高考模拟试卷理科数学试题及详细答案解析02

合集下载

2022届全国普通高中高考考前模拟数学理(二)试题(解析版)

2022届全国普通高中高考考前模拟数学理(二)试题(解析版)

理 科 数 学(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}220A x x x =--<,{}24B x x =<,则A B =( ) A .AB .BC .()1,0-D .()0,22.已知复数12i z =-,则z 在复平面内对应的点关于虚轴对称的点是( ) A .(1,2)-B .(1,2)C .(2,1)-D .(1,2)--3.已知函数()()()2log 23,14,1x x f x f x x ⎧+≥⎪=⎨+<⎪⎩,则()()2022f f -=( ) A .2 B .3C .2log 9D .2log 114.已知()2sin cos 3παα++=,则sin 2α=( )A .79B .59C .49D .295.《九章算术》中有一道“良马、驽马行程问题”.若齐国到长安的路程为2000里,良马从长安出发往齐国去,驽马从齐国出发往长安去,同一天相向而行.良马第一天行155里,之后每天比前一天多行12里,驽马第一天行100里,之后每天比前一天少行2里,若良马和驽马第n 天相遇,则n 的最小整数值为( ) A .5B .6C .7D .86.盒子中装有编号为0,1,2,3,4,5,6的7个球,从中任意取出两个,则这两个球的编号之和为3的倍数的概率为( ) A .421B .521C .27D .137.已知命题1p :存在00x >,使得0044x x +≤,命题2p :对任意的x ∈R ,都有22tan 1a t n 2t a n x xx -=,命题3p :存在0x ∈R ,使得003sin 4cos 6x x +=,其中正确命题的个数是( ) A .0B .1C .2D .38.深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为00G GL L D=,其中L 表示每一轮优化时使用的学习率,0L 表示初始学习率,D 表示衰减系数,G 表示训练迭代轮数,0G 表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为05.,衰减速度为22,且当训练迭代轮数为22时,学习率衰减为045.,则学习率衰减到005.以下(不含0.05)所需的训练迭代轮数至少为( )(参考数据:lg20.3010≈,lg30.4771≈) A .11B .22C .227D .4819.设ABC △的内角A 、B 、C 所对的边分别为a 、b 、c ,若cos cos )c B b C =-,且ABC△的面积为1cos 2S c A =,则A =( )A .6πB .4πC .3πD .2π10.设椭圆2212516x y +=的左右焦点分别为1F ,2F ,点P 在椭圆上,且满足129PF PF ⋅=,则12PF PF ⋅的值是( ) A .14B .17C .20D .2311.如图(1),正方体1111ABCD A B C D -的棱长为1,若将正方体绕着体对角线1AC 旋转,则正方体所经过的区域构成如图(2)所示的几何体,该几何体是由上、下两个圆锥和单叶双曲面构成,则其中一个圆锥的体积为( )A .23πB .9πC 3πD .3π12.若不等式()()22ln a b a b m -+-对任意a ∈R ,()0,b ∈+∞恒成立,则实数m 的取值范围是( )A .1,2⎛⎤-∞ ⎥⎝⎦ B .2,2⎛-∞ ⎝⎦ C .(2-∞D .(],2-∞第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分.13.()52x y -的展开式中23x y 的系数是_________.(用数字作答)14.已知△ABC 中,1AB AC ==,2BC =O 是△ABC 的外心,则CO AB ⋅=________. 15.已知数列{}n a 满足121213332n n n n n a a a a ---++++=,*n ∈N ,则数列{}n a 的通项公式为___________.16.一个二元码是由0和1组成的数字串.()*123n x x x x n ∈N ,其中(1,2,,)k x k n =称为第k位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码7132x x x x 的码元满足如下校验方程组:126713573467100x x x x x x x x x x x x ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩,其中运算⊕定义为000⊕=,011⊕=,101⊕=,110⊕=.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101011,那么利用上述校验方程组可判定k 等于_________.三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)在ABC △中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知2sin tan 12cos C A C=-. (1)求sin sin A B;(2)若23c a =,且ABC △的面积为234,求边长a .18.(12分)在如图所示的几何体中,四边形ABCD 是矩形,DE ⊥平面ABCD ,//AF DE ,222AD DE AB AF ====,O 为AC 与BD 的交点,点H 为棱CE 的中点. (1)求证://OH 平面ADEF ; (2)求二面角C BH F --的余弦值.19.(12分)已知函数2()ln f x x x =-. (1)求函数()f x 在1x =处的切线方程;(2)若1()e 0x f x ax -+-≥,求实数a 的取值范围.20.(12分)已知椭圆()2222:10x x C a b a b +=>>的左、右焦点1F ,2F 恰好是双曲线2218y x -=的左右顶点,椭圆C 上的动点M 满足12122MF MF F F +=,过点2F 的直线l 交椭圆C 于A ,B 两点.(1)求椭圆C 的标准方程;(2)椭圆C 上是否存在点M 使得四边形OAMB (O 为原点)为平行四边形?若存在,求出所有点M 的坐标;若不存在,请说明理由.21.(12分)非物质文化遗产是一个国家和民族历史文化成就的重要标志,是优秀传统文化的重要组成部分.瑞昌剪纸于2008年列入第二批国家级非物质文化遗产名录.由于瑞昌地处南北交汇处,经过千年的南北文化相互浸润与渗透,瑞昌剪纸融入了南方的阴柔之丽、精巧秀美和北方的阳刚之美、古朴豪放.为了弘扬中国优秀的传统文化,某校将举办一次剪纸比赛,共进行5轮比赛,每轮比赛结果互不影响.比赛规则如下:每一轮比赛中,参赛者在30分钟内完成规定作品和创意作品各2幅,若有不少于3幅作品入选,将获得“巧手奖”.5轮比赛中,至少获得4次“巧手奖”的同学将进入决赛.某同学经历多次模拟训练,指导老师从训练作品中随机抽取规定作品和创意作品各5幅,其中有4幅规定作品和3幅创意作品符合入选标准.(1)从这10幅训练作品中,随机抽取规定作品和创意作品各2幅,试预测该同学在一轮比赛中获“巧手奖”的概率;(2)以上述两类作品各自入选的频率作为该同学参赛时每幅作品入选的概率.经指导老师对该同学进行赛前强化训练,规定作品和创意作品入选的概率共提高了110,以获得“巧手奖”的次数期望为参考,试预测该同学能否进入决赛?请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,曲线C1的参数方程为1cos1sinx ay aαα=-+⎧⎨=+⎩(α为参数,0a>),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为4cosρθ=.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设C1与C2的公共点分别为A,B,||AB=a的值.23.(10分)【选修4-5:不等式选讲】已知函数2()1|2|f x x x=-+-.(1)求不等式()3f x≥的解集;(2)若2()3f a a a≤+-,求满足条件的实数a的取值范围.理 科 数 学(二)答 案第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】A【解析】集合{}{}22012A x x x x x =--<=-<<,{}22B x x =-<<, 所以A B A =,故选A . 2.【答案】D【解析】z 在复平面内对应的点为()1,2-,关于虚轴对称的点是(1,2)--,故选D . 3.【答案】D【解析】由题意,()()()()22022245062log 2323f f f -=-⨯==+⨯=, 所以()()()()2220223log 233log 11f f f -==+⨯=,故选D . 4.【答案】B【解析】由已知可得3cos si 2n αα-=,等式两边平方得412sin cos 1sin 29ααα-=-=,解得5sin 29α=, 故选B . 5.【答案】D【解析】设驽马、良马第n 天分别行n a 、n b 里, 则数列{}n a 是以100为首项,以2-为公差的等差数列, 数列{}n b 是以155为首项,以12为公差的等差数列, 由题意可得()()()2121211001555250200022n n n n n n n n -⋅--+++=+≥,整理可得2504000n n +-≥,解得25n ≤--25n ≥, 而7258<<,故n 的最小整数值为8,故选D . 6.【答案】D【解析】从7个不同的球中取出2个球,则共有2721C =种情况,编号之和为3的倍数,即编号之和为3,6,9,则共有1112327C C C ++=种情况,故满足题意的概率71213P ==,故选D . 7.【答案】B【解析】当02x =时,显然1p 成立; 当4x π=时,可知2p 不成立;由辅助角得0003sin 4cos 5sin()x x x ϕ+=+,所以003sin 4cos x x +的最大值为5,所以3p 为假, 故选B . 8.【答案】D 【解析】由于00G G L L D =,所以220.5G L D ⨯=,依题意222290.5100.45D D ⇒==⨯,则229100.5G L ⎫⎪⎝⎭⨯⎛=, 由220.50.05190G L ⨯<⎛⎫=⎪⎝⎭,得2291101G⎛⎫⎪<⎝⎭, 221lg,1l 1099g lg 101022G G ⎛⎫ ⎭<⎝<-⎪, ()2lg9lg 021G ⋅-<-,()92222,lg10lg 9lg10lg G G ⋅>->-,222222480.35120.4812lg 37710.045G ==≈->-⨯,所以所需的训练迭代轮数至少为481轮,故选D . 9.【答案】C【解析】因为cos cos )c B b C =-,所以由正弦定理可得sin cos sin sin cos C B B B C =-,可得sin cos sin cos sin()sin sin C B B C B C A B +=+==,可得a =,可得b =因为ABC △的面积为111c cos bcsin sin 222S A A c A ===⨯,可得tan A = 又()0,A π∈,所以3A π=,故选C .10.【答案】D【解析】设12||,||m PF n PF ==,12F PF θ∠=, 由题意cos 9mn θ=,易知5,4,3a b c ====, 则12||26F F c ==,210m n a +==,于是由余弦定理可得()222212||cos 2362cos 182m n F F m n mn mn mnθθ+-=⇒+--==,即1002361823mn mn --=⇒=,故选D . 11.【答案】A【解析】因为正方体的棱长为1,所以外接圆的半径为2323⨯=,圆锥的母线长为正方体的边长,即1l =,所以圆锥的高为3h ===,所以圆锥的体积为221133V r h ππ==⨯=⎝⎭,故选A .12.【答案】B【解析】设T =T 的几何意义是直线y x =上的点(,)P a a 与曲线()ln f x x =上的点(,ln )Q b b 的距离,将直线y x =平移到与曲线()ln f x x =相切时,切点Q 到直线y x =的距离最小. 而()1f x x'=,令()0011f x x ==',则01x =,可得(1,0)Q ,此时,Q 到直线y x =2=,故min ||PQ =,所以m ≤,故选B .第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分. 13.【答案】80-【解析】()52x y -的展开式的通项公式为()()5515522r r r r r r r r T C x y C x y --+=-=-,令3r =,可得()3323235280C x y x y -=-,所以()52x y -的展开式中23x y 的系数是80-, 故答案为80-.14.【答案】12(或0.5)【解析】在ABC △中,1AB AC ==,BC =O 是ABC △的外心,又222AB AC BC +=,所以ABC △是等腰直角三角形,所以O 是三角形的斜边中点,所以111cos 451222CO AB BC AB ⋅=︒==,故答案为12. 15.【答案】12,12,2n n n a n -=⎧=⎨-≥⎩ 【解析】当1n =时,12a =, 当2n ≥时,121213332n n n n n a a a a ---++++=,①231121332n n n n a a a ----+++=.②①3-⨯②,得()122n n a n -=-≥.因为12a =不满足上式,所以12,12,2n n n a n -=⎧=⎨-≥⎩,故答案为12,12,2n n n a n -=⎧=⎨-≥⎩.16.【答案】6【解析】依题意,二元码在通信过程中仅在第k 位发生码元错误后变成了1101011, ①若1k =,则12345670,1,0,1,0,1,1x x x x x x x =======,从而由校验方程组,得13571x x x x ⊕⊕⊕=,故1k ≠;②若2k =,则12345671,0,0,1,0,1,1x x x x x x x =======,从而由校验方程组,得34671x x x x ⊕⊕⊕=,故2k ≠;③若3k =,则12345671,1,1,1,0,1,1x x x x x x x =======,从而由校验方程组,得13571x x x x ⊕⊕⊕=,故3k ≠;④若4k =,则12345671,1,0,0,0,1,1x x x x x x x =======,从而由校验方程组,得12670x x x x ⊕⊕⊕=,故4k ≠;⑤若5k =,则12345671,1,0,1,1,1,1x x x x x x x =======,从而由校验方程组,得12670x x x x ⊕⊕⊕=,故5k ≠;⑥若6k =,则12345671,1,0,1,0,0,1x x x x x x x =======,从而由校验方程组,得1267135734671,0,0x x x x x x x x x x x x ⊕⊕⊕=⊕⊕⊕=⊕⊕⊕=,故6k =符合; ⑦若7k =,则12345671,1,0,1,0,1,0x x x x x x x =======,从而由校验方程组,得13571x x x x ⊕⊕⊕=,故7k ≠, 综上,k 等于6,故答案为6.三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.【答案】(1(2)2.【解析】(1)解:由tanA =sin cos A A =,即sin cos cos A A C C A =, 所以)sin A C A +=,因为A C B π+=-sin B A =,所以sin sin AB=. (2)解:由(1)知sin B A =,可得a =,即b a =,c =,利用余弦定理可得2222223cos 22a a a abc C ab +-+-===所以sin C ==所以ABC △的面积为21sin 216ABC S ab C a ==△,又因为ABC S =△2=,解得24a =,即2a =.18.【答案】(1)证明见解析;(2).【解析】(1)证明:如图所示,连接AE , 因为四边形ABCD 是矩形,AC BD O =,所以O 是AC 的中点,因为H 是CE 的中点,所以//OH AE ,因为AE ⊂平面ADEF ,OH ⊂/平面ADEF ,所以//OH 平面ADEF .(2)解:由条件可知AB ,AD ,AF 两两垂直,以A 为坐标原点,AB ,AD ,AF 所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,如图所示:则(1,0,0)B ,(1,2,0)C ,1,2,12H ⎛⎫⎪⎝⎭,(0,0,1)F ,可得1,2,12BH ⎛⎫=- ⎪⎝⎭,(1,0,1)BF =-,(0,2,0)BC =,设平面BFH 的法向量为()111,,x y z =m ,所以111111202BH x y z BF x z ⎧⋅=-++=⎪⎨⎪⋅=-+=⎩m m ,取14x =,可得121,4y z =-=,所以(4,1,4)=-m ;设平面BCH 的法向量为()222,,x y z =n ,所以1111120220BH x y z BC y ⎧⋅=-++=⎪⎨⎪⋅==⎩n n , 取22x =,可得220,1y z ==,所以()2,0,1=n , 所以(4,1,4)(2,0,1)4165cos ,551611641⋅-⋅〈〉===⋅++⋅+m n m n m n , 由图可知二面角C BH F --为钝角,所以二面角C BH F --的余弦值为416555-.19.【答案】(1)0x y -=;(2)2a ≤.【解析】(1)解:函数定义域为()0,∞+,1()2f x x x'=-,则(1)1f '=,()11f =,所以切线方程为()()()111y f f x '-=-,即0x y -=. (2)解法一:记21()ln x F x x x e ax -=-+-,由()10F ≥,得1010a -+-≥,即2a ≤. 当2a ≤时,由0x >,21()ln e 2x F x x x x -≥-+-, 令21()ln e 2x G x x x x -=-+-, 则1111()2e 22e (1)x x G x x x x x --⎛⎫'=-+-=-+- ⎪⎝⎭, 当()0,1x ∈时,()0G x '<;当()1,x ∈+∞时,()0G x '>,所以()G x 在()0,1单调递减,在()1,+∞单调递增,()()10G x G ≥=,即()()0F x G x ≥≥, 综上可知,2a ≤. 解法二:由条件知,21ln e 0x x x ax --+-≥,在0x >上成立,所以21ln e x x x a x --+≤,在0x >上成立,记21ln e ()x x x F x x--+=,则()()121212212e ln e 1(1)e ln ()x x x x x x x x x x x F x x x ---⎛⎫-+--+ ⎪-+-+⎝⎭'==,当()0,1x ∈时,()0F x '<;当()1,x ∈+∞时,()0F x '>, 所以()F x 在()0,1单调递减,在()1,+∞单调递增,()min ()12F x F ==,则实数a 的取值范围为2a ≤.20.【答案】(1)22143x y +=;(2)存在()2,0M ,使得四边形OAMB 为平行四边形. 【解析】(1)因为2218y x -=的左右顶点为()1,0-和()1,0,所以1c =, 因为12122MF MF F F +=,所以24a c =,所以2a =, 因为222a c b -=,所以b =所以椭圆C 的标准方程为22143x y +=. (2)假设存在点M 使得四边形OAMB (O 为原点)为平行四边形, 设()00,M x y ,当直线l 的斜率不存在时,直线l 的方程为1x =,所以31,2A ⎛⎫ ⎪⎝⎭,31,2B ⎛⎫- ⎪⎝⎭,因为OAMB 为平行四边形,所以OA OB OM +=,所以()00331,1,,22x y ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,所以()()002,0,x y =,即()2,0M ,点M 在椭圆C 上,符合题意;当直线l 的斜率存在时,设直线l 的方程为()1y k x =-,()11,A x y ,()22,B x y ,()221143y k x x y ⎧=-⎪⎨+=⎪⎩,整理得()22223484120k x k x k +-+-=, 所以2122834k x x k+=+,212241234k x x k -=+,()121226234k y y k x x k -⎡⎤+=+-=⎣⎦+, 因为OAMB 为平行四边形,所以OA OB OM +=,所以()()()112200,,,x y x y x y +=,即()()121200,,x x y y x y ++=,所以22286,3434k k M k k ⎛⎫- ⎪++⎝⎭, 将点M 代入椭圆方程得2340k +=,方程无解, 故当直线l 的斜率存在时,不存在点M ,综上所述,存在()2,0M ,使得四边形OAMB 为平行四边形.21.【答案】(1)3350;(2)该同学没有希望进入决赛. 【解析】(1)由题可知,所有可能的情况有:①规定作品入选1幅,创意作品入选2幅的概率124312255325C C P C C ⋅==⋅, ②规定作品入选2幅,创意作品入选1幅的概率21143222255925C C C P C C ⋅⋅==⋅, ③规定作品入选2幅,创意作品入选2幅的概率224332255950C C P C C ⋅==⋅,故所求的概率3993325255050P =++=.(2)设强化训练后,规定作品入选的概率为1p ,创意作品入选的概率为2p , 则12431355102p p +=++=, 由已知可得,强化训练后该同学某一轮可获得“巧手奖”的概率为:()()12222122222112221222212211P C p p C p C p C p p C p C p =-⋅+⋅-+⋅ ()()()2121212221122333p p p p p p p p p p =-=+-,∵1232p p +=,且1243,55p p ≥≥,也即213433,2525p p -≥-≥,即2179,1010p p ≤≤, 故可得149510p ≤≤,237510p ≤≤,2121113392416p p p p p ⎛⎫⎛⎫⋅=-=--+ ⎪ ⎪⎝⎭⎝⎭,∴122714,5025p p ⎡⎤⋅∈⎢⎥⎣⎦,令12p p t =,则()221333324P t t t t ⎛⎫=-+=--+ ⎪⎝⎭在2714,5025⎡⎤⎢⎥⎣⎦上单调递减,∴()2272333505044P t P ⎛⎫⎛⎫≤=-⨯+< ⎪ ⎪⎝⎭⎝⎭. ∵该同学在5轮比赛中获得“巧手奖”的次数()5,X B P ~, ∴315()55444E X P =<⨯=<,故该同学没有希望进入决赛. 22.【答案】(1)222(1)(1)x y a ++-=(0a >),2240x y x +-=;(2)2a =或a =【解析】(1)∵曲线C 1的参数方程为1cos 1sin x a y a αα=-+⎧⎨=+⎩(α为参数,0a >),∴圆1C 的普通方程为222(1)(1)x y a ++-=,0a >, ∵曲线C 2的极坐标方程为4cos ρθ=,又cos sin x y ρθρθ=⎧⎨=⎩,∴圆2C 的直角坐标方程为2240x y x +-=. (2)由题可得1(1,1)C -,2(2,0)C ,直线12C C 的斜率113k =-,又12AB C C ⊥,则直线AB 的斜率3k =,设:3AB l y x b =+,点2C 到直线AB 的距离d =,因为||AB ==2d =,则1b =-或11b =-,直线AB 的方程为310x y --=或3110x y --=.由(1),令1C 与2C 的直角坐标方程相减,得23102a x y -+-=, 则24a =或224a =,2a =或a =23.【答案】(1){}02x x x ≤≥或;(2)[1,1][2,)-+∞.【解析】(1)解:当1x <-时,2()13f x x x =-+≥,解得1x <-; 当11x -≤≤时,2()33f x x x =--≥,解得10x -≤≤; 当12x <<时,2()13f x x x =-+≥,解得∅; 当2x ≥时,2()33f x x x =+-≥,解得2x ≥, 综上,不等式()3f x ≥的解集为{}02x x x ≤≥或.(2)解:222()1|2|123f x x x x x x x =-+-≥-+-=+-, 当且仅当2(1)(2)0x x --≥时取等号,因为2()3f a a a ≤+-,则2()3f a a a =+-,且2(1)(2)0a a --≥, 解得2a ≥或11x -≤≤,即实数a 的取值范围为[1,1][2,)-+∞.。

