土木工程研究生有限元结题大作业

土木工程研究生有限元结题大作业
土木工程研究生有限元结题大作业

郑州大学土木工程学院2014 级研究生“有限元分析”课程大作业

说明:①每人试卷应有一个封面,注明姓名、学号、年级、专业和研究方向;

②从以下题目中选择一个题目,把所选试题附在扉页;

③本部分大作业重点是写出建模、分析过程,起到研究和锻炼作用,不强调结果。即使所得答案有一定问题也不影响本作业的质量,重点是考察对所选择题目的研究分析过程。

④对于采用已有有限元软件计算,应附出其有限元结点、单元、材料参数以及边界条件和计算控制过程的文本文件(如ABAQUS的*inp文件),同时详细描述建模过程和边界条件的施加过程。

1.编写弹性力学平面4 结点四边形单元的单元刚度矩阵形成的程序。

要求:

(1)可采用C、FORTRAN 或VB等程序语言;

(2)材料参数采用props[2]存储,分别为弹性模量和泊松比;单元4 个结点的x 和y 坐标数组

为coordsx[4]和coordsy[4](不同语言数组表示方式不同);

(3)在一个程序中,给出单元的结点坐标、材料参数,然后传给该单元刚度矩阵形成程序,

进行计算;

(4)给出一个简单的结果显示或输出程序,将计算得到的单元刚度矩阵计算结果显示出来;

(5)需要提交:程序清单,程序结构关系说明和程序主要变量说明,算法描述,计算结果的

屏幕硬拷贝打印,程序窗口的屏幕硬拷贝打印。

2. 编写弹性力学平面3结点三角形单元的有限元程序,可由1-3人组成一个小组共同编写。 要求:

(1)可采用C、FORTRAN 或VB等程序语言;

(2)阐述程序的结构,并给出程序调用框图;

(3)阐述数据结构之间的相互关系,对所用主要变量进行简单说明;

(4)给出一个简单算例,并计算出结果。

(5)以排名次序表明所参加人员(不超过3人)的贡献。

3. 针对混凝土的一个本构模型(非线性、弹塑性等),设计一个算法,并编制程序(C,c++,FORTRAN,VB等)计算其应力增量。

(1)材料参数采用数组props()存储,分别对应如泊松比、弹性模量、…..。

(2)已知当前的应力为stress(),累计的总应变为strain(),给定一个小的应变增量dstrain(),

计算应力增量dstress()。

(3)如需要采用中间变量累计存储一些参量,如累计塑性应变等,采用一个数组存储。

(4)给出算法的详细说明,如采用迭代计算,需要对其描述。

(5)按三维问题考虑。该题为有限元计算过程的本构积分问题。

4. 一个悬臂梁(长度l)分别承受其下一种荷载: (1)端部弯矩M;(2)端部横向力P;(3)均布荷载q。用Timoshenko梁单元计算梁端点处的挠度。要求:

(1)将整个梁划分为2个2节点的Timoshenko梁单元;

(2) 对于每种情况,在给出求解公式过程中,分两种情况讨论:完全积分和缩减积分(忽

略分母上的高阶量),分别求出以上三种荷载分别作用时梁端点处的挠度的计算公式;

(3) 与材料力学梁端点处的挠度结果比较,讨论关于剪切锁死的情况,即是否出现剪切锁

死,或何种情况下不会出现剪切锁死现;

(4) 本题需要采用公式进行有限元计算,计算过程为公式推演过程。

5. 采用有限元软件计算嵌入一根钢筋的长方体混凝土试件,分析钢筋在拉拔过程中由于局部滑移所产生的相对位移和粘结力之间的关系。要求:

(1)对混凝土试件进行位移约束,其尺寸及约束由自己确定;

(2)仅对钢筋的一端进行拉拔,施加一拉拔力;

(3)钢筋采用弹性,混凝土采用弹塑性或其他本构关系;

(4)无需过分强调拉拔全过程中钢筋附近混凝土的开裂,重点考虑拉拔过程钢筋和混凝土不

同介质接触面之间的粘结力和相对滑移,计算过程需要体现二者的相对滑移。

(5)分析的其他方面可以适当简化,但需要突出粘结力和相对滑移这个重点。

6.采用有限元软件计算单桩加载过程的承载力问题,分析桩体和桩侧土因加载所产生的桩土相对滑移与桩侧摩阻力之间的关系。要求:

(1)桩体采用弹性,桩侧土采用弹塑性本构关系;

(2)在桩顶施加一轴向压力;

(3) 计算需要能够体现在桩加载过程中桩土接触面不同介质其接触面之间的相对滑移,提

取计算结果显示侧阻和相对滑移的关系曲线(横坐标为相对滑移,纵坐标为侧阻)。

(4)分析的其他方面可以适当简化,但需要突出侧阻和相对滑移这个重点。

7. 采用商业有限元软件计算分析一个钢筋混凝土板(梁)的受力。要求:

(1)计算过程能够体现钢筋的作用,需要对钢筋建模或做其他处理,可采用任何模型。

(2)钢筋与混凝土之间可无相对滑移;

(3)有多根钢筋,在该模型中,钢筋不外露。

(4)给出分析结算结果,用曲线表示。

8. 采用有限元软件对一个缺口混凝土梁进行三点弯曲分析。

(1)可采用平面应力模型计算;

