织物——第二章织物的力学性质

织物——第二章织物的力学性质

织物——第二章织物的力学性质

最新金属的力学性能测试题及答案

第一章金属的力学性能 一、填空题 1、金属工艺学是研究工程上常用材料性能和___________的一门综合性的技术基础课。 2、金属材料的性能可分为两大类:一类叫_____________,反映材料在使用过程中表现出来的特性, 另一类叫__________,反映材料在加工过程中表现出来的特性。 3、金属在力作用下所显示与弹性和非弹性反应相关或涉及力—应变关系的性能,叫做金属________。 4、金属抵抗永久变形和断裂的能力称为强度,常用的强度判断依据是__________、___________等。 5、断裂前金属发生不可逆永久变形的能力成为塑性,常用的塑性判断依据是________和_________。 6、常用的硬度表示方法有__________、___________和维氏硬度。 二、单项选择题 7、下列不是金属力学性能的是() A、强度 B、硬度 C、韧性 D、压力加工性能 8、根据拉伸实验过程中拉伸实验力和伸长量关系,画出的力——伸长曲线(拉伸图)可以确定出金 属的() A、强度和硬度 B、强度和塑性 C、强度和韧性 D、塑性和韧性 9、试样拉断前所承受的最大标称拉应力为() A、抗压强度 B、屈服强度 C、疲劳强度 D、抗拉强度 10、拉伸实验中,试样所受的力为() A、冲击 B、多次冲击 C、交变载荷 D、静态力 11、属于材料物理性能的是() A、强度 B、硬度 C、热膨胀性 D、耐腐蚀性 12、常用的塑性判断依据是() A、断后伸长率和断面收缩率 B、塑性和韧性 C、断面收缩率和塑性 D、断后伸长率和塑性 13、工程上所用的材料,一般要求其屈强比() A、越大越好 B、越小越好 C、大些,但不可过大 D、小些,但不可过小 14、工程上一般规定,塑性材料的δ为() A、≥1% B、≥5% C、≥10% D、≥15% 15、适于测试硬质合金、表面淬火刚及薄片金属的硬度的测试方法是() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都可以 16、不宜用于成品与表面薄层硬度测试方法() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都不宜 17、用金刚石圆锥体作为压头可以用来测试() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上都可以 18、金属的韧性通常随加载速度提高、温度降低、应力集中程度加剧而() A、变好 B、变差 C、无影响 D、难以判断 19、判断韧性的依据是() A、强度和塑性 B、冲击韧度和塑性 C、冲击韧度和多冲抗力 D、冲击韧度和强度 20、金属疲劳的判断依据是() A、强度 B、塑性 C、抗拉强度 D、疲劳强度 21、材料的冲击韧度越大,其韧性就() A、越好 B、越差 C、无影响 D、难以确定 三、简答题 22、什么叫金属的力学性能?常用的金属力学性能有哪些?

橡胶力学性能测试标准

序号标准号:发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 1232.1-2000 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型) 26 GB/T 13935-1992 硫化橡胶裂口增长的测定 27 GB/T 13936-1992 硫化橡胶与金属粘接拉伸剪切强度测定方法 28 GB/T 13937-1992 分级用硫化橡胶动态性能的测定强迫正弦剪切应变法 29 GB/T 13938-1992 硫化橡胶自然贮存老化试验方法 30 GB/T 13939-1992 硫化橡胶热氧老化试验方法管式仪法 31 GB/T 14834-1993 硫化橡胶与金属粘附性及对金属腐蚀作用的测定 32 GB/T 14835-1993 硫化橡胶在玻璃下耐阳光曝露试验方法 33 GB/T 14836-1993 硫化橡胶灰分的定性分析 34 GB/T 15254-1994 硫化橡胶与金属粘接180°剥离试验 35 GB/T 15255-1994 硫化橡胶人工气候老化(碳弧灯)试验方法 36 GB/T 15256-1994 硫化橡胶低温脆性的测定(多试样法) 37 GB/T 15584-1995 硫化橡胶在屈挠试验中温升和耐疲劳性能的测定第一部分:基本原理 38 GB/T 15905-1995 硫化橡胶湿热老化试验方法 39 GB/T 16585-1996 硫化橡胶人工气候老化(荧光紫外灯)试验方法 40 GB/T 16586-1996 硫化橡胶与钢丝帘线粘合强度的测定 41 GB/T 16589-1996 硫化橡胶分类橡胶材料

