定积分与微积分基本定理复习讲义

定积分与微积分基本定理复习讲义
定积分与微积分基本定理复习讲义

定积分与微积分基本定理复习讲义

河南省卢氏县第一高级中学山永峰

什么怎么考

1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.

2.了解微积分基本定理的含义. 1.考查形式多为选择题或填空题.

2.考查简单定积分的求解.

3.考查曲边梯形面积的求解.

4.与几何概型相结合考查.

[归纳·知识整合]

1.定积分

(1)定积分的相关概念:在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.

(2)定积分的几何意义

①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分).

②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b 之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数.

(3)定积分的基本性质:①∫b a kf(x)d x=k∫b a f(x)d x.

②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x.

③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x.

[探究] 1.若积分变量为t,则∫b a f(x)d x与∫b a f(t)d t是否相等?

提示:相等.

2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗?

提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算.

3.定积分∫b a[f(x)-g(x)]d x(f(x)>g(x))的几何意义是什么?

提示:由直线x=a,x=b和曲线y=f(x),y=g(x)所围成的曲边梯形的面积.

2.微积分基本定理:如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么∫b a f(x)d x

=F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式. 为了方便,常把F (b )-F (a )记成F (x )|b a ,即 ∫b a f (x )d x =F (x )|b a =F (b )-F (a ).

课前预测:

1.∫421x

d x 等于( ) A .2ln 2 B .-2ln 2 C .-ln 2 D .ln 2

2.(教材习题改编)一质点运动时速度和时间的关系为V (t )=t 2-t +2,质点作直线运动,

则此物体在时间[1,2]内的位移为( )

A.176

B.143

C.136

D.116

3.(教材习题改编)直线x =0,x =2,y =0与曲线y =x 2

所围成的曲边梯形的面积为________.

4.(教材改编题)∫101-x 2d x =________.

5.由y =1x ,直线y =-x +52

所围成的封闭图形的面积为________ 考点一 利用微积分基本定理求定积分

[例1] 利用微积分基本定理求下列定积分:

(1)∫21(x 2+2x +1)d x ;(2)∫π0(sin x -cos x )d x ; (3)∫2

0x (x +1)d x ;(4)∫21? ????e 2x +1x d x ; (5)20π

? sin 2x 2d x . ———————————————————

求定积分的一般步骤:

(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差;

(2)把定积分用定积分性质变形为求被积函数为上述函数的定积分;

(3)分别用求导公式找到一个相应的原函数;

(4)利用牛顿—莱布尼兹公式求出各个定积分的值;

(5)计算原始定积分的值.

强化训练:

1.求下列定积分:(1)∫2

0|x -1|d x ;(2) 20π?1-sin 2x d x .

考点二 利用定积分的几何意义求定积分

[例2] ∫10-x 2+2x d x =________.

变式:在本例中,改变积分上限,求∫20-x 2+2x d x 的值.

———————————————————

利用几何意义求定积分的方法

(1)当被积函数较为复杂,定积分很难直接求出时,可考虑用定积分的几何意义求定积分.

(2)利用定积分的几何意义,可通过图形中面积的大小关系来比较定积分值的大小. 强化训练:

2.(2014·福建模拟)已知函数f (x )=∫x 0(cos t -sin t )d t (x >0),则f (x )的最大值为

________.

考点三:利用定积分求平面图形的面积

[例3] (2014·山东高考)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为

( )

103 B .4 C.163 D .6

变式训练:

若将“y =x -2”改为“y =-x +2”,将“y 轴”改为“x 轴”,如何求解?

———————————————————

利用定积分求曲边梯形面积的步骤

(1)画出曲线的草图.

(2)借助图形,确定被积函数,求出交点坐标,确定积分的上、下限.

(3)将“曲边梯形”的面积表示成若干个定积分的和或差.

(4)计算定积分,写出答案.

强化训练:

(2014·郑州模拟)如图,曲线y =x 2和直线x =0,

x =1,y =14

所围成的图形(阴影部分)的面积为( )

A.23

B.13

C.12

D.14

考点四:定积分在物理中的应用

[例4] 列车以72 km/h 的速度行驶,当制动时列车获得加速度a =-0.4 m/s 2,问列车应

在进站前多长时间,以及离车站多远处开始制动?

