烃类热裂解气的分离方法综述

烃类热裂解气的分离方法综述
烃类热裂解气的分离方法综述

烃类热裂解气的分离方法综述

徐俊忠

(西南石油大学化学化学化工学院,四川成都610500)

摘要:本文综述了裂解气的分离的技术进展,重点介绍了深冷分离法、分凝分离法、油精馏吸收分离法、络合物分离法等在裂解气分离过程中的应用。提出了未来分离方法发展的方向主要集中在节能降耗,增强设备性能,提高裂解气的回收率等方面。

关键词:裂解气,分离方法

T hermal cracking gas of h ydrocarbon separation method

were reviewed

Xu Junzhong

(College of Chemistry and Chemical Engineering,Southwest Petroleum University,Chengdu

610500)

Abstract:This paper reviewed the separation of cracking gas technology progress,the applications of cryogenic separation,points separation,oil distillation absorption separation,complex separation in the cracking gas separation process are introduced mainly.The author puts forward the future development direction of the separation methods mainly focus on saving energy and reducing consumption,increase equipment performance and improve the recovery of cracking gas,etc.

Key words:Cracking gas,Separation method

1引言

烃类裂解气的分离一直是石油化工行业中最重要和高耗能的过程。[1]因此,长期以来世界各国为了节约资源、保护环境和提高资源利用率都在致力于研究开发高效经济的裂解气分离技术,以降低能耗、成本并提高分离效率。

裂解气中含有的少量硫化物、二氧化碳、一氧化碳、乙炔、丁炔以及水等杂质,裂解气中的酸性气体,主要是二氧化碳(CO2)和硫化氢(H2S)。另外还有少量的有机硫化物。这些酸性气体含量过多时,对分离过程会带来如下的危害:硫化氢能腐蚀设备管道,并能使干燥用的分子筛寿命缩短,还能使加氢脱炔用的催化剂中毒;二氧化碳能在深冷的操作中结成干冰,堵塞设备和管道,影响正常生产。工业上常用化学吸收法,来洗涤裂解气。对于吸收剂的要求是:对硫化氢和二氧化碳的溶解度大,反应性能强,而对于裂解气中的乙烯,丙烯的溶解

度要小,不起反应;在操作条件下蒸气压低,稳定性强,这样吸收剂损失小,也避免产品被污染;粘度小,可节省循环输送的动力费用;腐蚀性小,可用一般钢材铸造设备;来源丰富,价格便宜。

裂解气分离过程主要包括三大部分:即,气体净化系统:包括脱除酸性气体、脱水、脱除乙炔和脱除一氧化碳(即甲烷化,用于净化氢气);压缩和冷冻系统:使裂解气加压降温,为分离创造条件;精馏分离系统:包括一系列的精馏塔,以便分离出甲烷乙烯C5馏分以及C5馏分。目前已开发的裂解气分离方法包括深冷分离法(又称低温精馏法)、分凝分离法、油吸收分离法、络合物分离法等,其中以深冷分离法应用最广。

2裂解气分离方法

2.1深冷分离法

在基本有机化学工业中,冷冻温度-100℃以下的称为深度冷冻,简称“深冷”。因为裂解气分离方法采用了-100℃以下的冷冻系统,所以工业上称为深冷分离法。[2]深冷分离法是林德教授于1902年发明的,其实质就是气体液化技术。这种方法的分离原理就是利用裂解气中各种烃的相对挥发度不同[3],在低温下除了氢气和甲烷以外,把其余的烃类都冷凝下来,然后在精馏塔内进行多组分精馏分离,利用不同的精馏塔,把各种烃逐个分离下来。其实质是冷凝精馏过程。其特点是产品气体纯度高,但压缩、冷却的能耗很高。[4]该法适用于大规模气体分离过程。

裂解气各组分分离的先后,在不违反其组分沸点的顺序下,是可以采用多种排列的方法分离的,在工业上普遍采用的是以碳原子数由少到多依次分离的顺序流程。此外,还有将裂解气先分为氢气-甲烷-C2烃和其他重组分两部分,然后再逐个分离,这是前脱乙烷流程。也有用先分出氢气和C1~C3烃的前脱丙烷流程。后两个流程的乙炔催化加氢通常在脱甲烷之前进行,故亦称前加氢流程。这时可以利用裂解气中本身所含的氢而无需另行补充。但裂解气中因有大量过剩的氢,反应难以控制,难免有少量的乙烯也被加氢而变成乙烷。此外,前加氢流程在脱乙烷(或脱丙烷)时,由于含有大量的轻组分,塔顶温度较低,因而比在顺序流程中相应部分所消耗的能量高10%~15%。如果采用后加氢流程则可严格控制氢炔之比,使乙炔转为乙烯,乙烯总量因而略增加。

工业上广泛采用的深冷分离方法有低压法和高压法两种。前者脱甲烷塔在0.6~0.7MPa 的低压下操作,后者脱甲烷塔在3.1~4.1MPa下操作。低压法的特点是在低压下甲烷与乙烯的相对挥发度增大。这在提馏段要求釜液甲烷含量低时更显得重要。另外,利用分氢过程冷凝的重组分由高压节流至低压脱甲烷塔时,能够蒸发部分甲烷并使液体降温,因此可降低该塔的回流比,从而节省能量。但塔顶温度低至-130℃,需用甲烷-乙烯-丙烯三级制冷,使系统复杂化,低温钢材用量也相应增多。高压法的脱甲烷塔塔顶温度为-96℃,只需用乙烯作制冷剂,制冷系统简单,低温钢材用量少;其缺点是压力增加,相对挥发度减小,不利于组

分分离,需加大塔的回流比,能耗增大,分离效率不如低压法。

综上所述,深冷分离法的优点如下:技术成熟,操作稳定;乙烯、丙烯回收率高;乙烯、丙烯产品纯度达到聚合级;适合于大规模分离乙烯的装置。

2.2分凝分离法

裂解气分离用的分凝分离器实际上是一个带回流的热交换器,通过部分冷凝将气体混合物分开。分凝分离工艺同时传质、传热,既起精馏塔作用,又起冷凝器作用,从而提高了从轻组份中C2、C3的回收率,尤其对沸程相差较大的组份更有利。