2023年高考数学模拟考试卷及答案解析(理科)

2023年高考数学模拟考试卷及答案解析(理科)

2023年高考数学模拟考试卷及答案解析(理科)第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知复数z 满足()()()1i 12i 1z z +=+-,则复数z 的实部与虚部的和为()A .1B .1-C .15D .15-【答案】D【分析】根据复数的运算法则求出复数43i 55z -+=,则得到答案.【详解】(1i)(2i 1)(2i 1)z z +=-+-(2i)2i 1z -=-,2i 1(2i 1)(2i)43i 43i 2i 5555z --+-+====-+-,故实部与虚部的和为431555-+=-,故选:D.2.已知()f x =A ,集合{12}B x ax =∈<<R ∣,若B A ⊆,则实数a 的取值范围是()A .[2,1]-B .[1,1]-C .(,2][1,)-∞-+∞ D .(,1][1,)∞∞--⋃+【答案】B【分析】先根据二次不等式求出集合A ,再分类讨论集合B ,根据集合间包含关系即可求解.【详解】()f x =A ,所以210x -≥,所以1x ≥或1x ≤-,①当0a =时,{102}B x x =∈<<=∅R∣,满足B A ⊆,所以0a =符合题意;②当0a >时,12{}B x x a a=∈<<R∣,所以若B A ⊆,则有11a≥或21a≤-,所以01a <≤或2a ≤-(舍)③当0<a 时,21{}B x x aa=∈<<R ∣,所以若B A ⊆,则有11a≤-或21a≥(舍),10a -≤<,综上所述,[1,1]a ∈-,故选:B.3.在研究急刹车的停车距离问题时,通常假定停车距离等于反应距离(1d ,单位:m )与制动距离(2d ,单位:m )之和.如图为某实验所测得的数据,其中“KPH”表示刹车时汽车的初速度v (单位:km/h ).根据实验数据可以推测,下面四组函数中最适合描述1d ,2d 与v 的函数关系的是()A .1d v α=,2d =B .1d v α=,22d v β=C .1d =,2d v β=D .1d =,22d vβ=【答案】B【分析】设()()1d v f v =,()()2d v g v =,根据图象得到函数图象上的点,作出散点图,即可得到答案.【详解】设()()1d v f v =,()()2d v g v =.由图象知,()()1d v f v =过点()40,8.5,()50,10.3,()60,12.5,()70,14.6,()80,16.7,()90,18.7,()100,20.8,()110,22.9,()120,25,()130,27.1,()140,29.2,()150,31.3,()160,33.3,()170,35.4,()180,37.5.作出散点图,如图1.由图1可得,1d 与v 呈现线性关系,可选择用1d v α=.()()2d v g v =过点()40,8.5,()50,16.2,()60,23.2,()70,31.4,()80,36,()90,52,()100,64.6,()110,78.1,()120,93,()()140,123,()150,144.1,()160,164.3,()170,183.6,()180,208.作出散点图,如图2.由图2可得,2d 与v 呈现非线性关系,比较之下,可选择用22d v β=.故选:B.4.已知函数()ln ,0,e ,0,x xx f x x x x ⎧>⎪=⎨⎪≤⎩则函数()1y f x =-的图象大致是()A .B.C .D .【答案】B【分析】分段求出函数()1y f x =-的解析式,利用导数判断其单调性,根据单调性可得答案.【详解】当10x ->,即1x <时,ln(1)(1)1x y f x x-=-=-,221(1)ln(1)1ln(1)1(1)(1)x x x x y x x -⋅-+--+--'==--,令0'>y ,得1e x <-,令0'<y ,得1e 1x -<<,所以函数()1y f x =-在(,1e)-∞-上为增函数,在(1e,1)-上为减函数,由此得A 和C 和D 不正确;当10x -≤,即1x ≥时,1(1)(1)e x y f x x -=-=-,()11(1)e (1)e x x y x x --'''=-+-11e (1)e x x x --=---=1e (2)xx ---,令0'>y ,得2x >,令0'<y ,得12x ≤<,所以函数()1y f x =-在(2,)+∞上为增函数,在[1,2)上为减函数,由此得B 正确;故选:B5.若函数()f x 存在一个极大值()1f x 与一个极小值()2f x 满足()()21f x f x >,则()f x 至少有()个单调区间.A .3B .4C .5D .6【答案】B【分析】根据单调性与极值之间的关系分析判断.【详解】若函数()f x 存在一个极大值()1f x 与一个极小值()2f x ,则()f x 至少有3个单调区间,若()f x 有3个单调区间,不妨设()f x 的定义域为(),a b ,若12a x x b <<<,其中a 可以为-∞,b 可以为+∞,则()f x 在()()12,,,a x x b 上单调递增,在()12,x x 上单调递减,(若()f x 定义域为(),a b 内不连续不影响总体单调性),故()()21f x f x <,不合题意,若21a x x b <<<,则()f x 在()()21,,,a x x b 上单调递减,在()21,x x 上单调递增,有()()21f x f x <,不合题意;若()f x 有4个单调区间,例如()1f x x x =+的定义域为{}|0x x ≠,则()221x f x x-'=,令()0f x ¢>,解得1x >或1x <-,则()f x 在()(),1,1,-∞-+∞上单调递增,在()()1,0,0,1-上单调递减,故函数()f x 存在一个极大值()12f -=-与一个极小值()12f =,且()()11f f -<,满足题意,此时()f x 有4个单调区间,综上所述:()f x 至少有4个单调区间.故选:B.6.已知实数x 、y 满足10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,则918222y x z x y --=+--的最小值为()A .132B .372C .12D .2【答案】A【分析】由约束条件作出可行域,求出22y t x -=-的范围,再由91821922y x z t x y t --=+=+--结合函数的单调性求得答案.【详解】解:令22y t x -=-,则91821922y x z t x y t --=+=+--,由10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩作出可行域如图,则()()()2,12,1,0,1A B C ---,设点()(),2,2P x y D ,,其中P 在可行域内,2=2PD y t k x -∴-=,由图可知当P 在C 点时,直线PD 斜率最小,min 121=022CD t k -==-∴当P 在B 点时,直线PD 斜率不存在,∴1,2t ⎡⎫∈+∞⎪⎢⎣⎭∵19z t t =+在1,2t ⎡⎫∈+∞⎪⎢⎣⎭上为增函数,∴当12t =时min 132z =.故选:A .7.在正方体1111ABCD A B C D -中,点P 在正方形11BCC B 内,且不在棱上,则()A .在正方形11DCC D 内一定存在一点Q ,使得PQ AC ∥B .在正方形11DCCD 内一定存在一点Q ,使得PQ AC⊥C .在正方形11DCC D 内一定存在一点Q ,使得平面1PQC ∥平面ABC D .在正方形11DCC D 内一定存在一点Q ,使得AC ⊥平面1PQC 【答案】B【分析】对于A ,通过作辅助线,利用平行的性质,推出矛盾,可判断A;对于B ,找到特殊点,说明在正方形11DCC D 内一定存在一点Q ,使得PQ AC ⊥,判断B;利用面面平行的性质推出矛盾,判断C;利用线面垂直的性质定理推出矛盾,判断D.【详解】A 、假设在正方形11DCC D 内一定存在一点Q ,使得PQ AC ∥,作,PE BC QF CD ⊥⊥,垂足分别为,E F ,连接,E F ,则PEFQ 为矩形,且EF 与AC 相交,故PQ EF ∥,由于PQ AC ∥,则AC EF ∥,这与,AC EF 相交矛盾,故A 错误;B 、假设P 为正方形11BCC B 的中心,Q 为正方形11DCC D 的中心,作,PH BC QG CD ⊥⊥,垂足分别为,H G ,连接,H G ,则PHGQ 为矩形,则PQ HG ∥,且,H G 为,BC CD 的中点,连接,GH BD ,则GH BD ∥,因为AC BD ⊥,所以GH AC ⊥,即PQ AC ⊥,故B 正确;C 、在正方形11DCC D 内一定存在一点Q ,使得平面1PQC ∥平面ABC ,由于平面ABC ⋂平面11DCC D CD =,平面1PQC 平面111DCC D C Q =,故1CD C Q ∥,而11C D CD ∥,则Q 在11C D 上,这与题意矛盾,C 错误;D 、假设在正方形11DCC D 内一定存在一点Q ,使得AC ⊥平面1PQC ,1C Q ⊂平面1PQC ,则1AC C Q ⊥,又1CC ⊥平面,ABCD AC Ì平面ABCD ,故1C C AC ⊥,而11111,C C C Q C C C C Q =⊂ ,平面11DCC D ,故AC ⊥平面11DCC D ,由于AD ⊥平面11DCC D ,故,C D 重合,与题意不符,故D 错误,故选∶B8.对于平面上点P 和曲线C ,任取C 上一点Q ,若线段PQ 的长度存在最小值,则称该值为点P 到曲线C 的距离,记作(,)d P C .若曲线C 是边长为6的等边三角形,则点集{(,)1}D Pd P C =≤∣所表示的图形的面积为()A .36B .36-C .362π-D .36π-【答案】D【分析】根据题意画出到曲线C 的距离为1的边界,即可得到点集的区域,即可求解.【详解】根据题意作出点集(){}|1D P d P C =≤,的区域如图阴影所示,其中四边形ADEC ,ABKM ,BCFG 为矩形且边长分别为1,6,圆都是以1为半径的,过点I 作IN AC ⊥于N ,连接A I ,则1NI =,30NAI ∠= ,所以AN =则HIJ 是以6-为边长的等边三角形,矩形ABKM 的面积1166S =⨯=,2π3DAM ∠=,扇形ADM 的面积为212ππ1233S =⨯⨯=,21sin 602ABC S AB =⨯⋅ 21622=⨯⨯,21sin 602HIJ S HI =⨯⋅ (21622=⨯-18=-,所以()1233ABC HIJ S S S S S =++- ()π363183=⨯+⨯+--36π=-.故选:D.9.一个宿舍的6名同学被邀请参加一个节目,要求必须有人去,但去几个人自行决定.其中甲和乙两名同学要么都去,要么都不去,则该宿舍同学的去法共有()A .15种B .28种C .31种D .63种【答案】C【分析】满足条件的去法可分为两类,第一类甲乙都去,第二类甲乙都不去,再进一步通过分类加法原理求出各类的方法数,将两类方法数相加即可.【详解】若甲和乙两名同学都去,则去的人数可能是2人,3人,4人,5人,6人,所以满足条件的去法数为0123444444C +C C +C C 16++=种;若甲和乙两名同学都不去,则去的人数可能是1人,2人,3人,4人,则满足条件去法有12344444C C +C C 15++=种;故该宿舍同学的去法共有16+15=31种.故选:C.10.已知椭圆C 的焦点为12(0,1),(0,1)F F -,过2F 的直线与C 交于P ,Q 两点,若22143,||5PF F Q PQ QF ==,则椭圆C 的标准方程为()A .2255123x y +=B .2212y x +=C .22123x y +=D .22145x y +=【答案】B【分析】由已知可设22,3F Q m PF m ==可求出所有线段用m 表示,在12PF F △中由余弦定理得1290F PF ︒∠=从而可求.【详解】如图,由已知可设22,3F Q m PF m ==,又因为114||55PQ QF QF m =∴=根据椭圆的定义212,62,3QF QF a m a a m +=∴=∴=,12223PF a PF a a a m=-=-==在12PF F △中由余弦定理得222222111116925cos 02243PQ PF QF m m m F PQ PQ PF m m+-+-∠===⋅⋅⋅⋅,所以190F PQ ︒∠=22222211229943213PF PF F F m m m a m b ∴+=⇒+=∴===⇒=故椭圆方程为:2212y x +=故选:B11.已知函数()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,对于任意的)3,1a ⎡∈-⎣,方程()()0f x a x m =<≤恰有一个实数根,则m 的取值范围为()A .7π3π,124⎛⎤⎥⎝⎦B .π5π,26⎡⎫⎪⎢⎣⎭C .π5π,26⎛⎤⎥⎝⎦D .7π3π,124⎡⎫⎪⎢⎣⎭【答案】D【分析】将方程的根的问题转化为函数()y f x =的图象与直线y a =有且仅有1个交点,画出图象,数形结合得到不等式组,求出m 的取值范围.【详解】方程()()0f x a x m =<≤恰有一个实数根,等价于函数()y f x =的图象与直线y a =有且仅有1个交点.当0x m <≤得:πππ22666x m ⎛⎤+∈+ ⎥⎝⎦,结合函数()y f x =的图象可知,π4π5π2633m ⎡⎫+∈⎪⎢⎣⎭,解得:7π3π,124m ⎡⎫∈⎪⎢⎣⎭.故选:D12.已知0.40.7e ,eln1.4,0.98a b c ===,则,,a b c 的大小关系是()A .a c b >>B .b a c >>C .b c a >>D .c a b>>【答案】A【分析】构造函数()1=ln ef x x x -,0x >,利用导函数得到其单调性,从而得到ln 1ex x ≤,当且仅当e x =时等号成立,变形后得到22ln2ex x ≤,当x =0.7x =后得到b c <;再构造()1=e x g x x --,利用导函数得到其单调性,得到1e x x -≥,当且仅当1x =时,等号成立,变形后得到21e 2x x ->,当0.5x =时,等号成立,令0.7x =得到a c >,从而得到a cb >>.【详解】构造()1=ln ef x x x -,0x >,则()11=ef x x '-,当0e x <<时,()0f x ¢>,当e x >时,()0f x '<,所以()1=ln ef x x x -在0e x <<上单调递增,在e x >上单调递减,所以()()e =lne 10f x f ≤-=,故ln 1ex x ≤,当且仅当e x =时等号成立,因为20x >,所以222222(2)2ln 2ln ln ln2e e 2e 2e ex x x x x x x x x ≤⇒≤⇒≤⇒≤=,当x =当0.7x =时,220.98ln1.4(0.7)eln1.40.98ee<⨯=⇒<,所以b c <构造()1=e x g x x --,则()1e 1=x g x -'-,当1x >时,()0g x '>,当1x <时,()0g x '<,所以()1=ex g x x --在1x >单调递增,在1x <上单调递减,故()()10g x g ≥=,所以1e x x -≥,当且仅当1x =时,等号成立,故121e e 2x x x x --≥⇒≥,当且仅当0.5x =时,等号成立,令0.7x =,则0.40.4e 1.40.7e 0.98>⇒>,所以a c >,综上:a c b >>,故选:A【点睛】构造函数比较函数值的大小,关键在于观察所给的式子特点,选择合适的函数进行求解.第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.13.设i ,j 是x ,y 轴正方向上的单位向量,23a b i j -=- ,3119a b i j +=+,则向量a,b的夹角为______.【答案】π4【分析】分别求出a ,b 的表达式,利用定义求出a ,b 的夹角即可.【详解】23a b i j -=-①,3119a b i j +=+②,3⨯+①②得714,2a i a i =∴=,2-⨯+②①得72121,33b i j b i j -=--∴=+ ,()22·33666a b i i j i i j ⋅=+=+⋅=2,a b ==cos ,2a b a b a b ⋅∴==⋅π,4a b ∴=14.已知双曲线2222:1(0,0)x y C a b a b -=>>的焦距为2c ,过C 的右焦点F 的直线l 与C 的两条渐近线分别交于,A B 两点,O 为坐标原点,若cos b c AFO =∠且3FB FA =,则C 的渐近线方程为__________.【答案】y =【分析】根据题设条件确定AB OA ⊥,进而可确定OA a FA b ==,,从而在直角△AOB 中,()2tan tan π2bAOB aα∠=-=,结合正切的二倍角公式求解.【详解】因为3FB FA =,画出示意图如图,设AOF α∠=,因为cos b c AFO =∠,则cos b AFO c∠=,所以222sin a AFO c∠=,则sin a AFO c ∠=,所以tan aAFO b ∠=.又tan b a α=,所以π2AFO α∠+=,所以AB OA ⊥,根据sin ,cos OA FA a bAFO AFO c c c c ∠==∠==,所以OA a FA b ==,.又因为3FB FA,所以2AB b =.在直角△AOB 中,()2tan tan π2bAOB aα∠=-=,所以222222tan tan21tan 1bb a b a aααα=-==--,化简得:222b a =,所以b a =则渐近线方程为:y =,故答案为:y =.15.已知数列{}n a 满足首项11a =,123n n na n a a n ++⎧=⎨⎩,为奇数,为偶数,则数列{}n a 的前2n 项的和为_____________.【答案】4344n n ⨯--【分析】当n 为奇数时,由递推关系得()21332n n n a a a ++==+,构造{}3n a +为等比数列,可求出通项,结合12n n a a +=+即可分组求和.【详解】当n 为奇数时,()21332n n n a a a ++==+,即()2333n n a a ++=+,此时{}3n a +为以134a +=为首项,公比为3的等比数列,故()123212413333343333n nn n n n a a a a a a a a ----++++=创创+=+++,即12433n n a -=´-.()()()2123421211332121222n n n n n S a a a a a a a a a a a a ---=++++++=+++++++++ ()()01113212224334334332n n a a a n n--=++++=´-+´-++´-+ ()03132432434413nnn n n 骣-琪=´-+=´--琪琪-桫.