玻璃钢力学性能测试

玻璃钢板层间剪切强度试验 玻璃钢板层间剪切强度试验只包括玻璃纤维织物增强玻璃钢板材的层间剪切强度试验。其方法是首先把试样固定于夹具中间,再将其放在试验机上,使试样受层间单面剪力的作用,直至使试样破坏,根据测量破坏时的载荷,然后计算破坏时单位剪切面上所承受的载荷值,即为材料的层间剪切强度。 1.试样 (1)试样的形状和尺寸如图2-10 所示。 (2)试样加工时应保证 A、B C、三面相互平行,并与布层垂直。 D面应为加工面,且D E、F 、面与布层严格平行。受力面A 、C 要不光滑。 (3)试样数量:每组不少于5 个。 2.试验条件 (1)试样制备、试验环境条件和试样状态调节按《试验方法总则》规定。(2)试验设备接《试验方法总则》规定。 (3)层间剪切夹具见图2-11 。 (4)加载速度为5-15mm/min 。 3.试验步骤(1)试样制备、外观检查和状态调节按《试验方法总则》规定。(2)将合格试样编号。测量试样受剪面三处的宽度和高度,取算术平均值。测量

精度按《试验方法总则》规定。 (3)将试样装入层间剪切夹具中, A面向上,夹持时以试样能上下滑动为宜,不可过紧。然后把夹具放在试验机上,使受力面A 的中心对准试验机上压板中心。压板的表面必须平整光滑。 (4)对试样施加均匀、连续的载荷,直到破坏。记录破坏载荷。 (5)有明显内部缺陷或不沿剪切面破坏的试样,应予作废。同批有效试样不足5个时应重作试验。 4.计算 层间剪切强度按式(2-12 )计算:

5.试验结果和试验报告按《试验方法总则》规定 玻璃钢板弯曲性能试验 中国玻璃钢综合信息网日期: 2010-11-20 阅读: 201 字体:大中小双击鼠标滚屏 玻璃钢板弯曲性能试验包括玻璃纤维织物增强玻璃钢板材弯曲性能试验和短切纤维增强玻璃钢的弯曲性能试验。 其方法是将试样放在试验机上,采用三点中心加载法,使试样受弯曲,载荷逐渐增加,直到使试样破坏或变形达到规定的挠度,根据测量的载荷及试样弯曲挠度,可以测定以下弯曲性能: ①在挠度小于或等于规定挠度下呈现最大载荷或破坏的材料,测定其最大载荷下或破坏时的弯曲应力(即弯曲强度)及其挠度。 ②在挠度等于规定挠度下不呈现破坏的材料,测定其规定挠度下的弯曲应力。 ③弯曲弹性模量。 ④绘制弯曲载荷挠度曲线。 以上测定的弯曲弹性模量为近似值。 规定挠度下的弯曲应力为:挠度等于1.5 倍试样厚度时的弯曲应力。 1.试样 (1)试样的形状图,如图2-8 和表2-5 所示。 采用矩形截面的条状试样,试样最小长度按下式计算:

工程材料力学性能-第2版习题答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 2、金属的弹性模量主要取决于什么因素为什么说它是一个对组织不敏感的力学性能指标 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 3、试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别为什么 4、决定金属屈服强度的因素有哪些【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 5、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 6、剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 7、何谓拉伸断口三要素影响宏观拉伸断口性态的因素有哪些 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 第二章金属在其他静载荷下的力学性能

金属材料的力学性能及其测试方法

目录 摘要1 1引言2 2金属材料的力学性能简介2 2.1 强度3 2.2 塑性3 2.3 硬度3 2.4 冲击韧性4 2.5 疲劳强度4 3金属材料力学性能测试方法4 3.1拉伸试验5 3.2压缩试验8 3.3扭转试验11 3.4硬度试验15 3.5冲击韧度试验22 3.6疲劳试验27 4常用的仪器设备简介29 4.1万能试验机29 4.2扭转试验机34 4.3摆锤式冲击试验机40 5金属材料力学性能测试方法的发展趋势42 参考文献42