(2)在梁的两端进行约束,跨中下部有一个宽e 、深a 的小缺口;

(3) 计算时,可假定在梁的上部给出一个已知的挠度值,或者直接给出横向力。

(4)由于三点弯曲荷载作用下,缺口混凝土主要有I 型开裂控制,可采用混凝土弥散开裂模型。

(5)由于混凝土发生开裂后,结构变得不稳定,可能需要选择弧长法控制计算。

(6)给出分析结算结果,用曲线表示。

9. 采用有限元软件对自己感兴趣的模型进行静力或动力分析,要求:

(1)具有不同的的单元类型,如实体单元、梁单元或膜单元。采用动力分析时,尽可能采用减震器单元,以体会其作用;

(2)静力分析过程,需要体现在一些接触界面处利用弹簧单元或其他界面单元或者库伦摩擦接触特性,以体现不同介质界面的相互作用;

(3)对模型进行详细描述,计算过程进行简单分析。

(4)给出计算结果,用曲线表示,尤其弹簧或其他界面单元的作用要体现出来。

10. 采用有限元软件对承受一定的水压力荷载的混凝土坝进行地震响应计算。要求

(1)可采用平面模型分析;

(2)地震分析之前,坝体受到水压力和自重的作用。地震响应分析时,水压力和自重一直作用;

(3)给出一些特殊点出的结果;

(4)给出坝顶位移响应曲线。对分析结果适当进行描述,但重点是建模和计算步骤以及过程的描述。

11.采用有限元软件分析一个悬臂梁,梁的另一端下面放置一个竖向弹簧,梁与弹簧的距离很小,为δ,弹簧固定。当梁在随时间变化(增大)的荷载作用下产生一定挠度时会与弹簧接触。

(1)可选择静力计算或动力分析,也可设梁与弹簧的间距0=δ;

(2)需要考虑接触后梁的变形受到弹簧的作用力,然后共同作用。

(3)荷载按线性增加方式施加,足以使梁的变形导致梁与弹簧相互作用;

(4)比较浅梁与深梁时,计算结果的差异。

12.采用有限元软件对一沥青混凝土路面进行分析。要求

(1) 考虑沥青混凝土的蠕变或其他流变模型;

(2)采用平面应变分析;

(3) 考虑车辆荷载,分析荷载作用下竖向蠕变应变、竖向塑性应变和弯沉随时间变化的结果。

13. 采用有限元软件,分析平面应变条件条形荷载作用的地基极限承载力问题。

(1)不考虑基础的埋深问题,仅仅半无限体表面作用一个条形压力;

(2)采用弹塑性土体;

(3)计算结果与太沙基极限承载力公式计算结果进行对比,画出二者对比曲线;

(4)本题注重分析计算结果的量值和太沙基极限承载力结果的分析。

14. 一悬臂梁的自由端作用一竖向集中荷载,采用有限元软件分析计算梁的挠度。

(1)梁的本构关系为弹性,采用不同精度的网格、完全积分和缩减积分,分别进行计算分析;

(2)将不同方案时计算的悬臂端挠度值(悬臂端)与理论解进行比较;

(3)不同方案计算结果应体现有限元进行梁分析时的自锁现象或沙漏现象,观察不同网格或

不同方案的结果。

(4)本题重点考察分析梁计算过程所出现的自锁现象或沙漏现象。

15.一两侧面位移约束的弹塑性混凝土体(平面应力或应变,或者三维物体四周约束),其中心受到一个尺寸相对较小的弹性或刚体冲击(一定高度自由落体后与靶体撞击),采用有限元软件分析冲击响应。

(1)分别采用显式和隐式算法进行计算,分析比较计算结果,重点是显式计算;

(2)按低速冲击考虑,绘制各种能量变量的时间变化图。

(3)写出建模和分析的详细过程,本题强调对冲击过程的模拟。

16. 采用有限元软件分析一个钢制的方形筒(0.1m×0.1m×长0.4m,壁厚δ=1mm)在两个刚性平板之间的挤压问题。

(1)筒的一端固定在一个质量m(m=500kg)的刚性平板上,以一定的初速度v(v=8.9m/s)

运动。

(2) 筒的自由端与一个刚性平板碰撞,即筒在两个平行的刚性板之间受到挤压(筒与其垂

直)

(3)在碰撞过程中,筒将使大量的初始动能转化为塑性变形能而耗散掉,分析金属筒对动能

的吸收能力。

(4)分析过程中,可假定筒与刚性板的接触(碰撞)为无摩擦接触,筒可按壳单元处理。

(5)给出筒的屈曲分析结果。

17. 采用有限元软件计算土的固结问题,并与太沙基的一维固结理论解相比较。

(1)采用二维模型计算。为了模拟一维固结,可选择其宽度尺寸较小、深度尺寸相对较大的

模型,对侧面施加适当约束使其与一维固结条件很接近;

(2)考虑时间进行分析,通过固结度与时间因素曲线分析,比较有限元结果与理论解的差别;

