 2 1 E D C B A F E A

全等三角形知识点总结

全等三角形知识梳理 一、知识网络 ??????????→?????????????? ???对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理 二、基础知识梳理 (一)、基本概念 1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。 当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。 (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; > (4)有公共角的,角一定是对应角; (5)有对顶角的,对顶角一定是对应角。 2、全等三角形的性质 (1)全等三角形对应边相等;(2)全等三角形对应角相等(即对应元素相等)

3、全等三角形的判定方法 (1)三边对应相等的两个三角形全等(SSS)。 (2)两边和它们的夹角对应相等的两个三角形全等(SAS)。 (3)两角和它们的夹边对应相等的两个三角形全等(ASA)。 , (4)两角和其中一角的对边对应相等的两个三角形全等(AAS)。 (5)斜边和一条直角边对应相等的两个直角三角形全等(HL)。 所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。 注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。 4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 尺规作图 < (二)灵活运用定理 1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等, 因此在寻找全等的条件时,总是先寻找边相等的可能性。 2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。 3、要善于灵活选择适当的方法判定两个三角形全等。 (1)已知条件中有两角对应相等,可找: ①夹边相等(ASA)②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找

全等三角形经典题型50题带答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴⊿ADC≌⊿GDE (AAS )∴EG=AC∵EF//AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=E G ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB , ∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE⊥AB 所以∠CEB=∠CEF=90° 因为EB =EF ,CE =CE , 所以△CEB≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE+∠CFA=180° 所以∠D=∠CFA 因为AC 平分∠BAD 所以∠DAC=∠FAC 又因为AC =AC 所以△ADC≌△AFC(SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD, 则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F= C D B D E A B A C D F 2 1 E

《全等三角形》证明题题型归类训练

《全等三角形》证明题题型归类训练 题型1:全等+等腰性质 1、如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O. 求证:(1) △ABC ≌△AED ; (2) OB =OE . 2、已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:OA =OD . 题型2:两次全等 1、AB=AC ,DB=DC ,F 是AD 的延长线上的一点。求证:BF=CF F D C B A 2、已知如图,E 、F 在BD 上,且AB =CD ,BF =DE ,AE =CF ,求证:AC 与BD 互相平分 O C E B D A A B E O F D C

3、如图,在四边形ABCD 中,AD ∥BC ,∠ABC=90°DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC.求证:BG=FG 题型3:直角三角形全等(余角性质) 1、如图,在等腰Rt △ABC 中,∠C =90°,D 是斜边上AB 上任一点,AE ⊥CD 于E ,BF ⊥CD 交CD 的延长线于F ,CH ⊥AB 于H 点,交AE 于G . 求证:BD =CG . 2、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程. 3、如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A 、C 作BD 的垂线,垂足分别为E 、F 求证:EF =CF -AE A F C B D E G B C F D E

全等三角形知识点总结

全等三角形知识点总结 经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。以下是全等三角形知识点总结,欢迎阅读。 以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定: (Side-Side-Side)(边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等三角形。 (Side-Angle-Side)(边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等三角形。 (Angle-Side-Angle)(角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等三角形。 (Angle-Angle-Side)(角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等三角形。 (hypotenuse -leg) (斜边、直角边):直角三角形中一条斜边和一条直角边都对应相等,该两个三角形就是全等三角形。 不同的定义推理出不同的判定方法,这就是全等三角形的特殊之处。

、基本概念 1、“全等”的理解全等的图形必须满足:形状相同的图形;大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。 2、全等三角形的性质 全等三角形对应边相等;全等三角形对应角相等; 3、全等三角形的判定方法 三边对应相等的两个三角形全等。 两角和它们的夹边对应相等的两个三角形全等。 两角和其中一角的对边对应相等的两个三角形全等。 两边和它们的夹角对应相等的两个三角形全等。 斜边和一条直角边对应相等的两个直角三角形全等。 4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上灵活运用定理 证明两个三角形全等,必须根据已知条件与结论,认真分析图形,准确无误的确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件转化为所需的条件,从而使问题得到解决。运用定理证明三角形全等时要注意以下几点。