分凝分离工艺用于脱甲烷塔塔顶尾气回收乙烯具有以下几个特点:从化工单元过程来看,它包括了塔的精馏,冷凝传质传热过程,而且利用了焦耳-汤姆逊效应和膨胀机产生冷量;由于传质和传热同时进行,因而热交换器端点温差很小;乙烯收率很高。

分凝分离技术与深冷分离有以下差异:在脱甲烷塔前预分离甲烷和氢气,增加乙烯的回收率;在脱甲烷塔深冷系统采用分凝分离技术,可使得对冷剂的需求可以随时改变,合理有效的利用冷量;使用板翅式换热器和分凝分离技术,可使传热温差小到1℃,降低了冷量的消耗。[5]

2.3油吸收精馏分离法

油吸收精馏方法的原理是利用溶剂油对裂解气中各组分的不同吸收能力,将裂解气中除了氢气和甲烷以外的其它烃类全部吸收下来,然后利用精馏塔将各种烃类在逐个分离开来。所以油吸收精馏法,实际上是油吸收精馏过程。油吸收精馏过程,作为吸收剂的溶剂油有轻质芳烃、C4馏分、C3馏分等,其吸收剂和生产目的不同而不同。吸收剂的沸点愈高,吸收的平均温度也愈高。与裂解气深冷分离相比,在脱甲烷塔中加入吸收剂可避免该塔采用低温(-100℃或更低),但有关塔釜也因温度的升高使烯烃、炔烃易于聚合而堵塞,并因加入大量吸收剂使能耗增大。所以除个别小型厂外,大型乙烯装置已不再采用此法。

近些年来又出现中冷油吸收法,该方法先分离出甲烷、氢气和氮气等不凝气,再利用精馏吸收分离其它组分。此法一般操作温度在-70℃以上,不需要达到-100℃,故称为中冷油吸收法。[6]中冷油吸收法优点有:整个系统采用普通低温碳钢,大大节省了投资;制冷系统简化,省投资,易维护;不用脱甲烷塔,冷箱很少,低温材料和阀门也少。其缺点有:能耗高;烯烃损失大。[7]

2.4络合物分离法

此法是利用含金属离子的溶液选择性地吸收气相或液相中的烯烃等不饱和烃,再经过汽提或升温等操作解吸再生,从而实现多种烷烃和烯烃的分离。络合吸收剂的组成一般是金属盐和溶剂,他们可以是无机盐、无机溶剂或全有机物。该方法无法推广的主要原因是:腐蚀问题严重和溶剂降解严重。

2.5其它分离法

用于裂解气分离的方法除了以上几种常见的以外还有ARS法、化学吸附法、膨胀机法、

水合物分离法等。ARS法的基本原理是将热传导和蒸馏结合进行高度分离的。化学吸附法是利用吸附剂在一定压力和温度下对烯烃选择性的化学反应和吸附而实现分离的;化学反应时吸收剂中过渡金属与烯烃形成π-络合物,使烯烃和其他组分分离。膨胀机法是由深冷分离法改进而来,同样适用于大规模回收烯烃。水合物分离法是一种新的分离低沸点混合气体的分离技术,其利用干气与水进行水合反应,生成含有乙烯组分的水合物,并在减压和加热状态下,水合物释放出乙烯而达到分离的目的。[8-10]

3结束语

目前,裂解分离气回收的方法很多,各具特点和利弊。深冷分离法生产投资大、成本高,适用于大规模炼厂的地区;油精馏吸收法投资费用低,适用中小规模的炼厂,具有良好的应用前景;其他的分离方法要求干气必须经过严格的预处理,在经济上限制了其应用推广。

未来裂解气分离技术的发展主要集中在节能降耗,增强设备性能,提高裂解气的回收率等方面,并逐步向综合经济最优化方向发展。

参考文献

[1]许维秀,李其京,王秀林,等.乙烯裂解气的水合物法分离实验研究[J].石油与天然气化工,2006:35(5):340.

[2]于海迎.油田气深冷技术在大庆油田的应用[J].油气田地面工程,2008:27(5):3-4.

[3]叶鹏程,方兆华,任其龙.从炼油厂干气中分离烯烃的技术[J].石油学报(石油加工),2010:26(4):642-646.

[4]吴兴松,王振维.乙烯装置深冷分离系统的优化和改进[J].化工进展,2002:21(10):763-765.

[5]李美华,王仁淦.分凝分离技术在裂解气和炼厂气分离中的应用[J].石油化工,1990,19:832-840.

[6]王红光,王立国.炼厂干气回收轻烃技术评述[J].炼油技术与工程,2009,39(12):8-11.

[7]张惊涛.吸附精馏法回收炼厂气中的乙烯[D].成都:四川大学硕士学位论文,2002.

[8]许际清.回收FCC干气中乙烯的工艺技术与吸附剂[J].现代化工,1994,(7):18-26.

[9]杨林森.催化裂化干气中乙烯的回收和利用[J].石油化工,1990,19(6):409-415.

[10]张礼昌,李东风,杨元一.炼厂干气中乙烯回收和利用技术进展[J].石油化工,2012,41(1):103-110.

化学工艺学 第二版 (米镇涛 著) 课后习题答案

※<习题一> 课后习题: 1化学工艺学定义、化学工艺学研究范畴、化学工艺学与工程的关系? 答:化学工艺学是将化学工程学的先进技术运用到具体的生产过程中,以化工产品为目标的过程技术。化学工程学主要研究化学工业和其他过程工业生产中所进行的化学过程和物理过程的共同规律,他的一个重要任务就是研究有关工程因素对过程和装置的效应,特别释放大中的效应。化学工艺学与化学工程学都是化学工业的基础科学。化学工艺与化学工程相配合,可以解决化工过程开发、装置设计、流程组织、操作原理及方法方面的问题;此外,解决化工生产实际中的问题也需要这两门学科的理论指导。 2现代化学工业的特点? 答:特点是:(1)原料、生产方法和产品的多样性和复杂性;(2)向大型化、综合化,精细化发展;(3)多学科合作、技术密集型生产;(4)重视能量的合理利用,积极采用节能工艺和方法;(5)资金密集,投资回收速度快,利润高;(6)安全与环境保护问题日益突出。 补充习题: 1现代化学工业的特点是什么? 2化学工艺学的研究范畴是什么 3简述石油化工原料乙烯的用途? 4利用合成气可以合成哪些产品? 5※<习题二> 课后习题: 1.生产磷肥的方法是哪两类? 答:生产磷肥的两种方法是: (1)酸法它是用硫酸或硝酸等无机酸来处理磷矿石,最常用的是硫酸。硫酸与磷矿反应生成磷酸和硫酸钙结晶,主反应式为 (2)热法利用高温分解磷矿石,并进一步制成可被农作物吸收的磷酸盐。 1.石油的主要组成是什么?常、减压蒸馏有哪几类? 答:石油的化合物可以分为烃类、非烃类以及胶质和沥青三大类。烃类即碳氢化合物,在石油中占绝大部分。非烃类指含有碳、氢及其他杂原子的有机化合物。常、减压蒸馏有三类:(1)燃料型(2)燃料—润滑油型(3)燃料—化工型 4.石油的一次加工、二次加工介绍 答:石油一次加工的方法为常压蒸馏和减压蒸馏。