金属材料的力学性能及其测试方法 摘要:金属的力学性能反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力,它与材料的失效形式息息相关。本文主要解释了金属材料各项力学性能的概念,介绍了几个常见的测试金属材料力学性能的试验以及相关的仪器设备,最后阐述了金属材料力学性能测试方法的发展趋势。 关键词:金属材料,力学性能,测试方法,仪器设备,发展趋势 Test Methods for The Mechanical Properties of Metal Material Abstract:The mechanical properties of metal material which reflect some abilities of deformation and fracture resistance under various external forces are closely linked with failure forms. This paper mainly introduces some concepts of mechanical properties of metal material, mon experiments testing mechanical properties of metal material and apparatuses used. The trend of development of test methods for mechanical properties of metal material is also discussed. Keywords:metal material,mechanical properties,test methods,apparatuses,development trend

第二章 金属材料力学性能基本知识及钢材的脆化

金属材料力学性能基本知识 及钢材的脆化 金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料,这不仅是由于其来源丰富,生产工艺简单、成熟,而且还因为它具有优良的性能。 通常所指的金属材料性能包括以下两个方面: 1.使用性能即为了保证机械零件、设备、结构件等能正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等),化学性能(耐蚀性、热稳定性等)。使用性能决定了材料的应用范围,使用安全可靠性和使用寿命。 2 工艺性能即材料在被制成机械零件、设备、结构件的过程中适应各种冷、热加工的性能,例如锻造,焊接,热处理,压力加工,切削加工等方面的性能。工艺性能对制造成本、生成效率、产品质量有重要影响。 1.1材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当外力达到或超过某一限度时,材料就会发生变形以至断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。锅炉压力容器材料的力学性能指标主要有强度、硬度、塑性、韧性等这些性能指标可以通过力学性能试验测定。 1.1.1强度 金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测 出。把一定尺寸和形状的金属试样(图1~2)装夹在试验机上,然后对试样逐渐施加拉伸载荷,直至把试样拉断为止。根据试样在拉伸过程中承受的载荷和产生的变形量之间的关系,可绘出该金属的拉伸曲线(图1—3)。在拉伸曲线上可以得到该材料强度性能的一些数据。图1—3所示的曲线,其纵坐标是载荷P(也可换算为应力d),横坐标是伸长量AL(也可换算为应变e)。所以曲线称为P—AL曲线或一一s曲线。图中曲线A是低碳钢的拉伸曲线,分析曲线A,可以将拉伸过程分为四个阶段:

材料力学性能复习重点汇总

第一章 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素 与以下三个方面相联系的因素都会影响到屈服强度 位错增值和运动 晶粒、晶界、第二相等 外界影响位错运动的因素 主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构)

单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。)2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系: 霍尔-派奇(Hall-Petch) σs= σi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化) 不可变形第二相 提高位错线张力→绕过第二相→留下位错环→两质点间距变小→流变应力增大。 不可变形第二相 位错切过(产生界面能),使之与机体一起产生变形,提高了屈服强度。 弥散强化:

材料力学性能测试实验报告

材料力学性能测试实验 报告 标准化管理部编码-[99968T-6889628-J68568-1689N]

材料基本力学性能试验—拉伸和弯曲一、实验原理 拉伸实验原理 拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉 至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。 对于均匀横截面样品的拉伸过程,如图 1 所示, 图 1 金属试样拉伸示意图 则样品中的应力为 其中A 为样品横截面的面积。应变定义为 其中△l 是试样拉伸变形的长度。 典型的金属拉伸实验曲线见图 2 所示。 图3 金属拉伸的四个阶段 典型的金属拉伸曲线分为四个阶段,分别如图 3(a)-(d)所示。直线部分的斜率E 就是杨氏模量、σs 点是屈服点。金属拉伸达到屈服点后,开始出现颈缩 现象,接着产生强化后最终断裂。 弯曲实验原理 可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实 验结果测定材料弯曲力学性能。为方便分析,样品的横截面一般为圆形或矩形。 三点弯曲的示意图如图 4 所示。 图4 三点弯曲试验示意图 据材料力学,弹性范围内三点弯曲情况下C 点的总挠度和力F 之间的关系是 其中I 为试样截面的惯性矩,E 为杨氏模量。 弯曲弹性模量的测定 将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲, 对于矩形截面的试样,具体符号及弯曲示意如图 5 所示。 对试样施加相当于σpb0.01。 (或σrb0.01)的10%以下的预弯应力F。并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。记录弯曲力的增量DF 和相应挠度的增量Df ,则弯曲弹性模量为 对于矩形横截面试样,横截面的惯性矩I 为 其中b、h 分别是试样横截面的宽度和高度。 也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图 6 所示。然后利用式(4)计算弯曲弹性模量。 二、试样要求

