局部阻力系数-实验报告

局部阻力系数-实验报告
局部阻力系数-实验报告

1

局部阻力系数实验台-实验报告

XXX

XXX 年XX 月XX 日

(一)实验目的

⒈学会用实验方法测定突扩、突缩局部管件在流体流经管路时的局部阻力系数。

2、测定管道局部水头损失系数,将突扩管的实测值与理论值比较,将突缩管的实测值与经验值比较。

3、掌握用测压管测量压强和用体积法测流量的实验技能。

(二)实验原理

局部阻力系数测定实验的主要部件为局部阻力实验管路,它由细管和粗管组成一个突扩和突缩组件。在阻力组件的两侧一定间距的断面上设有测压点,由测压点与测压板上相应的测压管相连接。当流体流经实验管路时,就可以测出各测压点所在截面上测压管水柱高及前后截面的水柱高差h ?;通过设置在实验台上的计量水箱,对实验管中的流体进行单位时间内的体积流量测定,可得到流体的平均流速,由此计算局部管件的局部阻力系数ζ。

1、突然扩大:(理论上)

2

21122

12

(1)

2(1)j A V h A g

A A ζ=-=-

测定时采用三点法计算,由于水柱高差w h h ?=中既存在局部阻力j h ,又含有沿程阻力f h ,所以可通过设置在突扩前后各测点读取数值后,经流长比例换算后,可得出j w f h h h =-。计算ζ:

2

1/2j V h g

ζ= 2、突然收缩:

经验值:2

1

0.5(1)A A ζ=-

缩,实验用四点法计算,同样,在读得突缩管段的水头损失后,按流长比例换算,分别将两端沿程损失除去,由此得:

2/

2j V h g

ζ=缩缩缩

(三)实验操作

1、启动水泵,然后慢慢打开出水阀门,使水流经过实验管路。在此过程中,观察和检查管路系统和测压管及其软管中有无气泡存在,应利用有效措施将系统中存在的气体排尽。

2、配合调节进水阀门和出水阀门,使各组压差达到测压管可测量的最大高度。在水流稳定时,测读各测压管的液柱高和前后的压差值。并在此工况下测定流量。

3、调节出水阀门,适当减小流量,测读在新的工况下的实验结果。 如此,可做3~5个实验点。(注意:各实验点的压差值不宜太接近)。

(四)实验报告

实验中各测量点的位置如下图所示:

其中水流方向从左到右,各测量点的距离为:

1,22,33,44,,55,6=12cm =24cm =12cm =6cm B B l l l l l l ==,,,

右端h6流出的水进入盛水箱的面积为21518.2273S cm =?=,盛水时间t 从5cm

处开始计时,到20cm 出停止计时,15h cm ?=,因此流量为S h

Q t

??=。 管的横截面积为:

24211/4 1.53910S D m π-==?,2

4222/4 4.90910S D m π-==?,

计算流速为:1212

,Q Q

V V S S =

=

1. 实验所得测试结果及实验装置的必要技术数据记入附表1中。

附表1

2. 计算出前后截面的水柱高度差值及相应工况的流量;各局部阻力组件的阻力

水头损失和局部阻力系数ζ填入附表2中。

计算过程与分析

突扩局部阻力系数 选取点:h 1,h 2,h 3

1.21,21,21,21,22,32,3

2,3

2,3

f j f f h h h l l h h h l l =??+?=

?=

?

1,22,31.22,3 1.22,3

2

j l h h h h h l ??=??-

=?-

2

1/2j V h g

ζ?= 由实验数据计算出的突扩局部阻力系数填在上表中,数值范围在 5.89~6.33之间,与理论值2

12

1)0.4711S S ζ=-

=(有较大差别;这可能与管内各处流速不相等有关。

突缩局部阻力系数 选取点:h 3,h 4,h 5,h 6

4,4,4,3,43,43,43,43,4,5,5,55,65,65,6

5,6

5,6

1

2

B B f B f B B fB f l l h h h h l l l l h h h h l l ?=?=?=

??=

?=

?=?

4,54,,5f B fB j h h h h ?=?+?+

4,54,,54,53,45,61

||||||2

j f B fB h h h h h h h ?=?-?-?=?-?-?

22

1/||/

22j j V V h h g g

ζ=?=缩

缩(1V 为在细管道的流速) 由实验数据计算出的突缩局部阻力系数填在上表中,数值范围在 1.14~1.21

之间,约为突扩局部阻力系数测量值的2倍,且大于1,似乎不太合理。测量得到的突缩阻力系数也远远大于经验值为2

1

0.5(1)0.3432A A ζ=-

=缩。这可能与粗管到细管连接处有大量微小气泡附在粗管内上表面有关,气泡使阻力大大增强;另外也可能是粗管到细管的连接比较粗糙有关。

实验三 管路局部阻力系数测定实验

实验三 管路局部阻力系数测定实验 一、实验目的要求: 1.掌握三点法,四点法测量局部阻力系数的技能。 2.通过对圆管突扩局部阻力系数的表达公式和突缩局部阻力系数的经验公式的实验与分析,熟悉用理论分析法和经验法建立函数式的途径。 3.加深对局部阻力损失机理的理解。 二、实验成果及要求 1.记录计算有关常数。 实验装置台号No d 1=D 1= 1.4 cm , d 2=d 3= d 4= D 2=1.9 cm , d 5=d 6=D 3= 1.4 cm , l 1—2=12cm , l 2—3=24cm , l 3—4=12cm , l 4—B =6cm , l B —5=6cm , l 5—6=6cm , 2 2 1) 1(A A e - ='ξ= 0.21 ,) 3 1(5.05A A s - ='ξ= 0.23 。 2.整理记录、计算表。 表1 记录表