全等三角形经典题型50题含答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB , AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°, 求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF , CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则 ⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB//ED,AE//BD 推出AE=BD, C D B D C B A F E A B A C D F 2 1 E

全等三角形知识点梳理.pdf

第十二章全等三角形 2018.9 杨1.全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.对应边相等。 2.全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.对应角相等。 证明三角形全等基本思路: 三角形全等的判定(1) 三边分别相等的两个三角形全等,简写成边边边或SSS. 1.如图,AB=AD,CB=CD,求证:(1)△ABC≌△ADC;(2)∠B=∠D. 证明:(1)连接AC,在△ABC与△ADC中, ∴△ABC≌△ADC(SSS). (2)∵△ABC≌△ADC,∴∠B=∠D. 2.已知在四边形ABCD中,AB=CD,AD=BC,,求证AD//BC A D 做辅助线,连接AC,利用SSS证明全等,得到∠ DAC=∠ACB ,从而证明平行 B C 三角形全等的判定(2) 两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”). 两边和其中一边的对角对应相等的两个三角形不一定全等. 1.如图,将两个一大、一小的等腰直角三角尺拼接(A,B,D三点共线,AB=CB,EB=DB,∠ ABC=∠EBD=90°),连接AE,CD,试确定AE与CD的关系,并证明你的结论. 解:结论:AE=CD,AE⊥CD. 证明:延长AE交CD于F,在△ABE与△CBD中AB=CB, ∠ABE=∠CBD, BE=BD, , ∴△ABE≌△CBD(SAS),∴AE=CD,∠EAB=∠DCB, ∵∠DCB+∠CDB=90°,∴∠EAB+∠CDB=90°, ∴∠AFD=90°,∴AE⊥CD. F

2.在△ABC和△CDE中,CA=CB,CD=CE,∠ACB=∠DCE=90°,AE与BD交与点 F (1)求证:△ACE≌△BCD (2)求证:AE⊥BD 1,利用SAS证明全等, AC=BC DC=EC ∠BCD=∠ACE 2,全等得到角相等∠CAE=∠DCB ∠CAB+∠EAB+∠ABC=90° ∠DCB∠EAB+∠ABC=90° 三角形全等的判定(3) 两角和它们的夹边分别对应相等的两个三角形全等,简称角边 角或ASA. 两个角和其中一个角的对边分别相等的两个三角形全等,简称 角角边或AAS. 求证:三角形一边的两端点到这边的中线或中线延长线的距离相等. 如图,AD为△ABC的中线,且CF⊥AD于点F,BE⊥AD,交AD的延长线于点E,求证:BE=CF. 证法1: ∵AD为△ABC的中线,∴BD=CD.∵BE⊥AD,CF⊥AD, ∴∠BED=∠CFD=90°.在△BED与△CFD中∠BED=∠CFD,∠BDE=∠CDF,BD=CD, ∴△BED≌△CFD(AAS),∴BE=CF. 证法2:∵S△ABD=1 2 AD·BE,S△ACD= 1 2 AD·CF, 且S△ABD=S△ACD(等底同高的两个三角形面积相等), ∴1 2 AD·BE= 1 2 AD·CF,∴BE=CF. 三角形全等的判定(4) 斜边和一条直角边分别对应相等的两个直角三角形全等,简称“斜边、直角边”或“HL”. 如图,E,F分别为线段AC上的两点,且DE⊥AC于点E,BF⊥AC于点F,若AB=CD,AE=CF,BD交AC于点M. 求证:BM=DM,ME=MF. 证明:∵AE=CF,∴AE+EF=CF+EF∴AF=CE. 在Rt△ABF与Rt△CDE中AB=CD,AF=CE, ∴Rt△ABF≌Rt△CDE(H L), ∴BF=DE.∵DE⊥AC,BF⊥AC,∴∠DEM=∠BFM=90°. 在△BFM与△DEM中∠BFM=∠DEM,∠BMF=∠DME,BF=DE, ∴△BFM≌△DEM(A AS), ∴BM=DM,ME=MF. 角的平分线的性质 角平分线的性质:角的平分线上的点到角的两边的距离相等. 文字命题的证明方法: a.明确命题中的已知和求证; b.根据题意,画出图形,并用数学符号表示已知和求证; c.经过分析,找出由已知推出要证的结论的途径,写出证明过程.

