高中数学不等式恒成立与有解问题

高中数学不等式恒成立与有解问题
高中数学不等式恒成立与有解问题

高中数学不等式恒成立与有解问题

不等式恒成立与有解问题一直是中学数学的重要内容. 它是函数、数列、不等式等内容交汇处的一个较为活跃的知识点,随着中学数学引进导数,它为我们更广泛、更深入地研究函数、不等式提供了强有力的工具. 在近几年的高考试题中,涉及不等式恒成立与有解的问题,有时在同一套试题中甚至有几道这方面的题目。

其中,特别是一些含自然对数和指数函数的不等式恒成立与有解问题,将新增内容与传统知识有机融合,用初等方法难以处理,而利用导数来解,思路明确,过程简捷流畅,淡化繁难的技巧,它不仅考查函数、不等式等有关的传统知识和方法,而且还考查极限、导数等新增内容的掌握和灵活运用. 它常与思想方法紧密结合,体现能力立意的原则,带有时代特征,突出了高考试题与时俱进的改革方向. 因此,越来越受到高考命题者的青睐. 下面通过一些典型实例作一剖析.

1.不等式恒成立与有解的区别

不等式恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一团.

(1)不等式f(x)

k ?x f ,)(max

k ?x f ,)(min k 在x ∈I 时恒成立?

k ?x f ,)(min >?x ∈I. 或f(x)的下界大于或等于k ; (4)不等式f(x)>k 在x ∈I 时有解?

k ?x f ,)(max >?x ∈I. 或f(x)的上界大于k ; 解决不等式恒成立和有解解问题的基本策略常常是构作辅助函数,利用函数的单调性、最值(或上、下界)、图象求解;基本方法包括:分类讨论,数形结合,参数分离,变换主元等等.

例1 已知两函数f(x)=8x 2+16x-k ,g(x)=2x 3+5x 2+4x ,其中k 为实数.

(1)对任意x ∈[-3,3],都有f (x)≤g(x)成立,求k 的取值范围;

(2)存在x ∈[-3,3],使f (x)≤g(x)成立,求k 的取值范围;

(3)对任意x 1x 2∈[-3,3],都有f (x 1)≤g(x 2),求k 的取值范围.

解析 (1)设h(x)=g(x)-f(x)=2x 2-3x 2-12x+k ,问题转化为x ∈[-3,3]时,h(x)≥0恒成立,故h min (x)≥0.令h′ (x)=6x 2-6x-12=0,得x= -1或2.

由h(-1)=7+k ,h(2)=-20+k ,h(-3)=k-45,h(3)=k-9,故h min (x)=-45+k ,由k-45≥0,得k≥45.

(2)据题意:存在x ∈[-3,3],使f (x)≤g(x)成立,即为:h(x)=g(x)-f(x)≥0在x ∈[-3,3]有解,故h max (x)≥0,由(1)知h max (x )=k+7,于是得k≥-7.

(3)它与(1)问虽然都是不等式恒成立问题,但却有很大的区别,对任意x 1x 2∈[-3,3],都有f (x 1)≤g(x 2)成立,不等式的左右两端函数的自变量不同,x 1,x 2的取值在

[-3,3]上具有任意性,因而要使原不等式恒成立的充要条件是:

]3,3[,)()(min max ??x ?x g x f -∈≤,由g′(x)=6x 2+10x+4=0,得x=-3

2或-1,易得21)3()(min -=-=g x g ,又f(x)=8(x+1)2-8-k ,]3,3[?

x -∈. 故.120)3()(max k f x f -==令120-k≤-21,得k≥141.

点评 本题的三个小题,表面形式非常相似,究其本质却大相径庭,应认真审题,深入思考,多加训练,准确使用其成立的充要条件

2.不等式有解问题

例3 设x=3是函数f(x)=(x 2+ax+b)e x -3,x ∈R 的一个极值点.

(1)求a 与b 的关系(用a 表示b ),并求f(x)的的单调区间;

(2)设a>0,g(x)=x e a ??? ??+

4252,若存在S 1,S 2∈[0,4],使得|f(S 1)-g(S 2)|<1成立,求a 的取值范围.

解析 (1)x e a b x a x x f --+-+-='32])2([)(,由)3(f '=0得b=-2a-3.

故f(x)=(x 2+ax-2a-3)x e -3. 因为)(x f '=-[x 2+(a-2)x-3a-3] x e -3=-(x-3)(x+a+1) x e -3. 由)(x f '=0得:x 1=3,x 2==-a-1. 由于x=3是f(x)的极值点,故x 1≠x 2,即a≠-4. 当a<-4时,x 1

当a>-4时,x 1>x 2,故f(x)在(]1,--∞-a ?上为减函数,在[-a-1,3]上为增函数,在[)+∞,3?上为减函数.