——————————————————— 1.变速直线运动问题

如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≥0),那么物体从

时刻t =a 到t =b 所经过的路程为∫b a v (t )d t ;如果做变速直线运动的物体的速度v 关于时

间t 的函数是v =v (t )(v (t )≤0),那么物体从时刻t =a 到t =b 所经过的路程为-∫b a

v (t )d t .

2.变力做功问题

物体在变力F (x )的作用下,沿与力F (x )相同方向从x =a 到x =b 所做的功为∫b a F (x )d x . 强化训练:

4.一物体在力F (x )=????? 10 0≤x ≤23x +4 x >2(单位:N)的作用下沿与力F (x )相同的方向运动

了4米,力F (x )做功为( )

A .44 J

B .46 J

C .48 J

D .50 J

1个定理——微积分基本定理

由微积分基本定理可知求定积分的关键是求导函数的原函数,由此可知,求导与积分是互为逆运算.

3条性质——定积分的性质

(1)常数可提到积分号外;(2)和差的积分等于积分的和差;

(3)积分可分段进行.

3个注意——定积分的计算应注意的问题

(1)若积分式子中有几个不同的参数,则必须分清谁是积分变量;

(2)定积分式子中隐含的条件是积分上限不小于积分下限;

(3)面积非负, 而定积分的结果可以为负.

易误警示——利用定积分求平面图形的面积的易错点

[典例] (2013·上海高考)已知函数y =f (x )的图象是折线段ABC ,其中A (0,0),B ? ??

??12,5,C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.

[易误辨析]

1.本题易写错图形面积与定积分间的关系而导致解题错误.

2.本题易弄错积分上、下限而导致解题错误,实质是解析几何的相关知识和运算能力不够致错.

3.解决利用定积分求平面图形的面积问题时,应处理好以下两个问题:

(1)熟悉常见曲线,能够正确作出图形,求出曲线交点,必要时能正确分割图形;

(2)准确确定被积函数和积分变量.

变式训练:1.由曲线y =x 2,y =x 3围成的封闭图形面积为( )

A.112

B.14

C.13

D.712

2.(2014·山东高考)设a >0.若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,

则a =________.

定积分与微积分基本定理检测题

一、选择题(本大题共6小题,每小题5分,共30分)

1.∫e 11+ln x x

d x =( )

1-定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理) 基础巩固强化 1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =?? ?0 1(x 2-x )d x B .S =?? ?0 1 (x -x 2)d x C .S =?? ?0 1 (y 2-y )d y D .S =??? 1 (y - y )d y [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图 形的面积S =?? ?0 1 (x -x 2)d x . 2.如图,阴影部分面积等于( ) A .2 3 B .2-3 [答案] C [解析] 图中阴影部分面积为

S =??? -3 1 (3-x 2 -2x )d x =(3x -1 3x 3-x 2)|1 -3=32 3. 4-x 2d x =( ) A .4π B .2π C .π [答案] C [解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积, ∴S =1 4×π×22=π. 4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( ) A .在t 1时刻,甲车在乙车前面 B .在t 1时刻,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面 [答案] A [解析] 判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积

微积分基本定理(17)

1.6 微积分基本定理( 2) 一、【教学目标】 重点:使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 难点:利用微积分基本定理求积分;找到被积函数的原函数. 能力点:正确运用基本定理计算简单的定积分. 教育点:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩 证唯物主义观点,提高理性思维能力. 自主探究点:通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义. 易错点:准确找到被积函数的原函数,积分上限与下限代人求差注意步骤,以免符号出错. 考试点:高考多以填空题出现,以考查定积分的求法和面积的计算为主. 二、【知识梳理】 1. 定积分定义:如果函数() f x在区间[,] a b上连续,用分点 0121- =<<<<<<<= i i n a x x x x x x b,将区间[,] a b等分成n个小区间,在每一个小区间 1 [,] i i x x - 上任取一点(1,2,,) ξ= i i n,作和 1 ()() ξξ = - ?=∑n i i i i b a f x f n ,当n→∞时,上述和式无限接近某个常数,这个常数叫做函数() f x在区间[,] a b上的定积分,记作() b a f x dx ?,即 1 ()lim() n b a i n i b a f x dx f n ξ →∞ = - =∑ ?,这里a、b分别叫做积分的下限与上限,区间[,] a b叫做积分区间,函数() f x叫做被积函数,x叫做积分变量,() f x dx叫做被积式. 2.定积分的几何意义 如果在区间[,] a b上函数连续且恒有()0 f x≥,那么定积分() b a f x dx ?表示由直线, x a x b ==(a b ≠),0 y=和曲线() y f x =所围成的曲边梯形的面积.