表2 计算表 3.将实测ζ值与理论值(突扩)或公认值(突缩)比较。 三、实验分析与讨论 1.结合实验成果,分析比较突扩与突缩在相应条件下的局部损失大小关系: 1)不同R e 的突扩ξe 是否相同? 2)在管径比变化相同的条件下,其突扩ξe 是否一定大于突缩ξs ? 答:由式 g v h j 22 ζ = 及 ()21d d f =ζ 表明影响局部阻力损失的因素是v 和21d d 。由于有 突扩:2 211???? ? ?-=A A e ζ

突缩:???? ? ?-=2115.0A A s ζ 则有 () () 2 12 212115.0115.0A A A A A A K e s -= - -= = ζζ 当 5.021?A A 或 707.021?d d 时,突然扩大的水头损失比相应的突然收缩的要大。在本实验最大流量Q 下,突然扩大损失较突然缩小损失约大一倍,即817.160.3/54.6==js je h h 。 21d d 接近于1时,突然扩大的水流形态接近于逐渐扩大管的流动, 因而阻力损失显著减小。 2.结合流动仪演示的水力现象,分析局部阻力损失机理何在?产生突扩与 突缩局部阻力损失的主要部位在哪里?怎样减小局部阻力损失? 答:流动演示仪1-7型可显示突扩、突缩、渐扩、渐缩、分流、合流、阀道、绕流等三十多种内、外流的流动图谱。据此对于局部阻力损失的机理分析如下: 从显示的图谱可见,凡流道边界突变处,形成大小不一的漩涡区。漩涡是产生损失的主要根源。由于水质点的无规则运动和激烈的紊动,相互磨擦,便消耗了部分水体的自储能量。另外,当这部分低能流体被主流的高能流体带走时,还须克服剪切流的速度梯度,经质点间的动能交换,达到流速的重新组合,这也损耗了部分能量。这样就造成了局部阻力损失。 从流动仪可见,突扩段的漩涡主要发生在突扩断面以后,而且与扩大系数有关,扩大系数越大,漩涡区也越大,损失也越大,所以产生突扩局部阻力损失的主要部位在突扩断面的后部。而突缩段的漩涡在收缩断面均有。突缩前仅在死角区有小漩涡,且强度较小,而突缩的后部产生了紊动度较大的漩涡环区。可见产生突缩水头损失的主要部位是在突缩断面后。 从以上分析可知,为了减小局部阻力损失,在设计变断面管道几何边界形状时应流线型化或昼接近流线形,以避免漩涡的形成,或使漩涡区尽可能小。如欲减小管道的局部阻力,就应减小管径比以降低突扩段的漩涡区域;或把突缩进口的直角改为圆角,以消除突缩断面后的漩涡环带,可使突缩局部阻力系数减小到原来的21~101。突然收缩实验管道使

流体阻力实验报告

. 北京化工大学化工原理实验报告 实验名称:流体阻力实验 班级:化工11 姓名: 学号:2011011 序号: 同组人: 设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第套实验日期:2013-11-4

一、实验摘要 本实验使用104实验室UPRS Ⅲ型第7套实验设备,测量了水流经不锈钢管、镀锌管、突扩管、阀门、层流管的阻力损失。确定了摩擦系数和局部阻力系数的变化规律和影响因素。该实验提供了一种测量实际管路阻力系数的方法,其结果可为管路实际应用和工艺设计提供重要的参考。 关键词:流量,压降,雷诺数,摩擦系数,局部阻力系数 二、实验目的 1、测量湍流直管道的阻力,确定摩擦阻力系数。 2、测量湍流局部管道的阻力,确定局部阻力系数。 3、测量层流直管道的阻力,确定摩擦阻力系数。 三、实验原理 1、直管道和局部管道阻力损失e f h u p gZ u p gZ h +++-++=)2()2(2 2 22211 1ρρ (1) 其中h e =0,z 1=z 2,所以测出管道上下游截面的静压能、动能,代入方程即可求得阻力。 2、根据因次分析法可得: (1)直管道阻力损失2 2 u d l h f ?=λ……(2)。其中,l 为管道长度,d 为管道内 径,u 为管内平均流速。只要测定l ,d ,u ,和λ,代入方程即可求得阻力h f 。

其中,λ的理论值计算方法为:25 .0Re 3163.0=湍流λ ; Re 64 = 层流λ。 对于水平无变径直管道,根据式(1)、(2)可得到摩擦系数的计算方法 为221) (2u l p p d ??-=ρλ测量。 (2)管道局部阻力损失2 2 1 u h f ?=ζ……(3)。其中,ζ为管道局部阻力系数, u 为平均流速(突扩管对应细管流速u 1)。将ζ和u 代入方程即可求得局部阻力h f 。 其中,ζ的理论值计算方法为:2 2 1)1(A A - =突扩管ζ ;常数截止阀=ζ;常数球阀=ζ。 对于水平放置的管件,根据式(1)、(3)可得到局部阻力系数的计算方 法为2 21) 2u p p ?-=ρζ(阀门;2 1 122 2) (2-1u p p u ρ ζ-+ =突扩管。 四、实验流程和设备

局部阻力系数测定(给学生)

局部阻力系数测定 实 验 报 告 班级:___________ 学号:___________ 姓名:___________ 课程:___________

一、实验目的 1、学会量测突扩、突缩圆管局部阻力损失系数的方法。 2、加深对局部阻力损失的感性认识 3、加深局部阻力损失机理的理解。 二、实验原理 1、有压管道恒定流遇到管道边界局部突变的情况时,流动会分离形成剪切层, 剪切层流动不稳定,引起流动结构的重新调整,并产生旋涡,造成不可逆的能量耗散。与沿程因摩擦造成的分布损失不同,这部分损失可以看成是集中在管道边界的突变处,单位质量流体的能量损失称为局部水头损失,参见图1。 2、局部水头损失系数是局部水头损失与速度水头的比例系数,即 2 h j ζ= 当上下游断面平均流速不同时,应明确它对应的是那个速度水头。例如对于 突扩圆管就有 =ζj h 1和2h j ζ=之分。其他情况的局部水头损失系数在查表或使用经验公式确定时也应该注意这一点。通常情况下对应下游的速度水头。 3、局部水头损失的机理复杂,除了突扩圆管的情况以外,一般难于用解析