(2)由题意,存在S 1,S 2∈[0,4],使得|f(S 1)-g(S 2)|<1成立,即不等式|f(S 1)-g(S 2)|<1在S 1,S 2∈[0,4]上有解.

于是问题转化为|f(S 1)-g(S 2)|min <1,由于两个不同自变量取值的任意性,因此首先要求出f(S 1)和g(S 2)在[0,4]上值域.

因为a>0,则-a-1<0,由(1)知:f(x)在[0,3]递增;在[3,4]递减. 故f(x)在[0,4]上的值域为[min{f(0),f(4)},f(3)]=[-(2a+3)e 3,a+6],而g(x)=x e a ??

? ??

+4252在[0,4]上显然为增函数,其值域??

????

??? ??++422425,425e a ?a . 因为4252+a -(a+6)=??? ??-21a 2≥0, 故4

252+a ≥(a+6).

(完整版)高中数学不等式归纳讲解

第三章不等式 定义:用不等号将两个解析式连结起来所成的式子。 3-1 不等式的最基本性质 ①对称性:如果x>y,那么y<x;如果y<x,那么x>y; ②传递性:如果x>y,y>z;那么x>z; ③加法性质;如果x>y,而z为任意实数,那么x+z>y +z; ④乘法性质:如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(符号法则) 3-2 不等式的同解原理 ①不等式F(x)<G(x)与不等式G(x)>F(x)同解。

②如果不等式F (x ) < G (x )的定义域被解析式H ( x )的定义域所包含,那么不等式 F (x )<G (x )与不等式F (x )+H (x )<G (x )+H (x )同解。 ③如果不等式F (x )<G (x ) 的定义域被解析式H (x )的定义域所包含,并且H (x )>0,那么不等式F(x)<G (x )与不等式H (x )F (x )<H ( x )G (x ) 同解;如果H (x )<0,那么不等式F (x )<G (x )与不等式H (x)F (x )>H (x )G (x )同解。 ④不等式F (x )G (x )>0与不等式 0)x (G 0)x (F >>或0)x (G 0)x (F <<同解 不等式解集表示方式 F(x)>0的解集为x 大于大的或x 小于小的 F(x)<0的解集为x 大于小的或x 小于大的 3-3 重要不等式

3-3-1 均值不等式 1、调和平均数: )a 1...a 1a 1(n H n 21n +++= 2、几何平均数: n 1 n 21n )a ...a a (G = 3、算术平均数: n )a a a (A n 21n +++= 4、平方平均数: n )a ...a a (Q 2n 2221n +++= 这四种平均数满足Hn ≤Gn ≤An ≤Qn a1、a2、… 、an ∈R +,当且仅当a1=a2= … =an 时取“=”号 3-3-1-1均值不等式的变形 (1)对正实数a,b ,有2ab b a 22≥+ (当且仅当a=b 时 取“=”号)

高中数学恒成立与存在性问题

高中恒成立问题总结 解决高考数学中的恒成立问题常用以下几种方法: ①函数性质法; ②主参换位法; ③分离参数法; ④数形结合法。 XXX 核心思想: 1.恒成立问题的转化: 恒成立; 2.能成立问题的转化: 能成立; 3.恰成立问题的转化: 若在D 上恰成立在D 上的最小值; 若在D 上恰成立在D 上的最大值. 4.设函数,,对任意的,存在,使得,则 ; 设函数,,对任意的,存在,使得,则 ; 设函数,,存在,存在,使得,则 ; 设函数,,存在,存在,使得,则; 5.若不等式在区间D 上恒成立,则等价于在区间D 上函数和图象在函数图象上方; 若不等式在区间D 上恒成立,则等价于在区间D 上函数和图象在函数图象下方. 6.常见二次函数 ①.若二次函数(或)在R 上恒成立,则有(或); ②.若二次函数(或)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解. ()a f x >?()max a f x >()()min a f x a f x ≤?≤恒成立()a f x >?()min a f x >()()max a f x a f x ≤?≤能成立A x f D x ≥∈)(,?)(x f A x f =)(min ,D x ∈B x f ≤)(?)(x f B x f =)(max ()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≥()()x g x f min min ≥()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≤()()x g x f max max ≤()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≥()()x g x f min max ≥()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≤()()x g x f max min ≤()()f x g x >()y f x =()y g x =()()f x g x <()y f x =()y g x =2()(0)0f x ax bx c a =++≠>0<00a >???0<