第三章作业及参考答案讲解

1. 什么是烃类热裂解? 答:烃类的热裂解是将石油系烃类燃料(天然气、炼厂气、轻油、柴油、重油等)经高温作用,使烃类分子发生碳链断裂或脱氢反应,生成相对分子质量较小的烯烃、烷烃和其他相对分子质量不同的轻质和重质烃类。 2.烃类热裂解制乙烯可以分为哪两大部分? 答:烃类热裂制乙烯的生产工艺可以分为原料烃的热裂解、裂解产物的分离两部分。 3. 在烃类热裂解系统内,什么是一次反应?什么是二次反应? 答:一次反应是指原料烃裂解(脱氢和断链),生成目的产物乙烯、丙烯等低级烯烃的反应,是应促使其充分进行的反应; 二次反应则是指一次反应产物(乙烯、丙烯等)继续发生的后续反应,生成分子量较大的液体产物以至结焦生炭的反应,是尽可能抑制其进行的反应。 4. 用来评价裂解燃料性质的4个指标是什么? 答:评价裂解燃料性质的4个指标如下: (1)族组成—PONA值,PONA值是一个表征各种液体原料裂解性能的有实用价值的参数。 P—烷烃(Paraffin);O—烯烃(Olefin); N—环烷烃(Naphtene);A—芳烃(Aromatics)。 (2)氢含量,根据氢含量既可判断该原料可能达到的裂解深度,也可评价该原料裂解所得C4和C4以下轻烃的收率。 氢含量可以用裂解原料中所含氢的质量百分数表示,也可以用裂解原料中C 与H的质量比(称为碳氢比)表示。 (3)特性因数—K,K是表示烃类和石油馏分化学性质的一种参数。 K值以烷烃最高,环烷烃次之,芳烃最低,它反映了烃的氢饱和程度。 (4)关联指数—BMCI值,BMCI值是表示油品芳烃含量的指数。关联指数愈大,则表示油品的芳烃含量愈高。

5. 温度和停留时间如何影响裂解反应结果? 答:(1)高温: 从裂解反应的化学平衡角度,提高裂解温度有利于生成乙烯的反应,并相对减少乙烯消失的反应,因而有利于提高裂解的选择性; 根据裂解反应的动力学,提高温度有利于提高一次反应对二次反应的相对速度,提高乙烯收率。 (2)短停留时间: 从化学平衡的角度:如使裂解反应进行到平衡,由于二次反应的发生,所得烯烃很少,最后生成大量的氢和碳。为获得尽可能多的烯烃,必须采用尽可能短的停留时间进行裂解反应。 从动力学的角度:由于有二次反应的竞争,对每种原料都有一个最大乙烯收率的适宜停留时间。 温度--停留时间对产品收率影响 (a)对于给定原料,相同裂解深度时,提高温度,缩短停留时间,可以获得较高的烯烃收率,并减少结焦。 (b)高温-短停留时间可抑制芳烃生成,所得裂解汽油的收率相对较低。 (c)高温-短停留时间可使炔烃收率明显增加,并使乙烯/丙烯比及C4中的双烯烃/单烯烃的比增大。 6.提高反应温度的技术关键在何处?应解决什么问题才能最大限度提高裂解温度? 答:裂解反应的技术关键之一是采用高温-短停留时间的工艺技术。提高裂解温度,必须提高炉管管壁温度,而此温度受到炉管材质的限制。因此,研制新型的耐热合金钢是提高反应温度的技术关键。 当炉管材质确定后,可采用: (1)缩短管长(实际上是减少管程数)来实现短停留时间操作,才能最大限度提高裂解温度。 (2)改进辐射盘管的结构,采用单排分支变径管、混排分支变径管、不分支变径管、单程等径管等不同结构的辐射盘管,这些改进措施,采用缩小管径以

3.1烃类热裂解

3.烃类热裂解 裂解:热裂解,催化裂解。 裂化:热裂化,催化裂化。 (是否有催化剂存在,反应温度:600℃为界限,高温,隔绝空气)3.1热裂解过程的化学反应 3.1.1烃类裂解的反应规律 反应难易程度:用反应标准自由焓的变化值判据。 ΔG0=-RT㏑K p ΔG0<0(负值),反应容易进行。反应可逆反应,K p值为一个较大的常数。 3.1.1.1烷烃的裂解反应 a 反应类别 脱氢反应:为可逆反应,受化学平衡限制。 断链反应:为不可逆反应。 b.反应难易 键能越小,越容易裂解。 同碳数烷烃的键能:C-H键>C-C键;断链比脱氢容易。 烷烃的稳定性随碳链的增长而降低。 c.脱氢:叔氢最容易,仲氢次之,伯氢最难。

带支链的C-C键或C-H键,较直链的键能小,因此支链烷烃容易断链或脱氢。 d.反应特点 断链或脱氢反应均为强吸热反应。脱氢反应吸热值更大。 低分子烷烃在两端断裂,得到小分子烷烃(甲烷)及较大分子的烯烃。烷烃分子的链较长时,两端断裂的优势减弱。 乙烷主要发生脱氢反应,生成乙烯。 3.1.1.2烯烃的裂解反应 烯烃来源于烷烃的一次反应。 (1)断链反应 断链发生在C=C双键β位上C-C进行。 丙烯、异丁烯、2—丁烯没有β位上C-C键。 (2)脱氢反应 烯烃可以进一步脱氢为二烯烃和炔烃。 (3)歧化反应 两个同一分子烯烃可歧化为两个不同烃分子。 (4)双烯合成反应 二烯烃与烯烃进行双烯合成生成环烯烃,进一步脱氢生成环烯烃。

