专题一 第2讲 基本初等函数、函数与方程(解析版)

专题一 第2讲 基本初等函数、函数与方程(解析版)
专题一 第2讲 基本初等函数、函数与方程(解析版)

专题一 第2讲 基本初等函数、函数与方程

【要点提炼】

考点一 基本初等函数的图象与性质

1.指数函数y =a x

(a>0,a ≠1)与对数函数y =log a x(a>0,a ≠1)互为反函数,其图象关于y =x 对称,它们的图象和性质分01两种情况,着重关注两函数图象的异同. 2.幂函数y =x α

的图象和性质,主要掌握α=1,2,3,12

,-1五种情况.

【热点突破】

【典例】1 (1)已知f(x)=2x

-1,g(x)=1-x 2

,规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|

【解析】 画出y =|f(x)|=|2x

-1|与y =g(x)=1-x 2

的图象,它们交于A ,B 两点.由“规定”,在A ,B 两侧,|f(x)|≥g(x),故h(x)=|f(x)|;在A ,B 之间,|f(x)|

(2)已知函数f(x)=e x

+2(x<0)与g(x)=ln(x +a)+2的图象上存在关于y 轴对称的点,则a 的取值范围是( ) A.?

????-∞,1e

B .(-∞,e)

C.? ??

??-1e ,e D.?

????-e ,1e 【答案】 B

【解析】 由题意知,方程f(-x)-g(x)=0在(0,+∞)上有解, 即e -x

+2-ln(x +a)-2=0在(0,+∞)上有解,

即函数y =e -x

与y =ln(x +a)的图象在(0,+∞)上有交点. 函数y =ln(x +a)可以看作由y =ln x 左右平移得到, 当a =0时,两函数有交点,

当a<0时,向右平移,两函数总有交点,

当a>0时,向左平移,由图可知,将函数y =ln x 的图象向左平移到过点(0,1)时,两函数的图象在(0,+∞)上不再有交点,

把(0,1)代入y =ln(x +a),得1=ln a ,即a =e ,∴a

【方法总结】 (1)对数函数与指数函数的单调性都取决于其底数的取值,当底数a 的值不确定时,要注意分a>1和01时,两函数在定义域内都为增函数;当0

(2)基本初等函数的图象和性质是统一的,在解题中可相互转化. 【拓展训练】1 (1)函数f(x)=ln(x 2

+2)-e

x -1

的大致图象可能是( )

【答案】 A

【解析】 当x →+∞时,f(x)→-∞,故排除D ;函数f(x)的定义域为R ,且在R 上连续,故排除B ;f(0)=ln 2-e -1,由于ln 2>ln e =12,e -1<12

,所以f(0)=ln 2-e -1

>0,故排除C.

(2)已知函数f(x)是定义在R 上的奇函数,当x>0时,f(x)=1-2-x

,则不等式f(x)<-12的解集是( )

A .(-∞,-1)

B .(-∞,-1]

C .(1,+∞)

D .[1,+∞)

【答案】 A

【解析】 当x>0时,f(x)=1-2-x

>0. 又f(x)是定义在R 上的奇函数,

所以f(x)<-12的解集和f(x)>12的解集关于原点对称,由1-2-x >12得2-x <12=2-1

即x>1,则f(x)<-1

2

的解集是(-∞,-1).故选A.

【要点提炼】

考点二 函数的零点 判断函数零点个数的方法: (1)利用零点存在性定理判断法. (2)代数法:求方程f(x)=0的实数根.

(3)几何法:对于不易求根的方程,将它与函数y =f(x)的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性. 考向1 函数零点的判断

【典例】2 (1)(2020·长沙调研)已知函数f(x)=???