关于不等式恒成立问题的几种求解方法

关于不等式恒成立问题的几种求解方法 不等式恒成立问题,在高中数学中较为常见。这类问题的解决涉及到一次函数、二次函数、三角函数、指数与对数函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。 不等式恒成立问题在解题过程中有以下几种求解方法:①一次函数型;②二次函数型;③变量分离型;④数形结合型。 下面我们一起来探讨其中一些典型的问题 一、一次函数型——利用单调性求解 例1、若不等式对满足的所有实数m都成立,求x的取值范围。 若对该不等式移项变形,转化为含参数m的关于x的一元二次不等式,再根据对称轴和区间位置关系求对应的二次函数的最小值,利用最小值大于零求解。这样得分好几种情况讨论,这思路应该说从理论上是可行的,不过运算量不小。能不能找出不需要讨论的方法解决此问题呢?若将不等式右边移到左边,然后将新得到的不等式左边看做关于m的一次函数,借助一次函数的图像直线(其实是线段)在m轴上方只需要线段的两个端点在上方即可。 分析:在不等式中出现了两个字母:x及m,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将m视作自变量,则上述问题即可转化为在[-2,2]内关于m的一次函数大于0恒成立的问题。 解:原不等式转化为(1-x2)m+2x-1>0在|m|2时恒成立, 设f(m)= (1-x2)m+2x-1,则f(m)在[-2,2]上恒大于0,故有: 此类题本质上是利用了一次函数在区间[a,b]上的图象是一线段,故只需保证该线段两端点均在m轴上方(或下方)即可。 给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(线段)(如下图)可得上述结论等价于 ⅰ),或ⅱ) 可合并成 同理,若在[m,n]内恒有f(x)0恒成立;f(x)3;

高中数学不等式的恒成立问题

高中数学不等式的恒成立问题 高三数学备课组 肖英文 2011-11-23 不等式恒成立的问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点. 考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的取值范围.解决这类问题的方法关键是转化化归,通过等价转化可以把问题顺利解决,下面我就结合自己教学谈谈不等式的恒成立问题的处理方法。 题型一:构造函数法(利用一次函数的性质) 在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数.例如; 类型1:对于一次函数],[,)(n m x b kx x f ∈+=有: ()0f x >?恒成立(ⅰ)???>>0)(0m f a ,或(ⅱ)???><0)(0n f a ;亦可合并定成???>>0)(0 )(n f m f ; ()0 ()0()0f m f x f n 2a+x 恒成立的x 的取值范围。 分析:在不等式中出现了两个字母:x 及a,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将a 视作自变量,则上述问题即可转化为在[-2,2]内关于a 的一次函数大于0恒成立的问题。 解:原不等式转化为(x-1)a+x 2 -2x+1>0, 设f(a)= (x-1)a+x 2 -2x+1,则f(a)在[-2,2]上恒大于0,故有: ?? ?>>-)2(0)2(f f 即?????>->+-0 10 3422 x x x 解得:???-<><>1113x x x x 或或 ∴x<-1或x>3. 引申:在不等式中出现3个字母:m 、x 、a 已知函数()f x 是定义在[]1,1-上的奇函数,且(1)1f =,若[],1,1a b ∈-,0a b +≠,有 ()()0f a f b a b +>+, (1)证明()f x 在[]1,1-上的单调性;(2)若2 ()21f x m am ≤-+对所有[]1,1a ∈-恒成立,求m 的取值范围。 分析:第一问是利用定义来证明函数的单调性,第二问中出现了3个字母,最终求的是m 的范围,所以根据上式将m 当作变量,a 作为常量,而x 则根据函数的单调性求出()f x 的最大值 即可。 (1) 简证:任取[]12,1,1x x ∈-且12x x <,则[]21,1x -∈- 1212 ()() 0f x f x x x +>- ()()1212()()0x x f x f x ∴-+-> 又 ()f x 是奇函数 ()()1212()()0x x f x f x ∴--> ()f x ∴在[]1,1-上单调递增。 (2) 解: 2()21f x m am ≤-+对所有[]1,1x ∈-,[]1,1a ∈-恒成立,即 2max 21m am f -+≥, max (1)1f f == 22211 20m am m am ∴-+≥∴-≥ 即2 ()20g a am m =-+≥在[]1,1-上恒成立。(1)120(1)120g a g a -=+≥?∴?=-≥? 1212 a a ?≤-??∴??≤?? 1122 a ∴-≤≤。 例2.已知不等式 对任意的都成立,求的取值范围. 解:由移项得: .不等式左侧与二次函数非常相 似,于是我们可以设 则不等式 对满足 的一切实数 恒成立 对 恒成立.当 时, 即 解得故的取值范围是. 评注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x 为参数,以为变量,令 则问题转化为求一次函数(或常数函数)的值在内恒 为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。 题型二:分离参数法 类型1:αα>?∈>min )()(x f I x x f 恒成立对一切()f x x I α<∈对一切恒成立. max ()f x α?< 类型2:)()(x g x f >对于任意的],[b a x ∈恒成立?min max ()()f x g x >,或)(x f 在