(5)芳构化反应 烯烃环化脱氢生成芳烃。 3.1.1.3环烷烃的裂解反应 环烷烃可发生断侧链、开环、脱氢等反应。生成乙烯、丙烯、丁二烯、丁烯、芳烃、环烯烃、环二烯等。 a断烷基侧链比断环容易。 b.脱氢芳构化优于开环(断环) c.环烷烃比烷烃容易生焦。 3.1.1.4 芳烃 芳环(苯核)较稳定,不容易发生开环反应。芳烃主要发生断烷基侧链、脱氢、缩合(结焦)反应。 3.1.1.5结焦生炭反应 a.烯烃脱氢生炭 温度在900℃以上时。 b.(稠环)芳烃脱氢缩合结焦生炭 温度在900℃以下时。 3.1.1.6烃类裂解反应规律 a.烷烃:有利于乙烯及丙烯的生成。正构烷烃比异构更有利。 b.烯烃:大分子烯烃能裂解为乙烯和丙烯;烯烃能脱氢生成二烯烃

第七章 烃类热裂解

第七章烃类热裂解 一、填空题 1、烃类热裂解是典型的高温气相反应,是石油烃在高温下裂解生成分子量较小的烯烃、烷 烃和其他烃类产品的过程。 2、烃类热裂解是一个复杂的化学反应过程,已知的反应有脱氢、断链、二烯合成、异构化、 脱氢环化、脱烷基、叠合、歧化、聚合、脱氢交联和焦化等,裂解产物多达数十种乃至数百种。 3、烃类热裂解的化学反应,按反应的先后顺序,可分为一次反应和二次反应。一次反应指 原料的烃分子裂解生成乙烯和丙烯等产物的反应。二次反应指一次反应生成的低级烯烃进一步反应生成多种产物,直至生成碳和焦的反应。 4、烃类热裂解的主要工艺因素是裂解温度、停留时间、裂解压力和原料烃组成。 5、烃类热裂解的工艺流程包括原料油供给和预热系统、裂解和高压水蒸气系统、急冷油和 燃料油系统、急冷水和稀释水蒸气系统。 6、烃类热裂解工艺流程包括烃的热裂解、裂解气预处理和分离。 7、裂解供热方式有直接和间接两种,广泛采用的是间接供热的管式炉法。 8、管式裂解炉是烃类裂解最重要的装置,由炉体和裂解反应管组成。炉体分为辐射室和对 流室,用钢构件和耐火材料砌筑。 9、裂解气分离的方法有多种,工业上主要采用深冷分离法和油吸收精馏分离法。 10、裂解气在分离前必须净化。净化过程包括:裂解气的压缩、酸性气体的脱除、脱炔、 脱一氧化碳、脱除水分等。 11、裂解气中的酸性气体主要是二氧化碳和硫化氢。 12、酸性气体的脱除,一般采用吸收法,常用吸收剂有氢氧化钠和乙醇胺。 13、裂解气中的水分是由急冷和碱洗时带入的。脱除水的方法有多种,广泛采用的固体 吸附法是以分子筛为吸附剂。 14、脱除乙炔的方法,有选择性催化加氢法和溶剂吸收法,工业上多采用催化加氢法脱 炔。 15、除去一氧化碳,工业上主要采用甲烷化法,即催化加氢使一氧化碳转化为甲烷。 16、深冷分离流程包括气体净化系统、压缩和深冷系统、精馏分离系统等部分。 17、脱甲烷过程由脱甲烷塔和冷箱组成,任务是将裂解气中比乙烯烃的组分分离出去。 18、冷箱是将高效板式换热器和汽液分离器等集中放置并用绝热材料保存,在 —100---160℃低温下操作的箱式设备。 19、乙烯的回收和富氢的提取与提纯,根据冷箱所处位置,分为前冷流程和后冷流程。 20、前冷分离工艺特点:裂解气进脱甲烷塔前预分离,减轻了脱甲烷塔的负荷;利用冷 箱由高温到低温,逐级、依次冷凝重组分和轻组分,节省低温级别的冷剂;可获得纯度较高的富氢;可提高乙烯收率。 二、判断题 1、烃类热裂解是典型的高温气相反应,是石油烃在高温下裂解生成分子量较小的烯烃、烷 烃和其他烃类产品的过程。 2、烃类热裂解是一个复杂的化学反应过程,已知的反应有脱氢、断链、二烯合成、异构化、 脱氢环化、脱烷基、叠合、歧化、聚合、脱氢交联和焦化等,裂解产物多达数十种乃至数百种。 3、烃类热裂解的化学反应,按反应的先后顺序,可分为一次反应和二次反应。一次反应指 原料的烃分子裂解生成乙烯和丙烯等产物的反应。二次反应指一次反应生成的低级烯烃进一步反应生成多种产物,直至生成碳和焦的反应。

烃类热裂解原理

二、烃类热裂解原理 1. 烃类的热裂解反应 裂解过程中的主要中间产物及其变化可以用图 5-1-01作一概括说明。按反应进行的先后顺序,可以将图5-1-01所示的反应划分为一次反应和二次反应,一次反应即由原料烃类热裂解生成乙烯和丙烯等低级烯烃的反应。二次反应主要是指由一次反应生成的低 图5-1-01 烃类裂解过程中一些主要产物变化示意图 级烯烃进一步反应生成多种产物,直至最后生成焦或碳的反应。二次反应不仅降低了低级烯烃的收率,而且还会因生成的焦或碳堵塞管路及设备,破坏裂解操

作的正常进行,因此二次反应在烃类热裂解中应设法加以控制。 现将烃类热裂解的一次反应分述如下。 (1)烷烃热裂解烷烃热裂解的一次反应主要有: ①脱氢反应: R-CH2-CH3<==>R-CH=CH2+H2 ②断链反应: R-CH2-CH2-R’→R-CH=CH2 +R’H 不同烷烃脱氢和断链的难易,可以从分子结构中键能数值的大小来判断。一般规律是同碳原子数的烷烃,C-H键能大于C-C键能,故断链比脱氢容易;烷烃的相对稳定性随碳链的增长而降低。因此,分子量大的烷烃比分子量小的容易裂解,所需的裂解温度也就比较低;脱氢难易与烷烃的分子结构有关,叔氢最易脱去,仲氢次之,伯氢最难;带支的C-C键或C-H键,较直链的键能小,因此支链烃容易断链或脱氢;裂解是一个吸热反应,脱氢比断链需供给更多的热量;脱氢为一可逆反应,为使脱氢反应达到较高的平衡转化率,必须采用较高的温度;低分子烷烃的C-C键在分子两端断裂比在分子链中央断裂容易,较大分子量的烷烃则在中央断裂的可能性比在两端断裂的大。