八年级全等三角形题型总结(有难度)

腾大教育教师辅导教案 授课时间:2014年2月10日学员姓名年级八年级辅导课目数学 学科教师班主任课时数 3 教学课题解全等三角形问题的题型总结 教 学目标1.总结、讲解全等三角形题型 2.练习 教 学 重 难 点 1.掌握解全等三角形的各类问题 教学内容课堂收获 一、三角形全等的性质和判定方法 二、全等三角形的题型 (一)注意三角形全等的判定方法。特别留意的是有两边和一角对应相等的两个三角 形不一定全等,当相等的角为相等的两边中的一边的对角时,这两个三角形不一定相 等。 例1.下面有四个命题: ①两个三角形有两边及一角对应相等,则这两个三角形全等; ②两个三角形有两角及一边对应相等,则这两个三角形全等; ③两个三角形的三条边分别相等,则这两个三角形全等; ④两个三角形的三个角分别对应相等,则这两个三角形全等。 其中真命题是:() A. ②③ B.①③ C.③④ D.②④ 练习: 1.下列说法:①全等三角形的对应边上的中线、高、角平分线对应相等; ②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等; ③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等; ④两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等。 其中正确的有() A. 4个 B.3个 C.2个 D.1个 (二)注意角度在三角形全等中的应用。特别是在特殊三角形,如等腰三角形、直角 三角形中角度数的作用。 例2.两个全等的含? 30、? 60角的三角板ADE和三角板ABC,如图放置,E、A、C 三点在一条直线上,连接BD,取BD中点M,连接ME、MC。试判断△EMC的形状, 并说明理由。

初二数学上全等三角形知识点总结汇编

全等三角形 知识梳理 一、知识网络 ???? ?? ????→??????? ?? ?? ???? ? ?对应角相等 性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理 二、基础知识梳理 (一)、基本概念 1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。 2、全等三角形的性质 (1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法 (1)三边对应相等的两个三角形全等。 (2)两角和它们的夹边对应相等的两个三角形全等。 (3)两角和其中一角的对边对应相等的两个三角形全等。 (4)两边和它们的夹角对应相等的两个三角形全等。 (5)斜边和一条直角边对应相等的两个直角三角形全等。 4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上

(二)灵活运用定理 1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等, 因此在寻找全等的条件时,总是先寻找边相等的可能性。 2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。 3、要善于灵活选择适当的方法判定两个三角形全等。 (1)已知条件中有两角对应相等,可找: ①夹边相等(ASA)②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找 ①夹角相等(SAS)②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找 ①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS) 证明两三角形全等或利用它证明线段或角的相等的基本方法步骤: 1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系); 2.回顾三角形判定公理,搞清还需要什么; 3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。 常见考法 (1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于另一条线段;③证明面积相等; (2)利用判定公理来证明两个三角形全等; (3)题目开放性问题,补全条件,使两个三角形全等。 误区提醒 (1)忽略题目中的隐含条件;

全等三角形练习题(很经典)

第十二章 全等三角形 第Ⅰ卷(选择题 共30 分) 一、选择题(每小题3分,共30分) 1.下列说法正确的是( ) A.形状相同的两个三角形全等 B.面积相等的两个三角形全等 C.完全重合的两个三角形全等 D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( ) 3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后 仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是 ( ) A .BC= B / C / B .∠A=∠A / C .AC=A /C / D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ) A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA 6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂 线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE , 使A,C,E 在一条直线上(如图所示),可以说明 △EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) A.边角边 B.角边角 C.边边边 D.边边角 7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不 正确的结论是( ) A .∠A 与∠D 互为余角 B .∠A=∠2 C .△ABC ≌△CE D D .∠1=∠2 8. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定 这两个三角形全等,还需要条件( ) 第3题图 第5题图 第7题图 第2题图 第6题图 A B C D

