行列式的计算技巧

行列式的计算技巧
行列式的计算技巧

行列式的计算技巧

行列式的计算技巧很多,在这里,我们介绍常见的一些行列式的计算技巧,主要包括 行和或列和相等,爪型(歪爪型)、范德蒙(伪范德蒙)、加边法、递推降阶法、层层递加(减)法等等。

方法1 行(列)和相等

这类行列式的计算一般把行列式的行全部加到第一行,或者把所有的列全部加到第一列,习惯上,我们可以全部加到第一列,提取公因子后,第一列全部变成1,从而方便我们植1造0,或者在此时观察行列式的特点, 进一步化成上三角或者下三角来进行计算。

例1 .兰州大学2004招收攻读硕士研究生考试工试题第四大题第(1)小题。求如下行列式的值。

121

211231

2

3n n n n

x a a a a x a a D a a a a a a a x

+=

[分析] 我们再仔细看一下,每行的元素的和数都是一样的,那么我们从第2列开始到第n+1列都加到第1列,现提出公因式,这样行列式的次数就降了一次。

解:

1211221

211

2

323

12

32

31

11

()11n

i n i n

n i n

i n n

n i i n n

i

n

i n

i i a x

a a a a a a a x

x a a x

a a D a x a a a a x

a a a a a x

a x

a a x

==+===++=

=+++∑∑∑∑∑

对行列式

x

a a a a a a a x a a a n

n n

32

322211111

进行观察,此时一般有两种途径,一种是在第一列造0,把第二行开始后的每一行都减去第一行,或者利用第一列的1,把第一列的倍数加到其他列来造0,具体采用哪个看具体问题,在本题中,可以考虑把第一列的1a -倍加到第2列, 第一列的2a -倍加到第3列,

,第一列的n a -倍加到最后一列,。

从而有

)

())()((10

1001

000

1)(1111)(211

231

223121

1

3232221

11n n

i i n

n

i i n

n n n

i i n a x a x a x x a a x a a a a a a a a a x x a x a a a a a a a x a a a x a D ---+=------+=+=∑∑∑===+

方法2 爪(歪爪)型行列式

此类行列式有三条线构成,类似一个爪子,或者歪爪,可以采用去爪的方法来做,特别注意歪爪只能去掉歪了的爪子,在去爪的过程中,利用主对角线上的元素来去爪子,层层递进即可。

例2-1:计算下面行列式

1

103

012321

n

n D n = 分析:最后一列乘以n -加到第一列,倒数第2列乘以)1(--n 乘到第一列,一直下来,到第3列乘以-3加到第1列,第2列乘以-2加到第一列,则有

2

2222

222)1(3211

1000

010

3223)1(1n n n n n D n ------=------=

例2-2:计算下面行列式

1

01000001300001211111n

D n

=

分析:最后一列乘以n -加到第)1(-n 列,倒数第2列乘以)1(--n 加到第)1(-n 列,一直下来,到第3列乘以-3加到第2列,第2列乘以-2加到第1列,则有

1111

01000001000001011131211-=?-=---=

-n n n D

方法3 (伪)范德蒙行列式

首先,熟悉范德蒙行列式的结果,等于第2行中每个元素减去前面元素的所有因子的乘积,范德蒙行列式的推导可以使用层层递减法得到。

例3-1:

∏≥>---------------==

1

111

1312

1

12212322212

21

23

22

211

3

2

1

)(11111i j i j n n

n n n n n n n n n n n n n

n n

n n x x x x x x x x x x x x x x x x x x x x x x D

[分析]此行列式是标准的范德蒙行列式,记住它的结果。

例3-2:

4

4442

2

2

2

41111d c b a d

c

b

a

d c b a D =

[分析]此行列式并非标准的范德蒙行列式,少了三次方,不妨把这种行列式称

为伪范德蒙行列式,这类行列式的计算可以通过构造一个真正的范德蒙行列式,然后通过系数的对比来进行计算。

解:构造五阶范德蒙行列式

4

4

4

4

4

3333322222

511111x d c b a x d c b a x d c b a x d c b a D = 一方面,这是一个范德蒙行列式,所以可以直接求出它的结果是另一方面

)a b b c a c c d b d a d d x c x b x a x D ----------=)()()()()()()()()((5 另一方面,此行列式按照第5列展开可得

554453352251551A x A x A x xA A D ++++?=

这两个表达式必定相等,因此当中未知数的系数也相等,观察三次方的系数,则有

)a b b c a c c d b d a d d c b a D A ------+++-=-=)()()()()()((445

a b b c a c c d b d a d d c b a D ------+++=)()()()()()((4

方法4 递推法

应用行列式的性质,把一个n 阶行列式表示为具有相同结构的较低阶行列式(比如,n-1阶或n-1阶与n-2阶等)的线性关系式,这种关系式称为递推关系式。根据递推关系式及某个低阶初始行列式(比如二阶或一阶行列式)的值,便可递推求得所给n 阶行列式的值,这种计算行列式的方法称为递推法。

例4,2003年福州大学研究生入学考试试题第二大题第10小题要证如下行列式等式:

0001

00010

00

1n D αβ

αβαβ

αβαβαβ

++=

++

11

,n n n D αβαβαβ

++-=≠-证明 :其中

[分析]此行列式的特点是:除主对角线及其上下两条对角线的元素外,其余

的元素都为零,这种行列式称“三对角”行列式[1]

。从行列式的左上方往右下方看,即知D n-1与D n 具有相同的结构。因此可考虑利用递推关系式计算。

证明:D n 按第1列展开,再将展开后的第二项中n-1阶行列式按第一行展开有:

12n n n D D D αβαβ=--(+)-

这是由D n-1 和D n-2表示D n 的递推关系式。若由上面的递推关系式从n 阶逐阶往低阶递推,计算较繁,注意到上面的递推关系式是由n-1阶和n-2阶行列式表示n 阶行列式,因此,可考虑将其变形为:

11212n n n n n n D D D D D D αβαββα------=-=(-) 或 11212n n n n n n D D D D D D βααβαβ------=-=(-) 现可反复用低阶代替高阶,有:

23112233422

221[()()](1)

n n n n n n n n n n n

D D D D D D D D D D αβαβαβαβαβ

αβαβααββ-+--+= ---------=(-)=(-)=(-)

==(-)=

同样有:

23112233422

221[()()](2)

n n n n n n n n n n n

D D D D D D D D D D βαβαβαβαβα

αβαββαβα-+--+= ---------=(-)=(-)=(-)

==(-)=

因此当αβ≠时

由(1)(2)式可解得:11

n n n D αβαβ

++-=-

方法5 加边法(升阶法)

有时为了计算行列式,特意把原行列式加上一行一列再进行计算,这种计算行列式的方法称为加边法或升阶法。当然,加边后必须是保值的,而且要使所得的高一阶行列式较易计算。要根据需要和原行列式的特点选取所加的行和列。加法适用于某一行(列)有一个相同的字母外,也可用于其列(行)的元素分别为n-1个元素的倍数的情况。

加边法的一般做法是:

1

11111111112122122

2121111

100

000n

n

n n n n n n n nn

n nn

n

n nn

a a a a a a

b a a a a D a a b a a a a a a b a a =

==

特殊情况取121n a a a ==== 或 121n b b b ====

例5、计算n 阶行列式:

211212212212212

12

111

n n x x x x x x x x x x D x x x x x ++=

+

[分析] 我们先把主对角线的数都减1,这样我们就可明显地看出第一行为x 1与x 1,x 2,…, x n 相乘,第二行为x 2与x 1,x 2,…, x n 相乘,……,第n 行为x n 与 x 1,x 2,…, x n 相乘。这样就知道了该行列式每行有相同的因子x 1,x 2,…, x n ,从而就可考虑此法。

解:

111121221121212212221

2

1

2

1

2

121

2

1

1

(1,,)(1,,)

1101

1000

10100

1

1

10100100100

1

i i i i n n n n n n n n

n n

i n i n

i i n i n r x r c x c i n x x x x x x x x x x x x D x x x x x x x x x x x x x x x x x +++==+=-+=+-=+-+-+=+∑∑

方法6 拆行(列)法

由行列式拆项性质知,将已知行列式拆成若干个行列式之积,计算其值,再得原行列式值,此法称为拆行(列)法。

由行列式的性质知道,若行列式的某行(列)的元素都是两个数之和,则该行列式可拆成两个行列式的和,这两个行列式的某行(列)分别以这两数之一为该行(列)的元素,而其他各行(列)的元素与原行列式的对应行(列)相同,利用行列式的这一性质,有时较容易求得行列式的值。

例6、 南开大学2004年研究生入学考试题第1大题,要求下列行列式的值: 设n 阶行列式:

1112121222121n n n n nn

a a a a a a a a a =

且满足,,1,2,,,ij ji a a i j n =-= 对任意数b ,求n 阶行列式

111212122212?n n n n nn a b a b a b a b a b a b a b a b a b

++++++=+++

[分析]该行列式的每个元素都是由两个数的和组成,且其中有一个数是b ,显然用拆行(列)法。

解:

1112111121121212222122222212122n n n n n n n n n nn n n nn n nn a b a b a b a a b a b b a b a b a b a b a b a a b a b b a b a b D a b a b a b

a a

b a b

b a b a b

++++++++++++++=

=

+

+++++++

11121111121212222122221212111n n n n n n n n nn n nn n nn a a a b a b a b a a a a a b a b a b a a b

a a a b

a b a b a a ++++=+

+++

11121111121212222122221

212111111n n n n n n n n nn

n nn

n nn

a a a a a a a a a a a a a a

b b

a a a a a a a =+++

211

1

1n

n

i i i i b A b A ===+++∑∑ ,1

1n

ij i j b A ==+∑

A 又令=

11

1212122212n n n n nn

a a a a a a a a a

,,1,2,,i j j i

a a i j n

=-= 且 ':1,A A A ∴==-有且

1

1E A A A A A A A A

?=?*

--**由=

得:即=

1A A ∴*-=

'

1''11()()()A A A A A ---===-=-*

*又()

