多元一次不定方程优秀教学设计

多元一次不定方程优秀教学设计
多元一次不定方程优秀教学设计

多元一次不定方程

【教学目标】

1.熟练运用多元一次不定方程解决实际问题。

2.亲历多元一次不定方程解法的探索过程,体验分析归纳得出多元一次不定方程有整数解的充要条件,进一步发展学生的探究、交流能力。

【教学重难点】

重点:掌握多元一次不定方程的概念和解法。

难点:推导多元一次不定方程有整数解的充要条件。

【教学过程】

一、直接引入

师:今天这节课我们主要学习多元一次不定方程,这节课的主要内容有多元一次不定方程的概念以及有整数解的充要条件,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。

二、讲授新课

(1)教师引导学生在预习的基础上了解多元一次不定方程内容,形成初步感知。

(2)首先,我们来学习多元一次不定方程的概念,它的具体内容是:

以三元和四元一次不定方程为例说明一元以上多元一次不定方程的解法.三元一次不定方程的一般形式为ax by cz d

a b c为非零整数,d为整数.

++=①,其中,,

它是如何在题目中应用的呢?我们通过一道例题来具体说明。

例:判断234

++=是不是三元一次不定方程?

x y z

解析:是

根据例题的解题方法,让学生自己动手练习。

练习:写出一个三元一次不定方程.

解:12451

+-=

x y z

(3)接着,我们再来看下多元一次不定方程有整数解的充要条件内容,它的具体内容是:不定方程①有整数解的充要条件()

a b c d|.

,,

它是如何在题目中应用的呢?我们通过一道例题来具体说明。 例:求不定方程5832x y z -+=的全部整数解.

解析:因为()()()5,81,5,8,31,312-=-==|所以不定方程有整数解.分别解不定方程58x y t -=,32t t ==,得到它们的整数通解.

5835x t k y t k =+??=+?131t t z l =--??=+?

其中,k l 为任意整数.联立上面的两个通解表达式,消去t ,便得到原不定方程的全部整数解.

58153591x t k l y k l z l =-+-??=-+-??=+?

其中,k l 为任意整数.

根据例题的解题方法,让学生自己动手练习。

练习:求不定方程257310x y z w +++=的全部整数解.

解:因为()()()()2,5=1,1,7=12,5,7,3=1,3=1

10|,,,所以不定方程存在整数解.作不定方程25,7,310x y u u z v v w +=+=+=,分别求得上面三个二元一次不定方程的整数通解为

11352x u t y u t =+??=--?,2267u v t z v t =-+??=-?,33133v t w t =+??=-?

其中123,,t t t 为任意整数.联合上述三个通解表达式,消去,u v 得 32132132

3

185421561872133x t t t y t t t z t t w t =--++??=+--??=+-??=-? 其中123,,t t t 为任意整数,这就是不定方程257310x y z w +++=的全部整数解。

三、课堂总结

(1)这节课我们主要讲了多元一次不定方程。

(2)它们在解题中具体怎么应用?

四、习题检测

1.求下列一次不定方程的整数解:513610x y z -+=

2.求下列一次不定方程的整数解:410211

-+=

x y z

一元一次方程解决问题教学设计与教学反思

一元一次方程解决问题教学设计与教学反思 教材分析: 本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。在提高学生的能力,培养他们对数学的兴趣以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。 学情分析: 1.学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。 2.学生在列方程解应用题时,可能存在三个方面的困难:(1)抓不准相等关系;(2)找出相等关系后不会列方程;(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。 3.学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。 4.学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。 5.学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。 教学目标: (1)知识目标:(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。(B)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。 (2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。 (3)思想目标:通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。 教学重点和难点: 1.教学重点:根据题意寻找和;差;倍;分问题的相等关系 2.教学难点:根据题意列出一元一次方程 教学过程: 一、从学生原有的认知结构提出问题 师生问好. 在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?为了回答上述这几个问题,我们来看下面这个例题.例1 某数的3倍减2等于某数与4的和,求某数. (首先,用算术方法解,由学生回答,教师板书) 解法1:(4+2)÷(3-1)=3.答:某数为3. (其

一次不定方程的解法

一次不定方程的解法 我们现在就这个问题,先给出一个定理. 定理如果,a b 是互质的正整数,c 是整数,且方程 ax by c +=① 有一组整数解00,x y 则此方程的一切整数解可以表示为 其中0,1,2,3,t =±±±… 证因为00,x y 是方程①的整数解,当然满足 00ax by c +=② 因此 0000()()a x bt b y at ax by c -++=+=. 这表明0x x bt =-,0y y at =+也是方程①的解. 设,x y ''是方程①的任一整数解,则有 ax by c ''+=③ ③-②得00()()a x x b y y ''-=--④ 由于(,)1a b =,所以0a y y '-,即0y y at '=+,其中t 是整数.将0y y at '=+代入④,即得0x x bt '=-.因此,x y ''可以表示成0x x bt =-,0y y at =+的形式,所以0x x bt =-,0y y at =+表示方程①的一切整数解,命题得证. 有了上述定理,求解二元一次不定方程的关键是求它的一组特殊解. 例1求11157x y +=的整数解. 解法1将方程变形得 因为x 是整数,所以715y -应是11的倍数.由观察得002,1x y ==-是这个方程的一组整数解,所以方程的解为 解法2先考察11151x y +=,通过观察易得