(完整版)初中数学全等三角形的知识点梳理

《全等三角形》 一、结构梳理 二、知识梳理 (一)概念梳理 1.全等图形 定义:两个能够完全重合的图形称为全等图形,全等图形的形状和大小都相同.例如图1中的两个图形形状相同,但大小不同,不能重合在一起,因此不是全等图形,图2中的两个图形面积相同,但形状不同,也不是全等图形. 2.全等三角形 这是学好全等三角形的基础.根据全等形定义:能够完全重合的两个三角形叫全等三角形.完全重合有两层含义:(1)图形的形状相同;(2)图形的大小相等.符号“≌”也形象、直观地反映了这一点.“∽”表示图形形状相同,“=”表示图形大小相等. (二)性质与判定梳理 1.全等图形性质:全等多边形的对应边、对应角分别相等. 全等三角形的对应边、对应角分别相等. 2.全等三角形的判定 这是学好全等三角形的关键.只给定一个条件或两个条件画三角形时,都不能保证所画出的三角形全等,只要有三个条件对应相等就可以,于是判定两个三角形全等的方法有: (1)三边对应相等的两个三角形全等,简记为:SSS ; (2)两角和它们的夹边对应相等的两个三角形全等,简记为:ASA; (3)两角和其中一角的对边对应相等的两个三角形全等,简记为:AAS; (4)两边和它们的夹角对应相等的两个三角形全等,简记为:SAS. 若是直角三角形,则还有斜边、直角边公理(HL)。由此可以看出,判断三角形全等,无论用哪一条件,都要有三个元素对应相等,且其中至少要有一对应边相等. (5)注意判定三角形全等的基本思路 从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有 图 2

三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边(角)去迅速准确地确定要补充的边(角),不致盲目地而能有目标地完善三角形全等的条件.从而得到判定两个三角形全等的思路有: ?? ???→→SSS SAS 找另一边找夹角 ??? ?????????→→→→→SAS AAS ASA AAS 找该角的另一边找这条边上的对角找这条边上的另一角边就是角的一条边 找任一角边为角的对边 ???→→AAS ASA 找任一边找两角的夹边 (6)学会辨认全等三角形的对应元素 辨认全等三角形的对应元素最有效的方法是,先找出全等三角形的对应顶点,再确定对应角和对应边,如已知△ABC ≌EFD ,这种记法意味着A 与E 、B 与F 、C 与D 对应,则三角形的边AB 与EF 、BC 与FD 、AC 与ED 对应,对应边所夹的角就是对应角,此外,还有如下规律:(1)全等三角形的公共边是对应边,公共角是对应角,对顶角是对应角;(2)全等三角形的两个对应角所夹的边是对应边,两条对应边所夹的角是对应角. (三)基本图形梳理 注意组成全等三角形的基本图形,全等图形都是由图形的平移、旋转、轴对称等图形变换而得到的,所以全等三角形的基本图形大致有以下几种: 1.平移型 如图3,下面几种图形属于平移型: 它们可看成有对应边在一直线上移动所构成的,故该对应边 的相等关系一般可由同一直线上的线段和或差而得到. 2 .对称型 如图 4,下面几种图形属于对称型: 它们的特征是可沿某一直线对折,直线两旁的部分能完全重合(轴对称图形),重合的顶点就是全等三角形的对应顶点. 3.旋转型 如图5,下面几种图形属于旋转型: 它们可看成是以三角形的某一顶点为中心旋转 所构成的,故一般有一对相等的角隐含在 对顶角、某些角的和 或差中. 三、易混、易错点剖析 1.探索两个三角形全等时,要注意两个特例 (1两个三角形不一定全等;如图6(1已知两边 已知一边一角 已知两角 图3 图4 图6(1)