定积分及微积分基本定理练习题及答案

1.4定积分与微积分基本定理练习题及答案 1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系是 ( ) A .a2,c =??02sinxdx =- cosx|02=1-cos2∈(1,2), ∴c

高中数学之定积分与微积分基本定理含答案

专题06 定积分与微积分基本定理 1.由曲线,直线轴所围成的图形的面积为() A.B.4C.D.6 【答案】A 【解析】 联立方程得到两曲线的交点(4,2), 因此曲线y,直线y=x﹣2及y轴所围成的图形的面积为: S. 故选:A. 2.设f(x)=|x﹣1|,则=() A.5 B.6 C.7 D.8 【答案】A 【解析】 画出函数的图像如下图所示,根据定积分的几何意义可知,定积分等于阴影部分的面积,故定积分为 ,故选A.

3.曲线与直线围成的封闭图形的面积是() A.B.C.D. 【答案】D 【解析】 令,则,所以曲线围成的封闭图形面积为 ,故选D 4.为函数图象上一点,当直线与函数的图象围成区域的面积等于时,的值为 A.B.C.1D. 【答案】C 【解析】 直线与函数的图象围成区域的面积S dx =

∴ 故选:C 5.由直线与曲线所围成的封闭图形的面积为( ) A.B.1C.D. 【答案】B 【解析】 题目所求封闭图形的面积为定积分,故选B. 6.如图,矩形中曲线的方程分别是,在矩形内随机取一点,则此点取自阴影部分的概率为( ) A.B.C.D. 【答案】A 【解析】 依题意的阴影部分的面积,根据用几何概型概率计算公式有所求概率为,故选A. 7.() A.B.-1C.D. 【答案】C 【解析】 解:

. 故选:C. 8.,则T的值为 A.B.C.D.1 【答案】A 【解析】 由题意得表示单位圆面积的四分之一,且圆的面积为π, ∴, ∴. 故选A. 9.下列计算错误 ..的是() A.B. C.D. 【答案】C 【解析】 在A中,, 在B中,根据定积分的几何意义,, 在C中,, 根据定积分的运算法则与几何意义,易知,故选C.

7.微积分基本定理练习题

7、微积分基本定理 一、选择题 1.??0 1(x 2 +2x )d x 等于( ) A.13 B.23 C .1 D.43 2.∫2π π(sin x -cos x )d x 等于( ) A .-3 B .-2 C .-1 D .0 3.自由落体的速率v =gt ,则落体从t =0到t =t 0所走的路程为( ) A.13gt 20 B .gt 2 0 C.12gt 20 D.16gt 20 4.曲线y =cos x ? ????0≤x ≤3π2与坐标轴所围图形的面积是( ) A .4 B .2 C.5 2 D .3 5.如图,阴影部分的面积是( ) A .2 3 B .2- 3 C.323 D.35 3 6.??0 3|x 2-4|d x =( ) A.213 B.223 C.233 D.25 3 7.??241 x d x 等于( ) A .-2ln2 B .2ln2 C .-ln2 D .ln2 8.若??1a ? ?? ??2x +1x d x =3+ln2,则a 等于( ) A .6 B .4 C .3 D .2 9.(2010·山东理,7)由曲线y =x 2 ,y =x 3 围成的封闭图形面积为( ) A.112 B.14 C.13 D.7 12 10.设f (x )=??? ?? x 2 0≤x <12-x 1

11.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为________. 12.一物体沿直线以v =1+t m/s 的速度运动,该物体运动开始后10s 内所经过的路程是________. 13.求曲线y =sin x 与直线x =-π2,x =5 4π,y =0所围图形的面积为________. 14.若a =??02x 2 d x ,b =??02x 3 d x ,c =??0 2sin x d x ,则a 、b 、c 大小关系是________. 三、解答题 15.求下列定积分: ①??0 2(3x 2+4x 3 )d x ; ② sin 2 x 2 d x . 17.求直线y =2x +3与抛物线y =x 2 所围成的图形的面积. 18.(1)已知f (a )=??0 1(2ax 2 -a 2 x )d x ,求f (a )的最大值; (2)已知f (x )=ax 2 +bx +c (a ≠0),且f (-1)=2,f ′(0)=0,??0 1f (x )d x =-2,求a ,b ,c 的值. DBCDCCDDAC 11. 13 12. 23(1132-1) 13.4-2 2 [解析] 所求面积为 =1+2+? ?? ?? 1-22=4-22. 14.[答案] c