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、 解释下列名词。 2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落 后于应力的现象。 3?循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4?包申格效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规 定残余伸长应力降低的 现象。 11. 韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆 性断裂,这种现象称 为韧脆转变 2、 说明下列力学性能指标的意义。 答:E 弹性模量G 切变模量 r 规定残余伸长应力 0.2屈服强度 gt 金属材料拉伸时最大应力下的总伸长率 n 应 变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但 是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏 感。【P4】 4、 现有4 5、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么? 选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可 降低成本,提高生产效率。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程 中不断地消耗能量;而脆性断裂是突然发生的断裂, 断裂前基本上不发生塑性变形, 没有明显征兆,因而危害性很大。 6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形 态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源? 断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也 与裂纹扩展方向平行,其尖端指向裂纹源。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1 )应力状态软性系数—— 材料或工件所承受的最大切应力T max 和最大正应力(T max 比值,即: (3)缺口敏感度一一缺口试样的抗拉强度 T bn 的与等截面尺寸光滑试样的抗拉强度 T b 的比值,称为缺口敏感度,即:【P47 P55】 max 1 3 max 2 1 0.5 2 3 【新书P39旧书P46】

力学性能试验(重点明确)

力学性能试验 第二章力学性能试验取样基本知识(P18) 第一节试样类型及取样原则(P18) 一、取样依据:GB/T 2975-1998《钢及钢产品力学性能试验取样位 置及试验制备》 二、取样原则: 1、取样对力学性能试验结果的影响; 三要素: 取样部位: 1)加工过程中变形量各处不均匀 2)材料内部各种缺陷分布和金属组织不均匀 取样方向: 材料在加工过程中金属是沿晶粒主加工变形方向流动,晶粒被拉长并排成行,夹杂也沿主加工变形方向排列,因此材料性能各向异性。 例如:纵向试样(试样纵向轴线与主加工方向平行)和横向试样

(试样纵向轴线与主加工方向垂直)有较大差异:薄板材纵向试样抗拉强度,下屈服强度都高于横向试样,断面收缩率更是远远大于横向试样。 取样数量: 1)某些力学性能指标对试验条件和材料本身的特性十分敏感,单个试样结果不足以为信,应采用最小的取样数量; 2)试验结果的分散性及经济因素 2、样品的代表性; 一般性规定:GB/T 2975-1998 专门的规定: 产品材料标准和协议:①材料的平均性能;②取样方便; 一般取其最危险、最薄弱的部位,因为最薄弱、最危险处的力学性能决定了产品的性能;此外受力状态与零部件的受力状态相一致; 三、力学性能试验的试样类型: 1、从原材料上直接取样:

2、从产品(结构或零部件)的一定部位上取样; 3、把实物作为样品。 四、样坯切取方法:无论用什麽方法都应遵循以下原则: (1)应在外观及尺寸合格的材料上取样,试料应有足够的尺寸,以保证机加工出足够的试样进行规定的试验及复验; (2)取样时,应对样坯和试样做出不影响其性能的标记,以保证始终能识别取样的位置和方向; (3)取样的方向应按材料标准规定或双方协议执行; (4)切取样坯时,应防止因过热、过冷、加工硬化而影响其力学性能及工艺性能。 如果过热了怎么办?比如,采用火焰切割法取样时,由于材料是在火焰喷嘴下熔化而使样坯从整体上分离出来,在熔化区域附近,材料承受了一个从熔化到相变点(723℃)以下温度变化区域,这一局部的高温将会引起材料性能的很大变化,所以切割样坯(样坯切割线至试样边缘)必须留有足够的切割余量。这一余量的规定为:一般应不

思考题2015年材料力学性能(重点标黄)