故答案为:4344n n ⨯--【点睛】本题解题关键是根据题意找到相邻奇数项或偶数项之间的递推关系,从而求出当n 为奇数或n 为偶数时的通项公式,再通过相邻两项的关系求出前2n 项的和.16.在三角形ABC 中,2BC =,2AB AC =,D 为BC 的中点,则tan ADC ∠的最大值为___________.【答案】43##113【分析】设出AC x =,则2AB x =,由πADB ADC ∠+∠=得到cos cos 0ADB ADC ∠+∠=,结合余弦定理得到22512AD x =-,从而得到cos ADC ∠关系得到223x <<,换元后得到cos ADC ∠,由基本不等式求出最小值,结合()cos f x x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,()tan g x x =在π0,2⎛⎫ ⎪⎝⎭单调递增,可求出tan ADC ∠的最大值.【详解】设AC x =,则2AB x =,因为D 为BC 的中点,2BC =,所以1BD DC ==,由三角形三边关系可知:22x x +>且22x x -<,解得:223x <<,在三角形ABD 中,由余弦定理得:()2212cos 2AD x ADB AD+-∠=,在三角形ACD 中,由余弦定理得:221cos 2AD x ADC AD+-∠=,因为πADB ADC ∠+∠=,所以()2222121cos cos 022AD x AD x ADB ADC ADAD+-+-∠+∠=+=,解得:22512AD x =-,由余弦定理得:225112cos x x ADC -+-∠=223x <<,令2511,929x t ⎛⎫-=∈ ⎪⎝⎭,则3cos 5ADC ∠=,当且仅当1t t=,即1t =时,等号成立,此时25112x -=,解得:x =因为3cos 05ADC ∠≥>,故π0,2ADC ⎛⎫∠∈ ⎪⎝⎭,由于()cos f x x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,()tan g x x =在π0,2⎛⎫ ⎪⎝⎭单调递增,故当cos ADC ∠取得最小值时,tan ADC ∠取得最大值,此时4sin 5ADC ∠=,4tan 3ADC ∠=.故答案为:43.【点睛】三角形中常用结论,()sin sin A B C +=,()cos cos A B C +=-,()tan tan A B C +=-,本题中突破口为由πADB ADC ∠+∠=得到cos cos 0ADB ADC ∠+∠=,结合余弦定理得到22512AD x =-,进而利用基本不等式求最值.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)数列{}n a 满足35a =,点()1,n n P a a +在直线20x y -+=上,设数列{}n b 的前n 项和为n S ,且满足233n n S b =-,*n ∈N .(1)求数列{}n a 和{}n b 的通项公式;(2)是否存在*k ∈N ,使得对任意的*n ∈N ,都有n kn ka ab b ≤.【答案】(1)21n a n =-;3nn b =(2)存在1k =,2,使得对任意的*n ∈N ,都有n k n ka ab b ≤【分析】(1)根据等差数列的定义可得{}n a 为等差数列,由,n n S b 的关系可得{}n b 为等比数列,进而可求其通项,(2)根据数列的单调性求解最值即可求解.【详解】(1)点()1,n n P a a +在直线20x y -+=上,所以12n n a a +-=又35a =,∴11a =,则数列{}n a 是首项为1,公差为2的等差数列.∴21n a n =-又当1n =时,11233S b =-得13b =,当2n ≥,由233n n S b =-①,得11233n n S b --=-②由①-②整理得:13n n b b -=,∵130b =≠,∴10n b -≠∴13nn b b -=,∴数列{}n b 是首项为3,公比为3的等比数列,故3nn b =(2)设213nn n na n cb -==,由111121212163443333+++++-+-+--=-==n n n n n n n n n n nc c当1n =时,12c c =,当2n ≥时,1n n c c +<,所以当1n =或2时,n c 取得最大值,即nna b 取得最大所以存在1k =,2,使得对任意的*n ∈N ,都有n kn ka ab b≤18.(12分)如图,将等边ABC 绕BC 边旋转90︒到等边DBC △的位置,连接AD.(1)求证:AD BC ⊥;(2)若M 是棱DA 上一点,且两三角形的面积满足2BMD BMA S S = ,求直线BM 与平面ACD 所成角的正弦值.【答案】(1)证明见解析(2)10【分析】(1)取BC 中点为O ,证明BC ⊥平面AOD 即可;(2)建立空间直角坐标系,利用向量法求得直线BM 与平面ACD 所成角的正弦值.【详解】(1)设O 是BC 的中点,连接AO ,DO ,由题知:AB AC =,DB DC =,则BC AO ⊥,BC DO ⊥,又AO DO O ⋂=,,AO DO ⊂平面AOD ,所以BC ⊥平面AOD ,又AD ⊂平面AOD ,所以AD BC ⊥.(2)由题知,OA 、BC 、OD 两两垂直,以O 为原点,,,OA OB OD方向分别为x ,y ,z 轴的正方向建立空间直角坐标系,如图所示,因为2BMD BMA S S = ,所以13AM AD =,设2AB a =,则OA OD ==,则),0,0A,()0,,0B a ,()0,,0C a -,()D,33M ⎛⎫⎪ ⎪⎝⎭.所以),,0CA a =,),0,DA =,,BM a ⎫=-⎪⎪⎝⎭,设平面ACD 的法向量为(),,n x y z =r,则00n CA ay n DA ⎧⋅=+=⎪⎨⋅=-=⎪⎩ ,取1x =,可得()1,n = ,设直线BM 与平面ACD 所成的角为θ,则sin cos ,BM n θ=BM n BM n⋅==⋅所以直线BM 与平面ACD.19.(12分)甲、乙两位选手参加一项射击比赛,每位选手各有n 个射击目标,他们击中每一个目标的概率均为12,且相互独立.甲选手依次对所有n 个目标进行射击,且每击中一个目标可获得1颗星;乙选手按规定的顺序依次对目标进行射击,击中一个目标后可继续对下一个目标进行射击直至有目标未被击中时为止,且每击中一个目标可获得2颗星.(1)当5n =时,分别求甲、乙两位选手各击中3个目标的概率;(2)若累计获得星数多的选手获胜,讨论甲、乙两位选手谁更可能获胜.【答案】(1)516,116;(2)当1,2,3n =时,乙更可能获胜;当4n ≥时,甲更可能获胜.【分析】(1)根据独立重复试验可计算甲击中3个目标的概率,由相互独立事件的概率计算公式可得乙击中3个目标的概率;(2)设X 为甲累计获得的星数,Y 为乙累计获得的星数,分别计算期望,分别讨论1,2,3n =及4n ≥的(),()E X E Y ,得出结论.【详解】(1)当5n =时,甲击中3个目标的概率为33215115C ()()2216P =⨯⨯=,乙击中3个目标,则前3个目标被击中,第4个目标未被击中,其概率为32111()2216P =⨯=.(2)设X 为甲累计获得的星数,则0,1,2,,X n = ,设Y 为乙累计获得的星数,则0,2,4,,2Y n = ,设击中了m 个目标,其中0m n ≤≤,则甲获得星数为m 的概率为C 11()C ()()222m m m n m nnn P X m -===,所以甲累计获得星数为0120C 1C 2C C ()2nn n n nnn E X ⋅+⋅+⋅++⋅= ;记01010C 1C C C (1)C 0C n n n n n n n n n S n n n =⋅+⋅++⋅=⋅+-⋅++⋅ ,所以0112(C C C )2,2n n n n n n n n S n n S n -=+++=⋅=⋅ ,所以12()22n n n nE X -⋅==,乙获得星数为2(01)m m n ≤≤-的概率为1111(2)()222m m P Y m +==⋅=,当m n =时,1(2)2nP Y m ==,所以乙累计获得星数为230242(1)2()22222n n n n E Y -=+++++ ,记230242(1)2222n n n T -=++++ ,则121242(1)20222n n n T --=++++ ,所以12111112(1)122()222222n n n n n n n n T T T ---+=-=+++-=- ,11()22n E Y -=-,当1n =时,1()()12E X E Y =<=,当2n =时,3()1()2E X E Y =<=,当3n =时,37()()24E X E Y =<=,当4n ≥时,()2()E X E Y ≥>所以当1,2,3n =时,乙更可能获胜;当4n ≥时,甲更可能获胜.20.(12分)已知抛物线2y =的焦点与椭圆()2222:10x y a b a bΩ+=>>的右焦点重合,直线1:1x y l a b+=与圆222x y +=相切.(1)求椭圆Ω的方程;(2)设不过原点的直线2l 与椭圆Ω相交于不同的两点A ,B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆Ω相交于点P ,且O 点在以AB 为直径的圆上,记AOM ,BOP △的面积分别为1S ,2S ,求12S S 的取值范围.【答案】(1)22163x y +=(2)⎣⎦【分析】(1)根据条件建立关于,a b 的方程组,即可求解椭圆方程;(2)根据数形结合可知12AOM BOP OMS S S S OP==△△,分直线斜率不存在,或斜率为0,以及斜率不为0,三种情况讨论12S S 的值或范围.【详解】(1)∵抛物线2y =的焦点为),∴c =从而223a b =+①,∵直线1:1x yl a b+=与圆222x y +==②,由①②得:ab ,∴椭圆Ω的方程为:22163x y +=(2)∵M 为线段AB 的中点,∴12AOM BOP OMS S S S OP==△△,(1)当直线2l 的斜率不存在时,2l x ⊥轴,由题意知OA OB ⊥,结合椭圆的对称性,不妨设OA 所在直线的方程为y x =,得22Ax =,从而22Mx =,26P x =,123M P OM x S S OP x ∴===(2)当直线2l 的斜率存在时,设直线()2:0l y kx m m =+≠,()11,A x y ,()22,B x y 由22163y kx mx y =+⎧⎪⎨+=⎪⎩可得:()222214260k x kmx m +++-=,由()()222216421260k m k m ∆=-+->可得:22630k m -+>(*)∴122421km x x k +=-+,21222621m x x k -=+,∵O 点在以AB 为直径的圆上,∴0OA OB ⋅=,即12120x x y y +=,∴()()221212121210x x y y k x x km x x m +=++++=,即()22222264102121m km k km m k k -⎛⎫+⨯+-+= ⎪++⎝⎭,2222,m k ⇒=+(**)满足(*)式.∴线段AB 的中点222,2121kmm M k k ⎛⎫- ⎪++⎝⎭,若0k =时,由(**)可得:22m =,此时123OM S S OP ∴===,若0k ≠时,射线OM 所在的直线方程为12y x k=-,由2212163y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩可得:2221221P k x k =+,12M POM x S S OP x ∴===随着2k 的增大而减小,∵0k ≠,∴20k >,∴1233S S ⎛∈ ⎝⎭综上,1233S S ∈⎣⎦【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21.(12分)已知函数()e xf x ax a=--(1)当1a =时,证明:()0f x ≥.(2)若()f x 有两个零点()1212,x x x x <且22112,e 1x x +⎡⎤∈⎣⎦+,求12x x +的取值范围.【答案】(1)见解析;(2)243ln 22,e 1⎡⎤-⎢⎥-⎣⎦【分析】(1)()e 1x f x x =--,求导得min ()(0)0f x f ==,则()0f x ;(2)由题得11e x ax a =+,22e xax a =+,则21211e1x x x x -+=+,()1212e e 2x x a x x +=++,()2121e e x x a x x -=-,则()()212121121e 2e1x x x x x x x x ---+++=-,从而设21[ln 2,2]t x x =-∈,得到()121e 2e 1t tt x x +++=-,利用导数研究函数()1e ()e 1ttt g t +=-的值域,则得到12x x+的范围.【详解】(1)证明:当1a =时,()e 1x f x x =--,则()e 1x f x '=-.当(,0)x ∈-∞时,()0f x '<,当,()0x ∈+∞时,()0f x '>,所以()f x 在(,0)-∞上单调递减,在()0,∞+上单调递增,则min ()(0)0f x f ==,故()0f x .(2)由题意得1212e e 0x xax a ax a --=--=,则11e x ax a =+,22e xax a =+,从而21211e 1x xx x -+=+,()1212e e 2x x a x x +=++,()2121e e x x a x x -=-,故()()()()12212121212112e e 1e 2e ee1xx x x x x x x x x x x x x ---+-+++==--,因为22112,e 1x x +⎡⎤∈⎣⎦+,所以212e 2,e x x -⎡⎤∈⎣⎦,即[]21ln 2,2x x -∈,设21[ln 2,2]t x x =-∈,则()121e 2e 1t t t x x +++=-.设()1e ()e 1t tt g t +=-,则()22e 2e 1()e1t t tt g t --'=-.设2()e 2e 1t t h t t =--,则()()2e e 1t th t t '=--,由(1)可知()()2e e 10t th t t '=--在R 上恒成立,从而2()e 2e 1t t h t t =--在[ln 2,2]上单调递增,故min ()(ln 2)44ln 210h t h ==-->,即()0g t '>在[]ln 2,2上恒成立,所以()g t 在[ln 2,2]上单调递增,所以()212221e 23ln 2,e 1x x ⎡⎤+⎢⎥++∈-⎢⎥⎣⎦,即12243ln 22e 1,x x ⎡⎤+∈-⎢⎣-⎥⎦,即12x x +的取值范围为243ln 22,e 1⎡⎤-⎢⎥-⎣⎦.【点睛】关键点睛:本题的关键是通过变形用含21x x -的式子表示出122x x ++,即()()212121121e 2e1x x x x x x x x ---+++=-,然后整体换元设21[ln 2,2]t x x =-∈,则得到()121e 2e 1t t t x x +++=-,最后只需求出函数()1e ()e 1tt t g t +=-在[ln 2,2]t ∈上值域即可.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l的参数方程为cos sin x t y t αα⎧=+⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 的极坐标方程为2853cos 2ρθ=-,直线l 与曲线C 相交于A ,B两点,)M.(1)求曲线C 的直角坐标方程;(2)若2AM MB =,求直线l 的斜率.【答案】(1)2214x y +=(2)2±【分析】(1)根据极坐标与直角坐标直角的转化222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,运算求解;(2)联立直线l 的参数方程和曲线C 的直角坐标方程,根据参数的几何意义结合韦达定理运算求解.【详解】(1)∵()()222222288453cos 2cos 4sin 5cos sin 3cos sin ρθθθθθθθ===-++--,则2222cos 4sin 4ρθρθ+=,∴2244x y +=,即2214x y +=,故曲线C 的直角坐标方程为2214x y +=.(2)将直线l的参数方程为cos sin x t y t αα⎧=+⎪⎨=⎪⎩(t 为参数)代入曲线C 的直角坐标方程为2214x y +=,得)()22cos sin 14t t αα+=,整理得()()222cos 4sin 10t t ααα++-=,设A ,B 两点所对应的参数为12,t t ,则1212221cos 4sin t t t t αα+==-+,∵2AM MB =,则122t t =-,联立1212222cos 4sin t t t t ααα=-⎧⎪⎨+=-⎪+⎩,解得122222cos 4sin cos 4sin t t αααααα⎧=-⎪⎪+⎨⎪=⎪+⎩,将12,t t 代入12221cos 4sin t t αα=-+得2222221cos 4sin cos 4sin cos 4sin αααααααα⎛⎫⎛⎫-=- ⎪⎪ ⎪⎪+++⎝⎭⎝⎭,解得2223tan 4k α==,故直线l的斜率为2±.23.[选修4-5:不等式选讲](10分)设a 、b 、c 为正数,且b c c a a ba b c+++≤≤.证明:(1)a b c ≥≥;(2)()()()2324a b b c c a abc +++≥.【答案】(1)证明见解析(2)证明见解析【分析】(1)由不等式的基本性质可得出111abc≤≤,利用反比例函数在()0,∞+上的单调性可证得结论成立;(2)利用基本不等式可得出a b +≥,2b c +≥3c a +≥等式的基本性质可证得结论成立.【详解】(1)证明:因为a 、b 、c 为正数,由b c c a a ba b c +++≤≤可得a b c a b c a b ca b c++++++≤≤,所以,111a b c≤≤,因为函数1y x =在()0,∞+上为增函数,故a b c ≥≥.(2)证明:由基本不等式可得a b +≥,2b c b b c +=++≥()322c a c a a a +=++≥+≥=由不等式的基本性质可得()()()2171131573362244412232424a b b c c a a b b c a c a b c+++≥=11764122424ab a b c abc ⎛⎫=≥ ⎪⎝⎭,当且仅当a b c ==时,等号成立,故()()()2324a b b c c a abc +++≥.。