(3)详细描述建模过程,边界条件施加过程和方法。

有限元考试试题

一.是非题(认为该题正确,在括号中打;该题错误,在括号中打×。)(每小题2分) (1)用加权余量法求解微分方程,其权函数V和场函数u的选择没有任何限制。(×)(2)四结点四边形等参单元的位移插值函数是坐标x、y的一次函数。(√)(3)在三角形单元中,其面积坐标的值与三结点三角形单元的结点形函数值相等。(√)(4)二维弹性力学问题的有限元法求解,其收敛准则要求试探位移函数C1连续。(×)(5)有限元位移法求得的应力结果通常比应变结果精度低。(×)(6)等参单元中Jacobi行列式的值不能等于零。(√)(7)在位移型有限元中,单元交界面上的应力是严格满足平衡条件的。(×)(8)四边形单元的Jacobi行列式是常数。(×)(9)利用高斯点的应力进行应力精度的改善时,可以采用与位移插值函数不同结点的形函数进行应力插值。(√)(10)一维变带宽存储通常比二维等带宽存储更节省存储量。(√) 二.单项选择题(共20分,每小题2分)C B B C B C D C C C 1 在加权余量法中,若简单地利用近似解的试探函数序列作为权函数,这类方法称为 ____C__________。 (A)配点法(B)子域法(C)伽辽金法 2 等参变换是指单元坐标变换和函数插值采用__B____的结点和______的插值函数。(A)不相同,不相同(B)相同,相同(C)相同,不相同(D)不相同,相同 3 有限元位移模式中,广义坐标的个数应与_____B______相等。 (A)单元结点个数(B)单元结点自由度数(C)场变量个数 4 采用位移元计算得到应力近似解与精确解相比较,一般______C_____。 (A)近似解总小于精确解(B)近似解总大于精确解(C)近似解在精确解上下震荡(D)没有规律 5 如果出现在泛函中场函数的最高阶导数是m阶,单元的完备性是指试探函数必须至少 是__B____完全多项式。 (A)m-1次(B)m次(C)2m-1次 6 与高斯消去法相比,高斯约当消去法将系数矩阵化成了____C_____形式,因此,不用 进行回代计算。 (A)上三角矩阵(B)下三角矩阵(C)对角矩阵 7 对称荷载在对称面上引起的________D________分量为零。 (A)对称应力(B)反对称应力(C)对称位移(D)反对称位移 8 对分析物体划分好单元后,______C____会对刚度矩阵的半带宽产生影响。 (A)单元编号(B)单元组集次序(C)结点编号 9 n个积分点的高斯积分的精度可达到__C____阶。 (A)n-1 (B)n(C)2n-1 (D)2n 10 引入位移边界条件是为了消除有限元整体刚度矩阵K的____C______。 (A)对称性(B)稀疏性(C)奇异性 三.简答题(共20分,每题5分) 1、简述有限单元法结构刚度矩阵的特点。 (1)对称性;(2)奇异性;(3)主对角元恒正;(4)稀疏性;(5)非零元素带状分布

有限元分析实验报告

武汉理工大学 学生实验报告书 实验课程名称机械中的有限单元分析 开课学院机电工程学院 指导老师姓名 学生姓名 学生专业班级机电研 1502班 2015—2016 学年第2学期

实验一方形截面悬臂梁的弯曲的应力与变形分析 钢制方形悬臂梁左端固联在墙壁,另一端悬空。工作时对梁右端施加垂直向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。 1.1方形截面悬臂梁模型建立 建模环境:DesignModeler 15.0。 定义计算类型:选择为结构分析。 定义材料属性:弹性模量为2.1Gpa,泊松比为0.3。 建立悬臂式连接环模型。 (1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。(2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图1.1所示。 图1.1 方形截面梁模型 1.2 定义单元类型: 选用6面体20节点186号结构单元。 网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图1.2所示:

图1.2 网格划分 1.21 定义边界条件并求解 本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。 (1)给左端施加固定约束; (2)给悬臂梁右端施加垂直向下的集中力; 1.22定义边界条件如图1.3所示: 图1.3 定义边界条件 1.23 应力分布如下图1.4所示: 定义完边界条件之后进行求解。

有限元分析大作业报告

有限元分析大作业报告 试题1: 一、问题描述及数学建模 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: (1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; (2)分别采用不同数量的三节点常应变单元计算; (3)当选常应变三角单元时,分别采用不同划分方案计算。 该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。 二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算 1、有限元建模 (1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences 为Structural (2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 (3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3 (4)建几何模型:生成特征点;生成坝体截面 (5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后得到600个单元。

(6)模型施加约束:约束采用的是对底面BC 全约束。大坝所受载荷形式为Pressure ,作用在AB 面上,分析时施加在L AB 上,方向水平向右,载荷大小沿L AB 由小到大均匀分布。以B 为坐标原点,BA 方向为纵轴y ,则沿着y 方向的受力大小可表示为: }{*980098000)10(Y y g gh P -=-==ρρ 2、 计算结果及结果分析 (1) 三节点常应变单元 三节点常应变单元的位移分布图 三节点常应变单元的应力分布图