(2)环烷烃热裂解环烷烃热裂解时,发生断链和脱氢反应,生成乙烯、丁烯、丁二烯和芳烃等烃类;带有侧链的环烷烃,首先进行脱烷基反应,长侧链先在 侧链中央的C-C链断裂一直进行到侧链全部与环断裂为止,然后残存的环再进一步裂解,裂解产物可以是 烷烃,也可以是烯烃;五碳环比六碳环稳定,较难断裂;由于拌有脱氢反应,有些碳环,部分转化为芳烃;因此,当裂解原料中环烷烃含量增加时,乙烯收率会下降, 丁二烯、芳烃的收率则会有所增加。 (3)芳烃热裂解芳烃的热稳定性很高,在一般的裂解温度下不易发生芳烃开环反应,但能进行芳烃脱氢缩合、脱氢烷基化和脱氢反应: 脱氢缩合:如: 继续脱氢缩合生成焦油直至结焦。 断侧链反应,如:

烃类管式炉裂解制乙稀-第一章 烃类热裂解

第一章烃类热裂解 第二节烃类管式炉裂解制乙稀 特点:强吸热反应;高温;低烃分压 短停留时间 供热方式:间接供热——管式炉裂解 直接供热——蓄热炉裂解 砂子炉裂解 一.烃类原料对裂解结果的影响 问题1:烃类的四个指标是什么? (一)原料烃: 1.族组成(PONA值) ◆定义:是指原料中所含各族烃的质量百分比。 P—烷族烃 N—环烷族烃 O—稀族烃 A—芳香族烃 在管式裂解炉的裂解条件下,原料愈轻,乙稀收率愈高。随着烃分子量增大,N+A含量增加,乙稀收率下降,液态裂解产物收率逐渐增加。 2.原料含氢量:

◆定义:是指原料烃分子中氢原子的质量百分 比;不包含溶解的H2。 相同碳原子时,含氢量: 烷烃> 环烷烃> 芳烃 含氢量高的原料,裂解深度可深一些,产物中乙稀收率也高。 表1-9各种烃和焦的含氢量

对重质烃的裂解,按目前技术水平,原料含氢量控制在大于13%(质量),气态产物的含氢量控制在18%(质量),液态产物含氢量控制在稍高于7~8%(质量)为宜。因为液态产物含氢量低于7~8%(质量)时,就易结焦,堵塞炉管和急冷换热设备。 3.芳烃指数(BMCI): ◆定义:BMCI=48640/Tv+473.7*d—456.8 Tv=(T10+T30+T50+T70+T90)/5 基准:n—C6H14的BMCI=0 的BMCI=100 当BMCI<35时,才能做裂解原料。 4.特性因子K: K=1.216(T立/d15.6度)^(1/3) T立=[0.1t10^(1/3)+0.2t30^(1/3)+ 0.2t50^(1/3)+0.2t70^(1/3)+0.2t90^(1/3) +0.1t100^(1/3)]^3

化工工艺学习题与答案

化工工艺学试题(1) 一、填空:(每空1分共10分) 1. 目前工业上对、间二甲苯的分离方法有 ----------------------------、------------------------------ 和-----------------------------------三种。 2. 乙苯催化脱氢合成苯乙烯时脱氢部分常用-----------------------和 -----------------------两种类型反应器。 3、催化加氢反应所用的催化剂以催化剂的形态分有 -------------------------、-----------------------------、 -----------------------------、 -------------------------------、-------------------------五 种? 1、低温结晶分离法、络合分离法和模拟移动床吸附法三种。 3、金属催化剂、骨架催化剂、金属氧化物、金属硫化物、金属络合物。 二、简答(每题5分,共90分) 1、煤的干馏和煤的气化的定义。 答:将煤隔绝空气加热,随着温度的升高,煤中有机物逐渐开始分解,其中挥发性物质呈气态逸出,残留下不挥物性产物主是焦炭或半焦,这种加工方法称煤的干馏。煤、焦或半焦在高温常压或加压条件下,与气化剂反应转化为一氧化碳、氢等可燃性气体的过程,称为煤的气化。 2、什么叫烃类热裂解? 答:烃类热裂解法是将石油系烃类原料(天然气、炼厂气、轻油、柴油、重油等)

经高温作用,使烃类分子发生碳链断裂或脱氢反应,生成分子量较小的烯烃、烷烃和其它分子量不同的轻质和重质烃类。 3、烃类热裂解的原料有哪些? 答: 4、烃类热裂解过程有何特点? 答:①强吸热反应,且须在高温下进行,反应温度一般在750K以上;②存在二次反应,为了避免二次反应,停留时间很短,烃的分压要低;③反应产物是一复杂的混合物,除了气态烃和液态烃外,尚有固态焦的生成。 5、烃类热裂解制乙烯的分离过程中,裂解气为什么要进行压缩?为什 么要分段压缩? 答:裂解气中许多组分在常压下都是气体,沸点很底,为了使分离温度 不太底,可以适当提高分离压力。多段压缩有如下好处:节省压缩功; 段与段中间可以进行降温,避免温度太高引起二烯烃的聚合;段与段中 间也可便于进行净化和分离。 6、烃类裂解制乙烯的过程中,为什么要对裂解气进行脱酸性气体?怎 样进行脱除? 答:酸性气体主要是指二氧化碳和硫化氢,另外还含有少量有机硫化物,这些酸性气体过多会对分离过程带来危害:例如硫化氢会腐蚀管道和设备,使加氢脱炔催化剂中毒,使干燥用的分子筛寿命缩短,二氧化碳会结成干冰,会堵塞管道,他们对产物的进一步利用也有危害,所以必须脱除。用碱洗法脱除;酸性气体量多时可以先用乙醇胺脱除,再用碱洗法彻底除去。 7、脱甲烷塔高压法和低压法有何优缺点?