11(4)1531?-+?=, 所以 11(47)15(37)7?-?+??=, 可取0028,21x y =-=,从而 可见,二元一次不定方程在无约束条件的情况下,通常有无数组整数解,由于求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是一样的.将解中的参数t 做适当代换,就可化为同一形式. 例2求方程62290x y +=的非负整数解. 解因为(6,22)2=,所以方程两边同除以2得 31145x y +=① 由观察知,114,1x y ==-是方程 3111x y +=② 的一组整数解,从而方程①的一组整数解为 由定理,可得方程①的一切整数解为 因为要求的是原方程的非负整数解,所以必有 1801104530t t -≥??-+≥? ③ 由于t 是整数,由③得1516t ≤≤,所以只有15,16t t ==两种可能. 当15,15,0t x y ===;当16,4,3t x y ===.所以原方程的非负整数解是 150x y =??=? ,43x y =??=? 例3求方程719213x y +=的所有正整数解. 分析这个方程的系数较大,用观察法去求其特殊解比较困难,碰到这种情况我们可用逐步缩小系数的方法使系数变小,最后再用观察法求得其解. 解用方程

初一数学一元一次方程优秀教案

一元一次方程 一、 知识结构导入 2 3(或几个数值), 而解方程的含义是指求出方程的解或判断方程无解的过程。 ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。 (二)等式的性质 等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等。 等式的性质(1)用式子形式表示为:如果a=b ,那么a±c=b±c。 等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。 等式的性质(2)用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c = b c 。 (三)移项法则:把等式一边的某项变号后移到另一边,叫做移项。 (四)去括号法则 1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同。 2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变。 (五)解方程的一般步骤 1. 去分母(方程两边同乘各分母的最小公倍数) 2. 去括号(按去括号法则和分配律) 3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号) 4. 合并(把方程化成ax = b (a≠0)形式) 5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x = b a ) 二、 知识点回顾+典型例题讲解+变式练习 知识点1:方程的有关概念 ⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程

解的 叫做解方程. 方程的解与解方程不同. ⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 . 典型例题 例1、 下列方程中不是一元一次方程的是( ). A .x=1 =3x-5 =y-2 2 x =5x 例2、 如果(m-1)x |m| +5=0是一元一次方程,那么m =___. 例3、 一个一元一次方程的解为2,请写出这个一元一次方程 . 例4、根据实际问题列方程。 (1)世界上最大的动物是蓝鲸,一只鲸重124吨。比一头大象体重的25倍少一吨,这头大象重几吨若已知大象的重量(如X 吨)如何求蓝鲸的重量 (2)俄罗斯小说家契诃夫的小说《家庭教师》中,写了一位教师为一道算术题大伤脑筋。我们来看看这道题。 问题(买布问题):顾客用540卢布买了两种布料共138尺,其中蓝布料每俄尺3卢布,黑布料每俄尺3卢布,黑布料每俄尺5卢布。两种布料各买了多少(设蓝布料买了X 尺) 例5、 若关于x 的一元一次方程2313 2 x k x k ---=的解是1x =-,则k 的值是( ) A . 27 B .1 C .1311- D .0 变式练习 1、下列各式:①3x+2y=1 ②m-3=6 ③x/2+2/3= ④x2+1=2 ⑤z/3-6=5z ⑥(3x-3)/3=4 ⑦5/x+2=1 ⑧x+5中,一元一次方程的个数是( ) A、1 B、2 C、3 D、4 2、若方程3(x-1)+8=2x+3与方程3 25x k x -=+的解相同,求k 的值. 3、已知2x 1 -m +4=0是一元一次方程,则m= . 4、若关于x 的方程2(x-1)-a=0的解是x=3,则a 的值是( ) A 、4 B 、-4 C 、 5 D 、 -5 5、根据实际问题列方程。 (1)x 的2倍与3的差是5. (2)长方形的长比宽大5,周长为36,求长方形的宽.(设长方形的宽为x ) (3)甲种铅笔每只元,乙种铅笔每支元,用9元钱买了两种共20支,两种铅笔各买了多少支(设甲种铅笔买了x 支)

一次不定方程的解法

一次不定方程的解法

一次不定方程的解法 我们现在就这个问题,先给出一个定理. 定理 如果,a b 是互质的正整数,c 是整数,且方程 ax by c += ① 有一组整数解00,x y 则此方程的一切整数解可 以表示为 00x x bt y y at =-??=+? 其中0,1,2,3,t =±±±… 证 因为00 ,x y 是方程①的整数解,当然满足 00ax by c += ② 因此 0000()()a x bt b y at ax by c -++=+=. 这表明0x x bt =-,0y y at =+也是方程①的解. 设,x y ''是方程①的任一整数解,则有 ax by c ''+= ③ ③-②得 00()()a x x b y y ''-=-- ④ 由于(,)1a b =,所以0a y y '-,即0y y at '=+,其中t 是整数.将 0y y at '=+代入④,即得0x x bt '=-.因此,x y ''可以表示成0x x bt =-,0y y at =+的形式,所以0x x bt =-,0y y at =+表示 方程①的一切整数解,命题得证.