2011有限元试题

西安交通大学 级研究生课程考试试题 考试(查)科目:有限元方法(II )时间 年 月 日下午 一、4 ) 4,4(),()5,5(),()2,6(),()2,2(),(4 4332211====y x , y x ,y x , y x 母体单元为22?的正方形,如图所示。 求:(1)单元坐标变换()(ξηξ,,, y y x x == (2)变换的Jacobi 行列式detJ 的解析表达式,并分析该变换是否存在奇异性(8分)。 二、分析以下两种单元的位移场是否具备收敛到真实解所需的各项条件。(30) (1) 13结点矩形平面应力单元 结点参数取为:)13~ 1( ,=i v u i i 位移场为: 3 132 2 123 113 102 92 83726524321xy y x y x y xy y x x y xy x y x u ααααααααααααα++++++++++++= 3 262 2 253 243 232 222 2132021918217161514xy y x y x y xy y x x y xy x y x v ααααααααααααα++++++++++++=(2) 6自由度三角形薄板弯曲单元 结点参数取为: ()3~1=i w i ()6~4=??? ????i n w i 位移场为: 2 652 4321y xy x y x w αααααα+++++= 三、13结点平面应力单元如图所示, 在计算单元刚度矩阵时取图示的9个 积分点。试分析在单元一级是否存在 出现零变形能位移模式的可能性。 ,u x 7 8 10 9 11 12 1 2 3 4 5 6

华科大有限元分析题及大作业题答案——船海专业(DOC)

姓名:学号:班级:

有限元分析及应用作业报告 一、问题描述 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。

二、几何建模与分析 图1-2力学模型 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。 假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3 三、第1问的有限元建模 本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。 1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural 2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 3)定义材料参数 4)生成几何模 a. 生成特征点 b.生成坝体截面 5)网格化分:划分网格时,拾取所有线段设定input NDIV 为10,选择网格划分方式为Tri+Mapped,最后得到200个单元。 6)模型施加约束: 约束采用的是对底面BC全约束。 大坝所受载荷形式为Pressure,作用在AB面上,分析时施加在L AB上,方向水平向右,载荷大小沿L AB由小到大均匀分布(见图1-2)。以B为坐标原点,BA方向为纵轴y,则沿着y方向的受力大小可表示为: ρ(1) = gh P- =ρ g = - 10 {* } 98000 98000 (Y ) y

现代设计方法实验报告

《现代机械设计方法学》实验报告 班级: 学号: 姓名: 成绩:

实验一、有限元分析 (一)目的: 1、初步掌握有限元软件分析力学问题的过程,包括几何建模、网格划分等前处理功能,掌握各种计算结果的阅读。 2、掌握材料数据、载荷、约束的添加方法。 (二)要求:学生独立完成一个算例的有限元分析,并阅读其计算结果,提交一个算例的分析报告。 (三)计算实例 1、问题的描述 为了考察铆钉在冲压时,发生多大的变形,对铆钉进行分析。 铆钉圆柱高:10mm 铆钉圆柱外径:6mm 铆钉下端球径:15mm 弹性模量:2.06E11 泊松比:0.3 铆钉材料的应力应变关系如下: 应变0.003 0.005 0.007 0.009 0.011 0.02 0.2 618 1128 1317 1466 1510 1600 1610 应力 /Mpa

1、有限元模型。

3、应力云图,可选主应力或σx、σy、τxy、V on Mises应力、Tresca应力之一输出结果图片,指明你所选的应力的最大值及其位置。 (三)思考题: 1、如果要提高边界处计算精度,一般应如何处理? 答:在边界处划分网格 2、有限元网格划分时应注意哪些问题? 答:选取的时候要将编号显示出来,这样就可以更好的选择,网格尽可能的小,这样结果就越准确。

实验二、优化实验 (一)目的: 初步掌握利用ANSYS软件或MATLAB软件对问题进行分析。 (二)要求: 学生独立完成一个算例的分析,并给出算例的计算结果。。 (三)算例 1.实际问题 梁的形状优化,优化目的是使梁的体积最小,同时要求梁上的最大应力不 超过30000psi,梁的最大挠度不大于0.5in,沿长度方向梁的厚度可以变化,但梁端头的厚度为定值t,采用对称建模。 使用两种方法进行优化,两种方法优化结果。 子问题近视法目标ANSYS 百分比(TVOL)体积in3 3.60 3.62 1.004 (DEFL)挠度max in 0.500 0.499 0.998 (STRS)应力max,psi 30000 29740 0.991 第一阶法目标ANSYS 百分比(TVOL)体积in3 3.6 3.61 1.003 (DEFL)挠度max in 0.5 0.5 1.001 STRS)应力max,psi 30000 29768 0.992

北京科技大学有限元试题及答案

一 判断题(20分) (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 (√)10一维变带宽存储通常比二维等带宽存储更节省存储量。 二、填空(20分) 1.平面应力问题与薄板弯曲问题的弹性体几何形状都是 薄板 ,但前者受力特点是: 平行于板面且沿厚度均布载荷作用 ,变形发生在板面内; 后者受力特点是: 垂直于板面 的力的作用,板将变成有弯有扭的曲面。 2.平面应力问题与平面应变问题都具有三个独立的应力分量: σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。3.位移模式需反映 刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。 4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。 5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。 6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。 7.有限单元法首先求出的解是 节点位移 ,单元应力可由它求得,其计算公式为 {}{} [][]e D B σδ=。(用符号表示即可) 8.一个空间块体单元的节点有 3 个节点位移: u ,v ,w 9.变形体基本变量有位移应变应力 基本方程 平衡方程 物理方程 几何方程 10.实现有限元分析标准化和规范化的载体就是单元