2023年陕西省西安三十八中高考数学模拟试卷(理科)(2月份)+答案解析(附后)

2023年陕西省西安三十八中高考数学模拟试卷(理科)(2月份)+答案解析(附后)

2023年陕西省西安三十八中高考数学模拟试卷(理科)(2月份)1. 在下列集合中,是其真子集的是( )A. B. C. D.2. 若,则z 在复平面内所对应的点的坐标为( )A. B.C.D.3. 在中,,,,则的取值范围是( )A.B. C. D.4. 某算法的程序框图如图所示,则该算法的功能是( )A. 计算B. 计算C. 计算D. 计算5. 若抛物线上一点到焦点的距离是5p ,则( )A.B.C. D.6. 从六人含甲中选四人完成四项不同的工作含翻译,则甲被选且甲不参加翻译工作的不同选法共有( )A. 120种B. 150种C. 180种D. 210种7. 若x ,y 满足约束条件,则下列目标函数中最大值为0的是( )A.B.C.D.8. 已知函数的最小正周期为T,设,,,则( )A. B. C. D.9. 在正四棱柱中,E是的中点,,则BE与平面所成角的正弦值为( )A. B. C. D.10. 已知与都是定义在R上的函数,是奇函数,是偶函数,且,都不是常数函数,现有下列三个结论:①;②的图象关于直线对称;③与在上的单调性可能相同.其中正确结论的个数为( )A. 0B. 1C. 2D. 311. 若锐角满足,则( )A. B. C. D.12. 从商业化书店到公益性城市书房,再到“会呼吸的文化森林”——图书馆,建设高水平、现代化、开放式的图书馆一直以来是大众的共同心声.现有一块不规则的地,其平面图形如图1所示,百米,建立如图2所示的平面直角坐标系,将曲线AB看成函数图象的一部分,BC为一次函数图象的一部分,若在此地块上建立一座图书馆,平面图为直角梯形如图,则图书馆占地面积万平方米的最大值为( )A. B. C. D.13. 函数的图象在点处的切线的斜率为______ .14. 在平行四边形ABCD中,G为的重心,,则______ .15. 若某圆锥外接球的体积为,母线长为4,则该圆锥的底面面积为______ .16. P为椭圆上一点,曲线与坐标轴的交点为A,B,C,D,若,则P到x轴的距离为______ .17. 设等比数列的前n项和为,已知,且求的通项公式;设,数列的前n项和为,证明:当时,18. 在数学探究实验课上,小明设计了如下实验:在一个盒子中装有蓝球、红球、黑球等多种不同颜色的小球,一共有偶数个小球,现在从盒子中一次摸一个球,不放回.若盒子中有6个球,从中任意摸两次,摸出的两个球中恰好有一个红球的概率为,①求红球的个数;②从盒子中任意摸两次球,记摸出的红球个数为X,求随机变量X的分布列和数学期望.已知盒子中有一半是红球,若“从盒子中任意摸两次球,至少有一个红球”的概率不大于,求盒子中球的总个数的最小值.19.如图,在三棱柱中,,平面平面,,在上的投影为证明:求二面角的余弦值.20. 已知函数求的单调区间;若,,证明:21. 已知双曲线C:的左顶点为A,右焦点为F,P是直线l:上一点,且P不在x轴上,以点P为圆心,线段PF的长为半径的圆弧AF交C的右支于点证明:若直线PF与C的左、右两支分别交于E,D两点,过E作l的垂线,垂足为R,试判断直线DR是否过定点.若是,求出定点的坐标;若不是,请说明理由.22. 在直角坐标系xOy中,曲线C的参数方程为为参数,以坐标原点O 为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程是求曲线C的普通方程和直线l的直角坐标方程;若直线l与曲线C交于A,B两点,点,求的值.23. 设a,b,c均为正数,且证明:;答案和解析1.【答案】C【解析】解:是的子集,故A错误;不包含元素1,故B错误;是其真子集的是,故C正确;不包含元素1,故D错误.故选:根据已知条件,结合真子集的定义,即可求解.本题主要考查真子集的定义,属于基础题.2.【答案】B【解析】解:,,在复平面内所对应的点的坐标为故选:利用复数的运算法则先化简,再得到其在复平面内对应点的坐标即可.本题考查了复数的运算法则及其几何意义,属于基础题.3.【答案】B【解析】解:,,,,,,的取值范围是故选:根据已知条件,结合余弦定理以及角A的取值范围,即可求解.本题主要考查余弦定理的应用,属于基础题.4.【答案】A【解析】解:,,第一次循环:,;第二次循环:,;第三次循环:,;第四次循环:,;输出,故选:由题意,进行四次循环,可计算输出的本题考查程序框图,考查学生计算能力,属于基础题.5.【答案】D【解析】解:根据抛物线的几何性质可得:,,故选:根据抛物线的几何性质,方程思想,即可求解.本题考查抛物线的几何性质,方程思想,属基础题.6.【答案】C【解析】解:先从除甲外的5人中任选3人,有种方式,再在这三人中选择一人完成翻译工作,有种方式,最后剩下的3人含甲完成其余的三项工作,有种方式,则符合题意的不同选法有种.故选:先从除甲外的5人中任选3人,再在这三人中选择一人完成翻译工作,最后剩下的3人含甲完成其余的三项工作,然后由乘法原理得解.本题考查排列组合的综合运用,考查运算求解能力,属于基础题.7.【答案】B【解析】解:由解得,设,画出可行域如下图所示,由图可知,目标函数在点处取得最大值,所以的最大值为故选:画出可行域,求目标函数的最大值,从而求得正确答案.本题主要考查简单线性规划,考查数形结合思想与运算求解能力,属于基础题.8.【答案】B【解析】解:函数的最小正周期为,设,,,所以故选:确定后,先判断函数值的正负,再利用中间值比较大小即可.本题考查三角函数的性质,考查比较大小,属于中档题.9.【答案】A【解析】解:在正四棱柱中,E是的中点,,以D为坐标原点,建立空间直角坐标系,如图,则,,,,,,,设平面的法向量,则,取,得,设BE与平面所成角为,则BE与平面所成角的正弦值为:故选:以D为坐标原点,建立空间直角坐标系,利用向量法能求出BE与平面所成角的正弦值.本题考查直线与平面所成角的正弦值的求法等基础知识,考查运算求解能力,是中档题.10.【答案】D【解析】解:于①:由是奇函数,即,取得,则,正确;对于②:由是偶函数,得,则的图象关于直线对称,正确;对于③:取,,则与在上都单调递增,正确.故选:根据奇函数的性质及赋值法得到,从而判断①正确;根据偶函数的性质得到,从而判断②正确;取,,判断两者的单调性,从而判断③正确.本题主要考查了函数奇偶性,对称轴及单调性的应用,属于基础题.11.【答案】A【解析】解:因为,所以,又因为,所以,,所以故选:结合同角三角函数的基本关系式、两角差的余弦公式来求得正确答案.本题主要考查了同角基本关系及和差角公式在三角化简求值中的应用,属于基础题.12.【答案】D【解析】解:将点代入函数中可得,解得,所以,设线段BC对应的函数解析式为,因为直线BC经过点,,所以,,所以,设,则点E的坐标为,由可得,所以点F的坐标为,所以,所以直角梯形CDEF的面积,所以,令,可得,当时,,函数在上单调递增,当时,,函数在上单调递减,所以当时,函数取最大值,最大值为故选:由条件求BC的解析式,设,利用t表示梯形CDEF的面积,利用导数求其最大值.本题以实际问题为载体,考查函数模型的构建,考查运算求解能力,属于中档题.13.【答案】2【解析】解:由,得,即函数的图象在点处的切线的斜率为故答案为:求出原函数的导函数,得到函数在处的导数值得答案.本题考查导数的概念及其几何意义,熟记基本初等函数的导函数是关键,是基础题.14.【答案】【解析】解:在平行四边形ABCD中,G为的重心,设点E为BC的中点,如图所示:故,,所以;故由于,故,所以故答案为:直接利用三角形的重心和线性运算求出结果.本题考查的知识要点:向量的线性运算,主要考查学生的理解能力和计算能力,属于基础题和易错题.15.【答案】【解析】解:设圆锥外接球的半径为R,则,解得,由球的性质可得圆锥的外接球球心与圆锥底面圆的圆心连线与底面圆垂直,所以球心O在圆锥的高线SM或SM的延长线上,如图所示:设圆锥的底面圆半径为r,高为h,因为母线长为4,所以,解得,,所以圆锥的底面圆面积为故答案为:求出圆锥外接球的半径R,由球的性质可得圆锥的外接球球心与圆锥底面圆的圆心连线与底面圆垂直,利用勾股定理求出圆锥的高和底面圆半径,再计算底面圆面积.本题考查了圆锥与球的结构特征与应用问题,也考查了运算求解能力,是中档题.16.【答案】【解析】解:曲线与坐标轴的交点为A,B,C,D,则不妨设,,,,则A,B为椭圆的焦点,,又,则,且,在以C、D为焦点的椭圆上,且,解得,为椭圆上一点,联立,解得,则,故P到x轴的距离为,故答案为:首先表示出A,B,C,D的坐标,依题意得,即可得到P为椭圆上一点,联立两椭圆方程,求出,即可得出答案.本题考查椭圆的性质,考查转化思想和方程思想,考查逻辑推理能力和运算能力,属于中档题.17.【答案】解:设等比数列的公比为q,,且,,,联立解得,,证明:,数列的前n项和为,数列为单调递增数列,当时,,因此结论成立.【解析】设等比数列的公比为q,由,且,可得,,联立解得,q,即可得出,利用求和公式即可得出数列的前n项和为,再利用数列的单调性即可证明结论.本题考查了等比数列的通项公式与求和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.18.【答案】解:①设红球个数为n,由题意可得,,解得;②由题意可得,X所有可能的取值为0,1,2,,,,故X的分布列为:X 0 1 2P故;设盒子中球的总个数为2n,则红球个数为n,从盒子中任意摸两次球,至少有一个红球的概率为,由题意可知,,解得,即,故盒子中球的总个数的最小值为【解析】①根据已知条件,结合古典概型的概率公式,即可求解;②由题意可得,X所有可能的取值为0,1,2,;依次求出对应的概率,再结合期望公式,即可求解;先求出从盒子中任意摸两次球,至少有一个红球的概率,令,即可求解.本题主要考查离散型随机变量期望与分布列的求解,考查转化能力,属于中档题.19.【答案】解:证明:平面平面,又平面平面,且平面ABC,,平面,平面,,又,;在上的投影为1,又易得,即,为等边三角形,由得平面平面,,建立以B为原点的空间直角坐标系,如图所示,则根据题意可得:,,,设平面的法向量为,则,取,又为平面ABC的一个法向量,,,设二面角的平面角为,由图可知,,二面角的余弦值为【解析】由条件根据面面垂直性质定理证明平面,由此证明,结合,即可证明结论;建立空间直角坐标系,求平面和平面ABC的法向量,利用向量法,即可得出答案.本题考查二面角、直线与平面垂直,考查转化思想和数形结合思想,考查逻辑推理能力和运算能力,属于中档题.20.【答案】解:,,当时,,函数单调递增,当时,,函数单调递减,故函数的单调递增区间为,函数单调递减区间为;证明:若,,则,,所以,所以在上恒成立,令,,则在时恒成立,当时,在时不可能恒成立,故,令,则,当时,,单调递减,当时,,单调递增,故当时,取得极小值,也是最小值,所以,所以,令,,则,易得,时,,单调递增,当时,,单调递减,故,所以【解析】先对函数求导,然后结合导数与单调性关系即可求解;要证原不等式成立,等价于证明在上恒成立,结合不等式构造函数,对新函数求导,结合导数与单调性关系及函数性质可证.本题主要考查了导数与单调性关系的应用,还考查了函数的性质在不等式证明中的应用,属于中档题.21.【答案】证明:过N作l的垂线,垂足为H,且与圆弧AF交于点M,则,连接AM,PM,NF,因为在圆P中,,,所以,又右焦点,设点,则,整理得因为,所以,所以,由圆的性质:相等弦长所对的圆心角相等,得,所以;解:由题意可得直线PF的斜率不为0,设直线PF的方程为因为直线PF与C的左,右两支分别交于E,D两点,则联立方程组消x可得,设,,,,则,,由题意可得直线DR的方程为,令,得,所以直线DR过定点【解析】由双曲线的性质,结合圆的性质求证即可;设直线PF的方程为联立方程组设,,,,则直线DR的方程为,令,求得,得解.本题考查了圆的性质,重点考查了双曲线的性质及直线与双曲线的位置关系,属中档题.22.【答案】解:解:曲线C的参数方程为为参数,消去参数可得,又,所以曲线C的普通方程为,由,由可得:,故直线l的直角坐标方程为;由知直线l为,故直线的其中一个参数方程为为参数,将直线l的参数方程代入曲线C的普通方程并整理得,设A,B对应的参数分别是,,则,,且,则,,由,故【解析】在曲线C的参数方程中消去参数,即可得其普通方程,将代入,即可得直线l的直角坐标方程;写出直线l过点的参数方程,设出A,B两点的参数,与曲线C联立,判别式大于零,韦达定理可得关于A,B参数的等式,根据参数的几何意义代入中计算即可.本题主要考查简单曲线的极坐标方程,考查转化能力,属于中档题.23.【答案】证明:因为,,,所以,当且仅当时,等号成立,又,所以由,且c为正数,得,则,则,由柯西不等式可得:,当且仅当时,等号成立,所以【解析】利用重要不等式,结合综合法即可得证;利用柯西不等式即可证明不等式.本题主要考查不等式的证明,柯西不等式以及基本不等式的应用,考查逻辑推理能力,属于中档题.。