高中数学解不等式方法+练习题

不等式 要求层次 重难点 一元二次不等式 C 解一元二次不等式 (一) 知识容 1.含有一个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次不等式. 一元二次不等式的解集,一元二次方程的根及二次函数图象之间的关系如下表(以0a >为例): 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决.其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解. 判别式 24b ac ?=- 0?> 0?= 0?< 二次函数 2y ax bx c =++ (0)a >的图象 一元二次方程 2 0ax bx c ++= (0)a ≠的根 有两相异实根 12,x x = 242b b ac a -±- 12()x x < 有两相等实根 122b x x a ==- 没有实根 一元二次不等式的解集 2 0ax bx c ++> (0)a > {1 x x x < 或}2x x > {R x x ∈,且 2b x a ?≠- ?? 实数集R 20ax bx c ++< (0)a > {}1 2x x x x << ? ? 例题精讲 高考要求 板块一:解一元二次不等式 解不等式

(二)主要方法 1.解一元二次不等式通常先将不等式化为20ax bx c ++>或20 (0)ax bx c a ++<>的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于0时两根之外,小于0时两根之间; 2.分式不等式主要是转化为等价的一元一次、一元二次或者高次不等式来处理; 3.高次不等式主要利用“序轴标根法”解. (三)典例分析: 1.二次不等式与分式不等式求解 【例1】 不等式 1 12 x x ->+的解集是 . 【变式】 不等式2230x x --+≤的解集为( ) A .{|31}x x x -或≥≤ B .{|13}x x -≤≤ C .{|31}x x -≤≤ D .{|31}x x x -或≤≥ 【变式】 不等式 25 2(1)x x +-≥的解集是( ) A .132? ?-??? ? , B .132??-????, C .(]11132??????U ,, D .(]11132?? -???? U ,, 2.含绝对值的不等式问题 【例2】 已知n *∈N ,则不等式 220.011 n n -<+的解集为( ) A .{}|199n n n *∈N ≥, B .{}|200n n n *∈N ≥, C .{}|201n n n *∈N ≥, D .{}|202n n n *∈N ≥, 【例3】 不等式 1 11 x x +<-的解集为( ) A .{}{}|01|1x x x x <<>U B .{}|01x x << C .{}|10x x -<< D .{}|0x x < 【变式】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值围是 _. 【例4】 若不等式1 21x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 【例5】 若不等式34x b -<的解集中的整数有且仅有123,,,则b 的取值围为 . 3.含参数不等式问题 【例6】 若关于x 的不等式22840x x a --->在14x <<有解,则实数a 的取值围是( ) A .4a <- B .4a >- C .12a >- D .12a <- 【变式】 ⑴已知0a <,则不等式22230x ax a -->的解集为 . ⑵若不等式897x +<和不等式220ax bx +->的解集相同,则a b -=______.