第四节-裂解气深冷分离流程

返回目录 第四节裂解气深冷分离流程 思考题: 1.简述三种深冷分离流程并画简图,三种深冷分离流程有什么不同点和 不同点脱丙塔塔底温度为什不能超过100℃ 2.什么叫“前冷”流程,什么叫“后冷”流程前冷 流程有什么优缺点 3.脱甲烷塔在深冷分离中的地位和作用是什么脱甲烷塔的特点是什么 4.脱甲烷过程有哪两种方法,各有什么优缺点 乙烯塔在深冷分离中的地位是什么乙烯塔应当怎样改进 5.简述影响乙烯回收的诸因素。 一、深冷分离流程 生产流程的确定要考虑基建投资、能量消耗、运转周期、生产能力、产品成本以及安全生产等各方面的因素。有了工艺以后,怎样实现工艺问题就属于工程上的问题。

1、三种深冷分离流程(思考题1) 典型的深冷分离流程,主要有顺序分离流程、前脱乙烷流程和前脱丙烷流程三种,以下分别介绍这三种流程。 (1)顺序分离流程 顺序分离流程见图1-34(P73)。 裂解气的预处理包括碱洗、压缩和脱水过程。 经预处理的裂解气在前冷箱中分离出富氢气体和馏分,富氢气体甲烷化作为加氢氢气;馏分经脱甲烷塔和脱乙烷塔分别脱去甲烷和C2馏分。 从脱乙烷塔塔顶出来的C2馏分经过气相加氢脱乙炔气,脱乙炔以后的气体进入乙烯塔,实现乙烷与乙炔的分离。

脱乙烷塔塔底的液体进入脱丙烷塔,在塔顶分出C3馏分,塔底的液体为C4以上馏分,液体里面含有二烯烃,二烯烃容易聚合结焦,所以脱丙烷塔塔底温度不宜超过100℃,并且必须加入阻聚剂。为了防止结焦堵塞,脱丙烷塔一般有两个再沸器,以便轮换检修使用。(思考题1)脱丙烷塔塔顶蒸出的C3馏分,加氢脱除丙炔和丙二烯,再进入丙烯塔进行精馏。脱丙烷塔的塔底液体脱丁烷及进行后续工作。 顺序分离流程的特点: 1)以轻油(60~200℃的馏分)为裂解原料,常用顺序分离流程法; 2)技术成熟,运转平稳可靠,产品质量好,对各种原料有比较强的适应性,流程比较长,分馏塔比较多,深冷塔(脱甲烷塔)消耗冷量比较多,压缩机循环量和流量比较大,消耗定额偏高; 3)按裂解气组成和分子量的顺序分离,然后再进行同碳原子数的烃类分离,例如乙烷和乙烯、丙烷和丙烯分开; 4)顺序分离流程采用后加氢脱除炔烃的方法。 (2)前脱乙烷分离流程(把脱乙烷塔放在最前面) 前脱乙烷分离流程以乙烷和丙烯为分离界限,前脱乙烷分离流程示意图见图1-35。

化工工艺学作业四套答案全讲解

作业名称:2015年春季网上作业1 出卷人:SA 作业总分:100 通过分数:60 起止时间: 学员姓名:学员成绩:90 标准题总分:100 标准题得分:90 详细信息: 题号:1 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:5 内容: 对于乙烯,下列表述正确的是()。 A、中国乙烯生产量居世界首位 B、乙烯是直接从石油中分离出来的 C、乙烯具有双键,化学性质非常活泼 D、大部分乙烯是由天然气和氢气合成的 标准答案:C 学员答案:C 本题得分:5 题号:2 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:5 内容: 烃类热裂解产生的裂解气在分离前需净化除去的杂质有()。 A、CH4、C2H4、C3H6、C4H6 B、 C2H2、H2S、CO2、H2O C、 C2H6、C3H8、C4H10、C6H6 D、 NH3、HCl、NaOH、H2SO4 标准答案:B 学员答案:B 本题得分:5 题号:3 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:5 内容: 对于石油,下列表述正确的是()。 A、石油的主要成分是C、H元素组成的烃类 B、石油是一种纯物质

C、石油是一种有气味的蜡状固体 D、石油可直接用作化工原料 标准答案:A 学员答案:A 本题得分:5 题号:4 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:5 内容: 烃类发生了完全降解氧化反应的结果是()。 A、生成了H2、CH4等低分子物 B、生成了目的氧化产物 C、使反应转化率降低 D、降低了反应的选择性 标准答案:D 学员答案:D 本题得分:5 题号:5 题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:5 内容: 下述反应中属于加氢反应类型的有()。 A、烃类裂解气净化脱除乙炔 B、以乙苯为原料生产苯乙烯 C、以丙烯为原料生产丙烯腈 D、 CO水蒸气变换为CO2 标准答案:A 学员答案:A 本题得分:5 题号:6 题型:多选题(请在复选框中打勾,在以下几个选项中选择正确答案,答案可以是多个)本题分数:5 内容: 烃类气—固相催化氧化反应常用的反应器型式有()。

烃类热裂解

第三章烃类热裂解 引言: 乙烯、丙烯和丁二烯等低级烯烃分子中具有双键,化学性质活泼,能与许多物质发生加成、共聚或自聚等反应,生成一系列重要的产物,是化学工业的重要原料。工业上获得低级烯烃的主要方法是将烃类热裂解。烃类热裂解是将烃类原料(天然气、炼厂气、石脑油、轻油、柴油、重油等)经高温(750℃以上)、低压(无催化剂)作用,使烃类分子发生碳链断裂或脱氢反应,生成分子量较小的烯烃、烷烃和其他分子量不同的轻质和重质烃类。 烃类热裂解非常复杂,具体体现在: (1)原料复杂:烃类热裂解的原料包括天然气、炼厂气、石脑油、轻油、柴油、重油甚至是原油、渣油等; (2)反应复杂:烃类热裂解的反应除了断裂或脱氢主反应外,还包括环化、异构、烷基化、脱烷基化、缩合、聚合、生焦、生碳等副反应; (3)产物复杂:即使采用最简单的原料乙烷,其产物中除了H2、CH4、C2H4、C2H6、外,还有C3、C4、等低级烷烃和C5以上的液态烃。 烃类热裂解按原料的变化可分为: 在低级不饱和烃中,以乙烯最重要,产量也最大。乙烯产量常作为衡量一个国家基本化学工业的发展水平的标志。表3-l和表3-2列举了世界主要国家与地区的乙烯生产能力。 烃类热裂解制乙烯的生产工艺主要为原料烃的热裂解和裂解产物分离。本章将分别予以讨论。