方法确定,而要通过实测来得到各种局部水头损失系数。 对于突扩圆管,在不考虑突扩段沿程阻力损失的前提下,可推导出局部阻力损失因数的表达式 ( )-1=1ζ2 , 2ζ2=1 -A 2 ( )1 2 1A 对于突缩圆管,局部阻力损失因数的经验公式: 1-( )=ζ1 2 0.5 三、实验步骤 1、做好实验前的各项准备工作,记录与实验有关的常数。 2、往恒压水箱中充水,排除实验管道中的滞留气体。待水箱溢流后,检查泄水阀全关时,各测压管液面是否齐平,若不平,则需排气调平。 3、打开泄水阀至最大开度,等流量稳定后,测记测压管读数,同时用体积法测量流量。 4、调整泄水阀不同开度,重复上述过程5次,分别测记测压管读数及流量。 5、实验完成后关闭泄水阀,检查测压管液面是否齐平,如平齐,关闭电源实验结束,否则,需重做。 四、实验数据及整理 1、基础数据:d 1= m; d 2= m; d 3= m ; 水温= ℃

沿程阻力 中国石油大学(华东)流体力学实验报告

实验七、沿程阻力实验 一、实验目的填空 1.掌握测定镀锌铁管管道沿程阻力系数的方法; 2.在双对数坐标纸上绘制λ-Re的关系曲线; 3.进一步理解沿程阻力系数随雷诺数的变化规律。 二、实验装置 在图1-7-1下方的横线上正确填写实验装置各部分的名称 本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。 另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。 F1——文秋利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图1-7-1 管流综合实验装置流程图 三、实验原理在横线正确写出以下公式 本实验所用的管路是水平放置且等直径,因此利用能量方程式可推得管路两点间的沿程水头

损失计算公式: 2 2f L v h D g λ = (1-7-1) 式中: λ——沿程阻力系数; L ——实验管段两端面之间的距离,m ; D ——实验管内径,m ; g ——重力加速度(g=9.8 m/s 2); v ——管内平均流速,m/s ; h f ——沿程水头损失,由压差计测定。 由式(1-7-1)可以得到沿程阻力系数λ的表达式: 2 2f h D g L v λ= (1-7-2) 沿程阻力系数λ在层流时只与雷诺数有关,而在紊流时则与雷诺数、管壁粗糙度有关。 当实验管路粗糙度保持不变时,可得出该管的λ-Re 的关系曲线。 四、实验要求 填空 1.有关常数 实验装置编号:No. 7 管路直径:D = 1.58 cm ; 水的温度:T = 13.4 ℃; 水的密度:ρ= 0.999348g/cm 3; 动力粘度系数:μ= 1.19004 mPa ?s ; 运动粘度系数:ν= 0.011908 cm 2/s ; 两测点之间的距离:L = 500 cm

局部阻力损失实验报告

局部阻力损失实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

局部阻力损失实验 前言: 工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。 在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。 摘要: 本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。进而加深对局部阻力损失的理解。 三、实验原理 写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得: 1.突然扩大 采用三点法计算,下式中12 f h -由 23 f h -按流长比例换算得出。 实测 2 2 1 12 21212[()][()]22je f p p h Z Z h g g αυαυγ γ -=+ + -+ + + 理论 212 (1)e A A ζ'=-

管路阻力实验报告

实验三 管路阻力的测定 一、实验目的 1.学习管路阻力损失h f ,管子摩擦系数λ及管件、阀门的局部阻力系数ζ的测定方法,并通过实验了解它们的变化,巩固对流体阻力基本理论的认识; 2.测定直管摩擦系数λ与雷诺数Re 的关系; 3.测定管件、阀门的局部阻力系数。 二、基本原理 流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会产生流体阻力损失。流体在流动时的阻力有直管摩擦阻力(沿程阻力)和局部阻力(流体流经管体、阀门、流量计等所造成的压力损失。 1.λ-Re 关系的测定: 流体流经直管时的阻力损失可用下式计算: 2 2u d L h f ?= λ ;-直管阻力损失,式中:kg J h f / L -直管长度,m ; d -直管内径,m ; u -流体的流速,m/s ; λ-摩擦系数,无因次。 已知摩擦系数λ是雷诺数与管子的相对粗糙度(△/d )的函数,即 λ=(Re ,△/d )。为了测定λ-Re 关系,可对一段已知其长度、管径及相对粗糙度的直管,在一定流速(也就是Re 一定)下测出阻力损失,然后按下式求出摩擦系数λ: 为: 对于水平直管,上式变: 可根据伯努利方程求出阻力损失=2 )(2 22 212 1212 u u p p g Z Z h h u L d h f f f -+ -+ -=?ρ λ ρ 2 1p p h f -= J/kg 其中,21p p -为截面1与2间的压力差,Pa ;ρ流体的密度,kg/m 3。 用U 形管压差计测出两截面的压力,用温度计测水温,并查出其ρ、μ值,即可算出h f ,并进而算出λ。由管路上的流量计可知当时的流速,从而可计算出此时的Re 数;得到一个λ-Re 对应关系,改变