(完整word版)高一数学中的恒成立问题

高一数学中的恒成立问题 班级 姓名 学号 1.任意x R ∈,不等式()()222240a x a x ----<恒成立,则a 的范围是____(]2,2-___. 2.若不等式x +2xy ≤a (x +y )对一切正数x ,y 恒成立,则正数a 的最小值为 ( B ) A.1 B.2 C.2 1 2+ D.22+1 . B 由条件:2xy ≤(a -1)x +ay 恒成立,而(a -1)x +ay ≥2xy a a )1(-, 令2xy =2xy a a )1(- ,a (a -1)=2, ∴a =2. 3.不等式() ()2212130m x m x ---+>对一切实数x 恒成立,则实数m 的范围为______. 【解】当2 10m -≠时不等式恒成立的充要条件是2 10m ->且()()22411210m m ---<, 即m>1或m<-2;当m-1=0时不等式化为3>0,恒成立.综上m 范围是[)21-∞+∞U (,),+. 4、已知两个正变量y x ,满足4=+y x ,则使不等式 m y x ≥+4 1恒成立的实数m 的取值 范围是 ]4 9,(-∞ 5.已知不等式(x+y)(1x + a y )≥9对任意正实数x,y 恒成立,则正实数a 的最小值为( ) A.2 B.4 C.6 D.8 6、若对于一切正实数x 不等式x x 2 24+>a 恒成立,则实数a 的取值范围是 a<24 7.若不等式.2 log 0m x x -<在(0, 1 2 )的范围内恒成立,则实数m 的取值范围是____. 【解】 1 116 m ≤< 提示:利用数形结合讨论01两种情况 8.设y=x 2+ax+b ,当x=2时y=2,且对任意实数x 都有y≥x 恒成立,实数a 、b 的值为( B ). A.a=-3 b=-4 B.a=-3 b=4 C a=3 b=4 D a=3 b=-4 9、当x>1时,不等式x+ 1 1 -x ≥a 恒成立,则实数a 的取值范围是( D ) A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3] 10.若不等式n )1(2a )1(1 n n +-+<-对任意正整数n 恒成立。则实数a 的取值范围是( A )

不等式恒成立或有解问题的解决策略

不等式恒成立或有解问题的解决策略 恒成立与有解问题的解决策略大致分四类: ①构造函数,分类讨论; ②部分分离,化为切线; ③完全分离,函数最值; ④换元分离,简化运算; 在求解过程中,力求“脑中有‘形’,心中有‘数’”.依托端点效应,缩小范围,借助数形结合,寻找临界. 一般地,不等式恒成立、方程或不等式有解问题设计独特,试题形式多样、变化众多,涉及到函数、不等式、方程、导数、数列等知识,渗透着函数与方程、等价转换、分类讨论、换元等思想方法,有一定的综合性,属于能力题,在提升学生思维的灵活性、创造性等数学素养起到了积极的作用,成为高考的一个热点. 【考点突破】 【典例1】(2018届石家庄高中毕业班教学质量检测)已知函数()()()121x f x axe a x =-+-. (1)若1a =,求函数()f x 的图象在点()0,(0)f 处的切线方程; (2)当0x >时,函数()0f x ≥恒成立,求实数a 的取值范围. 【解析】(Ⅰ)若1a =,则)12(2)(--=x xe x f x ,4)('-+=x x e xe x f 当0=x 时,2)(=x f ,3)('-=x f , ………﹝导数的几何意义的应用﹞ 所以所求切线方程为23+-=x y 。 (Ⅱ)思路一:()()()121x f x axe a x =-+-,)1(2)1()('+-+=a e x a x f x , 由条件可得,首先0)1(≥f ,得01 1 >-≥ e a , 令()'()(1)2(1)x h x f x a x e a ==+-+,则 '()(2)0x h x a x e =+>恒为正数,所以()'()h x f x =单调递增,………﹝高阶导数的灵活应用﹞ 而02)0('<--=a f ,0222)1('≥--=a ea f ,所以)('x f 存在唯一根0(0,1]x ∈,使得函数)(x f 在),0(0x 上单调递减,在)(0∞+x 上单调递增, ………﹝极值点不可求,虚拟设根﹞

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

高考数学:不等式恒成立、能成立、恰成立问题

不等式恒成立、能成立、恰成立问题 一、不等式恒成立问题的处理方法 1、转换求函数的最值: (1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,?() f x 的 下界大于A (2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界 小于A 例1、设f(x)=x2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。 例恒成立,试求实数a 的取值范围; 例数,且当 ? ?? ? ?∈2,0πθ时,有 f .

例4、已知函数 )0(ln )(4 4>-+=x c bx x ax x f 在1=x 处取得极值3c --,其中a 、b 为常数.(1)试确定a 、b 的值; (2)讨论函数)(x f 的单调区间; (3)若对任意0>x ,不等式2 2)(c x f -≥恒成立,求c 的取值范围。 2例 例恒成立,求实数x 的取值范围 例若不等式2 ()1 f x x x a '--+>对任意(0)a ∈+∞, 都成立,求实数x 的取值范围.