*A ∴也为反对称矩阵

又(,1,2,,)ij A i j n = 为*A 的元素

1,1

0n

ij i j A ==∴=∑

从而知:1,1

11n

n ij i j D b

A ===+=∑

方法7 数学归纳法

一般是利用不完全归纳法寻找出行列式的猜想值,再用数学归纳法给出猜想的证明。因此,数学归纳法一般是用来证明行列式等式。因为给定一个行列式,要猜想其值是比较难的,所以是先给定其值,然后再去证明。

例7 .证明:

2cos 10001

2cos 100012cos 00sin(1)(sin 0)sin 0002cos 10

1

2cos n n D θθθθθθ

θθ

+=

=

证:当1,2n =时,有:

122sin(11)2cos sin 2cos 1sin(21)4cos 112cos sin D D θθθ

θθθθθ+==

+==-=

结论显然成立。

现假定结论对小于等于1n -时成立。 即有:

21sin(21)sin(11),

sin sin n n n n D D θ

θ

θ

θ

---+-+=

=

将n D 按第1列展开,得:

(1)

(1)

12

2cos 1002cos 0001

2cos 0012cos 00002cos 1002cos 10

1

2cos 0

1

2cos 2cos sin(11)sin(21)2cos sin sin 2cos sin sin(1)sin 2cos sin sin cos co n n n n n D D D n n n n n n θθθθθθθ

θ

θθθ

θθθ

θθθθ

θθθθ----=

-

=?--+-+=?

-

?--=

?-?+=

s sin sin sin cos cos sin sin sin(1)sin n n n n θθθ

θθθθθ

θθ??+?=

+=

故当对n 时,等式也成立。 得证。

方法8 利用拉普拉斯定理 拉普拉斯定理的四种特殊情形:

1)

0nn nn mm mn mm A A B C B =? 2)

0nn nm nn mm mm A C A B B =?

3)

0(1)

nn mn

nn mm mm

mn

A A

B B

C =-? 4)

(1)0

nm nn mn nn mm mm

C A A B B =-?

例8 计算n 阶行列式:[1]

n a a a a

b D b b

λα

β

βββα

βββ

ββα

=

解:

12

222

(2)(2)

(2,,1)

0000

00

0(1)(2)0

0000000(3,)0

00

000(1)00(2)0

[(2)(1)i n

i

n n i n a a

a a

b D n a a

a

a

b n C C i n n a

b n n ab n λλλ

ααβ

ββ

βαα

αβ

λ

αβ

ββ

β

αβ

αβαβαβ

λ

αβαβ

αβ

λαλβ+?-?-=------+-+--=----?

+--=+---

利用拉普拉斯定理

2

]()

n αβ-?-

行列式的计算技巧总结

行列式的计算技巧总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-

行列式的若干计算技巧与方法 目录 摘要 (1) 关键字 (1) 1.行列式的概念及性质 (2) n阶行列式的定义 (2) 行列式的性质 (2) 2.行列式计算的几种常见技巧和方法 (4) 定义法 (4) 利用行列式的性质 (5) 降阶法 (7) 升阶法(加边法) (9) 数学归纳法 (11) 递推法 (12) 3. 行列式计算的几种特殊技巧和方法 (14) 拆行(列)法 (14) 构造法 (17) 特征值法 (18) 4. 几类特殊行列式的计算技巧和方法 (19) 三角形行列式 (19) “爪”字型行列式 (19) “么”字型行列式 (21) “两线”型行列式 (22)

“三对角”型行列式 (23) 范德蒙德行列式 (25) 5. 行列式的计算方法的综合运用 (26) 降阶法和递推法 (27) 逐行相加减和套用范德蒙德行列式 (27) 构造法和套用范德蒙德行列式 (28) 小结 (29) 参考文献 (30) 学习体会与建议 (31)

摘要:行列式是高等代数的一个基本概念,求解行列式是在高等代数的学习中遇到的基本问题,每一种复杂的高阶行列式都有其独特的求解方法.本文主要介绍了求行列式值的一些常用方法和一些特殊的行列式的求值方法.如:化三角形法、降阶法和数学归纳法等多种计算方法以及Vandermonde 行列式、“两线型”行列式和“爪”字型行列式等多种特殊行列式.并对相应例题进行了分析和归纳,总结了与每种方法相适应的行列式的特征. 关键词:行列式 计算方法 1.行列式的概念及性质 n 阶行列式的定义 我们知道,二、三阶行列式的定义如下: 22 21 1211a a a a =21122211a a a a -, =33 32 31 232221131211a a a a a a a a a . 312213332112322311322113312312332211a a a a a a a a a a a a a a a a a a ---++ 从二、三阶行列式的内在规律引出n 阶行列式的定义. 设有2n 个数,排成n 行n 列的数表 nn n n n n a a a a a a a a a 212222111211, 即n 阶行列式.这个行列式等于所有取自不同行不同列的n 个元素的乘积

行列式的计算技巧与方法总结

行列式的几种常见计算技巧和方法 2.1 定义法 适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性. 例1 计算行列式 004003002001 000. 解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑 1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有 41322314a a a a ,而()64321=τ,所以此项取正号.故 004003002001000=() () 241413223144321=-a a a a τ. 2.2 利用行列式的性质 即把已知行列式通过行列式的性质化为上三角形或下三角形.该