专题13定积分与微积分基本定理知识点

专题13定积分与微积分基 本定理知识点 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

考点13 定积分与微积分基本定理 一、定积分 1.曲边梯形的面积 (1)曲边梯形:由直线x =a 、x =b (a ≠b )、y =0和曲线()y f x =所围成的图形称为曲边梯形(如图①). (2)求曲边梯形面积的方法与步骤: ①分割:把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图②); ②近似代替:对每个小曲边梯形“以值代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值(如图②); ③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和; ④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积. 2.求变速直线运动的路程 3.定积分的定义和相关概念 (1)如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

定积分与微积分基本定理

教学过程

一、课堂导入 问题:什么是定积分?定积分与微积分基本定理是什么? 二、复习预习 1.被积函数若含有绝对值号,应先去绝对值号,再分段积分.

2.若积分式子中有几个不同的参数,则必须先分清谁是被积变量. 3.定积分式子中隐含的条件是积分上限大于积分下限. 4.定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负. 5.将要求面积的图形进行科学而准确的划分,可使面积的求解变得简捷. 三、知识讲解 考点1 定积分的概念 设函数y=f(x)定义在区间[a,b]上用分点a=x0

在每个小区间内任取一点ξi,作和式I n=∑n-1 i=0 f(ξi)Δx i.当λ→0时,如果和式的极限存在,把和式I n的极限叫做函数f(x) 在区间[a,b]上的定积分,记作?b a f(x)d x,即?b a f(x)d x=lim λ→0∑n-1 i=0 f(ξi)Δx i,其中f(x)叫做被积函数,f(x)d x叫做被积式,a 为积分下限,b为积分上限.

(1)?b a kf(x)d x=k?b a f(x)d x (k为常数). (2)?b a[f(x)±g(x)]d x=?b a f(x)d x±?b a g(x)d x. (3)?b a f(x)d x=?c a f(x)d x+?b c f(x)d x (a

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

定积分与微分基本定理

定积分与微积分基本定理 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: ● 了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念、几何意义. ● 直观了解微积分基本定理的含义,并能用定理计算简单的定积分. ● 应用定积分解决平面图形的面积、变速直线运动的路程和变力作功等问题,在解决问题的过程中体验定积分的价值. 重点难点: ● 重点:正确计算定积分,利用定积分求面积. ● 难点:定积分的概念,将实际问题化归为定积分问题. 学习策略: ● 运用“以直代曲”、“以不变代变”的思想方法,理解定积分的概念. ● 求定积分主要是要找到被积函数的原函数,也就是说,要找到一个函数,它的导函数等于被积函数. ● 求导运算与求原函数运算互为逆运算. 二、学习与应用 常见基本函数的导数公式 (1)()f x C =(C 为常数),则'()f x = (2)()n f x x =(n 为有理数),则'()f x = (3)()sin f x x =,则'()f x = (4)()cos f x x =,则'()f x = (5)()x f x e =,则'()f x = (6)()x f x a =,则'()f x = “凡事预则立,不预则废”。科学地预习才能使我们上课听讲更有目的性和针对 知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?

(7)()ln f x x =,则'()f x = (8)()log a f x x =,则'()f x = 函数四则运算求导法则 设 ()f x ,()g x 均可导 (1)和差的导数:[()()]'f x g x ±= (2)积的导数:[()()]'f x g x ?= (3)商的导数:()[]'() f x g x = (()0g x ≠) 知识点一:定积分的概念 如果函数)(x f 在区间[,]a b 上连续,用分点b x x x x x a n n =<