3、分离参数法 (1)将参数与变量分离,即化为 ()() g f x λ≥ (或 ()() g f x λ≤ )恒成立的形式; (2)求 () f x 在x D ∈上的最大(或最小)值; (3)解不等式 () max () g f x λ≥ (或 ()() min g f x λ≤ ) ,得λ的取值范围。 适用题型:(1)参数与变量能分离;(2)函数的最值易求出。 例8、当 (1,2) x∈时,不等式240 x mx ++<恒成立,则m的取值范围是 . 例 b a,满足什么条件时,) (x f取a表示出b的取值范围. 4 例________ 例11、当x(1,2)时,不等式

高中数学恒成立问题

高中数学不等式的恒成立问题不等式恒成立的问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点. 考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的取值范围.解决这类问题的方法关键是转化化归,通过等价转化可以把问题顺利解决,下面我就结合自己记得教学经验谈谈不等式的恒成立问题的处理方法。 一、构造函数法 在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数. 例1 已知不等式对任意的都成立,求的取值范围. 解:由移项得:.不等式左侧与二次函数非常相似,于是我们可以设则不等式对满足的 一切实数恒成立对恒成立.当时, 即 解得故的取值范围是. 注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x为参数,以为变量,令 则问题转化为求一次函数(或常数函数)的值在内恒为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。

二、分离参数法 在不等式中求含参数范围过程中,当不等式中的参数(或关于参数的代数式)能够与其它变量完全分离出来并,且分离后不等式其中一边的函数(或代数式)的最值或范围可求时,常用分离参数法. 例2已知函数(为常数)是实数集上的奇函数,函数 在区间上是减函数. (Ⅰ)若对(Ⅰ)中的任意实数都有在上恒成立,求实数的取值范围. 解:由题意知,函数在区间上是减函数. 在上恒成立 注:此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题:若对于取值范围内的任一个数 都有恒成立,则;若对于取值范围内的任一个数都有 恒成立,则. 三、数形结合法 如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围. 例 3 已知函数若不等式恒成立,则实数的取值范围是 .

高中数学解不等式解答

第二讲 解不等式(一) 一、知识梳理 (一)考点目标定位 高考中解不等式主要涉及到一元一次不等式(组)、一元二次不等式(组)、分式不等式(组)、绝对值不等式(组)、指数不等式(组)、对数不等式(组)、三角不等式(组)以及含参数的不等式等。其中尤以一元二次不等式、分式不等式、对数不等式、三角不等式为热门。 解不等式在高考中的题型主要是在综合题中作为解题的一个步骤有所涉及,在填空题中和集合结合为简单题型。 (二)复习方略指南 熟悉各种不等式的解题方法,特别是要注意分式不等式、对数不等式和三角不等式的定义域情况以及一元二次不等式的判别式情况。 二、知识回顾 1、不等式|2x 2-1|≤1的解集为 {x |-1≤x ≤1} 2、已知全集U R =,集合{}240M x x =-≤,则U M e= {} ()()+∞-∞--<>,22,22 或或x x x 3、不等式09 311421 2≥-x x 的解集为______(,3][2,)-∞-+∞_________ 4、不等式3 2-+x x x )(<0的解集为 ()(),20,3-∞- 5、不等式()210ax ab x b +++>的解集为{}12x x <<,则a b +=___- 23或-3____. 解析:∵ax 2+(ab +1)x +b >0的解集为{x |1<x <2}, ∴???? ?????==+-<.2310a b a ab a ,,解得?????-=-=121b a ,或???-=-=.21b a , ∴a +b =-23或-3. 6、不等式||52||1 x x ->-+的解集是 (1)(1-???,, . 三、典型例题 例1、解不等式:()R a x a ax ∈+<+2 1 解:原不等式化为()112-<-a x a 当1,1+<>a x a 有时; 当11+>-x x 解一:原不等式可化为??????<<-?∈<<-?∈-<-222223022x R x x R x x

2020高考数学复习--专题05 导数与函数不等式恒成立、有解(存在性)-用思维导图突破导数压轴题

专题05 导数与函数不等式恒成立、有解(存在性)(训练篇B ) -用思维导图突破解导数压轴题 1. 已知函数. (1)讨论的单调性; (2)当时,证明. 解 (1)的定义域为,. 若,则当时,,故在单调递增. 若,则当时,; 当时,. 故在单调递增,在单调递减. (2)由(1)知,当时,在取得最大值,最大值为 . 所以等价于,即. 设,则, 当时,; 当时,. 所以在单调递增,在单调递减.故当时,取得最大值,最大值为.所以当时. 从而当时,,即. 2. 已知函数,设. (1)求的极小值; ()2(1)2lnx ax a x f x =+++()f x 0a <3()24f x a ≤--()f x (0,)+∞'1(1)(21)()221x ax f x ax a x x ++= +++=0a ≥(0,)x ∈+∞()0f x '>()f x (0,)+∞0a <1(0,)2x a ∈- ()0f x '>x ∈1(,)2a -+∞()0f x '<()f x 1(0,)2a -1(,)2a -+∞0a <()f x 12x a =- 11()214)21(ln f a a a =----3(4)2a f x ≤--13(12441)2a ln a a ---≤--1(02121)a ln a -++≤()ln 1 g x x x =-+1()1g x x '= -(0,1)x ∈()0g x '>(1,)x ∈+∞()0g x '<()g x (0,1)(1,)+∞1x =()g x (1)0g =0x >()0g x ≤0a <10,2a ->1(02121)a ln a -++≤3(4)2a f x ≤--()()e x f x x a x a =-++()() g x f x '=()g x