例2 求方程62290x y +=的非负整数解. 解 因为(6,22)2=,所以方程两边同除以2得 31145x y += ① 由观察知,114,1x y ==-是方程 3111x y += ② 的一组整数解,从而方程①的一组整数解为 0045418045(1)45 x y =?=??=?-=-? 由定理,可得方程①的一切整数解为 18011453x t y t =-??=-+? 因为要求的是原方程的非负整数解,所以必有 1801104530t t -≥??-+≥? ③ 由于t 是整数,由③得1516t ≤≤,所以只有15,16t t ==两种可能. 当15,15,0t x y ===;当16,4,3t x y ===.所以原方程的非负整数解是 150x y =??=? ,43x y =??=? 例3 求方程719213x y +=的所有正整数解. 分析 这个方程的系数较大,用观察法去求

一次不定方程及方程的整数解问题-1

一次不定方程及方程的整数解问题-1

一次不定方程(组)及方程的整数解问题 【写在前面】 不定方程(组)是数论中的一个重要课题,不仅是数学竞赛,甚至在中考试卷中也常常出现. 对于不定方程(组),我们往往只求整数解,甚至是只求正整数解,加上条件限制后,解就可确定.有时还可以解决计数、求最值等方面的问题.二元一次不定方程是最简单的不定方程,一些复杂的不定方程(组)常常要转化为二元一次不定方程问题加以解决. 【本讲重点】 求一次不定方程(组)的整数解 【知识梳理】 不定方程(组)是指未知数的个数多于方程的个数的方程(组),其特点是往往有无穷多个解,不能唯一确定. 重要定理: 设a 、b 、c 、d 为整数,则不定方程c by ax =+有: 定理1 若,),(d b a =且d 不能整除c ,则不定方程c by ax =+没有整数解; 定理2 若),(0 y x 是不定方程c by ax =+且的一组整数解(称为 特解),则?? ?-=+=at y y bt x x 00 ,(t 为整数)是方程的全部整数解(称为通解). (其中d b a =),(,且d 能整除c ). 定理3 若),(0 y x 是不定方程1=+by ax ,1),(=b a 的特解, 则),(0 cy cx 是方程c by ax =+的一个特解. (其中d b a =),(,且d 能整除c ).

求整系数不定方程c by ax =+的正整数解,通常有以下步骤: (1) 判断有无整数解; (2) 求出一个特解; (3) 写出通解; (4) 有整数t 同时要满足的条件(不等式组),代入 命题(2)中的表达式,写出不定方程的正整数解. 解不定方程(组),需要依据方程(组)的特点,并灵活运用以下知识和方法: (1)分离整系数法; (2)穷举法; (3)因式分解法; (4)配方法; (5)整数的整除性; (6)奇偶分析; (7)不等式分析; (8)乘法公式. 【学法指导】 【例1】求下列不定方程的整数解(1)862=+y x ; (2)13 105=+y x . 【分析】根据定理1、定理2确定方程的整数解. 【解答】(1)原方程变形为:43=+y x , 观察得到? ? ?==1 , 1y x 是4 3=+y x 的一组整数解(特解),

一次不定方程的解法

精心整理 一次不定方程的解我们现在就这个问题,先给出一个定理 定理如是互质的正整数是整数,且方,①cby?ax?有一组整数解则此 方程的一切整数解可以表示为yx,00其中…3,??1,?2,t?0,证因为是方程①的整数解,当然满足y,x00②c?ax?by00因此 .cby?at)?ax?ba(x?bt)?(y?0000这表明,也是方程①的解.at?y??x?xbty00设是方程①的任一整数解,则有??y,x③??caxby???②得④③ ??)y(?)x(ax??by?00精心整理. 精心整理 t是整数.将,其中代入④,即得由于,所以,即??? atyy?y?at??y ya?y1)?,(ab000.因此可以表示成,的形式,所以, ???y?y?atx?x?x?x?btyy?x??x?btatbty,x00000表示方程①的一切整数解,命题得证.有了上述定理,求解二元一次不定方程的关键是求它的一组特殊解. 例1求的整数解.715y?11x?将方程变形得1解是这个方程的的倍数.由观察是整数,所应是因211组整数解,所以方程的解先考,通过观 察易得解11114所以 (7711,,从而可取21?x??28,y00可见,二元一次不定方程在无约束条件的情况下,通常有无数组整数解,由于 求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是 t一样的.将解中的参数做适当代换,就可化为同一 形式.求方程的非负整数解.2例9022y??6x得因为,所以方程两边同

除以解2?(6,22)2①45?3x?11y由观察知,是方程1??yx?4,11②1?11y?x3 的一组整数解,从而方程①的一组整数解为 由定理,可得方程①的一切整数解为精心整理. 精心整理 因为要求的是原方程的非负整数解,所以必有 180?11t?0?③??45?3t?0?由于是整数,由③得,所以只有两种可能.16?t?15,tt16t?15?当;当.所以原方程的非负整数解是 3??4,yy?0?t16,xt?15,x?15,x?415x???,??y?3y?0??求方的所有正整数解211?分析这个方程的系数较大,用观察法去求其特殊解比较困难,碰到这种情况们可用逐步缩小系数的方法使系数变小,最后再用观察法求得其解 解用方 211?的最小系除方程①的各项,并移项 211y②?30?2y?x?77y?53.化简得到是整数,故因为也是整数,于是?u yx,3?7u5y?7③3??7u5y3?2u(整数),由此得令?v5④35v?2u?u??1u??1??是方程④的一组解.将代入③得,再将由观察知代入②得 2?2y?y??v?1v?1??x?25x?25?19t??t为整数,所以它的一切解为.于是方程①有一组解025x???y?2y?2?7t??0由于要求方程的正整数解,所以 解不等式,得只能取.因此得原方程的正整数解为0,1t精心整理.精心整理 x?25x?6??,??y?2y?9??当方程的系数较大时,我们还可以用辗转相除法求其特解,其解法结合例题说明.