和。 4.滞弹性是指材料在范围内快速加载或卸载后,随时间延长产生附加 单向静拉伸时实验方法的特征是、、必须确定的。 .韧度是衡量材料韧性大小的力学性能指标,其中又分为、 和。 12.在α值的试验方法中,正应力分量较大,切应力分量较小,应力状态较硬。一般用于塑性变形抗力与切断抗力较低的所谓塑性材料试验;在α值的试验方法中,应力状态较软,材料易产生塑性变形,适用于在单向拉伸时容易发生脆断而不能充分反映其塑性性能的所谓脆性材料; 13.材料的硬度试验应力状态软性系数,在这样的应力状态下,几乎所有金属材料都能产生。 14. 硬度是衡量材料软硬程度的一种力学性能,大体上可以分为 、和三大类;在压入法中,根据测量方式不同又分为 、和。 15. 国家标准规定冲击弯曲试验用标准试样分别为试样 和试样,所测得的冲击吸收功分别用

22. 应力状态软性系数:用试样在变形过程中的测得 和的比值表示。 23.微孔聚集型断裂是包括微孔、直至断裂的过程。 24.缺口试样的与等截面光滑试样的的比值。称为“缺口敏感度”。 25.机件在冲击载荷下的断口形式仍为、和。 26.包申格应变是在给定应力下,正向加载和反向加载两曲线之间的应变差。 27.由于缺口的存在,在载荷作用下,缺口截面上的应力状态将发生变化的现象,被称为“缺口效应”。 28. 洛氏硬度是在一定的实验力下,将120o角的压入工件表面,用所得的来表示材料硬度值的工艺方法。 28.低温脆性是随的下降,材料由转变为的现象。 29. 缺口敏感性是指材料因存在缺口造成的状态和而变脆的 疲劳条带是疲劳断口的特征,贝纹线是断口的特征。 34. 金属材料的疲劳过程也是裂纹的和过程。 35.金属材料抵抗疲劳过载损伤的能力,用或表示。 36.金属在和特定的共同作用下,经过一段时间后所发生的 现象,成为应力腐蚀断裂。 37.应力腐蚀断裂的最基本的机理是和。 38.由于氢和应力的共同作用而导致金属材料产生脆性断裂的现象叫 钢的氢致延滞断裂过程可分为、、三个阶 按磨损模型分为:、、、五大类。 44.韧窝是微孔聚集型断裂的基本特征。其形状视应力状态不同分为下列、、三类。其大小决定于第二相质点的、基体材料的和以及外加应力的大小和形状。

第十章 织物的结构与基本性能(讲习要点Print)

第十章织物的结构与性能 概述 ?纺织材料直接和主要的产品是织物,柔性平面薄层状的物质?织物的成形:纤维经成网固着;成纱织、编而成 ?织物的轴与维:一维结构、二维结构、三维结构;单轴和多轴?一般织物:机织物、针织物、非织造布、编织物等 ?特种织物:三维结构或三维成形织物、层合或混合复合织物、 可呼吸织物、电子织物等 ?织物的应用:建筑(architectured and construction)、土工 (geotextile)、防护(safety and protective)、运动(sports and recreation)、运输(automotive and transportation)、航空航天(aviation and spaceflight )、医用(medical)、军用(military and defence)、产业(industrial),以及人类穿着用的重要的高科技纺织品(high-tech textiles)的基础用材。 ?问题:单一或复合、二维或三维织物的结构均有定性的阐述, 对结构与常用性能间的关系也有讨论,但对织物结构、性能、成形及其相互间关系的定量描述还显得比较粗浅,尤其是对复杂结构织物及其定量表征与实际存在较大差距。 章节分配(3~4学时) 本章仅对已有的理论和传统织物结构及其常用性能作简要介绍,并较多地限于服用织物结构和性能的描述。 §1. 织物的类型与结构表征 §2. 纤维的介电性能 §3. 纤维的静电性质 §4. 导电高聚物的导电性质