一元二次不等式恒成立问题专项练习

一元二次不等式恒成立问题专项练习 例题:设函数f (x )=mx 2-mx -1. (1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. (3)对于任意m ∈[1,3],f (x )<-m +5恒成立,求实数x 的取值范围. 解: (1)要使mx 2-mx -1<0恒成立, 若m =0,显然-1<0,满足题意; 若m ≠0,则??? m <0, Δ=m 2+4m <0,即-40时,g (x )在[1,3]上是增函数, ∴g (x )max =g (3)=7m -6<0,∴00, 又m (x 2-x +1)-6<0,∴m <6 x 2-x +1. ∵函数y =6x 2-x +1=6? ????x -122+34 在[1,3]上的最小值为67 ,∴只需 m <67即可.

(完整)高中数学不等式习题及详细答案

第三章 不等式 一、选择题 1.已知x ≥2 5 ,则f (x )=4-25+4-2x x x 有( ). A .最大值45 B .最小值4 5 C .最大值1 D .最小值1 2.若x >0,y >0,则221+)(y x +221 +)(x y 的最小值是( ). A .3 B . 2 7 C .4 D . 2 9 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b + ab 1≥22 B .(a +b )( a 1+b 1 )≥4 C 22 ≥a +b D . b a ab +2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x x f x f ) ()(--<0 的解集为( ). A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) 5.当0<x <2 π时,函数f (x )=x x x 2sin sin 8+2cos +12的最小值为( ). A .2 B .32 C .4 D .34 6.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18 B .6 C .23 D .243 7.若不等式组?? ? ??4≤ 34 ≥ 30 ≥ y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ). A . 7 3 B . 37 C . 43 D . 34 8.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为

不等式有解和恒成立问题

不等式有解和恒成立问题 Prepared on 24 November 2020

不等式有解和恒成立问题 知识点的罗列,文字不宜太多,简洁明了最好) ? 知识点一:不等式恒成立问题 ? 知识点二:不等式有解问题 分析该知识点在中高考中的体现,包含但不仅限于:考察分值、考察题型(单选、填空、解答题)、考察方式:考场难度、和哪些知识点在一起考察,参考中高考真题) 含参不等式的恒成立与有解问题是高考与会考考察不等式的一个重点内容,也是常考的内容,难度中等偏上,考察综合性较强,该知识点在填空选择解答题里都有涉及,经常和函数的最值问题在一起考察,需要同学对典型函数的值域求法有熟悉的掌握。 注意题目的答案,不要展示给学生看,这里答案和解析是帮助老师自己分析的) 一、不等式有解问题 例题:当m 为何值时,2211223 x mx x x +-<-+对任意的x ∈R 都成立 解法1:二次函数法: 移项、通分得: 又22230x x -+>恒成立,故知:2(2)40x m x -++>恒成立。 所以:2(2)160m ?=+-<,得到62m -<< 解法2:分离参数法: 注意到2(2)40x m x -++>恒成立,从而有:224mx x x <-+恒成立,那么: 注意到,在上式中我们用到了这样一个性质: 总结:解决恒成立问题的方法:二次函数法和分离参数法 变式练习:(初三或者高三学生必须选取学生错题或者学生所在地区的中高考真题或者当地的统考题目) 【试题来源】(上海2016杨浦二模卷) 【题目】设函数x x g 3)(=,x x h 9)(=,若b x g a x g x f +++=)()1()(是实数集R 上的奇函数,且0))(2()1)((>?-+-x g k f x h f 对任意实数x 恒成立,求实数k 的取值范围. 【答案】:因为b x g a x g x f +++= )()1()(是实数集上的奇函数,所以1,3=-=b a . )1 321(3)(+-=x x f ,)(x f 在实数集上单调递增.