??

xe x

,x ≤0,

2-|x -1|,x>0,

若函数g(x)=f(x)-m 有两个不同

的零点x 1,x 2,则x 1+x 2等于( )

A .2

B .2或2+1

e

C .2或3

D .2或3或2+1

e

【答案】 D

【解析】 当x ≤0时,

f ′(x)=(x +1)e x

, 当x<-1时,f ′(x)<0,

故f(x)在(-∞,-1)上单调递减, 当-10, 故f(x)在(-1,0]上单调递增,

所以x ≤0时,f(x)的最小值为f(-1)=-1

e

.

又当x ≥1时,f(x)=3-x ,当0

作出f(x)的图象,如图所示.因为g(x)=f(x)-m 有两个不同的零点,所以方程f(x)=m 有两个不同的根,等价于直线y =m 与f(x)的图象有两个不同的交点,且交点的横坐标分别为x 1,x 2, 由图可知1

e .

若1

若m =-1e ,则x 1+x 2=-1+3+1e =2+1

e

.

(2)设函数f(x)是定义在R 上的偶函数,且对任意的x ∈R ,都有f(x +2)=f(2-x),当x ∈[-2,0]时,f(x)=?

??

??22x

-1,则关于x 的方程f(x)-log 8(x +2)=0在区间(-2,6)上根的个数为( ) A .1 B .2 C .3 D .4 【答案】 C

【解析】 对于任意的x ∈R ,都有f(2+x)=f(2-x), ∴f(x +4)=f[2+(x +2)]=f[2-(x +2)]=f(-x)=f(x), ∴函数f(x)是一个周期函数,且T =4.

又∵当x ∈[-2,0]时,f(x)=?

??

??22x

-1,且函数f(x)是定义在R 上的偶函数, 且f(6)=1,则函数y =f(x)与y =log 8(x +2)在区间(-2,6)上的图象如图所示,

根据图象可得y =f(x)与y =log 8(x +2)在区间(-2,6)上有3个不同的交点,即f(x)-log 8(x +2)=0在区间(-2,6)上有3个根.

【特点突破】

考向2 求参数的值或取值范围 【典例】3 (1)已知关于x 的方程9-|x -2|

-4·3

-|x -2|

-a =0有实数根,则实数a 的取值范围是________.

【答案】 [-3,0) 【解析】 设t =3

-|x -2|

(0

由题意知a =t 2

-4t 在(0,1]上有解, 又t 2

-4t =(t -2)2

-4(0

-4t<0,

∴实数a 的取值范围是[-3,0).

(2)已知函数f(x)=?????

x +3,x>a ,x 2

+6x +3,x ≤a ,

若函数g(x)=f(x)-2x 恰有2个不同的零点,则实数a 的取值范

围为____________________. 【答案】 [-3,-1)∪[3,+∞)

【解析】 由题意得g(x)=?

????

x +3-2x ,x>a ,

x 2

+6x +3-2x ,x ≤a ,

即g(x)=?

????

3-x ,x>a ,

x 2

+4x +3,x ≤a ,

如图所示,

因为g(x)恰有两个不同的零点, 即g(x)的图象与x 轴有两个交点.

若当x ≤a 时,g(x)=x 2

+4x +3有两个零点, 则令x 2

+4x +3=0,解得x =-3或x =-1, 则当x>a 时,g(x)=3-x 没有零点,所以a ≥3. 若当x ≤a 时,g(x)=x 2

+4x +3有一个零点, 则当x>a 时,g(x)=3-x 必有一个零点, 即-3≤a<-1,

综上所述,a ∈[-3,-1)∪[3,+∞).

【方法总结】 利用函数零点的情况求参数值(或取值范围)的三种方法

【拓展训练】2 (1)已知偶函数y =f(x)(x ∈R )满足f(x)=x 2

-3x(x ≥0),若函数g(x)=?????

log 2x ,x>0,-1

x ,x<0,则y =f(x)-g(x)的零点个数为( ) A .1 B .3 C .2 D .4 【答案】 B

【解析】 作出函数f(x)与g(x)的图象如图,由图象可知两个函数有3个不同的交点,所以函数y =f(x)-g(x)有3个零点.