新人教版一元一次方程全章优秀教案

新人教版七年级上册数学 第三章一元一次方程教案 (2015年秋季学期) 授课者:蒋宏亮 学校:东兴市京族学校 第三章一元一次方程 单元要点分析 教案内容 方程就是将众多实际问题“教案化”的一个重要模型?因此,课本从学生熟悉的实际问题开始,从算式到方程,展开方程的学习,以使学生认识到方程的出现源于解决问题的需要,体会学习方程的意义和作用. 本章内容主要分为以下三个部分: 1 ?通过丰富实例,从算式到建立一元一次方程,?展开方程是刻画现实生活的 有效数学模型. 2 .运用等式的基本性质解方程,归纳移项法则,运用分配律,?归纳“合并”、“去括号”等法则,逐步展现求解方程的一般步骤,这些内容的学习不是孤立进行 的,始终从实际问题出发,使学生经历模型化的过程,激发学生的好奇心和主动学习的欲望. 3 .运用方程解决丰富多彩的、贴近学生生活的实际问题,?展现运用方程解决 实际问题的一般过程. 为了使学生经历“建立方程模型”这一数学化的过程,理解学习方程的意义,培养学生的抽象概括等能力,课本内容的呈现都以求解决一个实际问题为切入点,让学生经历抽象、符号变号、应用等活动,在活动中培养学生解决问题的兴趣和能力,提高学生的思维水平和应用数学知识去解决实际问题的意识. 三维目标 1 .知识与技能根据具体问题中的数量关系,经历形成方程模型,解方程和运用方程解决实际

问题的过程,体会方程是刻画现实世界的有效数学模型. 2 .过程与方法 (1)了解一元一次方程及其相关概念,会解一元一次方程.(数学系数) (2)能以一元一次方程为工具解决一些简单的实际问题,包括列方程,?求解 方程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力. 3.情感态度与价值观培养学生求实的态度。培养学生获取信息,分析问题,处理问题的能力。 激发学生的好奇心和主动学习的欲望,体会数学的应用价值.重、难点与关键 1 .重点:一元一次方程有很多直接应用,?解一元一次方程是解其他方程和方程组的基础.因此本章重点在于使学生能根据具体问题中的数量关系列出一元一次方程,掌握解一元一次方程的基本方法,能运用一元一次方程解决实际问题. 2 .难点:正确地列出一元一次方程的解决实际问题. 3 .关键:(1)熟练地解一元一次方程的关键在于正确地了解方程、方程解的意义和运用等式的两个性质. (2)正确地列出方程的关键在于正确地分析问题中的已知数、未知数,?并找 出能够表示应用题全部含义的相等关系. 3.1 从算式到方程 §3.1.1 一元一次方程(一)教案目标: 知识与技能: 通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;过程与方法: 初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;情感、态度、价值观: 培养学生获取信息,分析问题,处理问题的能力。 教案重点:从实际问题中寻找相等关系 教案难点:从实际问题中寻找相等关系 教案过程: 一、情境引入 提出教科书第78 页的问题,并用多媒体直观演示: 问题1:从题中你能获得哪些信息?(可以提示学生从时间、路程、速度、等方面去考虑。)可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出A,B两地的距离吗?列算式试试。 教师可以在学生回答的基础上做回顾小结: 1、问题涉及的三个基本物理量及其关系; 2、对于客车,1km所用的时间为—h,而卡车所用的时间为—h;所以1km, 70 60 1 1 客车比卡车少用的( ---------- )h。路程多少千M时客车才比卡车少用1h呢? 60 70 1 1

七年级数学教学案例分析《一元一次方程》

初一数学《一元一次方程》教学案例分析教学内容:北师大版义务教育课程标准实验教科书《数学》七年级上册第101页例5. 教学目标: 1.知识与技能 进一步掌握利用一元一次方程解决实际问题。培养分析问题,解决问题的能力。 2.过程与方法 经历分析工程问题中的数量关系,运用方程解决实际问题的过程,进一步体会“建模”思想。 3.情感、态度与价值观 鼓励学生积极思考,合作交流,发展数学才能。 教学重难点: 1.重点:工程中的工作量、工作效率和工作时间的关系,以及找出相等关系。 2.难点:把全部工作看作1。 3.关键:建立等量关系。 评析:目标的制定上从形式上体现了三维目标,但每一项目标都