第一节热裂解过程的化学反应 1.1烃类裂解的反应规律 1.1.1烷烃的裂解反应 (1)正构烷烃正构烷烃的裂解反应主要有脱氢反应和断链反应对于C5以上的烷烃还可能发生环化脱氢反应。 脱氢反应是C-H键断裂的反应,生成碳原子数相同的烯烃和氢,其通式为 C5以上的正构烷烃可发生环化脱氢反应生成环烷烃。如正己烷脱氢生成环己烷。 断链反应是C-C键断裂的反应,反应产物是碳原子数较少的烷烃和烯烃,其通式为 相同烷烃脱氢和断链的难易,可以从分子结构中碳氢键和碳碳键的键能数值的大小来判断。表3-3给出了正、异构烷烃的键能数据。 由表3-3的数据看出如下规律: ①同碳原子数的烷烃C-H键能大于C-H键能,断链比脱氢容易; ②随着碳链的增长,其键能数据下降,表明热稳定性下降,碳链越长裂解反应越易进行。 由热力学知道,反应标准自由焓的变化ΔG T?可作为反应进行的难易及深度的判据。

烃类热裂解答案

1.石油中碳元素占() A.11-14% B.83-87% C.1%左右 D.不确定 2.石油常减压蒸馏中,原油在蒸馏前,一般经脱盐脱水处理,要求含盐量与含水量必须为() A.含盐量≥0.05kg/m3,含水量≥0.2% B.含盐量≤0.05kg/m3,含水量≤0.2% C.含盐量 0.05kg/m3,含水量 0.2% D.含盐量≤0.05kg/m3,含水量 0.2% 3.经催化重整得到的重整汽油含芳烃为() A.10%—20% B.20%—29% C.30%—50% D.60%—90% 4.烷烃的脱氢能力与烷烃的分子结构的关系是() A.没有规律 B.叔氢最易脱去 C.仲氢最易脱去 D.伯氢最易脱去 5.管式裂解炉生产乙烯的出口温度为() A .300℃以下 B.200℃以下 C.1065-1380℃以下 D.500℃以下 6.乙烯的峰值出现在KSF为() A.0-1 B.1-2.3 C.2.5 D.3.5-6.5 7.催化重整的原料不宜过重,一般沸点是() A. 200℃ B.≤200℃ C. 300℃ D.=500℃ 8.烃类热裂解反应,目前普遍采用的是() A.垂直管双面辐射管式裂解炉 B.砂子炉 C.蓄热炉 D.煤气发生炉 9.石油常减压蒸馏中,分离器顶部逸出的气体约占原有的百分数是() A.0.15%-0.4% B.1%-2.5% C.0.1%-0.12% D.0.5%-0.8% 10.烃类热裂解反应中获取乙烯高收率的关键是() A.高温和合适的接触时间 B.高温和合适的压力 B.合适的接触时间和合适的压力 D.高温和合适的催化剂 11.裂解操作是向系统中加入稀释剂来降低烃类分压方法来达到减压操作目的,稀释剂加入的目的() A.有利产物收率的提高,对结焦的二次反应有抑制作用 B.不利于产物收率的提高,对结焦的二次反应有抑制作用 C.有利产物收率的提高,对结焦的二次反应有促进作用 D.不利于产物收率的提高,对结焦的二次反应有促进作用 12.不属于石油化学工业三大起始原料的是()A.天然气 B.油田气 C.液体石油馏分 D.石油 13.不能表示烃类热裂解反应深度的方法是() A.Tτ0.06 B.KSF C.管式炉出口温度 D.乙烯收率 14.后冷流程是指() A.冷箱在脱甲烷塔后 B.冷箱在脱乙烷塔后 C.冷箱在脱甲烷塔前 D.冷箱在乙烯塔前 15.下列不是石油中所含烃类的是() A.烷烃 B.环烷烃 C.芳香烃 D.烯烃 16.石油常减压蒸馏流程中,原油入初馏塔必须预热至的温度是() A.200-400℃ B.100-150℃ C.500-800℃ D.10-150℃ 17.下列不属于二次反应的是() A.生焦反应 B.生碳反应 C.生成稠环芳烃 D.烯烃的裂解 18.乙烯收率与原料的关系() A.P

烃类热裂解

第七章烃类热裂解练习题 一、填空。 1.生产制造烯烃的主要工业方法是 2.烃类热裂解的化学反应、、、、 3.烃类热裂解的主要工艺因素、、、、。 4.为避免减压操作存在的问题.采用添加、降低原料分压的措施。 5.裂解原料的组成是判断。 6.烃类热裂解工艺流程包括、、、。 7. 、必须对裂解气进行分离和提纯。 8.裂解气是气体混合物,其中有目的产物、又有副产物、、杂质、、、。 9.酸性气体脱除的方法、吸收剂、、。 10.裂解气的净化过程包括: 、、、、。 11.烃类热裂解的工艺流程包括: 、、、。 二.选择. 1.各类烃的热裂解反应的难易顺序() A.正构烷烃>环烷烃>异构烷烃>芳烃. B.异构烷烃>正构烷烃>环烷烃>芳烃. C.正构烷烃>异构烷烃>环烷烃>芳烃. 2.下列不是脱炔和一氧化碳的方法是( ) A.选择性催化加氢法. B.乙醇胺法 C.溶剂吸收法 3.深冷分离流程不包括( ) A.裂解和高压水蒸气系统 B.气体净化系统 C.精馏分离系统. 4.裂解气分离在工业上主要采用( ) A.甲烷化法 B.深冷分离法 C.固体吸附法. 5.芳香烃反应不包括( ) A.断链 B.脱氢 C.聚合 D.缩合

三.判断. 1.断裂反应可以视为可逆反应,脱氢反应可视为不可逆反应。( ) 2.为提高乙烯的纯度和收率,应尽可能降低轻组分中乙烯的含量。( ) 3.脱甲烷塔,乙烯精馏塔操作的好坏,直接关系到乙烯产品的质量、产量和成本,是裂解气深冷分离过程的关键。( ) 4.烃类热裂解反应是强吸热反应,是分子数增多的反应。( ) 5.根据分子结构中键能大小,可判断不同烷烃脱氢和断链反应的难易程度。( ) 6.随着环烷烃和芳烃含量的增加,乙烯收率也随之增加。( ) 7.冷箱在裂解气中的作用是回收部分冷量,并提纯氢气。( ) 8.乙烷发生脱氢反应,不发生断链反应。( ) 9.降低压力,提高烯烃收率,抑制二次反应,也提高烯烃的收率。( ) 10.裂解供热方式有直接和间接两种,通常用的是直接供热的管式炉法。( ) 四.简答题. 1.为什么工业上以水蒸气为稀释剂? 2.为什么要除去裂解气中的水分?广泛采用什么方法?以什么为吸附剂? 3.高温下的减压操作存在那些问题? 4.烃类热裂解反应都特点有那些?