机械零件有限元分析——实验报告

中南林业科技大学机械零件有限元分析 实验报告 专业:机械设计制造及其自动化 年级: 2013级 班级:机械一班 姓名:杨政 学号:20131461 I

一、实验目的 通过实验了解和掌握机械零件有限元分析的基本步骤;掌握在ANSYS 系统环境下,有限元模型的几何建模、单元属性的设置、有限元网格的划分、约束与载荷的施加、问题的求解、后处理及各种察看分析结果的方法。体会有限元分析方法的强大功能及其在机械设计领域中的作用。 二、实验内容 实验内容分为两个部分:一个是受内压作用的球体的有限元建模与分析,可从中学习如何处理轴对称问题的有限元求解;第二个是轴承座的实体建模、网格划分、加载、求解及后处理的综合练习,可以较全面地锻炼利用有限元分析软件对机械零件进行分析的能力。

实验一、受内压作用的球体的有限元建模与分析 对一承受均匀内压的空心球体进行线性静力学分析,球体承受的内压为 1.0×108Pa ,空 心球体的内径为 0.3m ,外径为 0.5m ,空心球体材料的属性:弹性模量 2.1×1011,泊松比 0.3。 承受内压:1.0×108 Pa 受均匀内压的球体计算分析模型(截面图) 1、进入 ANSYS →change the working directory into yours →input jobname: Sphere 2、选择单元类型 ANSYS Main Menu : Preprocessor →Element Type →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element Types window)→ Options… →select K3: Axisymmetric →OK →Close (the Element Type window) 3、定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3→ OK 4、生成几何模型生成特征点 ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input :1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3)→OK 生成球体截面 ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Spherical ANSYS Main Menu: Preprocessor →Modeling →Create →Lines →In ActiveCoord → 依次连接 1,2,3,4 点生成 4 条线→OK Preprocessor →Modeling →Create →Areas →Arbitrary →By Lines →依次拾取四条线→OK ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Cartesian 5、网格划分 ANSYS Main Menu : Preprocessor →Meshing →Mesh Tool →(Size Controls) lines: Set

有限元分析实验报告

学生学号1049721501301实验课成绩 武汉理工大学 学生实验报告书 实验课程名称机械中的有限单元分析机电工程学院开课学院 指导老师姓名

学生姓名 学生专业班级机电研1502班 学年第学期2016—20152 实验一方形截面悬臂梁的弯曲的应力与变形分析 钢制方形悬臂梁左端固联在墙壁,另一端悬空。工作时对梁右端施加垂直 向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。 方形截面悬臂梁模型建立1.1 建模环境:DesignModeler15.0。 定义计算类型:选择为结构分析。 定义材料属性:弹性模量为 2.1Gpa,泊松比为0.3。 建立悬臂式连接环模型。 (1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正 视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。 (2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图 1.1所示。

图1.1方形截面梁模型 :定义单元类型1.2 选用6面体20节点186号结构单元。 网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图 1.2

所示: 图1.2网格划分 1.21定义边界条件并求解 本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中 力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。 (1)给左端施加固定约束; (2)给悬臂梁右端施加垂直向下的集中力; 1.22定义边界条件如图1.3所示:

有限元实验报告模板

有限元实验报告 T1013-5 20100130508 蔡孟迪

ANSYS有限元上机报告(一) 班级:T1013-5 学号:20100130508 姓名:蔡孟迪 上机题目: 图示折板上端固定,右侧受力F=1000N,该力均匀分布在边缘各节点上;板厚t=2mm 材料选用低碳钢,弹性模量E=210Gpa,μ=0.33. 一、有限元分析的目的: 1.利用ANSYS构造实体模型; 2.根据结构的特点及所受载荷的情况,确定所用单元类型;正确剖分网格并施加外界条件;3.绘制结构的应力和变形图,给出最大应力和变形的位置及大小;并确定折板角点A处的应力和位移; 4.研究网格密度对A处角点应力的影响; 5.若在A处可用过渡圆角,研究A处圆角半径对A处角点应力的影响。 二、有限元模型的特点: 1.结构类型 本结构属于平面应力类型 2.单位制选择 本作业选择N(牛),mm(毫米),MPa(兆帕)。 3.建模方法 采用自左向右的实体建模方法。 4.定义单元属性及类型 1)材料属性:弹性模量:EX=2.10E5MPa, 泊松比:PRXY=0.33 2)单元类型:在Preferences选Structural,Preprocessor>ElemmentType>Add/Edit/Delete中定义单元类型为:Quad4 node 182,K3设置为:平面薄板问题(Plane strs w/thk) 3)实常数:薄板的厚度THK=2mm 5.划分网格 在MeshTool下选set,然后设置SIZE Element edge length的值,再用Mesh进行网格划分。6.加载和约束过程:在薄板的最上端施加X、Y方向的固定铰链,在薄板的最右端施加1000N 的均匀布置的载荷。

完整word版有限元分析大作业报告要点

船海1004 黄山 U201012278 有限元分析大作业报告 试题1: 一、问题描述及数学建模 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: (1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算; (3)当选常应变三角单元时,分别采用不同划分方案计算。 该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。

二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算 1、有限元建模 (1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural (2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 (3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3 (4)建几何模型:生成特征点;生成坝体截面 (5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后 得到600个单元。