湖南省郴州市高考数学二模试卷(理科)含答案解析

湖南省郴州市高考数学二模试卷(理科)含答案解析

湖南省郴州市高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分,每小题给出四个选项,只有一个选项符合题目要求.1.若复数z满足zi=1﹣i,则z的共轭复数是()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i2.若A={x|x2+2x﹣8<0},B={x|x<1},则图中阴影部分表示的集合为()A.(﹣4,1]B.(1,2)C.[1,2)D.(﹣4,1)3.如图所示,程序框图(算法流程图)的输出结果是()A.B. C.D.4.某全日制大学共有学生5400人,其中专科生有1500人,本科生有3000人,研究生有900人.现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为180人,则应在专科生、本科生与研究生这三类学生中分别抽取()A.55人,80人,45人B.40人,100人,40人C.60人,60人,60人D.50人,100人,30人5.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥n B.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β6.直线与圆O:x2+y2=4交于A、B两点,则=()A.2 B.﹣2 C.4 D.﹣47.某班5位同学分别选择参加数学、物理、化学这3个学科的兴趣小组,每人限选一门学科,则每个兴趣小组都至少有1人参加的不同选择方法种数为()A.150 B.180 C.240 D.5408.如图,椭圆+y2=1的左、右焦点分别为F1,F2,短轴端点分别为B1,B2,现沿B1B2将椭圆折成120°角(图二),则异面直线F1B2与B1F2所成角的余弦值为()A.0 B.C.D.﹣9.在区间[﹣1,1]上任取两数m和n,则关于x的方程x2+mx+n=0的两根都是负数的概率()A. B. C. D.10.设点P是曲线C:y=x3﹣x+上的任意一点,曲线C在P点处的切线的倾斜角为α,则角α的取值范围是()A.[π,π)B.(,π]C.[0,)∪[π,π)D.[0,)∪[π,π)11.已知倾斜角为的直线与双曲线C:﹣=1(a>0,b>0)相交于A,B两点,M(4,2)是弦AB的中点,则双曲线C的离心率是()A.B. C.2 D.12.已知定义在R上的函数f(x)满足f(2)=1,且f(x)的导数f′(x)在R上的恒有f′(x)<(x∈R),则不等式f(x2)<+的解集为()A.(﹣∞,﹣2)∪(2,+∞)B.(﹣2,2) C.(﹣∞,﹣)∪(,+∞)D.(﹣,)二、填空题:本大题共4小题,每小题5分,共25分.13.已知四边形ABCD满足|AB|=|AD|,|CD|=且∠BAD=60°,﹣=,那么四边形ABCD的面积为.14.记不等式组所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a的取值范围是.15.一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是.16.已知函数f(x)=asinx+bcosx(其中ab≠0)且对任意的x∈R,有f(x)≤f(),给出以下命题:①a=b;②f(x+)为偶函数;③函数y=f(x)的图象关于点(,0)对称;④函数y=f′(x)的图象可由函数y=f(x)的图象向左平移得到;⑤函数f(x)在y轴右侧的图象与直线y=的交点按横坐标从小到大依次为P1,P2,P3,P4,…,则|P2P4|=2π.其中正确命题的序号是.(将所有正确命题的序号都填上)三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤. 17.已知函数f(x)=sin2x﹣cos2x﹣,x∈R.(1)求函数f(x)的最小正周期及单调递增区间;(2)设△ABC的内角A,B,C的对边分别为a,b,c,且c=,f(C)=0,sinB=2sinA,求△ABC的面积S.18.已知数列{a n}满足a1=3,且对任意的正整数m,n都有a n+m=a n•a m,若数列{b n}满足b n=n﹣1+log3a n,{b n}的前n项和为B n.(Ⅰ)求a n和B n;(Ⅱ)令c n=a n•b n,d n=,数列{c n}的前n项和为S n,数列{d n}的前n项和为T n,分别求S n和T n.19.如图,四棱锥P﹣ABCD的底面ABCD是菱形,且∠ABC=60°,侧面PAD是边长为2的正三角形且与底面ABCD垂直.(Ⅰ)求证:BC⊥PC;(Ⅱ)线段PC上是否存在点M,使得二面角P﹣AD﹣M的平面角余弦值为?若存在,求出的值;若不存在,说明理由.20.已知函数(1)若x=1是函数f(x)的极大值点,求函数f(x)的单调递减区间;(2)若恒成立,求实数ab的最大值.21.已知椭圆Γ的中心在原点,焦点F1,F2在x轴上,离心率等于,它的一个顶点恰好是抛物线y=x2的焦点.(1)求椭圆Γ的标准方程;(Ⅱ)Q为椭圆Γ的左顶点,直线l经过点(﹣,0)与椭圆Γ交于A,B两点.(1)若直线l垂直于x轴,求∠AQB的大小;(2)若直线l与x轴不垂直,是否存在直线l使得△QAB为等腰三角形?如果存在,求出直线l的方程;如果不存在,请说明理由.22.已知a为实数,函数f(x)=alnx+x2﹣4x.(Ⅰ)是否存在实数a,使得f(x)在x=1处取极值?证明你的结论;(Ⅱ)若函数f(x)在[2,3]上存在单调递增区间,求实数a的取值范围;(Ⅲ)设g(x)=(a﹣2)x,若存在x0∈[,e],使得f(x0)≤g(x0)成立,求实数a 的取值范围.湖南省郴州市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,每小题给出四个选项,只有一个选项符合题目要求.1.若复数z满足zi=1﹣i,则z的共轭复数是()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i【考点】复数代数形式的乘除运算.【分析】由复数z满足zi=1﹣i,可得z,从而求出即可.【解答】解:∵复数z满足zi=1﹣i,∴z===﹣1﹣i,故=﹣1+i,故选:C.2.若A={x|x2+2x﹣8<0},B={x|x<1},则图中阴影部分表示的集合为()A.(﹣4,1]B.(1,2)C.[1,2)D.(﹣4,1)【考点】Venn图表达集合的关系及运算.【分析】先观察Venn图,由图可知阴影部分表示的集合为(C R B)∩A,根据集合的运算求解即可.【解答】解:A={x|x2+2x﹣8<0}=(﹣4,2),∵B={x|x<1},∴C R B=[1,+∞),∴(C R B)∩A=[1,2).故选:C.3.如图所示,程序框图(算法流程图)的输出结果是()A.B. C.D.【考点】程序框图.【分析】模拟程序图框的运行过程,得出当n=8时,不再运行循环体,直接输出S值.【解答】解:模拟程序图框的运行过程,得;该程序运行后输出的是计算S=++=.故选:D.4.某全日制大学共有学生5400人,其中专科生有1500人,本科生有3000人,研究生有900人.现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为180人,则应在专科生、本科生与研究生这三类学生中分别抽取()A.55人,80人,45人B.40人,100人,40人C.60人,60人,60人D.50人,100人,30人【考点】分层抽样方法.【分析】先根据总体数和抽取的样本,求出每个个体被抽到的概率,用每一个层次的数量乘以每个个体被抽到的概率就等于每一个层次的值.【解答】解:每个个体被抽到的概率为=,∴专科生被抽的人数是×1500=50,本科生要抽取×3000=100,研究生要抽取×900=30,故选:D.5.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥n B.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β【考点】空间中直线与平面之间的位置关系;命题的真假判断与应用;平面与平面之间的位置关系.【分析】由α⊥β,m⊂α,n⊂β,可推得m⊥n,m∥n,或m,n异面;由α∥β,m⊂α,n ⊂β,可得m∥n,或m,n异面;由m⊥n,m⊂α,n⊂β,可得α与β可能相交或平行;由m⊥α,m∥n,则n⊥α,再由n∥β可得α⊥β.【解答】解:选项A,若α⊥β,m⊂α,n⊂β,则可能m⊥n,m∥n,或m,n异面,故A 错误;选项B,若α∥β,m⊂α,n⊂β,则m∥n,或m,n异面,故B错误;选项C,若m⊥n,m⊂α,n⊂β,则α与β可能相交,也可能平行,故C错误;选项D,若m⊥α,m∥n,则n⊥α,再由n∥β可得α⊥β,故D正确.故选D.6.直线与圆O:x2+y2=4交于A、B两点,则=()A.2 B.﹣2 C.4 D.﹣4【考点】平面向量数量积的运算;直线与圆相交的性质.【分析】先求圆心到直线的距离,再求弦心距所在直线与AO的夹角,然后求数量积.【解答】解:圆O:x2+y2=4的圆心是(0,0),由此知圆心到直线的距离是=<2所以直线与圆相交故AB=2=2=r,所以∠AOB=所以=2×2×cos=2故选A7.某班5位同学分别选择参加数学、物理、化学这3个学科的兴趣小组,每人限选一门学科,则每个兴趣小组都至少有1人参加的不同选择方法种数为()A.150 B.180 C.240 D.540【考点】计数原理的应用.【分析】根据题意,分析有将5位同学分成满足题意的3组有1,1,3与2,2,1两种,分别计算可得分成1、1、3与分成2、2、1时的分组情况种数,进而相加可得答案.【解答】解:将5位同学分成满足题意的3组有1,1,3与2,2,1两种,分成1、1、3时,有C53•A33=60种,分成2、2、1时,有=90种,所以共有60+90=150种,故选:A.8.如图,椭圆+y2=1的左、右焦点分别为F1,F2,短轴端点分别为B1,B2,现沿B1B2将椭圆折成120°角(图二),则异面直线F1B2与B1F2所成角的余弦值为()A.0 B.C.D.﹣【考点】椭圆的简单性质.【分析】由OF1⊥B1B2,OF2⊥B1B2,可得∠F1OF2为二面角F1﹣B1B2﹣F2的平面角,即为120°,求得椭圆的a,b,c,运用向量的夹角公式可得cos<,>=,计算即可得到所求异面直线所成的角的余弦值.【解答】解:由OF1⊥B1B2,OF2⊥B1B2,可得∠F1OF2为二面角F1﹣B1B2﹣F2的平面角,即为120°,椭圆+y2=1中a=,b=1.c=,可得B1F2=B2F1==,=+, =+,•=•+•+•+•=﹣1+0+0+••(﹣)=﹣2,即有cos<,>===﹣,可得异面直线F1B2与B1F2所成角的余弦值为.故选:C.9.在区间[﹣1,1]上任取两数m和n,则关于x的方程x2+mx+n=0的两根都是负数的概率()A. B. C. D.【考点】几何概型.【分析】根据几何概型的概率公式,利用积分求出对应区域的面积进行求解即可.【解答】解:∵区间[﹣1,1]上任取两数m和n,∴,对应的区域为正方形,面积S=2×2=4,若方程x2+mx+n=0的两根都是负数,则,即,作出不等式组对应的平面区域如图:则对应的面积S=∫dm=m3|=,则对应的概率P==,故选:A.10.设点P是曲线C:y=x3﹣x+上的任意一点,曲线C在P点处的切线的倾斜角为α,则角α的取值范围是()A.[π,π)B.(,π]C.[0,)∪[π,π)D.[0,)∪[π,π)【考点】利用导数研究曲线上某点切线方程.【分析】求函数的导数,利用导数的几何意义求出切线斜率的取值范围,结合正切函数的图象和性质进行求解即可.【解答】解:函数的导数f′(x)=3x2﹣,则f′(x)=3x2﹣≥﹣,即tanα≥﹣,则0≤α<或π≤α<π,故角α的取值范围是[0,)∪[π,π),故选:D11.已知倾斜角为的直线与双曲线C:﹣=1(a>0,b>0)相交于A,B两点,M(4,2)是弦AB的中点,则双曲线C的离心率是()A.B. C.2 D.【考点】双曲线的简单性质.【分析】设A(x1,y1),B(x2,y2),根据AB的中点P的坐标,表示出斜率,从而得到关于a、b的关系式,再求离心率.【解答】解:∵倾斜角为的直线与双曲线C:﹣=1(a>0,b>0)相交于A,B两点,∴直线的斜率k=tan=,设A(x1,y1),B(x2,y2),则﹣=1,①;﹣=1,②,①﹣②得=,则k==•∵M(4,2)是AB的中点,∴x1+x2=8,y1+y2=4,∵直线l的斜率为,∴=•,即=,则b2=a2,c2=a2+b2=(1+)a2,∴e2=1+==()2.则e=故选:D.12.已知定义在R上的函数f(x)满足f(2)=1,且f(x)的导数f′(x)在R上的恒有f′(x)<(x∈R),则不等式f(x2)<+的解集为()A.(﹣∞,﹣2)∪(2,+∞)B.(﹣2,2) C.(﹣∞,﹣)∪(,+∞)D.(﹣,)【考点】利用导数研究函数的单调性;不等式的综合.【分析】由f′(x)<,构造辅助函数g(x)=f(x)﹣x,求导,利用导数判断函数单调递减,根据f(2)=1,求得g(2)=,根据f(x2)<+,将其转换成g(x2)<g (2),根据函数单调性即可求得不等的解集.【解答】解:f′(x)<(x∈R),f′(x)﹣<0,设g(x)=f(x)﹣x,g′(x)=f′(x)﹣<0,∴g(x)是R上的减函数,g(2)=g(2)﹣=,∴f(x2)<+,g(x2)=f(x2)﹣<=g(2),∴x2>2,解得:x>或x<﹣,∴原不等式的解集为(﹣∞,﹣)∪(,+∞).故答案选:C.二、填空题:本大题共4小题,每小题5分,共25分.13.已知四边形ABCD满足|AB|=|AD|,|CD|=且∠BAD=60°,﹣=,那么四边形ABCD的面积为.【考点】向量的线性运算性质及几何意义.【分析】由题意作图辅助,从而可判断四边形为直角梯形,从而求其面积.【解答】解:由题意作图如右图,∵﹣==,∴BC∥AD且|BC|=|AD|,又∵|AB|=|AD|,且∠BAD=60°,∴|AE|=|AB|=|AD|,∴|BC|=|DE|,∴BCDE是平行四边形,∴CD∥BE,∴DC⊥AD,∵|CD|=,∴|AB|=|AD|=2,∴S==,故答案为:.14.记不等式组所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a的取值范围是[,4].【考点】简单线性规划.【分析】本题考查的知识点是简单线性规划的应用,我们要先画出满足约束条件的平面区域,然后分析平面区域里各个角点,然后将其代入y=a(x+1)中,求出y=a(x+1)对应的a的端点值即可.【解答】解:满足约束条件的平面区域如图示:因为y=a(x+1)过定点(﹣1,0).所以当y=a(x+1)过点B(0,4)时,得到a=4,当y=a(x+1)过点A(1,1)时,对应a=.又因为直线y=a(x+1)与平面区域D有公共点.所以≤a≤4.故答案为:[,4]15.一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是16π.【考点】由三视图求面积、体积.【分析】由三视图知,几何体是一个三棱柱,三棱柱的底面是边长为3的正三角形,侧棱长是2,根据三棱柱的两个底面的中心的中点与三棱柱的顶点的连线就是外接球的半径,求出半径即可求出球的表面积.【解答】解:由三视图知,几何体是一个三棱柱ABC﹣A1B1C1,三棱柱的底面是边长为3的正三角形ABC,侧棱长是2,三棱柱的两个底面的中心连接的线段MN的中点O与三棱柱的顶点A的连线AO就是外接球的半径,∵△ABC是边长为3的等边三角形,MN=2,∴AM=,OM=1,∴这个球的半径r==2,∴这个球的表面积S=4π×22=16π,故答案为:16π.16.已知函数f(x)=asinx+bcosx(其中ab≠0)且对任意的x∈R,有f(x)≤f(),给出以下命题:①a=b;②f(x+)为偶函数;③函数y=f(x)的图象关于点(,0)对称;④函数y=f′(x)的图象可由函数y=f(x)的图象向左平移得到;⑤函数f(x)在y轴右侧的图象与直线y=的交点按横坐标从小到大依次为P1,P2,P3,P4,…,则|P2P4|=2π.其中正确命题的序号是①②④⑤.(将所有正确命题的序号都填上)【考点】命题的真假判断与应用.【分析】由三角函数的最大值相等列式判断①;利用辅助角公式化简代值判断②;求出得值判断③;求导后利用函数的图象平移判断④;由函数图象平移周期不变判断⑤【解答】解:①f(x)=asinx+bcosx=,∵对任意的x∈R,有f(x)≤f(),∴,则2a2+2b2=(a+b)2,∴(a﹣b)2=0,则a=b,故①正确;②∵f(x)=asinx+bcosx=a(sinx+cosx)=,∴f(x+)=,∴f(x+)为偶函数,故②正确;③∵=≠0,故③错误;④y=f′(x)=acosx﹣asinx==,而f(x+)==,故④正确;⑤由f(x)的周期为2π,而f(x)=是把向左平移个单位得到的,∴|P2P4|=2π,故⑤正确.故答案为:①②④⑤.三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤.17.已知函数f(x)=sin2x﹣cos2x﹣,x∈R.(1)求函数f(x)的最小正周期及单调递增区间;(2)设△ABC的内角A,B,C的对边分别为a,b,c,且c=,f(C)=0,sinB=2sinA,求△ABC的面积S.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x﹣)﹣1,由周期公式可求最小正周期,由2k,k∈Z 可解得单调递增区间.(2)由f(C)=sin(2C﹣)﹣1=0,可得sin(2C﹣)=1,解得C的范围利用正弦函数的图象和性质即可求得C的值,由sinB=2sinA,利用正弦定理,余弦定理即可解得a,b,根据三角形面积公式即可得解.【解答】解:(1)∵f(x)=sin2x﹣cos2x﹣=sin2x﹣=sin(2x﹣)﹣1,…∴最小正周期T=,.由2k,k∈Z 得k,k∈Z,∴f(x)的最小正周期为π,单调递增区间为[k,k](k∈Z).…(2)f(C)=sin(2C﹣)﹣1=0,则sin(2C﹣)=1,∵0<C<π,∴0<2C<2π,∴﹣,∴2C﹣=,∴C=,…∵sinB=2sinA,由正弦定理,得,①由余弦定理,得c2=a2+b2﹣2abcos,即a2+b2﹣ab=3,②由①②解得a=1,b=2.∴S△ABC==.…18.已知数列{a n}满足a1=3,且对任意的正整数m,n都有a n+m=a n•a m,若数列{b n}满足b n=n﹣1+log3a n,{b n}的前n项和为B n.(Ⅰ)求a n和B n;(Ⅱ)令c n=a n•b n,d n=,数列{c n}的前n项和为S n,数列{d n}的前n项和为T n,分别求S n和T n.【考点】数列的求和;数列递推式.【分析】(I)对任意的正整数m,n都有a n+m=a n•a m,可得a n+1=a n•a1=3a n,利用等比数列的通项公式可得a n.可得b n,即可得出{b n}的前n项和为B n.(II)c n=(2n﹣1)•3n.利用“错位相减法”与等比数列的前n项和公式可得S n.d n===,利用“裂项求和”即可得出.【解答】解:(I)∵对任意的正整数m,n都有a n+m=a n•a m,∴a n+1=a n•a1=3a n,∴数列{a n}是等比数列,公比为3,首项为3,∴a n=3n.∴b n=n﹣1+log3a n=n﹣1+n=2n﹣1,∴{b n}的前n项和为B n==n2.(II)c n=a n•b n,=(2n﹣1)•3n.∴数列{c n}的前n项和为S n=3+3×32+5×33+…+(2n﹣1)•3n,∴3S n=32+3×33+…+(2n﹣3)•3n+(2n﹣1)•3n+1,∴﹣2S n=3+2(32+33+…+3n)﹣(2n﹣1)•3n+1=﹣3﹣(2n﹣1)•3n+1=(2﹣2n)•3n+1﹣6,∴S n=(n﹣1)•3n+1+3.d n===,当n=1时,d1=;当n≥2时,T n=+++…++=﹣﹣.当n=1时也成立,∴T n=﹣﹣.19.如图,四棱锥P﹣ABCD的底面ABCD是菱形,且∠ABC=60°,侧面PAD是边长为2的正三角形且与底面ABCD垂直.(Ⅰ)求证:BC⊥PC;(Ⅱ)线段PC上是否存在点M,使得二面角P﹣AD﹣M的平面角余弦值为?若存在,求出的值;若不存在,说明理由.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】(Ⅰ)取AD中点O,连结OP,OC,以O为原点,OC为x轴,OD为y轴,OP 为z轴,建立空间直角坐标系,利用向量法能证明BC⊥PC.(Ⅱ)设M(a,b,c),由=λ可得点M的坐标为M(λ,0,﹣λ),求出平面AMD的法向量和平面PAD的法向量,由此利用向量法能求出结果.【解答】(Ⅰ)证明:取AD中点O,连结OP,OC,∵侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,∴△ADC是等边三角形,PO、AD、CO两两垂直,以O为原点,OC为x轴,OD为y轴,OP为z轴,建立空间直角坐标系,由题意得P(0,0,),C(,0,0),B(,﹣2,0),=(0,﹣2,0),=(﹣,0,),∴=0,∴CB⊥CP.(Ⅱ)解:假设存在符合要求的点M,令=λ(0≤λ≤1),则=λ=λ(,0,﹣),可得M(λ,0,﹣λ),∴=(λ,1,﹣λ),=(λ,﹣1,﹣λ),设平面MAD的法向量为=(x,y,z),则,令z=λ,得=(λ﹣1,0,λ),显然平面PAD的一个法向量为=(,0,0),∵二面角P﹣AD﹣M的平面角余弦值为,∴|=,∴λ=或λ=﹣1(舍去)∴线段PC上存在点M, =时,使得二面角P﹣AD﹣M的平面角余弦值为.20.已知函数(1)若x=1是函数f(x)的极大值点,求函数f(x)的单调递减区间;(2)若恒成立,求实数ab的最大值.【考点】利用导数求闭区间上函数的最值;函数在某点取得极值的条件.【分析】(1)求导数,利用x=1是函数f(x)的极大值点,确定a的范围,即可得到函数f(x)的单调递减区间;(2)构造函数,确定函数的单调性,可得函数的最值,即可得到结论.【解答】解:(1)求导数可得,f′(x)=∵x=1是函数f(x)的极大值点,∴0<a<1∴函数f(x)的单调递减区间为(0,a),(1,+∞);(2)∵恒成立,∴alnx﹣x+b≤0恒成立,令g(x)=alnx﹣x+b,则g′(x)=∴g(x)在(0,a)上单调递增,在(a,+∞)上单调递减∴g(x)max=g(a)=alna﹣a+b≤0∴b≤a﹣lna,∴ab≤a2﹣a2lna令h(x)=x2﹣x2lnx(x>0),则h′(x)=x(1﹣2lnx)∴h(x)在(0,)上单调递增,在(,+∞)上单调递减∴h(x)max=h()=,∴ab≤即ab的最大值为.21.已知椭圆Γ的中心在原点,焦点F1,F2在x轴上,离心率等于,它的一个顶点恰好是抛物线y=x2的焦点.(1)求椭圆Γ的标准方程;(Ⅱ)Q为椭圆Γ的左顶点,直线l经过点(﹣,0)与椭圆Γ交于A,B两点.(1)若直线l垂直于x轴,求∠AQB的大小;(2)若直线l与x轴不垂直,是否存在直线l使得△QAB为等腰三角形?如果存在,求出直线l的方程;如果不存在,请说明理由.【考点】抛物线的简单性质.【分析】(I)设椭圆的标准方程为:,根据条件列方程组解出a,b即可;(II)(1)把x=﹣代入椭圆方程解出A,B坐标,根据三角形的边长即可求出∠AQB;(2)设AB斜率为k,联立方程组求出A,B坐标的关系,通过计算=0得出,则当△QAB为等腰直角三角形时,取AB中点N,则QN⊥AB,计算QN的斜率判断是否为﹣即可得出结论.【解答】解:(I)设椭圆的标准方程为:,(a>b>0).抛物线y=x2的焦点为(0,1),∴,解得a2=4,∴椭圆Γ的标准方程为+y2=1.(II)Q(﹣2,0),设A(x1,y1),B(x2,y2),(1)当直线l垂直于x轴时,直线l的方程为x=﹣.则直线l与x轴交于M(﹣,0).联立方程组,解得或.不妨设A在第二象限,则A(﹣,),B(﹣,﹣).∴|QM|=|AM|=.∴∠AQM=45°,∴∠AQB=2∠AQM=90°.(2)当直线l与x轴不垂直时,设直线l方程为y=k(x+)(k≠0).联立方程组,消元得(25+100k2)x2+240k2x+144k2﹣100=0.∴x1+x2=,x1x2=.y1y2=k2(x1+)(x2+)=﹣•+.∵=(x1+2,y1),=(x2+2,y2),∴=x1x2+2(x1+x2)+4+y1y2=﹣+4+﹣•+=0.∴QA⊥QB,即△QAB是直角三角形.假设存在直线l使得△QAB是等腰直角三角形,则|QA|=|QB|.取AB的中点N,连结QN,则QN⊥AB.又x N=(x1+x2)=﹣=﹣,y N=k(x N+)=.∴k QN=,∴k QN•k AB=≠﹣1.∴QN与AB不垂直,矛盾.∴直线l与x轴不垂直,不存在直线l使得△QAB为等腰三角形.22.已知a为实数,函数f(x)=alnx+x2﹣4x.(Ⅰ)是否存在实数a,使得f(x)在x=1处取极值?证明你的结论;(Ⅱ)若函数f(x)在[2,3]上存在单调递增区间,求实数a的取值范围;(Ⅲ)设g(x)=(a﹣2)x,若存在x0∈[,e],使得f(x0)≤g(x0)成立,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求得函数的定义域,求导,假设存在实数a,使f(x)在x=1处取极值,则f′(1)=0,解出a的值,根据x=1的左右单调性是否相同,即可判断x=1是不是极值点;(Ⅱ)先求出f(x)的导数,将问题转化成,a≥2﹣2(x﹣1)2,在x∈[2,3]有解,构造辅助函数,利用函数的求得φ(x)=2﹣2(x﹣1)2的最小值,即可求得a的取值范围.(Ⅲ)在[1,e]上存在一点x0,使得f(x0)<g(x0)成立,即在[,e],上存在一点x0,使得G(x0)<0,即函数G(x)在[,e],上的最小值小于零.对G(x)求导.求出G(x)的最小值,即可a的取值范围.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+2x﹣4=,假设存在实数a,使得f(x)下x=1处取极值,则f′(1)=0,∴a=2,此时,f(x)=,∴当0<x<1时,f′(x)>0,f(x)单调递增,当x>1时,f′(x)>0,f(x)单调递增,∴x=1不是f(x)的极值点,故不存在实数a,使得f(x)=1处取极值.(Ⅱ)f′(x)==(x>0),问题等价于,存在x∈[2,3],使得f′(x)≥0,即a≥2﹣2(x﹣1)2,在x∈[2,3]有解,∴φ(x)=2﹣2(x﹣1)2,在[2,3]上递减,∴φmin=φ(3)=﹣6,∴a>﹣6;(Ⅲ)记F(x)=x﹣lnx,∴F′(x)=(x>0),∴当0<x<1,F′(x)<0,F(x)单调递减;当x>1时,F′(x)>0,F(x)单调递增;∴F(x)≥F(1)=1>0,即x>lnx,(x>0),由f(x0)≤g(x0)得:(x0﹣lnx0)a≥x02﹣2x0,∴a≥,记G(x)=,x∈[,e],G′(x)==,x∈[,e],∴2﹣2lnx=2(1﹣lnx)≥0,∴x﹣2lnx+2>0,∴x∈(,e)时,G′(x)<0,G(x)递减,x∈(1,e)时,G′(x)>0,G(x)递增,∴a≥G(x)min=G(1)=﹣1,故实数a的取值范围为[﹣1,+∞).8月1日。