定积分与微积分基本定理

定积分与微积分基本定理 [考纲传真] 1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义. 【知识通关】 1.定积分的有关概念与几何意义 (1)定积分的定义 如果函数f (x )在区间[a ,b ]上连续,用分点将区间[a ,b ]等分成n 个小区间,在 每个小区间上任取一点ξi (i =1,2,…,n ),作和式∑n i =1f (ξi )Δx =∑n i =1 b -a n f (ξi ),当n →∞ 时,上述和式无限接近于某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定 积分,记作??a b f (x )d x ,即??a b f (x )d x =lim n →∞∑n i =1 b -a n f (ξi ). 在??a b f (x )d x 中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. (2)定积分的几何意义 图形 阴影部分面积 S =??a b f (x )d x S =-??a b f (x )d x S =??a c f (x )d x -??c b f (x )d x S =??a b f (x )d x -??a b g(x )d x =??a b [f (x )-g(x )]d x 2.(1)??a b kf (x )d x =k ??a b f (x )d x (k 为常数);

(2)??a b [f 1(x )±f 2(x )]d x =??a b f 1(x )d x ±??a b f 2(x )d x ; (3)??a b f (x )d x =??a c f (x ) d x +??c b f (x )d x (其中a

定积分与微积分含答案

定积分与微积分基本定理 基础热身 1.已知f (x )为偶函数,且 ??0 6f(x)d x =8,则? ?6-6f(x)d x =( ) A .0 B .4 C .8 D .16 2. 设f(x)=??? x 2,x ∈[0,1], 1 x ,x ∈1,e ] (其中e 为自然对数的底数),则??0 e f(x)d x 的值为( ) B .2 C .1 3.若a =??0 2x 2d x ,b =??0 2x 3d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关 系是( ) A .a

A .0 B .1 C .0或1 D .以上均不对 9.如果10 N 的力能使弹簧压缩10 cm ,为在弹性限度内将弹簧拉长6 cm ,则力所做的功为( ) A . J B . J C . J D . J 10.设函数y =f(x)的定义域为R +,若对于给定的正数K ,定义函 数f K (x )=????? K ,fx ≤K ,fx ,fx >K , 则当函数f (x )=1x ,K =1时,定积分??214f K (x)d x 的值为________. (x -x 2)d x =________. 12. ∫π 20(sin x +a cos x)d x =2,则实数a =________. 13.由抛物线y 2 =2x 与直线x =12及x 轴所围成的图形绕x 轴旋转一周所得旋转体的体积为________. 14.(10分)已知函数f(x)=x 3+ax 2+bx +c 的图象如图K 15-2所示,直线y =0在原点处与函数图象相切,且此切线与函数图象所围 成的区域(阴影)面积为27 4,求f(x)的解析式. 图K 15-2 15.(13分)如图K 15-3所示,已知曲线C 1:y =x 2与曲线C 2:y =-x 2+2ax(a>1)交于点O 、A ,直线x =t (00),

§1.6微积分基本定理

1.6微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例体会用微积分基本定理求定积分的方法 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。 难点 了解微积分基本定理的含义 三:教学过程: 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 21()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 21()T T v t dt ? =12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有

()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? 证明:因为()x Φ=()x a f t dt ?与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ= ()a a f t dt ?=0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a f t dt ? 令x b =,有()()()b a f x dx F b F a =-? 此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即 ()()|()()b b a a f x dx F x F b F a ==-? 该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 例1.计算下列定积分: (1)2 11dx x ?; (2)3211(2)x dx x -?。 解:(1)因为'1(ln )x x =, 所以22111ln |ln 2ln1ln 2dx x x ==-=?。 (2))因为2''211()2,()x x x x ==-, 所以3332211111(2)2x dx xdx dx x x -=-??? 233111122||(91)(1)33x x =+=-+-=。 练习:计算 120x dx ? 解:由于313 x 是2x 的一个原函数,所以根据牛顿—莱布尼兹公式有

微积分定积分练习题(有答案)

1利用定积分的几何意义计算」''1 - x2dx. 2. 计算定积分"2(x+ 1)dx. J i 3. 定积分"bf(x)dx的大小() ?a A .与f(x)和积分区间[a, b]有关,与E的取法无关 B.与f(x)有关,与区间[a,b]以及&的取法无关 C .与f(x)以及8的取法有关,与区间[a, b]无关 D .与f(x)、区间[a,b]和8的取法都有关 4. 在求由x= a,x= b(a