方法适用于低阶行列式. 2.2.1 化三角形法 上、下三角形行列式的形式及其值分别如下: nn n n n a a a a a a a a a a a a a K ΛM O M M M K K K 2211nn 333223221131211000000=,nn nn n n n a a a a a a a a a a a a a K Λ M O M M M K K K 22113 2133323122211100 0000=. 例2 计算行列式n n n n b a a a a a b a a a a ++= +K M O M M M K K 21 211211n 1 11 D . 解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形. 解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得

n阶行列式的计算方法

n 阶行列式的计算方法 徐亮 (西北师大学数信学院数学系 , 730070 ) 摘 要:本文归纳总结了n 阶行列式的几种常用的行之有效的计算方法,并举列说明了它们的应运. 关键词:行列式,三角行列式,递推法,升降阶法,得蒙行列式 The Calculating Method of the N-order Determinant Xu Liang (College o f M athematics and Information Scien ce ,North west Normal Uni versit y , Lanzhou 730070,Gansu ,Chin a ) Abstract:This paper introduces some common and effective calculating methods of the n-order determinant by means of examples. Key words: determinant; triangulaire determinant; up and down order; vandermonde determinant 行列式是讨论线形方程组理论的一个有力工具,在数学的许多分支中都有这极为广泛的应用,是一种不可缺少的运算工具,它是研究线性方程组,矩阵,特征多项式等问题的基础,熟练掌握行列式的计算是非常必要的.行列式的计算问题多种多样,灵活多变,需要有较强的技巧.现介绍总结的计算n 阶行列式的几种常用方法. 1. 定义法 应用n 阶行列式的定义计算其值的方法,称为定义法. 根据定义,我们知道n 阶行列式 12121211 12121222() 1212(1)n n n n n j j j j j nj j j j n n nn a a a a a a a a a a a a π= -∑ L L L L L M M L M L .

行列式的计算方法

摘要 行列式是高等代数中重要的内容之一,在数学中有着广泛的应用.通过对行列式基本理论的介绍,针对不同类型的行列式,结合具体例题,介绍行列式的计算方法,其中包括降阶法,升阶法,数学归纳法等. 关键词:行列式;范德蒙行列式;计算

Abstract The determinant is an important content of higher algebra, which having wide application in mathematics. Through the introduction of the basic theory of the determinant, combined with concrete examples, the calculation for different types of determinant are introduced, which including the reduction method, order method, mathematical induction, and so on. Key words: determinant;vandermonde determinant;calculation

目录 摘要 ................................................................................................................................I Abstract ....................................................................................................................... II 第1章行列式的形成和性质 .. (1) 第1节行列式的发展史 (1) 第2节行列式的性质 (2) 第2章行列式的计算方法 (4) 第1节化三角形法 (4) 第2节降阶法 (8) 第3节递推法 (9) 第4节加边法 (11) 第5节拆行(列)法 (12) 第6节数学归纳法 (14) 结论 (16) 参考文献 (17) 致谢 (18)

(完整版)行列式的计算方法(课堂讲解版)

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 0 0100200 1000000n D n n =-L L M M M M L L 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=L . 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=L 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==L 故行列式D n 可表示为1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=-----L L L L L L L L L ,由行列式的性质A A '=,1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=-L L L L L L L L L 12131122321323312300(1)00 n n n n n n n a a a a a a a a a a a a -=------L L L L L L L L L (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

【对应线代】行列式计算7种技巧7种手段

行列式计算7种技巧7种手段 【说明】行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本,最常用的工具,记为det(A).本质上,行列式描述的是在n 维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.鉴于行列式在数学各领域的重要性,其计算的重要性也不言而喻,因此,本人结合自己的学习心得,将几种常见的行列式计算技巧和手段归纳于此,供已具有行列式学习基础的读者阅读 一7种技巧: 【技巧】所谓行列式计算的技巧,即在计算行列式时,对已给出的原始行列式进行化简,使之转化成能够直接计算的行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它的转置行列式的值相等,即D=D T 111211121121222122221 2 12n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a = 技巧2:互换行列式的任意两行(列),行列式的值将改变正负号 111212122221222111211 2 1 2 n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a =- 技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面 1111121111121221 222 22212221 1 2 1 2 n n n n n n i n n n n n nn n n nn b a b a b a a a a b a b a b a a a a b b a b a b a a a a ==∏ 技巧4:行列式具有分行(列)相加性 11121111211112111 22 1 2121 2 1 2 1 2 n n n t t t t tn tn t t tn t t tn n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a +++=+ 技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变