高考理科数学模拟试题含答案及解析5套).pptx

高考理科数学模拟试题含答案及解析5套).pptx

AF 4 15.抛物线 y2 4x 的焦点为 F ,过 F 的直线与抛物线交于 A , B 两点,且满足 BF ,
点 O 为原点,则 △AOF 的面积为

f x 2 3 sin xcosx 2cos2 x0
16.已知函数
22
2
的周期为
2π 3
,当
x
0,π3
时,函
数 g x f x m 恰有两个不同的零点,则实数m 的取值范围是
第Ⅰ卷(选择题 共 60 分)
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一
项是符合题目要求的.
1.已知a , b 都是实数,那么“ 2a 2b ”是“ a2 b2 ”的(

A.充分不必要条件 B.必要不充分条件 C.充要条件 条件
2.抛物线 x 2 py2 ( p 0) 的焦点坐标为( )
的距离相等,则
1 2
y1
y2
1 2
,即
y 1
y 2 1
.有
2x1 2x2 1 .由基本不等式 得: 2x1 2x2 ≥2 2x1 2x2 ,整理得 2x1x2 ≤ 1 ,解得
4
x1 x2 2 .(因为 x1 x2 ,等号取不到).故选 B.
10、【答案】C
学海无涯
【解析】如图所示,该四面体的四个顶点为长方体的四个顶点,设长、宽、高分
19、某高校在 2017 年自主招生考试成绩中随机抽取 100 名学生的笔试成绩,按成绩共分为
五组,得到如下的频率分布表:

号分
组频
数频

第一组 [145,155)
5
0.05
第二组 [155,165)