流体阻力实验报告

北京化工大学化工原理实验报告 实验名称:流体流动阻力测定 班级:化工10 学号:2010 姓名: 同组人: 实验日期:2012.10.10

流体阻力实验 一、摘要 通过测定不同阀门开度下的流体流量v q ,以及测定已知长度l 和管径d 的光滑直管和粗糙直管间的压差p ?,根据公式2 2u l p d ρλ?=,其中ρ为实验温度下流体的密度;流体流速 24d q u v π= ,以及雷诺数μ ρdu =Re (μ为实验温度下流体粘度),得出湍流区光滑直管和粗糙直管在不同Re 下的λ值,通过作Re -λ双对数坐标图,可以得出两者的关系曲线,以及和光滑管遵循的Blasius 关系式比较关系,并验证了湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数。由公式2 22 1 21p u u ρζ?+ =- 可求出突然扩大管的局部阻力系数,以及由 Re 64= λ求出层流时的摩擦阻力系数λ,再和雷诺数Re 作图得出层流管Re -λ关系曲线。 关键词:摩擦阻力系数 局部阻力系数 雷诺数Re 相对粗糙度ε/d 二、实验目的 1、掌握测定流体流动阻力实验的一般试验方法; 2、测定直管的摩擦阻力系数λ及突然扩大管的局部阻力系数ζ; 3、测定层流管的摩擦阻力系数λ; 4、验证湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数; 5、将所得光滑管的λ-Re 方程与Blasius 方程相比较。 三、实验原理 1、直管阻力损失函数:f (h f ,ρ,μ, l ,d ,ε, u )=0 应用量纲分析法寻找hf (ΔP /ρ)与各影响因素间的关系 1)影响因素 物性:ρ,μ 设备:l ,d ,ε 操作:u (p,Z )

局部阻力系数测定实验

局部阻力系数的测定 一、实验目的 1、用实验方法测定两种局部管件(实扩、突缩)在流体流经管路时的局部阻力系数。 2、学会局部水头损失的测定方法。 1、实验原理及实验装置 局部阻力系数测定的主要部件为局部阻力实验管路,它由细管和粗管组成一个突扩和一个突缩组件,并在等直细管的中间段接入一个阀门组件。每个阻力组件的两侧一定间距的断面上都设有测压孔,并用测压管与测压板上相应的测压管相联接。当流体流经实验管路时,可以测出各测压孔截面上测压管的水柱高度及前后截面的水柱高度差 h。实验时还需要测定实验管路中的流体流量。由此可以测算出水流流经各局部阻力组件的水头损失hζ,从而最后得出各局部组件的局部阻力系数ζ。 ①突然扩大:

2 1-A 2 1( )=ζ2g 1 V 2 ( )1 2 A A -1=j h 理论上: 在实验时,由于管径中即存在局部阻力,又含有沿程阻力,当对突扩前后两断面列能量方程式时,可得hw=hj+hf ,其中hw 可由(h 1-h 3)测读,hf 可由(h 2-h 3)测读,按流长比例换算后,hj=hw-h f 。由此得出: 2 h j ζ=② 突然收缩: 理论上,ζ缩=0.5(1-A 2/A 1),实验时,同样,在读得突缩管段的水头损失后,按流长比例换算,分别将两端沿程损失除去,由此得: 缩 缩 2 h j ζ= 二、实验操作 1、实验前的准备 ①熟悉实验装置的结构及其流程。 ②进行排气处理。 ③启动水泵,然后慢慢打开出水阀门时水流经过实验管路。在此过程中(并关闭其他实验管的进水阀和出水阀),观察和检查管路系统和测压管及其导管中有无气泡存在,应尽可能利用试验管路上的放气阀门或用其它有效措施将系统中存在的气体排尽。 2、进行实验,测录数据 ①调节进水阀门和出水阀门,使各组压差达到测压管可测量的最大高度。 ②在水流稳定时,测读测压管的液柱高和前后的压差值。 ③在此工况下测定流量。 ④调节出水阀门,适当减小流量,测读在新的工况下的实验结果。 如此,可做3~5个实验点。(注意:实验点的压差值不宜太接近)。 三、实验数据处理 1、将实验所得测试结果及实验装置的必要技术数据记入如下附表1中。

阀门局部阻力系数的测定指导书

阀门局部阻力系数的测定 一、 实验目的 (1)掌握管道沿程阻力系数和局部阻力系数的测定方法。 (2)了解阻力系数在不同流态,不同雷诺数下的变化情况。 (3)测定阀门不同开启度时(全开、约30°、约45°三种)的阻力系数。 (4)掌握三点法、四点法量测局部阻力系数的技能。 二、实验仪器 图1实验仪器简图 1. 水箱2.供水管3. 水泵开关4. 进水阀门5.细管沿程阻力测试段6.突扩7.粗管沿程阻力测试段8. 突缩9.测压管10.实验阀门 11.出水调节阀门 12.计量箱 13.量筒14.回水管15.实验桌 三、阀门阻力实验原理 图2 阀门的局部水头损失测压管段 对1、4两断面列能量方程式,可求得阀门的局部水头损失及2(L 1+ L 2)长 度上的沿程水头损失,以h w1表之,则 14 11h p p h w ?=-= γ 对2、3两断面列能量方程式,可求得阀门的局部水头损失及(L 1+ L 2)长 度上的沿程水头损失,以h w2表之,则

23 22h p p h w ?=-= γ ∴阀门的局部水头损失h 1应为: 1212h h h ?-?= 亦即 122 22h h g v ?-?=ζ ∴阀门的局部水头损失系数为: 2122) 2(v g h h ?-?=ζ 式中v 为管道的平均流速 四、实验步骤及要求 (1)本实验共进行三组实验:阀门全开、开启30°、开启45°,每组实验做三个实验点。 (2)开启进水阀门,使压差达到测压计可量测的最大高度。 (3)测读压差,同时用体积法量测流量 (4)每组三个实验点的压差植不要太接近 (5)绘制d=f (ζ)曲线。 (五)问题讨论: (1)同一开启度,不同流量下,ζ值应为定值抑或变值,何故? (2)不同开启度时,如把流量调至相等,ζ值是否相等? (六)绘图:

流体流动阻力的测定实验报告

银纳米粒子制备及光谱和电化学性能表征 - 1 - 流体流动阻力的测定 王晓鸽 一、实验目的 1. 掌握测定流体流经直管、管件和阀门时阻力损失的实验方法。 2. 测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区λ与Re 的关系曲线。 3. 测定流体流经管件、阀门时的局部阻力系数ξ。 4. 学会流量计和压差计的使用方法。 5. 识辨组成管路的各种管件、阀门,并了解其作用。 二、实验原理 流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1.直管阻力摩擦系数 的测定 流体在水平等径直管中稳定流动时,阻力损失为: 即, 式中: —直管阻力摩擦系数,无因次; —直管内径, ; —流体流经 米直管的压力降, ; —单位质量流体流经 米直管的机械能损失, ;

—流体密度,; —直管长度,; —流体在管内流动的平均流速,。 层流流时, 湍流时是雷诺准数和相对粗糙度的函数,须由实验确定。 欲测定,需确定、,测定、、、等参数。、为装置参数(装置参数表格中给出),、通过测定流体温度,再查有关手册而得,通过测定流体流量,再由管径计算得到。可用型管、倒置型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。求取和后,再将和标绘在双对数坐标图上。 2.局部阻力系数的测定 局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。本实验采用阻力系数法。 流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。即: 因此, 式中:—局部阻力系数,无因次; -局部阻力压强降,;(本装置中,所测得的压降应扣除两测压口间直管段的压降,直管段的压降由直管阻力实验结果求取。)—流体密度,; —流体在管内流动的平均流速,。 根据连接阀门两端管径,流体密度,流体温度(查流体物性、),

化工原理实验~流体流动阻力系数的测定实验报告

流体流动阻力系数的测定实验报告 一、实验目的: 1、掌握测定流体流动阻力实验的一般实验方法。 2、测定直管的摩擦阻力系数λ及突然扩大管与阀门的局部阻力系数ξ。 3、验证湍流区内摩擦阻力系数λ为雷诺系数Re与相对粗糙度的函数。 4、将所得光滑管的λ—Re方程与Blasius方程相比较。 二、实验器材: 流体阻力实验装置一套 三、实验原理: 1、直管摩擦阻力 不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性与涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度与方向突然变化,产 生局部阻力。影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得 到在一定条件下具有普遍意义的结果,其方法如下。 流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为 △P=f (d, l, u,ρ,μ,ε) 引入下列无量纲数群。 雷诺数Re=duρ/μ 相对粗糙度ε/ d 管子长径比l / d 从而得到 △P/(ρu2)=ψ(duρ/μ,ε/ d, l / d) 令λ=φ(Re,ε/ d) △P/ρ=(l / d)φ(Re,ε/ d)u2/2 可得摩擦阻力系数与压头损失之间的关系,这种关系可用试验方法直接测定。 h f=△P/ρ=λ(l / d)u2/2 ——直管阻力,J/kg 式中,h f l——被测管长,m d——被测管内径,m u——平均流速,m/s λ——摩擦阻力系数。 当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。根据伯努利方程找出静压强差 与摩擦阻力系数的关系式,即可求出摩擦阻力系数。改变流速可测出不同Re下的摩擦 阻力系数,这样就可得出某一相对粗糙度下管子的λ—Re关系。 (1)、湍流区的摩擦阻力系数 在湍流区内λ=f(Re,ε/d)。对于光滑管,大量实验证明,当Re在3×103~105范围内,λ与Re的关系遵循Blasius关系式,即λ=0、3163 / Re0、25 对于粗糙管,λ与Re的关系均以图来表示。 2、局部阻力

流体流动阻力实验报告

西南民族大学学生实验报告 课程名称:化工原理实验教师:实验室名称:BS-305 教学单位:化环学院专业:中药学班级:1101班 姓名:学号:实验日期:10.31 实验成绩:批阅教师:日期: 一.实验名称:实验一流体流动阻力的测定 二.实验目的: ① 握测定流体流动阻②测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。③测定层流管的摩擦阻 力。④验证湍流区内摩擦系数λ为雷诺数Re和相对粗糙度的函数。⑤识别组成管路的各种管件、阀门,并了解其作用。 三.基本原理: 1.直管摩擦阻力系数λ测定 流体在水平等径直管中稳定流动时,阻力损失为: 2 2 f p l u h d λ ρ ? ==?即, 2 2 lu p d ρ λ? = 式中 f h——直管阻力,J/kg;l——被测管长,m;d——被测管内径,m;u——平均流速,m/s;λ——摩擦阻力系数。 滞流(层流)时, 64 Re λ=湍流时,雷诺数 du Re ρ μ = A q u v = 2.局部阻力系数ξ的测定: 2 2 f u hξ =,即 2 2 u p ρ ξ ' ? = 四.实验装置与流程: 1、装置组成部分 本实验装置如图1;装置相关参数在化工原理实验指导书上p21的表2-1所示。由于管子的材质存在批次的差异,所以可能会产生管径的不同,所以表2-1中管内径只能做参考。