八年级数学上册 《全等三角形常考题型总结》

全等三角形题型总结 题型一、一线三垂直 1、如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于D,CE⊥MN于E,(1)求证:BD=AE。 (2)若将MN绕点A旋转,使MN与BC相交于点O,其他条件都不变,BD与AE边相等吗?为什么?(3)BD、CE与DE有何关系? 2、如图,两根旗杆间相距12m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3m,此人的运动速度为1m/s,求这个人运动了多长时间. 27、王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以 放进一个等腰直角三角板(AC=BC, ∠ABC=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵 木墙之间的距离.

题型二、角平分线与全等 1、如图所示,四边形ABCD中AB=AD,CA平分∠BCD,AE⊥BC,AF⊥CD,图中有无和△ABE全等的三角形?请说明理由。 2.如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA于点D,PE⊥OB于点E,F是OC上除点P、O外的一点,连接DF,EF,则DF与EF的关系如何?证明你的结论. 图 题型三、旋转与全等 1、如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG,(1)观察猜想BE与DC之间的大小关系,并证明你的结论。(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程,若不存在,说明理由。

B A C D E 2、图17,△ABC 和△ADE 都是等腰直角三角形,CE 与BD 相交于点M ,BD 交AC 于点N . 证明:(1)BD =CE ; (2)BD ⊥CE . 图17 3、如图,ABC ?为等边三角形,D 为边BA 延长线上一点,连接CD ,以CD 为一边作等边三角形 CDE ?,连接AE . (1)求证:CBD ?≌CAE ?. (2)判断AE 与BC 的位置关系,并说明理由. 4、如图,AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,具有BF=AC ,FD=CD ,试探究BE 与AC 的位置关 系. A B D C E F

全等三角形知识点总结及复习.docx

全等三角形知识点总结及复习 、知识网络 ?对应角相等 对应边相等 I r 作图 角平分线性质与判定定理 、基础知识梳理 (一)、基本概念 1、全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。 同样我们把能够完全重合的两个三角形叫做全等三角形。 全等三角形定义:能够完全重合的两个 三角形称为全等三角形。(注:全等三角形是相似三角形中 的特殊情况) 当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合 的角叫做对应角。 由此,可以得出:全等三角形的对应边相等,对应角相等。 (1) 全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2) 全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3) 有公共边的,公共边一定是对应边; (4) 有公共角的,角一定是对应角; (5)有对顶角的,对顶角一定是对应角; 2、全等三角形的性质 (1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法 (1) 三边对应相等的两个三角形全等。 (2) 两角和它们的夹边对应相等的两个三角形全等。 (3) 两角和其中一角的对边对应相等的两个三角形全等。 (4) 两边和它们的夹角对应相等的两个三角形全等。 '边 边 边 角形J 边 角 边 判定J 角 边 角 角 角 边 斜 边 、 全等形、全等三 SSS SAS ASA AAS 直角边 HL

(5)斜边和一条直角边对应相等的两个直角三角形全等。 4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 (二)灵活运用定理 1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条 件时,总是先寻找边相等的可能性。 2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。 3、要善于灵活选择适当的方法判定两个三角形全等。 (1)已知条件中有两角对应相等,可找: ①夹边相等(ASA )②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找 ①夹角相等(SAS)②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找 ①任一组角相等(AAS或ASA)②夹等角的另一组边相等(SAS) (三)经典例题 例1.已知:如图所示,AB=AC , 一一一「二亠 ~ ■■ ■■,求证l?''1'. 例2.如图所示,已知:AF=AE,AC=AD,CF与DE交于点B。求证:I-二AL二 例3 .如图所示,AC=BD,AB=DC ,求证:二匸厶

全等三角形经典题型题带标准答案

全等三角形经典题型题带答案

————————————————————————————————作者:————————————————————————————————日期:

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥ AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. C D B A B A C D F 2 1 E