含参数的一元二次不等式的解法与恒成立问题

} 11 |{1)5(1)4(} 1 1|{10)3(} 1|{0)2(}1,1 |{0)1(<<>Φ =<<<<>=>< a a a ; 例1 解不等式:()0122>+++x a ax 分析:本题二次项系数含有参数,()044222 >+=-+=?a a a ,故只需对二次项 系数进行分类讨论。 解:∵()044222 >+=-+=?a a a 解得方程 ()0122 =+++x a ax 两根,24221a a a x +---=a a a x 24 222++--= ∴当0>a 时,解集为?? ????????+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为? ?????> 21|x x 当0+-a a ax ax 分析 因为0≠a ,0>?,所以我们只要讨论二次项系数的正负。 解 ()()032)65(2>--=+-x x a x x a ∴当0>a 时,解集为{}32|>--ax x ; 3、ax 2 -(a +1)x +1<0(a ∈R) }2,2 |{,1)5(}2|{,1)4(}2 ,2|{,10)3(} 2|{,0)2(} 22 |{,0)1(>< >≠=><<<<=<<?; 例3 解不等式042 >++ax x

高中数学中的存在性问题与恒成立问题例题

第 1 页 共 3 页 高中数学存在性问题与恒成立问题 例1、若不等式 121x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 例2、设函数2()1f x x =-,对任意23x ??∈+∞????,,24()(1)4()x f m f x f x f m m ??--+ ???≤恒成立,则 实数m 的取值范围是 . 例3、若不等式220ax x ++>的解集为R ,则a 的范围是( ) A .0a > B . 18a >- C .18a > D .0a < 例4、已知不等式()11112log 1122123a a n n n +++>-+++对于一切大于1的自然数n 都成立, 试求实数a 的取值范围. 例5、若不等式2(2)2(2)40a x a x -+--<对x ∈R 恒成立,则a 的取值范围是______. 例6、2()1f x ax ax =+-在R 上恒满足()0f x <,则a 的取值范围是( ) A .0a ≤ B .4a <- C .40a -<< D .40a -<≤ 例7、若对于x ∈R ,不等式2230mx mx ++>恒成立,求实数m 的取值范围. 例8、不等式210x ax ++≥对一切102x ??∈ ???,成立,则a 的最小值为( ) A .0 B .2- C .52- D .3- 例9、不等式2|3||1|3x x a a +---≤对任意实数x 恒成立,则实数a 的取值范围为( ) A .(][)14-∞-+∞,, B .(][)25-∞-+∞,, C .[12], D .(][)12-∞∞,,

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

2021高三数学人教B版一轮学案:第二章第十二节第1课时不等式恒成立与有解问题含解析

第十二节导数破解疑难优质课 第1课时不等式恒成立与有解问题 1.“恒成立问题”与“有解问题”的区别 (1)两者在量词上的区别 恒成立问题中使用的量词是全称量词,如“任意、所有、全部、均、恒、总、都”等;而有解问题中使用的量词是特称量词,如“存在、至少一个、有解”等. (2)两者在等价转换上的区别 恒成立问题的转化: ①f(x)>0恒成立?f(x)min>0;f(x)<0恒成立?f(x)max<0. ②f(x)>a恒成立?f(x)min>a;f(x)g(x)恒成立?[f(x)-g(x)]min>0;f(x)0有解?f(x)max>0;f(x)<0有解?f(x)min<0. ②f(x)>a有解?f(x)max>a;f(x)g(x)有解?[f(x)-g(x)]max>0;f(x)

考向一 不等式恒成立问题 方法1 分离参数法 【例1】 (2020·石家庄质检)已知函数f (x )=ax e x -(a +1)(2x -1). (1)若a =1,求函数f (x )的图象在点(0,f (0))处的切线方程; (2)当x >0时,函数f (x )≥0恒成立,求实数a 的取值范围. 【解】 (1)若a =1,则f (x )=x e x -2(2x -1). 即f ′(x )=x e x +e x -4,则f ′(0)=-3,f (0)=2, 所以所求切线方程为3x +y -2=0. (2)由f (1)≥0,得a ≥1e -1 >0,则f (x )≥0对任意的x >0恒成立可转化为a a +1 ≥2x -1x e x 对任意的x >0恒成立. 设函数F (x )=2x -1x e x (x >0), 则F ′(x )=-(2x +1)(x -1)x 2e x . 当00; 当x >1时,F ′(x )<0. 所以函数F (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以 F (x )max =F (1)=1e . 于是a a +1≥1e ,解得a ≥1e -1 .

相关文档
最新文档