(完整word)行列式的计算技巧与方法总结,推荐文档

计算技巧及方法总结 一、 一般来说,对于二阶、三阶行列式,可以根据定义来做 1、二阶行列式 2112221122 2112 11a a a a a a a a -= 2、三阶行列式 33 32 31 23222113 1211a a a a a a a a a =.332112322311312213322113312312332211a a a a a a a a a a a a a a a a a a ---++ 例1计算三阶行列式6 01504 321 - 解 =-6 015043 21601??)1(52-?+043??+)1(03-??-051??-624??- 4810--=.58-= 但是对于四阶或者以上的行列式,不建议采用定义,最常采用的是行列式的性质以及降价法来做。但在此之前需要记忆一些常见行列式形式。以便计算。 计算上三角形行列式 nn nn n n a a a a a a a a a ΛΛ ΛΛΛΛΛΛ2211222112110 0= 下三角形行列式 nn n n a a a a a a Λ ΛΛΛΛΛΛ2122 21 110 00.2211nn a a a Λ= 对角行列式 nn nn n n a a a a a a a a a ΛΛ ΛΛΛΛΛΛ221121 222111000= 二、用行列式的性质计算 1、记住性质,这是计算行列式的前提 将行列式D 的行与列互换后得到的行列式,称为D 的转置行列式,记为T D 或'D ,即若

,21 2222111211nn n n n n a a a a a a a a a D Λ Λ ΛΛΛΛΛ= 则 nn n n n n T a a a a a a a a a D Λ ΛΛΛΛΛΛ 212 22 12 12111=. 性质1 行列式与它的转置行列式相等, 即.T D D = 注 由性质1知道,行列式中的行与列具有相同的地位,行列式的行具有的性质,它的列也同样具有. 性质2 交换行列式的两行(列),行列式变号. 推论 若行列式中有两行(列)的对应元素相同,则此行列式为零. 性质3 用数k 乘行列式的某一行(列), 等于用数k 乘此行列式, 即 .21 21 112112 1 21 112111kD a a a a a a a a a k a a a ka ka ka a a a D nn n n in i i n nn n n in i i n ===Λ ΛΛ Λ ΛΛΛΛΛΛΛΛ ΛΛΛΛΛΛΛΛΛΛ 第i 行(列)乘以k ,记为k i ?γ(或k C i ?). 推论1 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面. 推论2 行列式中若有两行(列)元素成比例,则此行列式为零. 性质4 若行列式的某一行(列)的元素都是两数之和, 例如, nn n n in in i i i i n a a a c b c b c b a a a D Λ ΛΛΛΛΛ ΛΛΛΛΛ2 1 221111211+++=. 则 2121 21 11211212111211D D a a a c c c a a a a a a b b b a a a D nn n n in i i n nn n n in i i n +=+=Λ ΛΛ Λ ΛΛΛ ΛΛΛΛΛ ΛΛΛΛΛ ΛΛ Λ Λ Λ. 性质5 将行列式的某一行(列)的所有元素都乘以数k 后加到另一行(列)对应位置的元素上, 行列式不变. 注: 以数k 乘第j 行加到第i 行上,记作j i kr r +; 以数k 乘第j 列加到第i 列上,记作j i kc c +. 2、利用“三角化”计算行列式 计算行列式时,常用行列式的性质,把它化为三角形行列式来计算. 例如化为上三角形行列式的步骤是:

行列式计算7种技巧

行列式计算7种技巧7种手段 编者:Castelu 韩【编写说明】行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本,最常用的工具,记为det(A).本质上,行列式描述的是在n 维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.鉴于行列式在数学各领域的重要性,其计算的重要性也不言而喻,因此,本人结合自己的学习心得,将几种常见的行列式计算技巧和手段归纳于此,供已具有行列式学习基础的读者阅读 一.7种技巧: 【技巧】所谓行列式计算的技巧,即在计算行列式时,对已给出的原始行列式进行化简,使之转化成能够直接计算的行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它的转置行列式的值相等,即D=D T 111211121121222122221 212n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a

技巧2:互换行列式的任意两行(列),行列式的值将改变正负号 111212122221222111211 21 2n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a =- 技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面 111112111112122122222212221 121 2n n n n n n i n n n n n nn n n nn b a b a b a a a a b a b a b a a a a b b a b a b a a a a ==∏ 技巧4:行列式具有分行(列)相加性 1112111121111211122121 21 2 1 21 2n n n t t t t tn tn t t tn t t tn n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a +++=+ 技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变 1112111 12112112212121 21 2 n n s s sn s t s t sn tn t t tn t t tn n n nn n n nn a a a a a a a a a a ka a ka a ka a a a a a a a a a a a a +++= 技巧6:分块行列式的值等于其主对角线上两个子块行列式的值

行列式的计算技巧与方法总结

行列式的若干计算技巧与方法 内容摘要 1. 行列式的性质 2.行列式计算的几种常见技巧和方法 定义法 利用行列式的性质 降阶法 升阶法(加边法) 数学归纳法 递推法 3. 行列式计算的几种特殊技巧和方法 拆行(列)法 构造法 特征值法 4. 几类特殊行列式的计算技巧和方法 三角形行列式 “爪”字型行列式 “么”字型行列式 “两线”型行列式 “三对角”型行列式 范德蒙德行列式 5. 行列式的计算方法的综合运用 降阶法和递推法 逐行相加减和套用范德蒙德行列式 构造法和套用范德蒙德行列式