是空洞的,没有可操作性和可检验性,目标显得假、空、大。本课时的目标应为: 1.掌握与工程问题有关的工作量,工作时间,工作效率之间的关系(工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率); 2.能根据它们之间的等量关系形成等式进而列出方程,解决实际问题; 3.能够根据具体问题的实际意义,检验结果是否合理; 4.体会方程是刻画现实世界的一个有效的数学模型。 本课的难点应该是:从具体问题中找出等量关系。这是因为:在小五年级和六年级的教学中,题目中没明确问题的工作量时,都是将工作量视为单位1处理的,只要小学基础在中等水平的学生,都能自觉地将工作量看作单位1,这就体现该知识点不可能成为难点。而题目中所蕴藏的等量关是隐蔽的,学生不易发现,特别是七年级的学生,阅读理解能力有待提高,要发现并用文字表述等量关系是有困难的,为此找出问题中等量关系并用文字表述才是该课时的难点也是关键所在。如果要说难点是:把全部工作量看作1,我认为也应该是:为什么将全部工作量看作单位1。 教学过程及评析: 一、复习提问

实际问题与一元一次方程 优秀教学设计(教案)

实际问题与一元一次方程 【教材所处的地位和作用】 1.本节将带领学生学习一元一次方程的相关内容,通过对这一内容的学习,是学生认识到方程是更方便、更有利的数学工具,从算数到方程是数学的进步,让学生感受到方程作为刻画现实世界有效的模型,体会列方程中蕴含的“数学建模思想”。 2.本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。 【学情分析】 学生已经了解什么是方程什么是方程的解,并学会了用逆运算法解一些简单的方程,对方程已有了初步的认识。在前一章刚学到整式的概念及其运算。这些知识都为本节课的学习奠定了基础。1.学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。 2.学生在列方程解应用题时,可能存在三个方面的困难: (1)抓不准相等关系;(2)找出相等关系后不会列方程;(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。 【教学目标】

1.结合生活实际,会在独立思考后与他人合作,结合估算和试 探,列出一元一次方程解决本节的三个实际问题,并能解释 结果的实际意义及其合理性。 2.在探索中获得成功的体验,激发学生学习数学的热情,享受与 他人合作的乐趣,建立自信心。 3.通过对实际问题的解决,进一步体会“数学来源于生活,且服 务于生活”的辩证思想 4.学会利用进价、售价、利润、利润率之间的关系解应用题。【教学重点】 培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识。 【教学难点】 1.探索并掌握列一元一次方程解决实际问题的方法,找出已知量与未知量之间的关系,尤其是相等关系。 2.运用方程的解对客观现实作出合理的解释。 【教学过程】 一、复习引入 1.回顾相关数量的相等关系。 前面我们结合实际问题,讨论了如何分析数量关系、利用相等关系列方程以及如何解方程。可以看出,方程是分析和解决问题的一种很有用的数学工具。本节课我们将进一步探究如何用一元一次方程解决实际问题。

解一元一次方程教学案例

解一元一次方程教学案例 一、素质教育目标 (-)知识教学点 1.了解二元一次方程、二元一次方程组和它的解的概念. 2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式. 3.会检验一对数值是不是某个二元一次方程组的解. (二)能力训练点 培养学生分析问题、解决问题的能力和计算能力. (三)德育渗透点 培养学生严格认真的学习态度. (四)美育渗透点 通过本节的学习,渗透方程组的解必须满足方程组中的每一个方程恒等的数学美,激发学生探究数学奥秘的兴趣和激情. 二、学法引导 1.教学方法:讨论法、练习法、尝试指导法. 2.学生学法:理解一元一次方程及其解的概念,并对比方程及其解的概念,为今后的学习打下良好的数学基础. 三、课时安排 1课时. 四、重点、难点了解一元一次方程概念及解 1、创设情境 上两堂课讨论了一些方程的解法,那么那些方程究竟是什么类型的方程呢?先看下面几个方程:每一行的方程各有什么特征?(主要从方程中所含未知数的个数和次数两方面分析). 4 + x = 7; 3x + 5 = 7-2x; ; x + y = 10; x + y + z = 6; x2 - 2x – 3 = 0; x3-1 = 0. 2、探究归纳 比较一下,第一行的方程(即前2个方程)与其余方程有什么区别?(学生答) 可以看出,前一行方程的特点是:(1)只含有一个未知数;(2)未知数的次数都是一次的.“元”是指未知数的个数,“次”是指方程中含有未知数的项的最高次数,根据这一命名方法,上面各方程是什么方程呢?(学生答) 只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程(linear equation with one unknown). 第二行的方程的特点是:每一个方程中的未知数都超过一个;第三行的方程的特点是:每一个方程中的未知数的次数都超过一次,根据一元一次方程的定义可知后四个方程都不是一元一次方程. 注意:谈到次数的方程都是指整式方程,即方程的两边都是整式.像这样就不是一元一次方程. 上两堂课我们探讨的方程都是一元一次方程,并且得出了解一元一次方程的一些步骤.下面我们继续通过解一元一次方程来探究方程中含有括号的一元一次方程的解法.