2020-2021学年河南省六市联考高考数学二模试卷(理科)及答案解析

2020-2021学年河南省六市联考高考数学二模试卷(理科)及答案解析

2020-2021学年河南省六市联考高考数学二模试卷(理科)及答案解析河南省六市联考高考数学二模试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={x|x2+x≥0},B={x|5x≥5},则A∩B=()A.{x|x≥0或x≤﹣1} B.{x|x≥﹣1} C.{x|x≥1} D.{x|x≥0}2.已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.33.下列函数中既是奇函数又在区间,[﹣1,1]上单调递减的是()A.y=sinx B.y=﹣|x+1| C.D.y=(2x+2﹣x)4.下列说法错误的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好5.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出顶层有()盏灯.A.2 B.3 C.5 D.66.执行如图所示的程序框图,若输入x=2,则输出y的值为()A.23 B.11 C.5 D.27.双曲线=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为45°的直线交双曲线右支于M点,若MF2垂直x轴,则双曲线的离心率为()A.B.C.1+D.1+8.已知实数x,y满足,则z=的最大值是()A.B.1 C.3 D.99.已知某几何体的三视图如图所示(图中数据单位:cm),则这个几何体的体积为()A.20cm3B.22cm3C.24cm3D.26cm310.在△ABC中,BC=7,cosA=,cosC=,若动点P满足=+(1﹣λ)(λ∈R),则点P的轨迹与直线AB、AC所围成的封闭区域的面积为()A.3B.4C.6D.1211.如图,在长方形ABCD中,AB=,BC=1,E为线段DC上一动点,现将△AED沿AE折起,使点D在面ABC上的射影K在直线AE 上,当E从D运动到C,则K所形成轨迹的长度为()A.B.C.D.12.已知函数f(x)=alnx﹣x2+bx存在极小值,且对于b的所有可能取值f(x)的极小值恒大于0,则a的最小值为()A.﹣e3B.﹣e2C.﹣e D.﹣二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.将函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后的图形关于原点对称,则函数f(x)在[0,]上的最小值为______.14.若y3(x+)n(n∈N*)的展开式中存在常数项,则常数项为______.15.已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n是数列{a n}前n项的和,则的最小值为______.16.已知抛物线y2=4x,过其焦点F作直线l交抛物线于A、B两点,M为抛物线的准线与x轴的交点,tan∠AMB=,则|AB|=______.三、解答题:本大题共5小题,满分60分,选做题3小题,考生任作一题,共10分17.已知△ABC中,内角A,B,C的对边分别为a,b,c.(1)若=,且sin2A(2﹣cosC)=cos2B+,求角C的大小;(2)若△ABC为锐角三角形,且A=,a=2,求△ABC面积的取值范围.18.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间情况,某经销化妆品的微商在一广场随机采访男性、女性微信用户各50名.其中每天玩微信时间超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如表:微信控非微信控合计男性26 24 50女性30 20 50合计56 44 100(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?(2)现从参与调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取的5人中“微信控”和“非微信控”的人数;(3)从(2)中抽选取的5人中再随机抽取3人赠送价值200元的护肤品套装,记这3人中“微信控”的人数为X,试求X的分布列及数学期望.参考公式:,其中n=a+b+c+d.P(K20.50 0.40 0.25 0.05 0.025 0.010≥k0)k00.455 0.708 1.323 3.841 5.024 6.63519.在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且AB=AA1,∠A1AB=∠A1AD=60°(1)求证:平面A1BD⊥平面A1AC;(2)若BD=,A1D=2,求二面角A1﹣BD﹣B1的大小.20.已知椭圆C:的左、右焦点分别为F1(﹣c,0)、F2(c,0),P为椭圆C 上任意一点,且最小值为0.(Ⅰ)求曲线C的方程;(Ⅱ)若动直线l2,l2均与椭圆C相切,且l1∥l2,试探究在x轴上是否存在定点B,使得点B到l1,l2的距离之积恒为1?若存在,请求出点B的坐标;若不存在,请说明理由.21.设函数f(x)=e x+ln(x+1)﹣ax.(1)当a=2时,判断函数f(x)在定义域内的单调性;(2)当x≥0时,f(x)≥cosx恒成立,求实数a的取值范围.[选修4-1几何证明选讲]22.自圆O外一点P引圆O的两条割线PAB和PDC,如图所示,其中割线PDC过圆心O.AB= OA,PD=,∠P=15°,(1)求∠PCB的大小;(2)分别球线段BC和PA的长度.[选修4-4坐标系与参数方程]23.已知曲线C的极坐标方程为ρsinθ+2ρcosθ=20,将曲线C1:(α为参数)经过伸缩变换后得到C2(1)求曲线C2的参数方程;(2)若点M在曲线C2上运动,试求出M到曲线C的距离d的取值范围.[选修4-5不等式选讲]24.已知函数f(x)=|x﹣5|﹣|x+a|(1)当a=3时,不等式f(x)≥k+2的解集不是R,求k的取值范围;(2)若不等式f(x)≤1的解集为{x|x≥},求a的值.参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={x|x2+x≥0},B={x|5x≥5},则A∩B=()A.{x|x≥0或x≤﹣1} B.{x|x≥﹣1} C.{x|x≥1} D.{x|x≥0}【考点】交集及其运算.【分析】分别求解一元二次不等式与指数不等式化简集合A,B,然后利用交集运算得答案.【解答】解:由x2+x≥0,得x≤﹣1或x≥0,∴A={x|x2+x≥0}={x|x≤﹣1或x≥0},由5x≥5,得x≥1,∴B={x|5x≥5}={x|x≥1},∴A∩B={x|x≤﹣1或x≥0}∩{x|x≥1}={x|x≥1}.故选:C.2.已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.3【考点】复数代数形式的混合运算.【分析】先化简复数,再利用复数相等,解出a、b,可得结果.【解答】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1 另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.3.下列函数中既是奇函数又在区间,[﹣1,1]上单调递减的是()A.y=sinx B.y=﹣|x+1| C.D.y=(2x+2﹣x)【考点】奇偶性与单调性的综合.【分析】判断函数的奇偶性,以及函数的单调性推出结果即可.【解答】解:y=sinx是奇函数,但是,[﹣1,1]上单调增函数.y=﹣|x+1|不是奇函数,对于,因为f(﹣x)==﹣=﹣f(x),所以是奇函数,在[﹣1,1]上单调减函数,y=(2x+2﹣x)是偶函数,[﹣1,1]上单调递增.故选:C.4.下列说法错误的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好【考点】相关系数.【分析】A根据相关关系的定义,判断命题A正确;B线性回归分析的相关系数r的绝对值越接近1,线性相关性越强,判断命题B错误;C一组数据拟合程度的好坏,是残差点分布的带状区域宽度越狭窄,其模型拟合的精度越高,判断命题C正确;D用相关指数R2刻画回归效果时,R2的值越大说明模型拟合效果越好,由此判断命题D正确.【解答】解:对于A,根据相关关系的定义,即可判断自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系是相关关系,∴命题A正确;对于B,线性回归分析中,相关系数r的绝对值越接近1,两个变量的线性相关性越强,反之,线性相关性越弱,∴命题B错误;对于C,残差图中,对于一组数据拟合程度的好坏评价,是残差点分布的带状区域宽度越狭窄,其模型拟合的精度越高,∴命题C正确;对于D,回归分析中,用相关指数R2刻画回归效果时,R2的值越大说明模型拟合效果越好,∴R2为0.98的模型比R2为0.80的模型拟合效果好,命题D正确.故选:B.5.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出顶层有()盏灯.A.2 B.3 C.5 D.6【考点】等比数列的前n项和.【分析】由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,由等比数列的求和公式可得a的方程,解方程可得.【解答】解:设第七层有a盏灯,由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,∴由等比数列的求和公式可得=381,解得a=3,∴顶层有3盏灯,故选:B.6.执行如图所示的程序框图,若输入x=2,则输出y的值为()A.23 B.11 C.5 D.2【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,y=5,不满足输出条件,故x=5,再次执行循环体后,y=11,不满足输出条件,故x=11,再次执行循环体后,y=23,满足输出条件,故输出的y值为23,故选:A.7.双曲线=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为45°的直线交双曲线右支于M点,若MF2垂直x轴,则双曲线的离心率为()A.B.C.1+D.1+【考点】双曲线的简单性质.【分析】将x=c代入双曲线方程求出点M的坐标,通过解直角三角形列出三参数a,b,c的关系,求出离心率的值.【解答】解:将x=c代入双曲线的方程=1(a>0,b>0)得y=,即M(c,).在△MF1F2中tan45°==1即,解得e==+1.故选:C.8.已知实数x,y满足,则z=的最大值是()A.B.1 C.3 D.9【考点】简单线性规划.【分析】作出不等式组对应的平面区域要使z=最大,则x最小,y最大即可,利用数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图:则x≥1,y≥1,要使z=的最大,则x最小,y最大即可,由图象知当z=经过点A时,z取得最大值,由,得x=1,y=3,即A(1,3),则z=的最大值是z==9,故选:D.9.已知某几何体的三视图如图所示(图中数据单位:cm),则这个几何体的体积为()A.20cm3B.22cm3C.24cm3D.26cm3【考点】由三视图求面积、体积.【分析】根据三视图可知几何体是组合体:左边是三棱锥、右边是直四棱锥,由三视图求出几何元素的长度,由柱体、锥体的体积公式求出几何体的体积.【解答】解:根据三视图可知几何体是组合体:左边是三棱锥、右边是直四棱锥,直四棱锥底面是一个边长为1.5、4的矩形,高是3,由俯视图得三棱锥的底面是直角三角形,直角边为1、4,由正视图得高即四棱锥的侧棱为3,∴几何体的体积V=+1.5×4×3=20(cm3)故选:A.10.在△ABC中,BC=7,cosA=,cosC=,若动点P满足=+(1﹣λ)(λ∈R),则点P的轨迹与直线AB、AC所围成的封闭区域的面积为()A.3B.4C.6D.12【考点】轨迹方程.【分析】根据向量加法的几何意义得出P点轨迹,利用正弦定理解出AB,得出△ABC的面积,从而求出围成封闭区域的面积.【解答】解:设=.∵=+(1﹣λ)=+(1﹣λ).∴C,D,P三点共线.∴P点轨迹为直线CD.在△ABC中,sinA=.sinC=.由正弦定理得AB==.sinB=sin (A+C )=sinAcosC+cosAsinC==.∴S △ABC ==.∴S △ACD =S △ABC =.故选:B .11.如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为()A .B .C .D .【考点】轨迹方程.【分析】根据图形的翻折过程中变与不变的量和位置关系知,若连接D'K ,则D'KA=90°,得到K 点的轨迹是以AD'为直径的圆上一弧,根据长方形的边长得到圆的半径,求得此弧所对的圆心角的弧度数,利用弧长公式求出轨迹长度.【解答】解:由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,K 为垂足,由翻折的特征知,连接D'K ,则D'KA=90°,故K 点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,如图当E 与C 重合时,AK==,取O 为AD ′的中点,得到△OAK 是正三角形.故∠K0A=,∴∠K0D'=,其所对的弧长为=,故选:D.12.已知函数f(x)=alnx﹣x2+bx存在极小值,且对于b的所有可能取值f(x)的极小值恒大于0,则a的最小值为()A.﹣e3B.﹣e2C.﹣e D.﹣【考点】利用导数研究函数的极值.【分析】求函数的导数,根据函数存在极小值等价为f′(x)=﹣x+b=0有解,转化为一元二次方程,根据一元二次方程根与判别式△之间的关系进行转化求解即可.【解答】解:函数的定义域为(0,+∞),则函数的导数f′(x)=﹣x+b,若函数f(x)=alnx﹣x2+bx存在极小值,则f′(x)=﹣x+b=0有解,即﹣x2+bx+a=0有两个不等的正根,则,得b>2,(a<0),由f′(x)=0得x1=,x2=,分析易得f(x)的极小值点为x1,∵b>2,(a<0),∴x1==∈(0,),则f(x)极小值=f(x1)=alnx1﹣x12+bx1=alnx1﹣x12+x12﹣a=alnx1+x12﹣a,设g(x)=alnx+x2﹣a,x∈(0,),f(x)的极小值恒大于0等价为g(x)恒大于0,∵g′(x)=+x=<0,∴g(x)在(0,)上单调递减,故g(x)>g()=aln﹣a≥0,得ln≤,即﹣a≤e3,则a≥﹣e3,故a的最小值为是﹣e3,故选:A二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.将函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后的图形关于原点对称,则函数f(x)在[0,]上的最小值为﹣.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得φ的值,可得函数的解析式,再利用正弦函数的定义域和值域,求得函数f(x)在[0,]上的最小值.【解答】解:将函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后,得到y=sin(2x++φ)的图象,再根据所得图象关于原点对称,可得+φ=kπ,即φ=kπ﹣,k∈Z,又|φ|<,∴φ=﹣,f(x)=sin(2x﹣).∵x∈[0,],∴2x﹣∈[﹣,],故当2x﹣=﹣时,f(x)取得最小值为﹣,故答案为:﹣.14.若y3(x+)n(n∈N*)的展开式中存在常数项,则常数项为84 .【考点】二项式系数的性质.【分析】写出二项式(x+)n的展开式的通项,可得y3(x+)n 的展开式的通项,再由x,y的指数为0求得n,r的值,则答案可求.【解答】解:二项式(x+)n的展开式的通项为,则要使y3(x+)n(n∈N*)的展开式中存在常数项,需,即n=9,r=3.∴常数项为:.故答案为:84.15.已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n是数列{a n}前n项的和,则的最小值为 4 .【考点】等差数列的性质.【分析】由等比中项的性质、等差数列的通项公式列出方程求公差d,代入等差数列的通项公式、前n项和公式求出a n、S n,代入利用分离常数法化简后,利用基本不等式求出式子的最小值.【解答】解:因为a1,a3,a13成等比数列,所以,又a1=1,所以(1+2d)2=1×(1+12d),解得d=2或d=0(舍去),所以a n=1+(n﹣1)×2=2n﹣1,S n==n2,则====﹣2≥2﹣2=4,当且仅当时取等号,此时n=2,且取到最小值4,故答案为:4.16.已知抛物线y2=4x,过其焦点F作直线l交抛物线于A、B两点,M为抛物线的准线与x轴的交点,tan∠AMB=,则|AB|= 16 .【考点】抛物线的简单性质.【分析】设AB方程y=k(x﹣1),与抛物线方程y2=4x联立,利用tan∠AMB=,建立k的方程,求出k,即可得出结论.【解答】解:焦点F(1,0),M(﹣1,0),设AB方程y=k (x﹣1),设A(x1,y1),B(x2,y2)∵tan∠AMB=,∴=,整理可得2k(x1﹣x2)=(x1+1)(x2+1)+y1y2…(*)y=k(x﹣1),与y2=4x联立可得k2x2﹣(2k2+4)x+k2=0 可得x1x2=1,x1+x2=+2,y1y2=﹣4代入(*)可得2k(x1﹣x2)=?,∴x1﹣x2=,∴(+2)2﹣4=()2,∴k=±,∴x1+x2=+2=14,∴|AB|==16.故答案为:16.三、解答题:本大题共5小题,满分60分,选做题3小题,考生任作一题,共10分17.已知△ABC中,内角A,B,C的对边分别为a,b,c.(1)若=,且sin2A(2﹣cosC)=cos2B+,求角C的大小;(2)若△ABC为锐角三角形,且A=,a=2,求△ABC面积的取值范围.【考点】余弦定理;正弦定理.【分析】(1)利用正弦定理化简可得tanA=tanB,于是C=π﹣2A,代入sin2A(2﹣cosC)=cos2B+化简可求得A;(2)利用正弦定理用B表示出b,c,得到面积S关于B的函数,求出B的范围,得出S的范围.【解答】解:(1)∵,,∴tanA=tanB,∴A=B.∴C=π﹣2A.∵sin2A(2﹣cosC)=cos2B+,∴sin2A(2+cos2A)=cos2A+,即(1﹣cos2A)(2cos2A+1)=cos2A+,解得cos2A=,∵A+B+C=π,A=B,∴A,∴cosA=,∴A=,C=π﹣2A=.(2)由正弦定理得,∴b=2sinB,c=2sinC=2sin()=2sinB+2cosB.∴S==2sin2B+2sinBcosB=sin2B﹣cos2B+1=sin(2B﹣)+1.∵△ABC为锐角三角形,∴,∴.∴<2B﹣<,∴2<sin(2B﹣)≤1+.∴△ABC面积的取值范围是(2,1+].18.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间情况,某经销化妆品的微商在一广场随机采访男性、女性微信用户各50名.其中每天玩微信时间超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如表:微信控非微信控合计男性26 24 50女性30 20 50合计56 44 100(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?(2)现从参与调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取的5人中“微信控”和“非微信控”的人数;(3)从(2)中抽选取的5人中再随机抽取3人赠送价值200元的护肤品套装,记这3人中“微信控”的人数为X,试求X的分布列及数学期望.参考公式:,其中n=a+b+c+d.P(K20.50 0.40 0.25 0.05 0.025 0.010≥k0)k00.455 0.708 1.323 3.841 5.024 6.635【考点】独立性检验的应用.【分析】(1)计算K2的值,与临界值比较,可得结论;(2)从参与调查的女性用户中按分层抽样的方法,比例为3:2,选出5人赠送营养面膜1份,可得结论.(3)X的取值为1,2,3,再求出X取每一个值的概率,即可求得X的分布列和数学期望.【解答】解:(1)由题意,K2=≈0.65<0.708,∴没有60%的把握认为“微信控”与“性别”有关;(2)从参与调查的女性用户中按分层抽样的方法,比例为3:2,选出5人赠送营养面膜1份,所抽取的5人中“微信控”有3人,“非微信控”的人数有2人;(3)X=1,2,3,则P(X=1)==0.3,P(X=2)==0.6,P(X=3)==0.1.X的分布列为:X 1 2 3P 0.3 0.6 0.1X的数学期望为EX=1×0.3+2×0.6+3×0.1=1.8.19.在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且AB=AA1,∠A1AB=∠A1AD=60°(1)求证:平面A1BD⊥平面A1AC;。

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)高考理科数学模拟试卷(含答案)本试卷共分为选择题和非选择题两部分,第Ⅰ卷(选择题)在1至2页,第Ⅱ卷(非选择题)在3至4页,共4页,满分150分,考试时间为120分钟。

注意事项:1.答题前,请务必填写自己的姓名和考籍号。

2.答选择题时,请使用2B铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,请使用橡皮擦擦干净后再选涂其他答案标号。

3.答非选择题时,请使用0.5毫米黑色签字笔,在答题卡规定位置上书写答案。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,请只将答题卡交回。

第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={-1.0.1.2.3.4},B={y|y=x,x∈A},则A2B=A){0.1.2}B){0.1.4}C){-1.0.1.2}D){-1.0.1.4}2.已知复数z=1/(1+i),则|z|=A)2B)1C)2D)23.设函数f(x)为奇函数,当x>0时,f(x)=x-2,则f(f(1))=A)-1B)-2C)1D)24.已知单位向量e1,e2的夹角为π/2,则e1-2e2=A)3B)7C)3D)75.已知双曲线2x^2-y^2=1(a>0,b>0)的渐近线方程为y=±3x,则双曲线的离心率是A)10B)10/10C)10D)3/96.在等比数列{an}中,a1>0,则“a1<a4”是“a3<a5”的A)充分不必要条件B)必要不充分条件C)充要条件D)既不充分也不必要条件7.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是A)i≤6?B)i≤5?C)i≤4?D)i≤3?8.已知a、b为两条不同直线,α、β、γ为三个不同平面,则下列命题中正确的是①若α//β,α//γ,则β//γ;②若a//α,a//β,则α//β;③若α⊥γ,β⊥γ,则α⊥β;④若a⊥α,XXXα,则a//b。