行列式的性质 性质1 行列互换,行列式不变.即 nn a a a a a a a a a a a a a a a a a a n 2n 1n2 2212n12111nn n2n12n 2221 1n 1211 . 性质2 一个数乘行列式的一行(或列),等于用这个数乘此行列式.即 nn n2 n1in i2i1n 11211 k k k a a a a a a a a a k nn a a a a a a a a a n2n1in i2i1n 11211. 性质3 如果行列式的某一行(或列)是两组数的和,那么该行列式就等于两个行列式的和,且这两个行列式除去该行(或列)以外的各行(或列)全与原来行列式的对应的行(或列)一样.即 111211112111121112212121 2 1212.n n n n n n n n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a K K K M M M M M M M M M M M M K K K M M M M M M M M M M M M K K K 性质4 如果行列式中有两行(或列)对应元素相同或成比例,那么行列式为零.即 k a a a ka ka ka a a a a a a nn n n in i i in i i n 21 2121112 11nn n n in i i in i i n a a a a a a a a a a a a 212121112 11 =0. 性质5 把一行的倍数加到另一行,行列式不变.即

行列式化简计算技巧实题

行列式化简计算技巧和实题操练 ——Zachary 一.技巧: 技巧1:行列式与它的转置行列式的值相等,即D=D T 111211121121222122221 212n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a = 技巧2:互换行列式的任意两行(列),行列式的值将改变正负号 111212122221222111211 21 2n n n n n n nn n n nn a a a a a a a a a a a a a a a a a a =- 技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面 111112111112122122222212221 121 2n n n n n n i n n n n n nn n n nn b a b a b a a a a b a b a b a a a a b b a b a b a a a a == ∏ 技巧4:行列式具有分行(列)相加性 11121111211112111221 21 21 2 1 21 2n n n t t t t tn tn t t tn t t tn n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a +++=+ 技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变

1112111 12112112212121 21 2 n n s s sn s t s t sn tn t t tn t t tn n n nn n n nn a a a a a a a a a a ka a ka a ka a a a a a a a a a a a a +++= 技巧6:分块行列式的值等于其主对角线上两个子块行列式的值的乘积 111111111111111111 11000 m m n m mm m n m mm n nn n nm n nn a a a a b b a a c c b b a a b b c c b b = 技巧7:[拉普拉斯按一行(列)展开定理] 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和 1 1 (1,2,,)(1,2,,)n n ik ik kj kj k k D a A i n a A j n ======∑∑ 二.解题方法: 方法1:对于2阶行列式和3阶行列式,可以直接使用对角线法则进行计算 1112 112212212122 a a a a a a a a =-, 111213 21222311223312233113213211233212213313223131 32 33 a a a a a a a a a a a a a a a a a a a a a a a a a a a =++---

最新几种特殊类型行列式及其计算

1 行列式的定义及性质 1.1 定义[3] n 级行列式 1112121 22 212 n n n n nn a a a a a a a a a 等于所有取自不同行不同列的个n 元素的乘积12 12n j j nj a a a (1)的代数和,这里12 n j j j 是 1,2, ,n 的一个排列,每一项(1)都按下列规则带有符号:当12n j j j 是偶排列时,(1)带正号,当 12n j j j 是奇排列时,(1)带有负号.这一定义可写成 () () 121212 1112121 22 21212 1n n n n j j j n j j nj j j j n n nn a a a a a a a a a a a a τ= -∑ 这里 12 n j j j ∑ 表示对所有n 级排列求和. 1.2 性质[4] 性质1.2.1 行列互换,行列式的值不变. 性质1.2.2 某行(列)的公因子可以提到行列式的符号外. 性质1.2.3 如果某行(列)的所有元素都可以写成两项的和,则该行列式可以写成两行列式的和;这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)与原行列式相同. 性质1.2.4 两行(列)对应元素相同,行列式的值为零. 性质1.2.5 两行(列)对应元素成比例,行列式的值为零. 性质1.2.6 某行(列)的倍数加到另一行(列)对应的元素上,行列式的值不变. 性质1.2.7 交换两行(列)的位置,行列式的值变号.

2 行列式的分类及其计算方法 2.1 箭形(爪形)行列式 这类行列式的特征是除了第1行(列)或第n 行(列)及主(次)对角线上元素外的其他元素均为零,对这类行列式可以直接利用行列式性质将其化为上(下)三角形行列式来计算.即利用对角元素或次对角元素将一条边消为零. 例1 计算n 阶行列式 ()1 2323111100 1 0001 n n n a a D a a a a a =≠. 解 将第一列减去第二列的 21a 倍,第三列的3 1a 倍第n 列的 1 n a 倍,得 1 223 111110 000 000 n n n a a a a D a a ?? -- - ?? ? = 1221n n i i i i a a a ==?? =- ?? ? ∑ ∏. 2.2 两三角型行列式 这类行列式的特征是对角线上方的元素都是c ,对角线下方的元素都是b 的行列式,初看,这一类型似乎并不具普遍性,但很多行列式均是由这类行列式变换而来,对这类行列式,当 b c =时可以化为上面列举的爪形来计算,当b c ≠时则用拆行(列)法[9]来计算. 例2 计算行列式