不定方程的解法与应用

摘要 不定方程是初等数论的一个重要内容,在相关学科和实际生活中也有着广泛的应用.本文首先归纳了整数分离法、系数逐渐减小法和辗转相除法等几种常用的二元一次不定方程的解法;其次进一步讨论了求n元一次不定方程和二次不定方程整数解的方法;最后论述了不定方程在中学数学竞赛题、公务员行测试题和其他学科中的应用,并举例说明. 关键词:不定方程;二元一次不定方程;数学竞赛;公务员试题

Abstract The integral solutions of indeterminate equation solving method is an important content of elementary number theory, has been widely used in related disciplines and in real life. This paper summarizes the integer separation method, coefficient decreases and the Euclidean algorithm and several commonly used two element indefinite equation solution, secondly is further discussed. For n linear indeterminate equation and the method of two time indefinite equation integer solution, and finally discusses the indeterminate equation applied in secondary school mathematics, civil servants for test and other subjects, and illustrated with examples. Key words: i ndeterminate equation; two element indefinite equation; Mathematics contest; civil service examination.

初中数学一元一次方程优秀教案教学设计

初中数学一元一次方程优秀教案教学 设计 初中数学一元一次方程优秀教案教学设计 发布者:邓美君 教学建议 一、重点、难点分析 本节教学的重点是使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.难点是了解二元一次方程组的解的含义.这里困难在于从1个数值变成了2个数值,而且这2个数值合在一起,才算作二元一次方程组的解.用大括号来表示二元一次方程组的解,可以使学生从形式上克服理解的困难;而讲清问题中已含有两个互相联系着的未知数,把它们的值都写出来才是问题的解答.这是克服这一难点的关键所在. 二、知识结构 本小节通过求两个未知数的实际问题,先应用

学生以学过的一元一次方程知识去解决,然后尝试设两个未知数,根据题目中的两个条件列出两个方程,从而引入二元一次方程、二元一次方程组(用描述的语言)以及二元一次方程组的解等概念. 三、教法建议 1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念. 2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组. 3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题. 4.为了减少学习上的困难,使学生学到最基本、最实用的知识,教学中不宜介绍相依方程组如和矛盾方程组如 等概念,也不要使方程组中任何一个方程的未知数的系数全部为0(因为这种数学中的特例较少实际意义)当然,作为特例,出现类似

之类的二元一次方程组是可以的,这时可以告诉学生,方程(1)中未知数的系数为0,方程(1)也看作一个二元一次方程. 教学设计示例 一、素质教育目标 (-)知识教学点 1.了解二元一次方程、二元一次方程组和它的解的概念. 2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式. 3.会检验一对数值是不是某个二元一次方程组的解. (二)能力训练点 培养学生分析问题、解决问题的能力和计算能力. (三)德育渗透点 培养学生严格认真的学习态度. (四)美育渗透点

二元一次不定方程

二元一次不定方程一、教学内容分析 4-6》的第三讲。它是对第一讲整除本节是《普通高中课程标准实验教科书·数学选修和第二讲同余中相关知识的应用。也是之后多元一次不定方程的基础。本节课程体现数学文化的特色,百钱买百鸡问题使学生对二元一次不定方程产生浓厚的兴趣。学生通过分析,试验,猜想、验证等, 从中获得新的知识,新的方法,新的思想,体验数学发现和创造的历程,感受数学的魅力。二、 学生学情分析 学生之前可能通过课后阅读或资料,故事书听说过百钱买百鸡问题,或曾经尝试过此类问题进行解决,难度较大。现在是第一次系统性的学习,学生的兴趣浓厚,积极性很高,有热情和新鲜感。通过课前导学能对有解性和整数通解提出猜想,但难以给出证明。所以需要教师精心设计,做好引导工作,充分体现教师的“引路人”角色。特别小组合作学习中在分。组时注意学生的合理 搭配(成绩的好坏、分析解决问题能力、口头表达能力等)三、教学目标 知识目标:1; 、掌握二元一次不定方程有解的充要条件2. 、会求二元一次不定方程的整数通解能力目标1渗透从特殊到一般,先猜后证的数学方法。培养观察、分析、归纳、总结、证明.; 的能力2. .培养学生的口头表达能力和合作意识情感目标1.了解不定方程的发展的历史以及在这个过程中起重大作用的历史事件和人,让学生感受到我国古代数学成就,激发学生的民族自豪感;2. . 使学生感受到数学来源于生活,体会数学的实用价值并应用于实践四、教学重点和难点重点:1. 二元一次不定方程有解的充要条件;2. 二元一次不定方程的整数通解的证明。难点:引导学生利用整除的知识对二元一次不定方程的整数通解进行证明。五、教法与学法 . 学生成为课堂的主人,教师层层引导,关键地教法:以问题为驱动,以学生为主体方点拨的教学模式。学法:鼓励学生“动脑想、大胆猜、严格证、多交流、勤设问”的研讨式学习方法。 六、教学过程设计 埋下伏笔历史名题,激发学生学习兴趣。(视频体验)学生表演神童“百钱买百鸡问题” 展示成果学生动手1、判断下列方程是否有整数解问题4??6y6?y?28x8x?6y?18x (2)(3) (1),,c?ax?byc,a,b 2 得到新知合作探究问题:若方程有整数解,则整数满足什么关系?1?3y4x? 33组)问题的整数解(至少、写出不定方程1?b)c(a,ax?by?yy?x?x,4为不定方程整数解问题求不定方程,:,00 得到新知合作探究c|,b)b,)|c(a?axby?c(a,不定方有整数解,那么。反过来,当结论1:如果不定方程c?ax?by! 一定有整数解程bt??xx?0cby??1ax?)(a,b?Z,t?的整数通解为2:设,则不定方程结论