2022年山西省高考模拟考试理科数学试题及答案解析

2022年山西省高考模拟考试理科数学试题及答案解析

2022年山西省高考模拟试卷注意事项理科数学试题及答案解析:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合M ,N ,P 均为R 的非空真子集,且M N =R ,M N P = ,则()M P =R ð().A.MB.NC.MR ð D.NR ð答案:D解析:如图,中间的阴影和左边的空白是集合M ,中间的阴影和右边的空白表示集合N ,P R ð表示两边空白区域,则()M P R ð表示集合M 的空白区域,即表示为N R ð,故选D.2.函数()sin 2cos3f x x x =+的最小正周期为().A.πB.3π2C.2πD.3π答案:C解析:函数sin 2y x =的最小正周期为2ππ2=,函数cos3y x =的最小正周期为2π3.2π2ππ2,2π33÷=÷=,所以函数()sin 2cos3f x x x =+的最小正周期为2π,故选C.3.若双曲线1C :221(0)3y x a a -=>与双曲线2C :22169x y -=的渐近线相同,则双曲线1C 的虚轴长为().A. B.2C. D.4答案:C详解:因为双曲线1C :2213y x a -=的渐近线方程为y =,双曲线2C :22169x y -=的渐近线方程为y =,又这两双曲线的渐近线相同,所以332a =,解得2a =,所以双曲线1C 的虚轴长为 C.4.已知定义域为R 的不恒为0的函数()f x ,()f x '是其导函数.命题p :()()f x f x '=;命题q :()e x f x '=.则p 是q 的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:D解析:若()2e x f x =,则()()f x f x '=,充分性不成立;若()e x f x '=,则()e x f x t =+(t 为任意常数),必要性不成立.故p 是q 的既不充分也不必要条件,故选D.5.各项均为正数的等比数列{}n a 中,32a =-,51a =,则1526372a a a a a a ++=().A.1B.9C.7+D.9答案:B解析:因为{}n a 为各项为正的等比数列,32a =-,51a =+,所以1526373552222335()(2)2219a a a a a a a a a a a a ++=++==-=+,故选B.6.古希腊数学家阿基米德是世界上公认的三位最伟大的数学家之一,其墓碑上刻着他认为最满意的一个数学发现.如图,一个“圆柱容球”的几何图形,即圆柱容器里放了一个球,该球顶天立地,四周碰边,在该图中,球的体积是圆柱体积的23,并且球的表面积也是圆柱表面积的23.现在向圆柱和球的缝隙里注水,最多可以注入的水的体积为2π3,则圆柱的表面积为().A.2πB.4πC.6πD.8π答案:C解析:设球的半径为r ,则2112=π2π333V V r r =⋅=水圆柱,解得1r =,∴22π2π26πS r r r =+⋅=圆柱,故选C.7.z 1、z 2是复数,则下列结论中正确的是().B A.若z 12+z 22>0,则z 12>-z 22.|z 1-z 2|=C.z 12+z 22=0⇔z 1=z 2=0D.|z 12|=|z 1|2答案:D解析:对于选项A :取z 1=2+i ,z 2=2-i ,z 12=(2+i )2=3+2i ,z 22=(2-i )2=3-2i ,满足z 12+z 22=6>0,但z 12与z 22是两个虚数,不能比较大小,故选项A 不正确;2i 对于选项B :取z 1=2+i ,z 2=2-i ,|z 1-z 2|==2,2i ===,故选项B 不正确;2222i a b ab 对于选项C :取z 1=1,z 2=i ,则z 12+z 22=0,但是z 1≠0,z 2≠0,故选项C 不正确;=-+对于选项D :设z 1=a +b i ,(a ,b ∈R ),则z 12=(a +b i ),22a b z 12===+,z 1=a -b i,z 1=,所以1z 8.已知焦点在x 轴的椭圆,12,F F 分别为其左右焦点,B 是短轴的一个顶点.弦BC 过1F ,弦CD 过2F ,2=a 2+b 2,所以|z 12|=|z 1|2,故选项D 正确.故选D.若2BC CF =,则椭圆的离心率为().A.2B.12C.3D.13答案:C解析:不妨设椭圆方程为22221(0)x y a b a b+=>>,12(,0),(,0),F c F c c -.易知112,2BF a CF CF a =+=,则由2BC CF =可知32a BC =,进而有112CF a =,从而3(,)22c bC --.将C 点坐标代入椭圆方程可得22229144c b a b+=,解得c e a ==,故选C.9.函数11y x =-的图像与函数2cos πy x =(24)x -≤≤的图像所有交点横坐标之和等于().A.2B.4C.6D.8答案:C解析:函数11y x =-与函数2cos πy x =的图像有公共的对称轴1x =,作出两函数图像如图所示:由对称性可知,交点横坐标和为6,故选C.10.将函数sin 2y x =图像向右平移(0)ϕϕ>个单位长度,得到()y g x =的图像,且函数()y g x =与函数2πcos(2)3y x =+的图像关于π(,0)4对称,则ϕ的最小值为().A.π24B.π12C.π6D.π3答案:B解析:由题可知()sin(22)g x x ϕ=-,根据函数()y g x =与函数2πcos(2)3y x =+的图像关于π(,0)4对称可得,π2πsin(22)cos[2()]023x x ϕ-+-+=,即31(cos 2)sin 2(sin 2)cos 2022x x ϕϕ---=对任意的x ∈R 成立.则有3cos 22ϕ=且1sin 22ϕ=,所以π22π6k ϕ=+()k ∈Z ,即ππ()12k k ϕ=+∈Z .由于0ϕ>,所以ϕ的最小值为π12,故选B.11.在平面直角坐标系xOy 中,已知点P 是函数()ln f x x =的图像上的动点,该图像在P 处的切线l 交x 轴于点M ,过点P 作l 的垂线交x 轴于点N ,设线段MN 的中点的横坐标为t ,则t 的最大值是().A.11(e )2e+ B.2C.1e e+D.e答案:A解析:设00(,ln )P x x ,则0011ln :y x x l x =-+,故000(ln ,0)M x x x -.过点P 作l 的垂线000ln ()y x x x x -=--,∴000ln (,0)x N x x +,∴00000ln 1(2ln )2x t x x x x =-+.设ln ()2ln 0)x g x x x x x x =-+>,221ln 1()2(ln 1)(1ln )(1)x g x x x x x -'=-++=-+.当e x =时,()0g x '=.当(0,e)x ∈时,()0g x '>,()g x 递增;当(e,)x ∈+∞时,()0g x '<,()g x 递减.故max 11(e )2et =+,故选A.12.如图,在长方体1111ABCD A B C D -中,底面是边长为2的正方形,122AA =,1,O O 分别为两个底面的中心.经过点O 且与底面所成角为1(tan 2θθ=的直线l 与长方体侧面的交于点P .当l 在变化时(保持与底面所成角θ不变),1O P 的最小值为().A.B.C.52D.207答案:B解析:根据对称性,不妨设P 在侧面11BCC B 内.设点P 在线段11,BC B C 上的投影分别是12,P P ,以BC 中点O '为原点,建立如图所示的平面直角坐标系.设(,)P x y12=,整理得2241x y =-,由11x -≤≤可得1222y ≤≤.1O P ===225y =时,1O P 取最小值4105,故选B.二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟试卷理 科 数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0,2,4M =,|,,,0b N x x a M b M a a ⎧⎫==∈∈≠⎨⎬⎩⎭且,则集合M N =I ( ) A .{}0,4 B .{}0,2 C .{}2,4 D .{}1,22.设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,则z 1z 2=( )A .-4+iB .5C .-5D .-4-i 3.下列三个命题:①2x >是112x <的充分不必要条件;②设a ,b ∈R ,若6a b +≠,则3a ≠或3b ≠;③命题p :存在0x ∈R ,使得20010x x ++<,则p ⌝:任意x ∈R ,都有210x x ++≥其中真命题是( )A .①②B .②③C .①③D .①②③ 4.按照此程序运行,则输出k 的值是( )A .4B .5C .2D .35.某空间几何体的三视图如图,且已知该几何体的体积为36π,则其表面积为( )A .332π+B .32πC .334π+2D .334π+ 6.若π1cos()43α+=,(0,)2απ∈,则sin α的值为( ) A .426- B .426+ C .718 D .23 7.已知直线a 和平面α,β满足l αβ=I ,a α⊄,a β⊄,且a 在α,β内的射影分别为直线b 和c ,则直线b 和c 的位置关系是( ) A .相交或平行 B .相交或异面 C .平行或异面 D .相交、平行或异面 8.已知函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,若将它的图象向右平移6π个单位长度,得到函数()g x 的图象,则函数()g x 图象的一条对称轴方程为( ) A .12x π= B .4x π= C .3x π= D .3x 2π= 9.若实数x ,y 满足条件202020x y y x y -+⎧⎪+⎨⎪++⎩≥≥≤,则231x y z x +-=-的最大值( ) A .5 B .4 C .7 D .8 10.已知P 是ABC △内部一点,且23PA PB PC ++=0u u u r u u u r u u u r ,在ABC △内部随机取点M ,则点M 取自ABP △内的概率为( ) A .23 B .13 C .12 D .16 11.已知1F ,2F 是椭圆()222210x y a b a b +=>>的左右焦点,A 是椭圆上的点,212F A F A c ⋅=u u u r u u u u r (c 为椭圆的半焦距),则椭圆离心率的取值范围是( ) A .303⎛⎤ ⎥ ⎝⎦, B .32,32⎡⎤⎢⎥⎣⎦ C .2322⎡⎤⎢⎥⎣⎦, D .312⎡⎫⎪⎢⎪⎣⎭, 12.设实数a ,b ,c ,d 满足0b ≠,1d ≠-,且2ln 111a a c b d --==+,则22()()a c b d -+-的最小值是( ) A .2 B .1 C .12 D .14 此卷只装订不密封班级姓名准考证号考场号座位号第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若d 25n n x x -=⎰(其中0n >),则()21nx -的展开式中2x 的系数为________.14.已知函数log (2)2a y x m n =--+恒过定点(3,2),其中0a >且1a ≠,m ,n 均为正数,则1112m n ++的最小值是________.15.已知数列{}n a 中,11a =,{}n a 的前n 项和为n S ,当2n ≥时,有221nn n naa S S =-成立,则2017S =________.16.设F 是双曲线C :221169x y -=的右焦点,P 是C 左支上的点,已知A ,则PAF △周长的最小值是________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2b C c a +=.(1)求角B 的大小;(2)若4a =,BC边上的中线AD =,求ABC △的面积.18.(本小题满分12分) 某学校依次进行A 、B 两科考试,当A 科合格时,才可考B 科,且两科均有一次补考机会,两科都合格方通过.甲同学参加考试,已知他每次考A 科合格的概率均为23,每次考B 科合格的概率均为12.假设他不放弃每次考试机会,且每次考试互不影响. (1)求甲恰好3次考试通过的概率; (2)记甲参加考试的次数为X ,求X 的分布列和均值. 19.(本小题满分12分) 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB ⊥AD ,AD ∥BC ,AP =AB =AD =1,直线PB 与CD 所成角的大小为3π. (1)若Q 是BC 的中点,求三棱锥D -PQC 的体积; (2)求二面角B -PD -A 的余弦值.20.(本小题满分12分)已知函数2()(1)x f x xe x =-+.(1)当[1,2]x ∈-时,求()f x 的最大值与最小值;(2)如果函数()()1g x f x ax =-+有三个不同零点,求实数a 的取值范围.21.(本小题满分12分)如图所示,1F 是抛物线C :24y x =的焦点,i F 在x 轴上(其中i =1,2,3,…,n ),i F 的坐标为(,0)i x 且1i i x x +<,i P 在抛物线C 上,且i P 在第一象限1i i i PF F +△是正三角形.(1)证明:数列{}1i i x x +-是等差数列;(2)记1i i i PF F +△的面积为i S,证明:1231111n S S S S +++⋅⋅⋅+<.选做题:请考生在22~23两题中任选一题作答,如果多做,按所做的第一题记分. 22.[选修4-4:坐标系与参数方程](10分) 已知直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩(t 为参数,0α<<π),曲线C 的极坐标方程为2sin 4cos ρθθ=. (1)求曲线C 的直角坐标方程; (2)设直线l 与曲线C 相交于A ,B 两点,求AB 的最小值. 23.[选修4-5:不等式选讲](10分) 已知()1f x ax =-,不等式()3f x ≤的解集是{}12x x -≤≤. (1)求a 的值; (2)若()()3f x f x k +-<存在实数解,求实数k 的取值范围.答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.-40 14.43 15.11009 16.38三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)2cos 2b C c a +=,由正弦定理,得2sin cos sin 2sin B C C A +=,A B C ++=πQ ,sin sin()sin cos cos sin A B C B C B C ∴=+=+,2sin cos sin 2(sin cos cos sin )B C C B C B C ∴+=+,sin 2cos sin C B C ∴=,0C <<πQ ,sin 0C ∴≠,1cos 2B ∴=,∴3B π=.(2)在ABD △中,由余弦定理得:222cos 2BD AB AD B AB AD +-=⨯,即247142c c +-=,解得3c =,11sin 4322ABC S ac B ∴==⨯⨯=△18.【答案】(1)甲恰好3次通过考试有两种情况,第一种情况是第一次A 科通过,第二次B 科不过,第三次B 科通过;第二种情况是第一次A 科没通过,第二次A 科通过,第三次B 科通过,2111215(1)32233218P ∴=⨯-⨯+⨯⨯=.(2)由题意得2ξ=、3、4,21114(2)32339P ξ==⨯+⨯=;2111212114(3)(1)(1)(1)3223323229P ξ==⨯-⨯+⨯⨯+⨯-⨯-=;12112111(4)(1)(1)(1)33233229P ξ==⨯⨯-+⨯⨯-⨯-=, 则ξ的分布列为:44()2349993E ξ=⨯+⨯+⨯=. 19.【答案】(1)以AB u u u r ,AD u u u r ,AP u u u r 为单位正交基底,建立如图所示的空间直角坐标系A -xyz . 因为AP =AB =AD =1,所以A (0,0,0),B (1,0,0),D (0,1,0),P (0,0,1).设C (1,y ,0),则PB u u u r =(1,0,-1),CD uuu r =(-1,1-y ,0). 因为直线PB 与CD 所成角大小为π3, 所以1cos ,2PB CD PB CD PB CD ⋅<>==u u u r u u u r u u u r u u u r u u u r u u u r , 12=,解得y =2或y =0(舍), 所以C (1,2,0),所以BC 的长为2. ∴--111111326D PQC P DQC V V ==⨯⨯⨯⨯=. (2)设平面PBD 的一个法向量为n 1=(x ,y ,z ). 因为PB u u u r =(1,0,-1),PD u u u r =(0,1,-1), 则1100PB PD ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n ,即00x z y z -=⎧⎨-=⎩, 令x =1,则y =1,z =1,所以n 1=(1,1,1). 因为平面P AD 的一个法向量为n 2=(1,0,0),所以121212cos ,3⋅<>==n n n n n n ,所以,由图可知二面角B -PD -A的余弦值为3.20.【答案】(1)因为2()e (1)x f x x x =-+,所以()(1)e 2(1)(1)(e 2)x x f x x x x '=+-+=+-,令()0f x '=得11x =-,2ln 2x =,()f x ',()f x 的变化如下表:()f x 在[1,2]-上的最小值是2(ln 2)1--,因为22e 90->,10e -<,212e 9e ->-,所以()f x 在[1,2]-上的最大值是22e 9-.(2)2()1e (2)(e 2)x x f x ax x x a x x x a -+=--+=---,所以()10f x ax x =-⇒=或e 20x x a ---=,设()e 2x g x x a =---,则()e 1x g x '=-,0x >时,()0g x '>,0x <时,()0g x '<, 所以()g x 在(0,)+∞上是增函数,在(,0)-∞上是减函数,()(0)1g x g a =--≥,且x →+∞,()g x →+∞,x →-∞,()g x →+∞,①当10a -->时,即1a <-时,()0g x =没有实根,方程()1f x ax =-有1个实根;②当10a --=时,即1a =-时,()0g x =有1个实根为零,方程()1f x ax =-有1个实根; ③当10a --<时,即1a >-时,()0g x =有2不等于零的实根,方程()1f x ax =-有3个实根.综上可得,1a >-时,方程()1f x ax =-有3个实根.21.【答案】(1)由题意知,1(1,0)F ,所以1PF 的方程是πtan (1)1)3y x x =-=-,代入抛物线可得231030x x -+=,则13x =,213x =(舍),即1(3P ,()25,0F ∴,11x ∴=,25x =,又设11(,0)n n F x --,(,0)n n F x , n n n+1P F F Q △是等边三角形,1(2n n n x x P ++代入抛物线得: 2113()2()4n n n n x x x x ++-=+,2113()2()4n n n n x x x x ---=+两式相减得: 1111113(2)()2()4n n n n n n n x x x x x x x +-+-+--+-=-,且110n n x x +--≠, 所以11823n n n x x x +--+=,118()()3n n n n x x x x +-∴---=, 所以数列{}1n n x x +-是等差数列,其中首项为214x x -=,公差是83. (2)由(1)184(21)4(1)33n n n x x n ++-=+-=, 2216(21)(21)499n S n n ∴=+=+, 211111()4(21)4(21)(21)82121n S n n n n n ∴=<=-++--+ 1211111111+)()+()]83352121n S S S n n ∴++<-+-+--+……1)21n =-<+. 选做题:请考生在22~23两题中任选一题作答,如果多做,按所做的第一题记分. 22.【答案】(1)由2sin 4cos ρθθ=,得2(sin )4cos ρθρθ=, 所以曲线C 的直角坐标方程为24y x =, (2)将直线l 的参数方程代入24y x =,得22sin 4cos 40t t αα--=. 设A 、B 两点对应的参数分别为1t ,2t ,则1224cos sin t t αα+=,1224sin t t α=-, ∴12AB t t =-==2απ=时,AB 的最小值为4.23.【答案】(1)由13ax -≤,得313ax --≤≤,即24ax -≤≤. 当0a >时,24x a a -≤≤,因为不等式()3f x ≤的解集是{}12x x -≤≤,所以2142a a ⎧-=-⎪⎪⎨⎪=⎪⎩,解得2a =;当0a<时,42xa a-≤≤,因为不等式()3f x≤的解集是{}12x x-≤≤,所以2241aa⎧-=⎪⎪⎨⎪=-⎪⎩,无解.所以2a=.(2)因为()()|21||21||(21)(21)|2 3333f x f x x x x x+--++--+==≥,所以要使()()3f x f xk+-<存在实数解,只需23k>.解得23k>或23k<-.所以实数k的取值范围是22(,)(,)33-∞-+∞U.。

相关文档
最新文档