第一节织物的类型与结构表征 一、织物的结构分类与名称 织物的分类方法众多,可以根据加工方法、成形方式、基本性能、选用纤维或纱线、织物组织和结构、厚度和轻重、用途和功能等进行分类。但作为织物结构、性能和成形的相互关系讨论,则较多地运用直接相关结构特征和成形方式进行分类。 1.A类织物:A类为纱线按一定的排列组合结构形成织物。 2.B类织物:B类结构中,纱线以粘结的方式成形。 3.C类织物:C类织物为非织造布。 4.纤维类和非纤维类片状物 D类为胶质物质将纤维粘结在一起,并与微孔共同构成稳定的结构。E类薄片一般为均匀结构膜,可以是“合金”物质,亦可为多孔结构,一般较多地以涂层和覆膜成形。 二、复合和层合织物 各类织物简单层合构成复合织物,以及混合、组合、交叉等方式构成复杂复合织物。 三、常用织物的结构特征 常用织物主要是指一般民用的普通机织物、针织物、编织物和非织造布。 纱线相互交织成形(interweaving),如机织物; 纱线相互圈结成形(interlooping),如纬编和经编织物; 纱线相互缠绕扭结成形(intertwining or interlacing),如编结织物; 纤维相互粘结或纠缠成形,如毛毡和非织造布; 基布表面成圈或簇绒成形(terry-looping or tufting),如机织、针织起绒织物和地毯。 四、特殊织物的结构 这里所指的特殊织物是在成形方式和结构上,为非常规方法直接所得的织物,这类织物主要为多层复合织物,如柔性建筑顶蓬

织物的力学性能测试

织物的力学性能测试 (拉伸性能、撕裂性能、顶破性能、耐磨性能) 织物的力学性能是指织物在各种机械外力作用下所呈现的性能。它是织物的基本性能。 织物抵抗因外力引起损坏的性质称为织物的耐久性或坚牢度,大多是通过测试织物的拉伸断裂、顶裂、撕裂以及耐磨性等来反映这一性能的。织物在小负荷作用下呈现的性质近年来备受人们的关注,如织物手感、视觉风格、起毛起球、勾丝等。这里主要介绍织物的坚牢度试验。 织物的拉伸断裂试验 织物拉伸断裂试验目前主要采用单向(受力)拉伸,即测试织物试条的经(纵) 向强力、纬(横)向强力,或与经纬向呈某一角度的强力。它适用于机械性能具有各向异性、拉伸变形能力较小的制品。对于容易产生变形的针织物(特别是易卷边的单面针织物)、编织物以及非织造布一般采用顶破试验为宜。 一、试验原理 将一定尺寸的试样,按等速伸长方式拉伸至断裂,测其承受的最大力——断裂强力及产生对应的长度增量——断裂伸长。必要时,还可画出织物的强力——伸长曲线,算出多种拉伸指标。 二、试验参数选择 1、试样形状 根据织物的品种不同,试样的形状有以下3种形式,见图。 图织物拉伸断裂试验的试条形状和夹持方法 (1)拆边纱法条样:用于一般机织物试样。裁剪的试样宽度应比规定的有效试验宽度宽5mm或lOmm(按织物紧密程度而定),然后通过拆边纱法从试样宽度两侧拆去数量大致相等的纱线,直至试样宽度符合规定要求,以确保试验过程中纱线不会从毛边中脱出。 (2)剪切法条样:适用于针织物、涂层织物、非织造布和不易拆边纱的机织物试样。

(3)抓样法条样:试样宽度大于夹持宽度。适用于机织物,特别是经过重浆整理的,不易抽边纱的和高密度的织物。 比较3种形态试样的试验结果,拆边法的强力不匀较小,而强力值略低于抓样法。 2、试验参数 织物拉伸断裂的试验参数见表。 注:拆边纱法条样应先裁剪成6 mm宽或7 mm宽(疏松织物),然后两边抽去等量边纱,使试样的有效宽度为5 mm。 为便于施加张力,试样长度宜放长30~50 mm。 3、预加张力 按以下原则确定预张力: (1)按试样的单位面积质量来决定,见表。 (2)当断裂强力低于20N时,按概率断裂强力的(1±0.25)%确定预加张力。 (3)抓样法的预张力,采用织物试样的自重即可。 (4)当试样在预张力作用下产生的伸长大于2%时,应采用无张力夹持法(即松式夹持)。这对伸长变形较大的针织物和弹力织物更合适。 4、大气条件 试样的调湿、测试的标准大气条件为三级标准大气条件。 三、试验步骤 (1)准备试样。根据织物品种,选择试条形状,按规定的试样尺寸裁剪试样,长度方向应平行于织物的经向(纵行)或横向(或横列)。每份样品的经纬向试样至少5块,并在标准大气条件下调湿4h。 (2)按规定要求,调整上下夹钳的隔距(夹持长度)、拉伸速度。 (3)夹装试样。先将试样一端夹紧在上夹钳中心位置,然后将试样另一端放