高中不定方程

不 定 方 程 【知识精要】 形如x +y =4,x +y +z =3,y x 11+=1的方程叫做不定方程,其中前两个方程又叫做一次不定方程.这些方程的解是不确定的,我们通常研究(1)不定方程是否有解?(2)不定方程有多少个解?(3)求不定方程的整数解或正整数解. 对于二元一次不定方程问题,我们有以下两个定理: 定理1.二元一次不定方程ax +by =c ,(1)若其中(a ,b ) c ,则原方程无整数解; (2)若(a ,b )=1,则原方程有整数解;(3)若(a ,b )|c ,则可以在方程两边同时除以(a ,b ),从而使原方程的一次项系数互质,从而转化为(2)的情形. 如:方程2x +4y =5没有整数解;2x +3y =5有整数解. 定理2.若不定方程ax +by =1有整数解???==00y y x x ,则方程ax +by =c 有整数解? ??==00cy y cx x ,此解称为特解.方程方程ax +by =c 的所有解(即通解)为? ??-=+=ak cy y bk cx x 00(k 为整数). 对于非二元一次不定方程问题,常用求解方法有: (1)恒等变形.通过因式分解、配方、换元等方法将方程变形,使之易于求解; (2)构造法.先利用恒等式构造一些特解,再进一步证明不定方程有无穷多组解; (3)估算法.先缩小方程中某些未知数的取值范围,然后再求解. 【例题精讲】 一 二元一次不定方程 例1.求方程4x +5y =21的整数解. 解:因为方程4x +5y =1有一组解???=-=11y x ,所以方程4x +5y =21有一组解???=-=21 21y x . 又因为方程4x +5y =0的所有整数解为? ??-==k y k x 45(k 为整数), 所以方程4x +5y =21的所有整数解为? ??-=+-=k y k x 421521(k 为整数). 说明:本题也可直接观察得到方程4x +5y =21的一组特解? ??=-=51y x ,从而得到4x +5y =21

不定方程的解法

基本介绍编辑本段 不定方程是数论的一个分支,它有着悠 久的历史与丰富的内容。所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数。 古希腊数学家丢番图于三世纪初就研究过若干这类方程,所以不定方程又称丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。1969 年,莫德尔较系统地总结了这方面的研究成果。 2 发展历史编辑本段

希腊的丢番图早在公元3 世纪就开始研究不定方程,因此常称不定方程为丢番图方程。Diophantus ,古代希腊人,被誉为代数学的鼻祖,流传下来关于他的生平事迹并不多。今天我们称整系数的不定方程为「Diophantus 方程」,内容主要是探讨其整数解或有理数解。他有三本著作,其中最有名的是《算术》,当中包含了189 个问题及其答案,而许多都是不定方程组(变量的个数大于方程的个数)或不定方程式(两个变数以上)。丢番图只考虑正有理数解,而不定方程通常有无穷多解的。 研究不定方程要解决三个问题:①判断何时有解。②有解时决定解的个数。③求出所有的解。中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5 世纪的《张丘建算经》中的百鸡问题标志中国对不定方程理论有了系统研究。秦九韶的大衍求一术将不定方程与同余理论联系起来。百鸡问题说:“鸡翁一,直钱五,鸡母一,直钱三,鸡雏三,直钱一。百钱买百鸡,问鸡翁、母、雏各几何”。设x,y,z 分别表鸡翁、母、雏的个数,则此问题即为不定方程组的非负整数解x,y,z,这是一个三元不定方程组问题。 3 常见类型编辑本段