裂解气的净化和分离-第一章 烃类热裂解剖析

第一章烃类热裂解 第三节裂解气的净化与分离 一、概述 (一)裂解气的组成和分离要求 问题1:什么叫裂解气? 1. 烃类经过裂解制得了裂解气,裂解气的组成是很复杂的,其中含有很有用的组份,也含有一些有害的杂质(见表1-23)。裂解气净化与分离的任务就是除去裂解气中有害的杂质,分离出单一稀烃产品或烃的馏分,为基本有机化学工业和高分子化学工业等提供原料。 表1-23 轻柴油裂解气组成

2. 需要净化与分离的裂解气,是由裂解装置送过来的。 3.裂解气的定义:它已经脱除了大部份C5以上的液态烃类,它是一个含有氢气,C1-C5的烃类和少量杂质气体的复杂气态混合物。 4.裂解气的分离要求:见表1-24,1-2 5.

表1-24 乙烯聚合级规格 表1-25 丙烯聚合极规格

(二)裂解气分离方法简介 问题2:深冷分离法的分离原理是什么? 1.工业生产上采用的裂解气分离方法,主要有深冷分离法和油吸收精馏分离法两种。本章重点介绍深冷分离方法。 2.在基本有机化学工业中,冷冻温度小于等于-100度的称为深度冷冻,简称“深冷”。 ♀3.分离原理就是利用裂解气中各种烃的相对挥发度不同,在低温下除了氢气和甲烷以外,把其余的烃类都冷凝下来,然后在精馏塔内精馏塔进行多组份精馏分离,利用不同的精馏塔,把各种烃逐个分离下来。其实质是冷凝精馏过程。 4.图1-24可知,深冷分离流程可以概括

成三大部份: (1)气体净化系统; (2)压缩和冷冻系统; (3)精馏分离系统. 二、酸性气体的脱除 问题3:酸性气体有哪些?它们有什么危害?除去方法是什么? 1.由表1-23的数据可以看出,裂解气中含有的少量硫化物、二氧化碳、一氧化碳、乙炔、丁炔以及水等杂质。 2.裂解气中的酸性气体,主要是二氧化碳(CO2)和硫化氢(H2S),另外还有有机硫化物。 3.这些酸性气体含量过多时,对分离过程会

裂解气分离

裂解气分离 工业生产上采用的裂解气分离方法,主要有深冷分离法和油吸收精馏分离法两种。本章重点介绍深冷分离方法。 裂解气分离分离原理: 在基本有机化学工业中,把冷冻温度高于-50℃的称为浅度冷冻,简称“浅冷”;温度在-50~-100℃的称为中度冷冻;冷冻温度等于或低于-100℃的称为深度冷冻,简称“深冷”。因为裂解气分离方法采用了-100℃以下的冷冻系统,所以工业上称为深冷分离法。这种方法的分离原理就是利用裂解气中各种烃的相对挥发度不同,在低温下除了氢气和甲烷以外,把其余的烃类都冷凝下来,然后在精馏塔内进行多组分精馏分离,利用不同的精馏塔,把各种烃逐个分离下来。其实质是冷凝精馏过程。 深冷分离流程: 图1-24是深冷分离流程示意图: 主要设备:1碱洗塔、2干燥塔、3脱甲烷塔、4脱乙烷塔、5乙烯塔、6脱丙烷塔、7脱丁烷塔、8丙烷塔、9冷箱、10加氢脱炔反应器、11绿油塔。 就分离过程来说,可以概括成三大部份: (1)压缩和冷冻系统:使裂解气加压降温,同时脱除重组分,为分离创造条件。

(2)气体净化系统:包括脱除酸性气体、脱水、脱除乙炔和脱除一氧化碳(即甲烷化,用于净化氢气)。 (3)精馏分离系统:包括一系列的精馏塔,以便分离出甲烷、乙烯、丙烯、C4馏分以及C5馏分。 顺序分离流程分离步骤是: ①裂解气经过离心式压缩机压缩后,送入碱洗塔,脱去酸性气体。减洗后的裂解气经过压缩机去干燥器脱水,干燥后的裂解气在前冷箱中分离出富氢气体,再进入脱甲烷塔,塔顶脱去甲烷馏分,塔底的液体是C2以上馏分,进入脱乙烷塔,进入脱乙烷塔的塔顶分出C2馏分,塔底的液体为C3以上馏分。 ②从脱乙烷塔塔顶出来的C2馏分经过换热升温,进行气相加氢脱乙炔气,脱乙炔以后的气体进入绿油塔,在绿油塔内用乙烯塔来的侧线馏分洗去绿油,干燥,然后送去乙烯塔。脱乙烯塔塔底的液体进入脱丙烯塔,在塔顶分出C3馏分,塔底的液体为C4馏分,液体里面含有二烯烃,易聚合结焦,所以脱丙烯塔塔底温度不适宜超过一百度,并且必须加入阻聚剂。为了防止结焦堵塞,脱丙烯塔一般有两个再沸器,以便轮换检修使用。 ③脱丙烯塔塔顶蒸出的C3馏分,里面含有丙炔和丙二烯,进入加氢脱炔反应器,加氢脱除丙炔和丙二烯,然后进入绿油塔,脱除加氢带入的甲烷、氢气,再进入丙烯塔进行精馏,丙烯塔的塔顶蒸出纯度为99.9%的丙烯产品,丙烯塔的塔底液体为丙烷馏分。 ④脱丙烷塔的塔底液体送入脱于烷塔,在脱丁烷塔内分成C4馏分和C5以上馏分,C4馏分和C5以上馏分分别送往下道工序,进一步分离和利用。

相关文档
最新文档