8. 10 利用定积分的几何意义求 —9 — x — 3 2dx. (1)| 2(x 2+ 2x + 1)dx ; 广n (2) 1 (sinx — cosx)dx ; (3)| J* 2 / 、 1 x — X 2 +_ 1 丿。 1 < X 丿 (4) 0-?cosx + e x )dx. ⑹p (2x + 1)dx ; ⑺ 丿0 1 2x + 一 dx x 广1 ⑺f; x (8) 1x 3dx ; ■ 0 (9) 1e x dx. 11 求 y = — x 2与 y = x — 2围成图形的面积S. 15 A.— 4 17 B.— 4 1 C.—|n 2 2 D . 2ln2 已知"2 f(x)dx = 3,贝U 2 [f(x) + 6]d 1 1 12 .由直线x =2,x =2,曲线y =严x 轴所围图形的面积为 13.已知 f 1— 1(x 3 + ax + 3a — b)dx= 2a + 6 且 f(t) = f (x 3 + ax + 3a — b)dx 为偶函数, 求下列定积分: dx ; 2 1 x 2dx

微积分基本定理说课稿

《微积分基本定理》(说课稿) 一、教材分析 1、教材的地位及作用 我所选用的教材是科学出版社出版的高等教育“十一五”规划教材《经济数学基础》,由宋劲松老师主编。微积分基本定理是第四章第二节内容,本节内容共设计两个课时,这节课的主要内容是微积分基本公式的导出以及用它求定积分。 本节课是学生学习了不定积分和定积分这两个概念后的继续,它不仅揭示了不定积分和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 二、教学目标及重点、难点 1、教学目标 根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节课的教学目标如下: (1)知识与技能目标:通过本节的学习,使学生了解变上限的定积分的定义及相关定理,掌握牛顿—莱布尼兹公式,通过例题及练习,使学生在增加对牛顿—莱布尼兹公式感性认识的基础上,熟练掌握求定积分的方法,从而能够熟练计算定积分. (2)能力目标:本节所讲数学知识主要是为学生学习专业课做准备。要逐步培养学生具有比较熟练的基本运算能力、提高综合运用所学知识分析和解决实际问题的能力。 (3)德育目标:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 2、教学重点、难点 根据教材内容特点及教学目标的要求确定本节重点为通过探究变上限定积分与原函数的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 根据学生的年龄结构特征和心理认知特点确定本节难点:了解微积分基本定理的含义. ——以学生现有的知识水平对于微积分基本定理的严密证明是存在着一定难度的,而突破难点的关键在于让学生主动去探索,体会微积分基本公式的导出以及利用它来计算简单的定积分,这样才能从真正意义上把握该定理的含义,提高学生的能力,体现学生的主体地位. 三、教法和学法 1、教法: 素质教育理论明确要求:教师是主导,学生是主体,只有教师在教学过程中注重引导,才能充分发挥学生的主观能动性,有利于学生创造性思维的培养和能力的提高,根据本节的教学内容及教学目标和学生的认识规律,我采用类比、启发、引导、探索式相结合的方法,启发、引导学生积极思考本节课所遇到的问题,引导学生联想旧知识来解决和探索新知识,从而使学生产生浓厚的学习兴趣和求知欲,体现了学生的主体地位。 2、学法:

1-定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理) 基础巩固强化 1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =??0 1(x 2-x )d x B .S =??0 1(x -x 2)d x C .S =??0 1(y 2-y )d y D .S =??0 1(y - y )d y [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =??0 1(x -x 2)d x . 2.如图,阴影部分面积等于( ) — A .2 3 B .2-3 [答案] C [解析] 图中阴影部分面积为

S =??-3 1 (3-x 2-2x )d x =(3x -13x 3-x 2)|1-3 =32 3. 4-x 2d x =( ) A .4π B .2π C .π [答案] C [解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积, / ∴S =1 4×π×22=π. 4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( ) A .在t 1时刻,甲车在乙车前面 B .在t 1时刻,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面 [答案] A [解析] 判断甲、乙两车谁在前,谁在后 的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积分,即速度函数v (t )的图象与t 轴以及时间段围成区域的面积.从图象知:在t 0时刻,v 甲的图象与t 轴和t =0,t =t 0围成区域的面积大于v 乙的图象与t 轴和t =0,t =t 0围成区域的