图1:流体阻力实验装置图 1—水箱;2—离心泵;3—压力表;4—孔板流量计;5—上水阀;6—高位水槽 7—曾流光流量调节阀;8—阀门管线开关阀;9—球阀;10—截止阀;11—光滑管开关阀 12—粗糙管开关阀;13—突然扩大管开关阀;14—流量调节阀 2、开车前准备 3、流体流动阻力实验步骤 ①启动离心泵,打开被测管线上的开关阀及面板上与其对应的切换阀,关闭其他开关阀和切换阀,确 保测压点一一对应。 ②系统要排净气体使液体连续流动。设备和测压管线中的气体都要排净,检验的方法是当流量为零时, 观察U形压差计的两液面是否水平。 ③读取数据时,应注意稳定后再读数。测定直管摩擦阻力时,流量由大到小,充分利用面板量程测取 7组数据。本次实验层流管不做测定。 ④测完一根管数据后,应将流量调节阀关闭,观察压差计的两液面是否水平,水平时才能更换另一条 管路,否则全部数据无效。同时要了解各种阀门的特点,学会使用阀门,注意阀门的切换,同时要 关严,防止内漏。 4、停车操作 五、实验数据处理 1、原始数据记录表如下: 根据金属温度计读出来的温度,然后通过查表找出对应水的密度以及粘度并且填入下表: 数据记录与处理表 光滑管 水流量/ m3.h-1 1.0 1.2 1.5 1.7 2.0 2.5 3.0 水温/℃15.5 15.8 16.0 16.2 16.5 16.7 17.0 密度ρ(kg/m3 999.0 998.9 998.9 998.9 998.8 998.8 998.7 粘度 μ(3 10- ?Pa·s) 1.1258 1.1111 1.1111 1.1111 1.0970 1.0970 1.0828 管内径:20.0 mm 粗糙管 水流量/m3.h-1 1.0 1.2 1.5 1.7 2.0 2.5 3.0 水温/℃12.0 12.5 13.0 13.5 14.0 14.2 14.8 密度ρ(kg/m3999.5 999.4 999.3 999.2 999.2 999.2 999.1 粘度μ(3 10- ? Pa·s) 1.2363 1.2195 1.2028 1.1869 1.1709 1.1700 1.1404 管内径:21.0 mm 局部阻力 水流量/ m3.h-1 1.0 1.2 1.5 1.7 2.0 2.5 3.0 水温/℃17.8 18 18.1 18.2 18.2 18.2 18.2 密度ρ(kg/m3998.6 粘度μ( 3 10- ? Pa·s) 1.0559

实验四 摩擦系数和局部阻力系数的测定

汕 头 大 学 实 验 报 告 学院:工学院系:机电系年级:2014级 姓名:成吉祥学号:2014124089 成绩: 实验四 摩擦系数和局部阻力系数的测定 一、实验目的 摩擦系数和局部阻力系数是管道系统设计中用以计算能量损耗的重要参数,它的数值大小,遵循着一定的规律,实验的目的是通过测定,了解和掌握这些系数的规律。 二、实验原理 流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会引起流体压力损失。流体在流动时所产生的阻力有直管摩擦阻力和局部阻力。 1、直管阻力 流体流过直管时的摩擦系数与阻力损失之间的关系可用下式表示 2 2 u d l h f ??=λ 式中:f h :直管阻力损失,J/kg ; l :直管长度,m ; d :直管内径,m ; u :流体的速度,m/s ; λ:摩擦系数。 在一定的流速和雷诺数下,测出阻力损失,按下式即可求出摩擦系数λ。 2 2 u l d h f ? ?=λ 阻力损失f h 可通过对两截面间作机械能衡算求出 2 )(2 2 21 2 121u u p p g z z h f -+-+ -=ρ 对于水平等径直管21z z =,21u u =,上式可简化为 ρ 2 1p p h f -=

式中:f h :两截面的压强差,N/m2; ρ:流体的密度,kg/m3。 只要测出两截面上静压强的差即可算出f h 。两截面上静压强的差可用U 形管或倒U 型管压差计测出。流速由流量计测得,在已知d 、u 的情况下只需测出流体的温度t ,查出该温度下流体的ρ、μ,则可求出雷诺数Re ,从而得出流体流过直管的摩擦系数λ与雷诺数Re 的关系。 2、局部阻力 流体流过阀门、扩大、缩小等管件时,所引起的阻力损失可用下式计算 )2 (2 u h f ζ=(J/kg ) (5) 式中z 为局部阻力系数, z 的值一般都由实验测定。计算局部阻力系数时应注意扩大、缩小管件的阻力损失f h 的计算。 三、实验注意事项 1、各自循环供水实验均需注意:计量后的水必须倒回原实验装置的水斗内,以保持自循环供水(此注意事项后述实验不再提示)。 2、稳压筒内气腔越大,稳压效果越好。但稳压筒的水位必须淹没连通管的进口,以免连通管进气,否则需拧开稳压筒排气螺丝提高筒内水位;若稳压筒的水位高于排气螺丝口,说明有漏气,需检查处理。 3、传感器与稳压筒的连接管要确保气路通畅,接管及进气口均不得有水体进入,否则需清除。 四、实验原始数据记录 1、2 号测头距离0.25米,3、4号测头距离0.5米,规格:大管内径:21.2mm , 水温:20℃,零流速水位:580.0mm ,左小管内径12.9mm ,右小管内径:13.4mm 序号 各测点水位(mm ) 流量 流量(升/秒) 1 2 3 4 5 6 体积(升) 时间(秒) 1 541.9 526.0 529.5 527.8 516.5 474.0 1.05 16.09 0.0653 2 529.6 510.0 515.7 513.0 498.0 444.5 1.15 15.56 0.0739 3 505.5 482.0 489.4 486.6 464.0 389.3 1.15 12.90 0.0891 4 495.0 465.0 475.0 470.1 445.0 357.5 1.10 11.24 0.0979 5 484.4 452.0 462.0 458.1 427.8 331.2 1.20 11.80 0.1017 6 438.0 394.0 420.0 412.1 357.5 223.0 1.15 9.40 0.1223

流体阻力实验报告(借鉴材料)

化工原理实验报告 实验名称:流体流动阻力测定 班级: 学号: 姓名: 同组人: 实验日期:

流体阻力实验 一、摘要 通过测定不同阀门开度下的流体流量v q ,以及测定已知长度l 和管径d 的光滑直管和粗糙直管间的压差p ?,根据公式22u l p d ρλ?=,其中ρ为实验温度下流体的密度;流 体流速24d q u v π= ,以及雷诺数μ ρdu =Re (μ为实验温度下流体粘度),得出湍流区光滑直管和粗糙直管在不同Re 下的λ值,通过作Re -λ双对数坐标图,可以得出两者的关系曲线,以及和光滑管遵循的Blasius 关系式比较关系,并验证了湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数。由公式2 22 1 21p u u ρζ ?+ =- 可求出突然扩大管的局 部阻力系数,以及由Re 64=λ求出层流时的摩擦阻力系数λ,再和雷诺数Re 作图得出层 流管Re -λ关系曲线。 关键词:摩擦阻力系数 局部阻力系数 雷诺数Re 相对粗糙度ε/d 二、实验目的 1、掌握测定流体流动阻力实验的一般试验方法; 2、测定直管的摩擦阻力系数λ及突然扩大管的局部阻力系数ζ; 3、测定层流管的摩擦阻力系数λ; 4、验证湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数; 5、将所得光滑管的λ-Re 方程与Blasius 方程相比较。 三、实验原理 1、直管阻力损失函数:f (h f ,ρ,μ, l ,d ,ε, u )=0 应用量纲分析法寻找hf (ΔP /ρ)与各影响因素间的关系 1)影响因素 物性:ρ,μ 设备:l ,d ,ε 操作:u (p,Z ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1], l [L] ,d [L],ε[L],u [LT -1], h f [L 2 T -2] 3)选基本变量(独立,含M ,L ,T ) d ,u ,ρ(l ,u ,ρ等组合也可以) 4)无量纲化非基本变量 μ:π1=μρa u b d c [M 0L 0T 0] =[ML -1 T -1][ML -3]a [LT -1]b [L]c ? a=-1,b=-1,c=-1

局部阻力损失实验报告

局部阻力损失实验 前言: 工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。 在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。 摘要: 本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。进而加深对局部阻力损失的理解。 三、实验原理 写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得: 1.突然扩大 采用三点法计算,下式中12 f h -由 23 f h -按流长比例换算得出。 实测 2 2 1 12 21212[()][()]22je f p p h Z Z h g g αυαυγ γ -=+ + -+ + + 理论 212 (1)e A A ζ'=- 2.突然缩小 采用四点法计算,下式中B 点为突缩点,4f B h -由 34 f h -换算得出, 5 fB h -由 56 f h -换算 得出。 实测 2 2 5 54 44455[()][()]22js f B fB p p h Z h Z h g g αυαυγ γ --=+ + --+ + +

流体流动阻力的测定

实验名称:流体流动阻力的测定 一、实验目的及任务: 1.掌握测定流体流动阻力实验的一般方法。 2.测定直管的摩擦阻力系数及突然扩大管的局部阻力系数。 3.验证湍流区内摩擦阻力系数为雷诺数和相对粗糙度的函数。 4.将所得光滑管的方程与Blasius方程相比较。 二、实验原理: 流体输送的管路由直管和阀门、弯头、流量计等部件组成。由于粘性和涡流作用,流体在输送过程中会有机械能损失。这些能量损失包括流体流经直管时的直管阻力和流经管道部件时的局部阻力,统称为流体流动阻力。 1.根据机械能衡算方程,测量不可压缩流体直管或局部的阻力 如果管道无变径,没有外加能量,无论水平或倾斜放置,上式可简化为: Δp为截面1到2之间直管段的虚拟压强差,即单位体积流体的总势能差,通过压差传感器直接测量得到。 2.流体流动阻力与流体性质、流道的几何尺寸以及流动状态有关,可表示为: 由量纲分析可以得到四个无量纲数群: 欧拉数,雷诺数,相对粗糙度和长径比 从而有 取,可得摩擦系数与阻力损失之间的关系:

从而得到实验中摩擦系数的计算式 当流体在管径为d的圆形管中流动时,选取两个截面,用压差传感器测出两个截面的静压差,即可求出流体的流动阻力。根据伯努利方程摩擦系数与静压差的关系,可以求出摩擦系数。改变流速可测得不同Re下的λ,可以求出某一相对粗糙度下的λ-Re关系。 在湍流区内摩擦系数,对于光滑管(水力学光滑),大量实验证明,Re在氛围内,λ与Re的关系遵循Blasius关系式,即 对于粗糙管,λ与Re的关系以图来表示。 3.对局部阻力,可用局部阻力系数法表示: 4. 对于扩大和缩小的直管,式中的流速按照细管的流速来计算。 对一段突然扩大的圆直管,局部阻力远大于其直管阻力。由忽略直管阻力时的伯努利方程 可以得到局部阻力系数的计算式: 式中,、分别为细管和粗管中的平均流速,为2,1截面的压差。 突然扩大管的理论计算式为:,、分别为细管和粗管的流通截面积。 三、实验流程: 本实验装置如图1所示,管道水平安装,水循环使用,其中管5为不锈钢管,测压点之间距,内径;管6为镀锌钢管,测压点间距离,内径22..5mm;管7为突然扩大管,由扩大至。各测量元件由测压口与压差传感器相连,通过管口的球阀切换被测管路,系统流量由涡

化工原理流体阻力实验报告北京化工大学

化工原理-流体阻力实验报告(北京化工大学)

————————————————————————————————作者:————————————————————————————————日期: ?

北京化工大学 化工原理实验报 告 实验名称: 流体阻力实验 班级:化工1305班 姓名:张玮航 学号: 2013011132 序号: 11 同组人:宋雅楠、陈一帆、陈骏 设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第4套实验日期:2015-11-27