1 船海1004 黄山 U201012278 (6)模型施加约束:约束采用的是对底面BC全约束。大坝所受载荷形式为Pressure,作用在AB面上,分析时施加在L上,方向水平向右,载荷大小沿L 由小到大均匀分布。以ABAB B为坐标原点,BA方向为纵轴y,则沿着y方向的受力大小可表示为: P?gh?gyY}*{?)??98000?9800(10? 2、计算结果及结果分析 (1)三节点常应变单元 三节点常应变单元的位移分布图

有限元上机实验报告

有限元上机实验报告结构数值分析与程序设计 上机实验 院系: 土木工程与力学学院专业: 土木工程 班级: 姓名: 学号: 指导教师: 1、调试教材P26-30程序FEM1。 1.1、输入数据文件为: 6,4,12,6,1.0E0,0.0,1.0,0.0,1 3,1,2 5,2,4 3,2,5 6,3,5 0.0,2.0 0.0,1.0 1.0,1.0 0.0,0.0 1.0,0.0 2.0,0.0

1,3,7,8,10,12 1.2、输出数据文件为: NN NE ND NFIX E ANU T GM NTYPE 6 4 12 60.1000E+01 0.000 1.0000.0000E+00 1 NODE X-LOAD Y-LOAD 1 0.000000E+00 -0.100000E+01 2 0.000000E+00 0.000000E+00 3 0.000000E+00 0.000000E+00 4 0.000000E+00 0.000000E+00 5 0.000000E+00 0.000000E+00 6 0.000000E+00 0.000000E+00 NODE X-DISP Y-DISP 1 -0.879121E-15 -0.325275E+01 2 0.879121E-16 -0.125275E+01 3 -0.879121E-01 -0.373626E+00 4 0.117216E-1 5 -0.835165E-15 5 0.175824E+00 -0.293040E-15 6 0.175824E+00 0.263736E-15 ELEMENT X-STR Y-STR XY-STR 1 -0.879121E-01 -0.200000E+01 0.439560E+00 2 0.175824E+00 -0.125275E+01 0.256410E-15 3 -0.879121E-01 -0.373626E+00 0.307692E+00 4 0.000000E+00 -0.373626E+00 -0.131868E+00 2、修改FEM1,计算P31例2-2。

有限元复习精彩试题库

有限元复习 一、选择题(每题1分,共10分) 二、判断题(每空1分,共10分) 三、填空题(每空1分,共10分) 三、简答题(共44分)共6题 四、综述题(共26分)两题 一.基本概念 1. 平面应力/平面应变问题;空间问题/轴对称问题;杆梁问题;线 性与非线性问题 平面应力问题 (1) 均匀薄板(2)载荷平行于板面且沿厚度方向均匀分布 在六个应力分量中,只需要研究剩下的平行于XOY 平面的三个应力分量,即x y xy yx σσττ=、、 (000z zx xz zy yz σττττ=====,,)。 一般0z σ=,z ε并不一定等于零,但可由x σ及y σ求得,在分析问题时不必考虑。于是只需要考虑 x y xy εεγ、、三个应变分量即可。 平面应变问题

(1) 纵向很长,且横截面沿纵向不变。(2)载荷平行于横截面且沿纵向 均匀分布 z yz zx εγγ===只剩下三个应变分量x y xy εεγ、、。也只需要考虑x y xy σστ、、三个应力分量即可 轴对称问题 物体的几何形状、约束情况及所受外力都对称于空间的某一根轴。 轴对称单元的特点(与平面三角形单元的区别):轴对称单元为圆环体,单元与单元间为节圆相连接;节点力与节点载荷是施加于节圆上的均布力;单元边界是一回转面;应变不是常量。 在轴对称问题中,周向应变分量θε是与r 有关。 板壳问题 一个方向的尺寸比另外两个方向尺寸小很多,且能承受弯矩的结构称为板壳结构,并把平分板壳结构上下表面的面称为中面。如果中面是平面或平面组成的折平面,则称为平板;反之,中面为曲面的称为壳。 杆梁问题 杆梁结构是指长度远大于其横断面尺寸的构件组成的系统。在结构力学中常将承受轴力或扭矩的杆件称为杆,而将承受横向力和弯矩的杆件称为梁。 平面(应力应变)问题与板壳问题的区别与联系 平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时

有限元分析报告大作业

有限元分析》大作业基本要求: 1.以小组为单位完成有限元分析计算,并将计算结果上交; 2.以小组为单位撰写计算分析报告; 3.按下列模板格式完成分析报告; 4.计算结果要求提交电子版,一个算例对应一个文件夹,报告要求提交电子版和纸质版。 有限元分析》大作业 小组成 员: 储成峰李凡张晓东朱臻极高彬月 Job name :banshou 完成日 期: 2016-11-22 一、问题描述 (要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况 和约束情况。图应清楚、明晰,且有必要的尺寸数据。)如图所示,为一内六角螺栓扳手,其轴线形状和尺寸如图,横截面为一外 接圆半径为0.01m的正六边形,拧紧力F为600N,计算扳手拧紧时的应力分布 图1 扳手的几何结构 数学模型

要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;

图 2 数学模型 如图二所示,扳手结构简单,直接按其结构进行有限元分析。 三、有限元建模 3.1 单元选择 要求:给出单元类型, 并结合图对单元类型进行必要阐述, 包括节点、自由度、 实常数等。) 图 3 单元类型 如进行了简化等处理,此处还应给出文字说