金属材料力学性能练习题

第二章第一节金属材料的力学性能 一、选择题 1.表示金属材料屈服强度的符号是()。 A.σ e B.σ s C.σ b D.σ -1 2.表示金属材料弹性极限的符号是()。 A.σ e B.σ s C.σ b D.σ -1 3.在测量薄片工件的硬度时,常用的硬度测试方法的表示符号是()。 A.HB B.HR C.HV D.HS 4.金属材料在载荷作用下抵抗变形和破坏的能力叫()。 A.强度 B.硬度 C.塑性 D.弹性 二、填空 1.金属材料的机械性能是指在载荷作用下其抵抗()或()的能力。 2.金属塑性的指标主要有()和()两种。 3.低碳钢拉伸试验的过程可以分为弹性变形、()和()三个阶段。 4.常用测定硬度的方法有()、()和维氏硬度测试法。 5.疲劳强度是表示材料经()作用而()的最大应力值。 三、是非题 1.用布氏硬度测量硬度时,压头为钢球,用符号HBS表示。() 2.用布氏硬度测量硬度时,压头为硬质合金球,用符号HBW表示。() 四、改正题 1. 疲劳强度是表示在冲击载荷作用下而不致引起断裂的最大应力。 2. 渗碳件经淬火处理后用HB硬度计测量表层硬度。 3. 受冲击载荷作用的工件,考虑机械性能的指标主要是疲劳强度。 4. 衡量材料的塑性的指标主要有伸长率和冲击韧性。

5. 冲击韧性是指金属材料在载荷作用下抵抗破坏的能力。 五、简答题 1.说明下列机械性能指标符合所表示的意思:σ S 、σ 0.2 、HRC、σ -1 。 2.说明下列机械性能指标符合所表示的意思:σ b 、δ 5 、HBS、a kv 。 2.2金属材料的物理性能、化学性能和工艺性能 一、判断题 1.金属材料的密度越大其质量也越大。() 2.金属材料的热导率越大,导热性越好。() 3.金属的电阻率越小,其导电性越好。() 二、简答题: 1.什么是金属材料的工艺性能?它包括哪些? 2.什么是金属材料的物理性能?它包括哪些? 3.什么是金属材料的化学性能?它包括哪些?

材料力学性能-第2版课后习题答案34499

第一章 单向静拉伸力学性能 1、 解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 4、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 5、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 6、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 7、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 8、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。

第二章 力学性能

第2章工程材料的性能 问一问,想一想:如果选择能够做铁锤的材料,您可能选择较硬的金属,而如果选择绑扎物件的一般铁丝,您就可能选择较软的金属。材料性能是选择材料的基本依据。那么如何科学地评价材料性能呢? 学习目标 1.重点了解工程材料的常用力学性能; 2.了解工程材料的物理、化学及工艺性能并建立材料性能的技术经济概念。 各种材料,按其性能的不同,可以用于结构、机件、工具或物理功能器件等。工程技术人员选用材料时首先要掌握材料的使用性能(如等),同时要考虑材料的工艺性能和经济性。使用性能是材料在使用过程中表现出来的性能,主要有力学性能、物理性能与化学性能。工艺性能是指材料在各种加工过程中表现出来的性能,比如铸造、锻造、焊接、热处理和切削加工等性能。当然我们还要关注经济性能,要力求材料选用的总成本为最低。在机械行业选用材料时,一般以力学性能作为主要依据。 2.1 材料的力学性能 材料常用的力学性能指标有强度、塑性、硬度、冲击韧度和疲劳极限等。 2.1.1 强度和塑性 材料的强度与塑性是极为重要的力学性能指标,采用拉伸试验方法测定。所谓拉伸试验是指用静拉伸力对标准拉伸试样进行缓慢的轴向拉伸,直至拉断的一种试验方法。在拉伸试验中和拉伸试验后可测量力的变化与相应的伸长,从而测出材料的强度与塑性。 图2.1.1 标准拉伸试样