《微积分基本定理与应用》试题

微积分基本定理与应用 定积分 微积分基本定理与应用 【知识网络】 1. 直观了解微积分基本定理的含义。 2. 会求简单的定积分。 3. 会用定积分的知识解决一些简单的应用问题。 【典型例题】 [例1](1)由抛物线x y =2和直线x =1所围成的图形的面积等于 A .1 B . 3 4 C . 3 2 D . 3 1 (2)如图,阴影部分的面积是 A .32 B .329- C . 332 D .3 35 (3)dx x |4|1 02 ? -= A . 321 B .322 C .3 23 D .325 (4) dx x ?π π 2 22cos = . (5)按万有引力定律,两质点间的吸引力2 21r m m k F =,k 为常数,21,m m 为两质点的质量,r 为两点间距 离,若两质点起始距离为a ,质点m 1沿直线移动至离m 2的距离为b 处,试求所作之功(b> a ) . [例2] 如图,求由两条曲线2x y -=,2 4x y -=及直线y = -1[例3]如图,抛物线C 1:y = -x 2与抛物线C 2:y =x 2-2 ax (a >0)交于O 、A C 2所围成的图形面积为 3 2 9a ,求直线l 的方程. [例4]已知A (-1,2)为抛物线C :y =2x 2上的点.直线l 1过点A ,且与抛物线C 相切.直线l 2:x =a (a ≠-1)交抛物线C 于点B ,交直线l 1于点D . (1)求直线l 1的方程; (2)设?ABD 的面积为S 1,求BD 及S 1的值; (3)设由抛物线C 、直线l 1、l 2所围成的图形的面积为S 2,求证:S 1∶S 2的值为与a 无关的常数. 【课内练习】 1. 5 (24)x dx -? = A .5 B 。4 C 。3 D 。2 2. 2 1 1 ln xdx x ? = A B C D 例2图 例3图 A 例1(2)

定积分与微积分练习题及答案

定积分与微积分练习题及答案 一、选择题: 1如图,阴影部分面积等于( ) A .2 3 B .2- 3 C.323 D.35 3 [答案] C [解析] 图中阴影部分面积为 S =??-31 (3-x2-2x)dx =(3x -13x3-x2)|1-3=32 3. 2.??0 24-x2dx =( ) A .4π B .2π C .π D.π2 [答案] C [解析] 令y =4-x2,则x2+y2=4(y≥0),由定积分的几何意义知所求积分为图中阴影部分的面积,∴S =1 4 ×π×22=π. 3.(2012·山东日照模拟)向平面区域Ω={(x ,y)|-π4≤x≤π 4,0≤y≤1}内随机投掷一点,该 点落在曲线y =cos2x 下方的概率是( ) A.π 4 B.12 C.π 2 -1 D.2π [答案] D[解析] 平面区域Ω是矩形区域,其面积是 π 2 ,在这个区 4.设f(x)=? ??? ? x2, x ∈[0,1],2-x ,x ∈[1,2],则 2 ? f(x)dx 等于 ( ) A.34 B.45 C.5 6 D .不存在 解析:数形结合, 2 ? f(x)dx= 1 ? x2dx+ 2 1 ? (2-x)dx

= 321211(2)3021x x x +-=3115(422)326x +--+= .答案:C 5.如图,函数y =-x2+2x +1与y =1相交形成一个闭合 图形(图中的阴影部分),则该闭合图形的面积是 ( ) A .1 B.4 3 C. 3 D .2 解析:函数y =-x2+2x +1与y =1的两个交点为(0,1)和(2,1),所以闭合图形的面积等于 2 ? (-x2+2x +1-1)dx = 2 ? (-x2+2x)dx =4 3 .答案:B 6.(2010·烟台模拟)若y = x ? (sint +costsint)dt ,则y 的最大值是 ( ) A .1 B .2 C .-7 2 D .0 解析:y = x ? (sint +costsint)dt = x ? (sint +1 2 sin2t)dt =(-cost -14cos2t)0x =-cosx -14cos2x +54=-cosx -14(2cos2x -1)+54=-12cos2x -cosx +32=-1 2 (cosx +1)2+2≤2. 答案:B 7.(2010·惠州模拟)??0 2(2-|1-x|)dx =________.[答案] 3 [解析] ∵y =? ???? 1+x 0≤x≤1 3-x 1

相关文档
最新文档