扳手截面为六边形,采用4 节点182单元,182 单元可用来对固体结构进行

二维建模。182单元可以当作一个平面单元,或者一个轴对称单元。它由4 个结点组成,每个结点有2 个自由度,分别在x,y 方向。 扳手为规则三维实体,选择8 节点185单元,它由8 个节点组成,每个节点有3 个自由度,分别在x,y,z 方向。 3.2 实常数 (要求:给出实常数的具体数值,如无需定义实常数,需明确指出对于本问题选择的单元类型,无需定义实常数。) 因为该单元类型无实常数,所以无需定义实常数 3.3材料模型 (要求:指出选择的材料模型,包括必要的参数数据。) 对于三维结构静力学,应力主要满足广义虎克定律,因此对应ANSYS中的线性,弹性,各项同性,弹性模量EX:2e11 Pa, 泊松比PRXY=0.3 3.4几何建模由于扳手结构比较简单,所以可以直接在ANSYS软件上直接建模,在ANSYS建 立正六 边形,再创立直线,面沿线挤出体,得到扳手几何模型 图4 几何建模

有限元试题及答案

有限元试题及答案

一判断题(20分) (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小(√)10一维变带宽存储通常比二维等带宽存储更节省存储量。 二、填空(20分) 1.平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是:平行于板面且沿厚度均布载荷作用,变形发生在板面内; 后者受力特点是:垂直于板面的力的作用,板将变成有弯有扭的曲面。 2.平面应力问题与平面应变问题都具有三个独立的应力分量:σx,σy,τxy ,三个独立的应变分量:εx,εy,γxy,但对应的弹性体几何形状前者为薄板,后者为长柱体。3.位移模式需反映刚体位移,反映常变形,满足单元边界上位移连续。 4.单元刚度矩阵的特点有:对称性,奇异性,还可按节点分块。

5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为二维问题处理。6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。 7.有限单元法首先求出的解是节点位移,单元应力可由它求得,其计算公式为。(用符号表示即可) 8.一个空间块体单元的节点有 3 个节点位移: u,v,w 9.变形体基本变量有位移应变应力基本方程平衡方程物理方程几何方程 10.实现有限元分析标准化和规范化的载体就是单元

有限元分析大作业试题

有限元分析习题及大作业试题 要求:1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方 案、载荷及边界条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分 析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单 元改变对精度的影响分析、不同网格划分方案对结果的 影响分析等) E、建议与体会 4)11月1日前必须完成,并递交计算分析报告(报告要求打印)。

习题及上机指南:(试题见上机指南) 例题1 坝体的有限元建模与受力分析 例题2 平板的有限元建模与变形分析 例题1:平板的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: plane 0.5 m 0.5 m 0.5 m 0.5 m 板承受均布载荷:1.0e 5 P a 图1-1 受均布载荷作用的平板计算分析模型 1.1 进入ANSYS 程序 →ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: plane →Run 1.2设置计算类型 ANSYS Main Menu : Preferences →select Structural → OK 1.3选择单元类型 ANSYS Main Menu : Preprocessor →Element T ype →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element T ypes window) → Options… →select K3: Plane stress w/thk →OK →Close (the Element T ype window) 1.4定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY :0.3 → OK 1.5定义实常数 ANSYS Main Menu: Preprocessor →Real Constant s… →Add … →select T ype 1→ OK →input THK:1 →OK →Close (the Real Constants Window)

最新有限元法基础试题

有限元法基础试题(A ) 一、填空题(5×2分) 1.1单元刚度矩阵e T k B DBd Ω = Ω? 中,矩阵B 为__________,矩阵D 为___________。 1.2边界条件通常有两类。通常发生在位置完全固定不能转动的情况为_______边界,具体指定有限的非零值位移的情况,如支撑的下沉,称为_______边界。 1.3内部微元体上外力总虚功: ()(),,,,e x x xy y bx xy x y y by d W F u F v dxdy δστδτσδ??=+++++??+(),,,,x x y y xy y x u v u u dxdy σδσδτδδ??+++??的表达式中,第一项为____________________的虚功,第二项为____________________的虚功。 1.4弹簧单元的位移函数1N +2N =_________。 1.5 ij k 数学表达式:令j d =_____,k d =_____,k j ≠,则力i ij F k =。 二、判断题(5×2分) 2.1位移函数的假设合理与否将直接影响到有限元分析的计算精度、效率和可靠性。( ) 2.2变形体虚功原理适用于一切结构(一维杆系、二维板、三位块体)、适用于任何力学行为的材料(线性和非线性),是变形体力学的普遍原理。 ( ) 2.3变形体虚功原理要求力系平衡,要求虚位移协调,是在“平衡、协调”前提下功的恒等关系。 ( ) 2.4常应变三角单元中变形矩阵是x 或y 的函数。 ( ) 2.5 对称单元中变形矩阵是x 或y 的函数。 ( ) 三、简答题(26分) 3.1列举有限元法的优点。(8分) 3.2写出有限单元法的分析过程。(8分) 3.3列出3种普通的有限元单元类型。(6分) 3.4简要阐述变形体虚位移原理。(4分) 四、计算题(54分) 4.1对于下图所示的弹簧组合,单元①的弹簧常数为10000N/m ,单元②的弹簧常数为20000N/m ,单元③的弹簧常数为10000N/m ,确定各节点位移、反力以及单元②的单元力。(10分) 4.2对于如图所示的杆组装,弹性模量E 为10GPa ,杆单元长L 均为2m ,横截面面积A 均为2×10-4m 2,弹簧常数为2000kN/m ,所受荷载如图。采用直接刚度法确定节点位移、作用力和单元②的应力。(10分)