试验前,将材料制成一定形状和尺寸的标准拉伸试样(见GB 6397-86)。图 2.1.1为常用的圆形标准拉伸试样,试样的直径为d 0 ,标距的长度为L 。将试 样装夹在拉伸试验机上,缓慢增加试验力,试样标距的长度将逐渐增加,直至拉断。若将试样从开始加载直到断裂前所受的拉力F,与其所对应的试样标距长度L 的伸长量?L绘成曲线,便得到拉伸曲线。图2.1.2为退火低碳钢的拉伸曲线。 用试样原始截面积S 0去除拉力F得到应力σ。以试样原始标距L 去除绝对伸长 ?L得到应变ε,即σ=F S/ 0,ε=?L L / ,则力-伸长(F-?L)曲线就成了工程 应力应变(σ-ε)曲线。 图2.1.2 低碳钢的拉伸曲线 曲线表示了这样一个变形过程。曲线的oe段近乎一条斜线,表示受力不大时试样处于弹性变形阶段,若卸除试验力,试样能完全恢复到原来的形状和尺寸,其中在op阶段应力与应变呈正比关系即符合虎克定律。当拉伸力继续增加时,试样将产生塑性变形,并且在s点附近曲线上出现平台或锯齿状线段, 这时应力不增加或只有微小增加,试样却继续伸长,称为屈服。屈服后曲线又呈上升趋势,表示试样恢复了抵抗拉伸力的能力。b点表示试样抵抗拉伸力的最大能力。这时试样上的某处截面积开始减小,形成缩颈。随后,试样承受拉伸力的能力迅速减小,直至断裂(k点)。 1.强度 强度是材料在外力作用下抵抗塑性变形和断裂的能力。工程上常用的静拉伸强度判据有弹性极限、屈服点和抗拉强度等。

力学性能检验规范

力学性能检验规范 编制: 审核: 批准: 日期:

1、目的 本规程指在为公司质量检测部力学性能试验的操作和判定做出指导,规范其操作,保证力学性能试验能够快速、准确的完成。 2、依据标准 2.1 ASTM A370-2014 钢制品力学性能试验的标准试验方法和定义 ASTM_E23-2012C 金属材料切口试棒冲击试验的试验方法 GB2975-1998 钢及钢产品力学性能试验取样位置及试样制备 GB/T228.1-2010 金属材料_室温拉伸试验方法 GB/T 229-2007 金属材料夏比摆锤冲击试验方法 3、拉伸试验 3.1、取样 3.1.1试样尺寸执行相关技术文件或标准取样。 3.1.2试样在机加工过程中要防止冷变形或受热而影响其力学性能。通常以切削加工为宜,进刀深度要适当,并充分冷却。特别是最后一道切削或磨削的深度不宜过大,以免影响性能。 3.2、方法 拉伸试验应按产品的技术要求,选择GB/T228或ASTM A370的方法进行。 3.3、设备 微机屏显式液压万能试验机 主要性能参数最大试验力300KN、试验力准确度优于示值±1%,变形测量准确度在引伸计满量程的2%~100%范围内优于±1% 电子引伸计 主要参数级别 1.0 ;标距Le(mm) 50 ;计算方法端点法; 最大变形(mm)10.0 ; 灵敏度(mV/V) 2 3.4、实验设备的校准 3.3.1效准依据:ISO 7500-1或ASTM E4 3.3.2效准频率:每年 4、夏比V型缺口冲击试验 4.1、取样 4.1.1试样尺寸执行相关技术文件或标准取样。

4.1.2由于冲击试样缺口深度、缺口根部曲率半径及缺口角度决定着缺口附近的应力集中程度,从而影响该试样的吸收能量,因此对缺口的制备应特别仔细,以保证缺口根部处没有影响吸收的加工痕迹。缺口对称面应垂直于试样纵向轴线。另外,加工时,除端部外,试样表面粗糙度值应优于5μm。 4.2.、方法 夏比V型冲击试验应按照按产品的技术要求,选择ASTM A370和ASTM E23或GB/T229的方法执行。 只要能达到规定温度下的吸收能要求,在低于规定温度的温度下进行的试验是合格的。 4.3.、设备 冲击试验机 最大试验力300J,冲击能量30/15公斤每米 冲击试验低温槽 主要参数控温范围 -60℃;控温精度<±0.5℃; 保温时间 8min ;冷却介质乙醇或其他不冻液 4.4、实验设备的校准 3.3.1效准依据:ISO 7500-1或ASTM E4 3.3.2效准频率:每年

相关文档
最新文档