(2)(多选)已知函数f(x)=?

????

x +2a ,x<0,

x 2

-ax ,x ≥0,若关于x 的方程f(f(x))=0有8个不同的实根,则a 的值可

能为( )

A .-6

B .8

C .9

D .12 【答案】 CD

【解析】 当a ≤0时,f(x)仅有一个零点x =0,故f(f(x))=0有8个不同的实根不可能成立.当a>0时,f(x)的图象如图所示,

当f(f(x))=0时,f 1(x)=-2a ,f 2(x)=0,f 3(x)=a.又f(f(x))=0有8个不同的实根,故f 1(x)= -2a 有三个根,f 2(x)=0有三个根,f 3(x)=a 有两个根,又x 2

-ax =? ????x -a 22-a

2

4

,所以-2a>-a 2

4且a<2a ,解

得a>8且a>0,综上可知,a>8.

专题训练

一、单项选择题

1.(2020·全国Ⅰ)设alog 34=2,则4-a

等于( ) A.

116 B.19 C.18 D.1

6

【答案】 B

【解析】 方法一 因为alog 34=2, 所以log 34a

=2, 所以4a

=32=9,

所以4-a

=14a =19

.

方法二 因为alog 34=2,

所以a =2log 34

=2log 43=log 432

=log 49,

所以4-a

=4log 9

4

-=1

4log 94

-=9-1

=19

.

2.函数f(x)=ln x +2x -6的零点一定位于区间( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5) 【答案】 B

【解析】 函数f(x)=ln x +2x -6在其定义域上连续且单调, f(2)=ln 2+2×2-6=ln 2-2<0, f(3)=ln 3+2×3-6=ln 3>0,

故函数f(x)=ln x +2x -6的零点在区间(2,3)上.

3.在同一直角坐标系中,函数f(x)=2-ax 和g(x)=log a (x +2)(a>0且a ≠1)的大致图象可能为( )

【答案】 A

【解析】 由题意知,当a>0时,函数f(x)=2-ax 为减函数.若0

2

a ∈(2,+∞),且函数g(x)=log a (x +2)在(-2,+∞)上为减函数;若a>1,则函数f(x)=2-ax 的零点x 0

=2

a

∈(0,2),且函数g(x)=log a (x +2)在(-2,+∞)上为增函数.故A 正确. 4.(2020·广东省揭阳三中模拟)已知a ,b ,c 满足4a =6,b =12

log 4,c 3

=35

,则( )

A .a

B .b

C .c

D .c

【答案】 B

【解析】 4a =6>4,a>1,b =12

log 4=-2,c 3

=35

<1,0c>b.

5.(2020·全国Ⅲ)Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病典例数I(t)(t 的单位:天)的Logistic 模型:I(t)=K

1+e

-0.23

t -53

,其中K 为

最大确诊病典例数.当I(t *

)=0.95K 时,标志着已初步遏制疫情,则t *

约为(ln 19≈3)( ) A .60 B .63 C .66 D .69 【答案】 C

【解析】 因为I(t)=K

1+e

-0.23

t -53

所以当I(t *

)=0.95K 时,

*0.23531e

t K ??-- ???

+=0.95K ,

*0.235311e

t ??-- ?

??

+=0.95,

即1+*0.2353e

t ??-- ???

=1

0.95

, 即*0.2353e

t ??-- ???

=1

0.95

-1, ∴*0.2353e

t ??- ???

=19,

∴0.23(t *

-53)=ln 19, ∴t *

=ln 190.23+53≈30.23

+53≈66.

6.(2020·泉州模拟)若函数y =log a (x 2

-ax +1)有最小值,则a 的取值范围是( ) A .1

【答案】 A

【解析】 令u(x)=x 2

-ax +1,函数y =log a (x 2

-ax +1)有最小值,∴a>1,且u(x)min >0,∴Δ=a 2

-4<0, ∴1

7.(2020·太原质检)已知函数f(x)=?