浅谈行列式的计算方法x

浅 一、 特殊行列式法 1.定义法 当行列式中含零元较多时,定义法可行. 例1 计算n 级行列式 α β βαβαβα000000 0000 00 =D . 解:按定义,易见121,2,,,n j j j n === 或 1212,3,,,1n n j j j n j -==== . 得 11(1)n n n D αβ-+=+- 2.三角形行列式法 利用行列式性质,把行列式化成三角形行列式. nn a a a a a a 000n 222n 11211=nn n n a a a a a a 212212110 0112233nn a a a a = 例2 计算n 级行列式1231 131 211 2 3 1 n n x n D x n x +=++ 解: 将n D 的第(2,3,,)i i n = 行减去第一行化为三角形行列式,则 1230 1000 0200 1 (1)(2)(1) n n x D x x n x x x n -=--+=---+

3.爪形行列式法 例3 计算行列式 0121 1 220 0000n n n a b b b c a D c a c a = ()0,1,2,,i a i n ≠= 解: 将D 的第i +1列乘以(i i a c - )都加到第1列()n i ,2,1=,得 10 12 120000000 00n i i n i i n bc a b b b a a D a a - =∑= =011()n n i i i i i i b c a a a ==-∑∏ 4. 范德蒙行列式法 1 2 3 2 2221 2 3 11111 2 3 1111n n n n n n n a a a a D a a a a a a a a ----= 1()i j j i n a a ≤<≤= -∏ 例4 计算n 级行列式 2 2221233 333 1 2 3 12 3 11 1 1 n n n n n n n x x x x D x x x x x x x x = 解:利用D 构造一个1n +阶范德蒙行列式 12222 212121111()n n n n n n n x x x x g x x x x x x x x x = 多项式()g x 中x 的系数为3(1)n D +-,而()g x 又是一个范德蒙行列式,即 1 ()() n i i g x x x ==-∏∏≤<≤-n i j j i x x 1)(

特殊行列式与行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 11112112,1 221222,11,21,1 1,11 2 ,1 (1)2 12,11 000000 0000 0000 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------===-L L L L L L M M M M M M M M M N L L L L 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????= =? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????= =-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式; 3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算 ——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)

(完整版)行列式的计算方法总结

行列式的计算方法总结: 1. 利用行列式性质把行列式化为上、下三角形行列式. 2. 行列式按一行(一列)展开,或按多行(多列)展开(Laplace 定理). 几个特别的行列式: B A B C A B C A == 0021 , B A B A D D B A mn )1(0 021 -== ,其中B A ,分别是n m ,阶的方阵. 例子: n n a b a b a b b a b a b a D 22O N N O = , 利用Laplace 定理,按第1,+n n 行展开,除2级子式 a b b a 外其余由第1,+n n 行所得的2级子式均为零. 故222222112)()1(--+++++-=-= n n n n n n n D b a D a b b a D ,此为递推公式,应用可得 n n n n b a D b a D b a D )()()(224222222222-==-=-=--Λ. 3. 箭头形行列式或者可以化为箭头形的行列式. 例:n n n n n n n a x x a a x x a a x x a a a a x x a a a a x a a a a x a a a a x ------=Λ ΛΛΛΛΛΛΛΛΛ ΛΛΛΛΛΛΛΛ00 000 01 133112 2113213 21321 321321 -----(倍加到其余各行第一行的1-) 100 101010 011)(3 332 221 111 Λ ΛΛΛΛΛΛΛΛ-------? -=∏=n n n n i i i a x a a x a a x a a x x a x --------(每一列提出相应的公因子i i a x -) 1 001000 010)(3 332 222111 1 Λ ΛΛΛΛΛΛΛΛn n n n i i i i n i i i a x a a x a a x a a x a a x x a x ----+-? -=∑∏== --------(将第n ,,3,2Λ列加到第一列)

#行列式的计算方法 (1)

计算n 阶行列式的若干方法举例 1.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2, ,ii a i n == 故行列式D n 可表示为1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=-----,由行列式的性质A A '=,1213112 23213 23312300 00 n n n n n n n a a a a a a D a a a a a a -----=-12131122321323312300( 1)0 n n n n n n n a a a a a a a a a a a a -=------(1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 2.化为三角形行列式 例2 计算n 阶行列式123123 1 23 1 2 3 1111n n n n a a a a a a a a D a a a a a a a a ++=++. 解 这个行列式每一列的元素,除了主对角线上的外,都是相同的,且各列的结构相似,因此n 列之和全同.将第2,3,…,n 列都加到第一列上,就可以提出公因子且使第一列的元素全是1. [][]()()()()()()122323122 3231223231122 3 2 3 211 12, ,2,,11 111 1 1111 1111 11 1n n n n n n n n n i n i n n n n i i i i i n i n a a a a a a a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a a a a a ==+-==+++ +++++++??+++++=++ ??? +++ +++?? + ??? ∑∑3110100 111 . 00100 1 n n n i i i i a a a ==?? =+=+ ??? ∑∑