有限元实验报告

一、实验目的 通过上机对有限元法的基本原理和方法有一个更加直观、深入的理解;通过对本实验所用软件平台Ansys 的初步涉及,为将来在设计和研究中利用该类大型通用CAD/CAE 软件进行工程分析奠定初步基础。 二、实验设备 机械工程软件工具包Ansys 三、实验内容及要求 1) 简支梁如图3.1.1所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚 度t=10mm 。上边承受均布载荷,集度q=1N/mm2,材料的E=206GPa ,μ=0.29。平面应力模型。 X 方向正应力的弹性力学理论解如下: 图3.1.1 ①在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。 ②计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。 ③针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。 2) 一个正方形板,边长L = 1000mm ,中心有一小孔,半径R = 100mm ,左右边 受均布拉伸载荷,面力集度q = 25MPa ,如图 3.2.1所示。材料是 206E GPa =,0.3μ=,为平面应力模型。当边长L 为无限大时,x = 0截面上理论解为: ) 534()4 (6222 23-+-=h y h y q y x L h q x σ

)32(2|44 220r R r R q x x ++==σ 其中R 为圆孔半径,r 为截面上一点距圆心的距离。x = 0截面上孔边(R r =)应力q x 3=σ。所以理论应力集中系数为3.0。 图3.2.1 用四边形单元分析x = 0截面上应力的分布规律和最大值,计算孔边应力集中系数,并与理论解对比。利用对称性条件,取板的四分之一进行有限元建模。 3) 如图3.3.1所示,一个外径为0.5m ,内径为0.2m ,高度为0.4m 的圆筒,圆 筒的外壁施加100MPa 的压强,圆筒的内部约束全部的自由度,材料参数是密度。 使用平面单元,依照轴对称的原理建模分析。 q

有限元分析Ansys大作业

有限元分析作业 作业名称扳手静态受力分析 姓名 学号 班级 宁波理工学院

题目:扳手静态受力分析: 扳手的材料参数为:弹性模量E=210GPa,泊松比u=0.3:此模型在左侧内六角施加固定位移约束,在右侧表面竖直方向上施加6 10 48 N的集中力。 模型如下图: 1-1 1.定义工作文件名和文件标题 (1)定义工作文件名:执行File-Chang Jobname-3090601048 (2)定义工作标题:执行File-Change Tile-3090601048 (3)更改工作文件储存路径:执行File-Chang Directory-E:\ANSYS 2.定义分析类型、单元类型及材料属性 (1)定义分析类型,执行Main Menu-Preferences,如下图所示:

2-1 (2)定义单元类型,执行Main Menu-Preprocessor-Element Type-Add弹出Element Type 对话框.如下图所示: 2-2 (3)定义材料属性 执行Main menu-Preprocessor-Material Props-Material models,在Define material model behavior对话框中,双击 Structual-Linear-Elastic-Isotropic.如下图所示:

2-3 3.导入几何模型 将模型导入到ANSYS,执行File-Import—PRAR…—浏览上述模型,如下图所示: 3-1

3-2 4. 网格划分 执行Main Menu-Preprocessor-meshing-Mesh Tool命令,考虑到零件的复杂性,采用智能网格划分,精度为1,其他选项为默认,如下图所示: 4-1

ansoft实验报告讲解

电磁场ansoft软件应用作业 姓名 学号 班级

静电场范例: 一、题目 单心电缆有两层绝缘体,分界面为同轴圆柱面。已知,R1=10mm,R2=20mm,R3=30mm,R4=31mm,内导体为copper,外导体为lead,中间的介质ε1=5ε0, ε2=3ε0, ,内导体U=100V,外导体为0V 求 1用解析法计算电位,电场强度,电位移随半径的变化,计算单位长度电容和电场能量。 2用ansfot软件计算上述物理量随半径的变化曲线,并画出电压分布图,计算出单位长度电容,和电场能量 二、解答

1、解析法: 在介质中取任意点P ,设它到电缆中心距离为r 。过P 点作同轴圆柱面,高为l 。该面加上上下两底面作为高斯面S 。 D rl S d D S )2(π=?? ε 1 1D E = ε 2 2D E = ??+=R R dr R R dr U E E 32 2121 将方程联立,代入数据解得: m V r E /05.731≈ ,m V r E /75 .1212≈ 所以 12 9 2 1158.8573.05 3.23/1010D C r r m E ε--???=?== 电位 r R R R dr dr l d E r r E E ln 05.7341.236232 211 --=?+?=?=??? ∞ ? V r R dr l d E r r E ln 75.12192.4263 22 --=?=?=?? ∞ ? V 电场能量 97 2 11 3.23 1.181173.05221010e D r r E r ω--??=?=??= 3 J m 97 2 22 3.23 1.9711121.75221010e D r r E r ω--??=?=??= 3 J m 单位长度电场能量 231277632 12 12 222(1.18ln 1.97ln ) 1.02101010e e e R R rdr rdr J m R R R R W R R πππωω---=+=???+??=???单位长度电容 6 1022 22 1.0210 2.0410100e W C F m U --??===? 2、ansoft 仿真

相关文档
最新文档