????

e x

,x>0,

-2x 2

+4x +1,x ≤0

(e 为自然对数的底数),若函数g(x)=f(x)+kx 恰好有两个零点,则实数k 等于( ) A .-2e B .e C .-e D .2e 【答案】 C

【解析】 g(x)=f(x)+kx =0,即f(x)=-kx ,如图所示,画出函数y =f(x)和y =-kx 的图象, -2x 2

+4x +1=-kx ,

即2x 2

-(4+k)x -1=0, 设方程的两根为x 1,x 2,

则Δ=(4+k)2

+8>0,且x 1x 2=-12,

故g(x)在x<0时有且仅有一个零点, y =-kx 与y =f(x)在x>0时相切.

当x>0时,设切点为(x 0,-kx 0),f(x)=e x

, f ′(x)=e x

,f ′(x 0)=0e x =-k ,0e x

=-kx 0,

解得x 0=1,k =-e.

8.已知函数f(x)=????

?

a ,x =0,? ????1e |x|

+1,x ≠0,若关于x 的方程2f 2

(x)-(2a +3)f(x)+3a =0有五个不同的解,

则a 的取值范围是( )

A .(1,2)

B.??????32,2

C.? ??

??1,32 D.? ????1,32∪? ??

??32,2 【答案】 D

【解析】 作出f(x)=? ??

??1e |x|

+1,x ≠0的图象如图所示.

设t =f(x),则原方程化为2t 2

-(2a +3)t +3a =0, 解得t 1=a ,t 2=3

2

.

由图象可知,若关于x 的方程2f 2(x)-(2a +3)f(x)+3a =0有五个不同的实数解,只有当直线y =a 与函数y =f(x)的图象有三个不同的交点时才满足条件, 所以1

又方程2t 2

-(2a +3)t +3a =0有两个不相等的实数根, 所以Δ=(2a +3)2

-4×2×3a =(2a -3)2

>0, 解得a ≠32,综上,得1

2.

二、多项选择题

9.(2020·临沂模拟)若10a

=4,10b

=25,则( ) A .a +b =2 B .b -a =1 C .ab>8lg 2

2

D .b -a>lg 6

【答案】 ACD

【解析】 由10a

=4,10b

=25,得a =lg 4,b =lg 25,则a +b =lg 4+lg 25=lg 100=2,故A 正确;b -a =lg 25-lg 4=lg 254>lg 6且lg 25

4<1,故B 错误,D 正确;ab =lg 4·lg 25=4lg 2·lg 5>

4lg 2·lg 4=8lg 22,故C 正确.

10.已知函数f(x)=log a (x +1),g(x)=log a (1-x),a>0,a ≠1,则( ) A .函数f(x)+g(x)的定义域为(-1,1) B .函数f(x)+g(x)的图象关于y 轴对称 C .函数f(x)+g(x)在定义域上有最小值0 D .函数f(x)-g(x)在区间(0,1)上是减函数 【答案】 AB

【解析】 ∵f(x)=log a (x +1),g(x)=log a (1-x),a>0,a ≠1,∴f(x)+g(x)=log a (x +1)+log a (1-x),由x +1>0且1-x>0得-1

),∵y =1-x 2

在[0,1)上单调递减,由复合函数的单调性可知,当01时,函数f(x)+g(x)在[0,1)上单调递减,无最小值,故C 错;∵f(x)-g(x)=log a (x +1)-log a (1-x),当01时,f(x)=log a (x +1)在(0,1)上单调递增,g(x)=log a (1-x)在(0,1)上单调递减,函数f(x)-g(x)在(0,1)上单调递增,故D 错.