二元一次不定方程及其解

2013年第·1期 太原城市职业技术学院学报 Journal of TaiYuan Urban Vocational college 期 总第138期 Jan2013 [摘要]不定方程是数论中最古老的一个分支,也是数论中的一个十分重要的研究课题,我国古代对不 定方程的研究很早,且研究的内容也极为丰富,在世界数学史上有不可忽视的地位。论文重点探讨了二元一次不定方程及其解。[关键词]通解; 特解;观察法;辗转相除法;整数分离法;同余法[中图分类号]O15[文献标识码]A[文章编号]1673-0046(2013)1-0161-02浅析二元一次不定方程及其解 韩孝明 (吕梁学院汾阳师范分校,山西吕梁032200) 不定方程是数论中最古老的一个分支,也是数论中一个十分重要的研究课题,我国古代对不定方程的研究很早,且研究的内容也极为丰富,在世界数学史上有不可忽视的地位。如《张丘建算经》中的“百钱买百鸡”问题、《九章算术》中的“五家共井”问题等等,中外驰名,影响甚远。在公元3世纪初,古希腊数学家丢番图曾系统研究了某些不定方程问题,因此不定方程也叫做丢番图方程。 一、不定方程定义所谓不定方程,是指未知数的个数多于方程的个数且其解受到某种条件的限制的方程或方程组。 不定方程领域中的基本问题是:不定方程有无整数解,有多少整数解,如何求出整数解。围绕这些问题,至今存在着大量的未解决问题,因此不定方程仍是一个很 活跃的数学领域。 中小学的数学竞赛也常常因为某些不定方程的解法巧妙而引入不定方程问题。 二、二元一次不定方程及其解形如ax+by=c(a,b,c∈z,ab≠0)的方程称为二元一 次不定方程。 求其整数解的问题叫做解二元一次不定方程。 由于方程的解x、y可以是正整数,也可以是负整数,或者零,所以我们可以只讨论a、b都是正整数的情 况。例如, 3x-2y=1与3x+2y=1的解相比较,y的值只差一个负号。 当c=0时,如果(a,b)=d(a、b的最大公约数为d),那么在方程的两边同时除以d,使x、y的系数互质。因此不妨假设(a,b)=1,解方程得x=-,由于(a,b)=1,因此当y能被a整除时,方程ax+by=0才有整数解。所以可令y=at(t为任意整数),这时x=-bt,即方程ax+by=0的一切整数解为 (其中t为任意整数) 当c≠0时,实际上也只需要讨论c>0的情况。因 为当c<0时,我们可以在方程两边同时乘以-1,这样方程ax+by=c的右边就成为正整数了。因此对于二元一次不定方程,可以只讨论a>0、b>0、c>0的情况。 现在我们研究二元一次不定方程在什么条件下才有整数解。先考察下面几个方程有没有整数解:2x+y=10,4x+2y=20,4x+2y=25。对于方程2x+y=10,通过 观察可以知道,x=1,y=8是这方程的整数解,因此这个方 程有整数解。 对于方程4x+2y=20,方程两边同时除以2,得2x+y=10,因此这个方程也有整数解。 对于方程4x+2y=25,由于4x+2y=2(2x+y)为偶数,而25是奇数,因此这个方程没有整数解。 对于方程2x+y=10来说,x、y的系数互质,上面已经指出这个方程是有解的;对方程4x+2y=20来说,虽然x、y的系数不互质,但它们的最大公约数2能整除20,这是方程也有解;对方程4x+2y=25来说,x、y的系数不互质,且它们的最大公约数2不能整除常数项20,这时方程无解。这些特点虽然是从一些具体的不定方程归纳出来的,但是它对一般不定方程也是适用的。我们有下面定理: 定理1:二元一次不定方程ax+by=c(a,b,c∈N*)有整数解的充要条件是d│c(其中d=(a,b)。 证明:一是必要性。如果方程ax+by=c有整数解x=x0, y=y0,则ax0+by0=c,因为d│a,d│b,所以d│(ax0+by0),即d│c。 二是充分性。因为d│c,所以c=dq,由裴蜀恒等式可以知道,存在两个整数x 0,y 0, 使ax 0+by 0=d。在上式两边同时乘以q,得ax 0q+by 0q=dq即ax 0q+by 0q=c。 因此方程ax+by=c有整数解x=x 0q,y=y 0q。由上述定理可知,如果c不能被a、b的最大公约数整除,那么方程ax+by=c无解,且可在ax+by=c两端都约去d,使得(a,b)=1。所以通常二元一次不定方程的解是在a、b互质的情况下讨论的。 判断出一个二元一次方程有解以后,如何求出它的一切整数解呢?我们有下面的结论: 定理2:如果二元一次不定方程ax+by=c[(a,b) =1]有整数解x=x0, y=y0,则此方程一切解可以表示为 (t是整数) 证明:先证明 是方程ax+by=c的整数解。 因为x=x0,y=y0是方程ax+by=c的整数解,所以ax0 +by0=c,又因为a(x0-bt)+b(y0+at)=ax0+by0=c。 161··

一元一次方程教学案例

“一元一次方程”的教学片段: 师:如何解方程3x-3=-6(x-1)? 生1:老师,我还没有开始计算,就看出来了,x =1. 师:光看不行,要按要求算出来才算对。 生2:先两边同时除以3,再……(被老师打断了) 师:你的想法是对的,但以后要注意,刚学新知识时,记住一定要按课本的格式和要求来解,这样才能打好基础。 老师们感觉怎样?这位教师提问时,把学生新颖的回答中途打断,只满足单一的标准答案,一味强调机械套用解题的一把步骤和“通法”。殊不知,这两名学生的回答的确富有创造性,可惜,这种偶尔闪现的创造性思维的火花不仅没有被呵护,反而被教师“标准的格式”轻易否定而窒息扼杀了。其实,学生的回答即使是错的,教师也要耐心倾听,并给与激励性评析,这样既可以帮助学生纠正错误认识,又可以激励学生积极思考,激发学生的求异思维,从而培养学生思维能力。有的老师提问后留给学生思考时间过短,学生没有时间深入思考,结果问而不答或者答非所问;有的老师提问面过窄,多数学生成了陪衬,被冷落一旁,长期下去,被冷落的学生逐渐对提问失去兴趣,上课也不再听老师的,对学习失去动力。 关于课堂提问,我感觉要注意以下问题: (1)提问要关注全体学生。提问内容设计要由易到难,由浅入深,要富有层次性,不同的问题要提问不同层次的学生; (2)提问要有思考的价值,课堂提问要选择一个“最佳的智能高度”

进行设问,是大多数学生“跳一跳,够得着”; (3)提问的形式和方法要灵活多样。注意提问的角度转换,引导学生经历尝试、概括的过程,充分披露灵性,展示个性,让学生得到的是自己探究的成果,体验的是成功的快乐,使“冰冷的,无言的”数学知识通过“过程”变成“火热的思考”。

相关文档
最新文档