一、实验摘要 首先,本实验使用U PRS Ⅲ型第4套实验设备,通过测量不同流速下水流经不锈钢管、镀锌管、层流管、突扩管、阀门的压头损失来测定不同管路、局部件的雷诺数与摩擦系数曲线。确定了摩擦系数和局部阻力系数的变化规律和影响因素,验证在湍流区内λ与雷诺数Re 和相对粗糙度的函数。该实验结果可为管路实际应用和工艺设计提供重要的参考。 结果,从实验数据分析可知,光滑管、粗糙管的摩擦阻力系数随Re 增大而减小,并且光滑管的摩擦阻力系数较好地满足Bl asui s关系式:0.25 0.3163Re λ= 。 突然扩大管的局部阻力系数随Re 的变化而变化。 关键词:摩擦系数,局部阻力系数,雷诺数,相对粗糙度 二、实验目的 1、掌握测定流体流动阻力实验的一般实验方法: ①测量湍流直管的阻力,确定摩擦阻力系数。 ②测量湍流局部管道的阻力,确定摩擦阻力系数。 ③测量层流直管的阻力,确定摩擦阻力系数。 2、验证在湍流区内摩擦阻力系数λ与雷诺数Re 以及相对粗糙度的关系。 3、将实验所得光滑管的λ-Re 曲线关系与B lasiu s方程相比较。 三、实验原理 1、 直管阻力 不可压缩流体在圆形直管中做稳定流动时,由于黏性和涡流的作用会产生摩擦阻力(即直管阻力);流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然变化,会产生局部阻力。由于分子的流动过程的运动机理十分复杂,目前不能用理论方法来解决流体阻力的运算问题,必须通过实验研究来掌握其规律。为了减少实验的工作量、化简工作难度、同时使实验的结果具有普遍的应用意义,应采用基于实验基础的量纲分析法来对直管阻力进行测量。 利用量纲分析的方法,结合实际工作经验,流体流动阻力与流体的性质、流体流经处的几何尺寸、流体的运动状态有关。可表示为:()u l d f p ,,,,,μρε=?。 通过一系列的数学过程推导,引入以下几个无量纲数群:

摩擦系数和局部阻力系数的测定详解

汕头大学实验报告 学院:工学院系:机电系年级: 14机电姓名:莫智斌学号:2014124066 组:¥ 实验四、摩擦系数和局部阻力系数的测定 实验小组成员:#####费玉洁,薛栋栋等五人计算:## 莫智斌校核:# 实验时间2016 年5 月5 日晚上8 时 一、实验目的和要求 摩擦系数和局部阻力系数是管道系统设计中用以计算能量损耗的重要参数,它的数值大小,遵循着一定的规律,实验的目的是通过测定,了解和掌握这些系数的规律。 二、主要仪器设备 伯努利实验仪 设备流程图

三、实验步骤 1.泵启动:首先对水箱进行灌水,然后关闭出口阀,打开总电源和仪表开 关,启动水泵,待电机转动平稳后,注意观察水箱水位是否稳定。 2. 静水压强:在水箱水位稳定、管路出口阀关闭的情况下,记录零流速水 位于表4。 3.流量调节:开启管路出口阀,调节流量,让流量从1 到3m3/h 范围内变 化。每次改变流量,待流动达到稳定后,在表4 记下对应测点的压差值。 4.实验结束:关闭出口阀,关闭水泵和仪表电源,清理装置。 四、实验数据记录 表4 阻力测定记录表格 实验日期:实验者莫智斌等六人设备号:ZB-3 型第2 号 1、2 号测头距离0.25 米;3、4号测头距离0.5米; 规格:大管内径:21.2mm, 水温:24.5 C ,零流速水位:582.1mm ,左小管内径12.9mm ,右小管内径: 13.4mm 序号各测头水位(mm)流量流量 l/s 1 2 3 4 5 6 体积/ml 时间/s 零流速58 58 2.5 582 .5 582 .5 581.5 581. 5 # # # 1 57 8.5 57 4.5 575 574 .5 573 566 1640 70 0.234

局部阻力系数测定实验

伯努力压差板供水箱 恒压水箱 颜色罐 压差板沿程实验管局部实验管文丘里实验管 伯努力实验管 雷诺实验管 计量水箱 回水管 局部阻力系数的测定 一、实验目的 1、用实验方法测定两种局部管件(实扩、突缩)在流体流经管路时的局部阻力系数。 2、学会局部水头损失的测定方法。 1、实验原理及实验装置 局部阻力系数测定的主要部件为局部阻力实验管路,它由细管和粗管组成一个突扩和一个突缩组件,并在等直细管的中间段接入一个阀门组件。每个阻力组件的两侧一定间距的断面上都设有测压孔,并用测压管与测压板上相应的测压管相联接。当流体流经实验管路时,可以测出各测压孔截面上测压管的水柱高度及前后截面的水柱高度差h 。实验时还需要测定实验管路 中的流体流量。由此可以测算出水流流经各局部阻力组件的水头损失h ζ,从而最后得出各局部 组件的局部阻力系数ζ。 ① 突然扩大:

2 1-A 2 1( )=ζ2g 1V 2 ( )12 A A -1=j h 理论上: 在实验时,由于管径中即存在局部阻力,又含有沿程阻力,当对突扩前后两断面列能量方程式时,可得hw=hj+hf,其中hw 可由(h 1-h 3)测读,hf 可由(h 2-h 3)测读,按流长比例换算后,hj=hw-h f 。由此得出: 2 h j ζ=② 突然收缩: 理论上,ζ缩=0.5(1-A 2/A 1),实验时,同样,在读得突缩管段的水头损失后,按流长比例换算,分别将两端沿程损失除去,由此得: 缩 缩 2 h j ζ= 二、实验操作 1、实验前的准备 ①熟悉实验装置的结构及其流程。 ②进行排气处理。 ③启动水泵,然后慢慢打开出水阀门时水流经过实验管路。在此过程中(并关闭其他实验管的进水阀和出水阀),观察和检查管路系统和测压管及其导管中有无气泡存在,应尽可能利用试验管路上的放气阀门或用其它有效措施将系统中存在的气体排尽。 2、进行实验,测录数据 ①调节进水阀门和出水阀门,使各组压差达到测压管可测量的最大高度。 ②在水流稳定时,测读测压管的液柱高和前后的压差值。 ③在此工况下测定流量。 ④调节出水阀门,适当减小流量,测读在新的工况下的实验结果。 如此,可做3~5个实验点。(注意:实验点的压差值不宜太接近)。 三、实验数据处理 1、将实验所得测试结果及实验装置的必要技术数据记入如下附表1中。

相关文档
最新文档