行列式计算7种技巧7种手段

行列式计算7种技巧7种手段 编者:Cas telu 【编写说明】行列式就是线性代数得一个重要研究对象,就是线性代数中得一个最基本,最常用得工具,记为det(A)。本质上,行列式描述得就是在n 维空间中,一个线性变换所形成得平行多面体得体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等、鉴于行列式在数学各领域得重要性,其计算得重要性也不言而喻,因此,本人结合自己得学习心得,将几种常见得行列式计算技巧与手段归纳于此,供已具有行列式学习基础得读者阅读 一。7种技巧: 【技巧】所谓行列式计算得技巧,即在计算行列式时,对已给出得原始行列式进行化简,使之转化成能够直接计算得行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它得转置行列式得值相等,即D =D T 技巧2:互换行列式得任意两行(列),行列式得值将改变正负号 技巧3:行列式中某一行(列)得所有元素得公因子可以提到行列式记号得外面 技巧4:行列式具有分行(列)相加性 111211112111121112212 12 1 2 1212 n n n t t t t tn tn t t tn t t tn n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a +++=+ 技巧5:将行列式得某一行(列)得各元素乘以同一数k 后加到另一行(列)对应得元素上,行列式得值不变 技巧6:分块行列式得值等于其主对角线上两个子块行列式得值得乘积 11111111 111111111 1 1 1 0000m m n m mm m n m mm n nn n nm n nn a a a a b b a a c c b b a a b b c c b b = 技巧7:[拉普拉斯按一行(列)展开定理] 行列式等于它得任一行(列)得各元素与其对应得代数余子式乘积之与 二。7种手段: 【手段】所谓行列式计算得手段,即在计算行列式时,观察已给出得原始行列式或进行化简后得行列式,只要它们符合已知得几种行列式模型,就可以直接计算出这些行列式 手段1:对于2阶行列式与3阶行列式,可以直接使用对角线法则进行计算

行列式计算的若干种方法讲解

中南民族大学 毕业论文(设计) 学院: 数学与统计学学院 专业: 统计学年级:2008 题目: 行列式计算的若干方法 学生姓名: 曹金金学号:08067005

指导教师姓名: 汪宝彬职称:讲师 2012年4月30日

中南民族大学本科毕业论文(设计)原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果.除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品.本人完全意识到本声明的法律后果由本人承担. 作者签名: 年月日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1 引言 (2) 2.1排列 (2) 2.2行列式的定义 (2) 2.2.1 二阶、三阶行列式 (2) 2.2.2 n阶行列式的定义 (3) 2.2.3 几种特殊的行列式的定义 (3) 2.3 行列式的基本性质 (5) 3几种常见的行列式的计算方法 (6) 3.1利用行列式定义直接计算 (6) 3.2 利用行列式的性质计算 (6) 3.3 三角化法 (7) 3.4 降阶法 (8) 3.5利用范德蒙德行列式求解 (10) 3.6 数学归纳法 (11) 3.7 拆项法 (12) 3.8析因子法 (13) 3.9 加边法(升阶法) (13) 3.10递推公式法 (14) 3.11超范德蒙行列式法 (15) 3.12利用分块计算行列式 (16) 4 结论 (16) 致谢 (17) 参考文献 (17)

行列式计算的若干方法 摘要:在线性代数中,行列式的求解是非常重要的. 本文首先介绍行列式的定义与性质;然后通 过实例给出了计算行列式的几种方法.从文中可以看出,选择合适的计算方法可有效的计算行列式. 关键词:行列式;性质;计算方法 Some Methods of Determinant Calculation Abstract: Determinant plays an important role in the linear algebra. In this paper we first introduce the definition and properties of determinant. Then several methods of the calculation are given by some examples. It can be seen from the paper that choose the appropriate calculation method can efficiently compute the determinant. Key words: determinant; property; the calculation methods

行列式的几种求法

行列式的求法有多种,以下简单进行总结。 一、逆序定义法 行列式的逆序法定义如下: 1212121112121222(,,......,)12,,......,1 2(1)......n n n n n j j j j j nj j j j n n nn a a a a a a a a a a a a τ= -∑ 这里,12,,......,n j j j 为1,2,...,n 的任一排列,12(,,......,)n j j j τ为该排列的逆序数,求和是对所有的排列求的,因此,该和式一共有!n 项,每项都是n 个数相乘,并得计算逆序数,计算量巨大。因此,一般而言,逆序法定义具有理论上研究的意义,而比较少用于求行列式。但是,如果行列式的项中有大量的0,那么用逆序法计算可能会很简单。以下举例如下: 例1:求 11 22 nn a a a 。 解答: 12121211 22 (,,......,)12,,......,(1)......n n n j j j j j nj j j j nn a a a a a a τ= -∑ 只当11j =,22j =,……,n j n =,其项才可能非零。因此, 11 22 (1,2,......,)01,12,2,1,12,2,1,12,2,(1)......(1)............n n n n n n n nn a a a a a a a a a a a a τ=-=-= 例2、求 1 2 n d d d 。 解答: 1212121 2 (,,......,)12,,......,(1)......n n n j j j j j nj j j j n d d a a a d τ= -∑ 只当1j n =,21j n =-,……,1n j =,其项才可能非零。因此,

相关文档
最新文档