全等三角形题型总结

全等三角形得判定题型 类型一、全等三角形得判定1——“边边边” 例题、已知:如图,AD=BC,AC=BD、试证明:∠CAD=∠DBC、 (答案)证明:连接DC, 在△ACD与△BDC中 ∴△ACD≌△BDC(SSS) ∴∠CAD=∠DBC(全等三角形对应角相等) 类型二、全等三角形得判定2——“边角边”?例题、已知,如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,并且 AE=(AB+AD),求证:∠B+∠D=180°、 (答案)证明:在线段AE上,截取EF=EB,连接FC, ∵CE⊥AB,∴∠CEB=∠CEF=90° 在△CBE与△CFE中, ∴△CBE与△CFE(SAS)∴∠B=∠CFE ∵AE=(AB+AD),∴2AE= AB+AD ∴AD=2AE-AB ∵AE=AF+EF, ∴AD=2(AF+EF)-AB=2AF+2EF-AB=AF+AF+EF+EB-AB=AF+AB-AB,即AD=AF 在△AFC与△ADC中 ∴△AFC≌△ADC(SAS)∴∠AFC=∠D ∵∠AFC+∠CFE=180°,∠B=∠CFE、∴∠AFC+∠B=180°,∠B+∠D=180°、 类型三、全等三角形得判定3——“角边角”

例题、已知:如图,在△MPN中,H就是高MQ与NR得交点,且MQ=NQ. 求证:HN=PM、 证明:∵MQ与NR就是△MPN得高,∴∠MQN=∠MRN=90°, 又∵∠1+∠3=∠2+∠4=90°,∠3=∠4 ∴∠1=∠2 在△MPQ与△NHQ中, ∴△MPQ≌△NHQ(ASA) ∴PM=HN 类型四、全等三角形得判定4——“角角边” 例题、已知Rt△ABC中,AC=BC,∠C=90°,D为AB边得中点,∠EDF=90°,∠EDF绕D点旋转,它得两边分别交AC、CB于E、F.当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证;当∠EDF绕D点旋转到DE与AC不垂直时,在图2情况下,上述结论就是否成立?若成立,请给予证明;若不成立,请写出您得猜想,不需证明、 解:图2成立; 证明图2:过点作 则 在△AMD与△DNB中,∴△AMD≌△DNB(AAS)∴DM=DN ∵∠MDE+∠EDN=∠NDF+∠EDN=90°,∴∠MDE=∠NDF 在△DME与△DNF中, ∴△DME≌△DNF(ASA)∴∴ 可知,∴ 类型五、直角三角形全等得判定——“HL” 下列说法中,正确得画“√”;错误得画“×”,并举出反例画出图形、 (1)一条直角边与斜边上得高对应相等得两个直角三角形全 等.( )

苏教版全等三角形知识点总结习题单元测试题

第一章 三角形全等 1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。 理解:①全等三角形形状与大小完全相等,与位置无关; ②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等..; ③三角形全等不因位置发生变化而改变。 2、全等三角形的性质: ⑴全等三角形的对应边相等、对应角相等。 理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角; ②对应角的对边为对应边,对应边对的角为对应角。 ⑵全等三角形的周长相等、面积相等。 ⑶全等三角形的对应边上的对应中线、角平分线、高线分别相等。 3、全等三角形的判定: ①边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等。 ②角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等。 ③推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等。 ④边边边公理(SSS) 有三边对应相等的两个三角形全等。 ⑤斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等。 4、证明两个三角形全等的基本思路: ⑴已知两边:①找第三边(SSS );②找夹角(SAS );③找是否有直角(HL ). ⑵已知一边一角:①找一角(AAS 或ASA );②找夹边(SAS ). ⑶已知两角:①找夹边(ASA );②找其它边(AAS ). 例题评析 例1 已知:如图,点D 、E 在BC 上,且BD=CE ,AD=AE , 求证:AB=AC . 例2 已知:如图,A 、C 、F 、D 在同一直线上,AF =D C ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF . A D E

相关文档
最新文档