11.(2020·淄博模拟)已知函数y =f(x)是R 上的奇函数,对于任意x ∈R ,都有f(x +4)=f(x)+f(2)成立.当x ∈[0,2)时,f(x)=2x

-1.给出下列结论,其中正确的是( ) A .f(2)=0

B .点(4,0)是函数y =f(x)图象的一个对称中心

C .函数y =f(x)在区间[-6,-2]上单调递增

D .函数y =f(x)在区间[-6,6]上有3个零点 【答案】 AB

【解析】 对于A ,因为f(x)为奇函数且对任意x ∈R ,都有f(x +4)=f(x)+f(2),令x =-2,则f(2)=f(-2)+f(2)=0,故A 正确;对于B ,由A 知,f(2)=0,则f(x +4)=f(x),则4为f(x)的一个周期,因为f(x)的图象关于原点(0,0)成中心对称,则(4,0)是函数f(x)图象的一个对称中心,故B 正确;对于C ,因为f(-

6)=0,f(-5)=f(-5+4)=f(-1)=-f(1)=-1,-6<-5,而f(-6)>f(-5),所以f(x)在区间[-6,-2]上不是单调递增的,故C 错误;对于D ,因为f(0)=0,f(2)=0,所以f(-2)=0,又4为f(x)的一个周期,所以f(4)=0,f(6)=0,f(-4)=0,

f(-6)=0,所以函数y =f(x)在区间[-6,6]上有7个零点,故D 错误. 12.对于函数f(x)=????

?

sin πx ,x ∈[0,2],1

2f x -2,x ∈2,+∞,则下列结论正确的是( )

A .任取x 1,x 2∈[2,+∞),都有|f(x 1)-f(x 2)|≤1

B .函数y =f(x)在[4,5]上单调递增

C .函数y =f(x)-ln(x -1)有3个零点

D .若关于x 的方程f(x)=m(m<0)恰有3个不同的实根x 1,x 2,x 3,则x 1+x 2+x 3=13

2

【答案】 ACD

【解析】 f(x)=????

?

sin πx ,x ∈[0,2],1

2

f x -2,x ∈2,+∞的图象如图所示,

当x ∈[2,+∞)时,f(x)的最大值为12,最小值为-1

2,∴任取x 1,x 2∈[2,+∞ ),都有|f(x 1)-f(x 2)|≤ 1

恒成立,故A 正确;函数y =f(x)在[4,5]上的单调性和在[0,1]上的单调性相同,则函数y =f(x)在[4,5]上不单调,故B 错误;作出y =ln(x -1)的图象,结合图象,易知y =ln(x -1)的图象与f(x)的图象有3个交点,∴函数y =f(x)-ln(x -1)有3个零点,故C 正确;若关于x 的方程f(x)=m(m<0)恰有3个不同的实根x 1,x 2,x 3,不妨设x 1

2,故D 正确.

三、填空题

13.(2019·全国Ⅱ)已知f(x)是奇函数,且当x<0时,f(x)=-e ax

.若f(ln 2)=8,则a =________. 【答案】 -3

【解析】 当x>0时,-x<0,f(-x)=-e

-ax

.因为函数f(x)为奇函数,所以当x>0时,f(x)=

-f(-x)=e

-ax

,所以f(ln 2)=e

-aln 2

=? ??

??12a

=8,所以a =-3. 14.已知函数f(x)=|lg x|,若f(a)=f(b)(a ≠b),则函数g(x)=????

?

x 2

+22x +5,x ≤0,ax 2+2b

x

,x>0的最小值为

________. 【答案】 2 2

【解析】 因为|lg a|=|lg b|,所以不妨令a

a

(0

所以g(x)=?

???

?

x +22

+3,x ≤0,ax +2

ax ,x>0,

当x ≤0时,g(x)=(x +2)2

+3≥3,取等号时x =-2; 当x>0时,g(x)=ax +2

ax

≥2

ax ·2

ax

=22,

当且仅当x =

2

a

时,等号成立, 综上可知,g(x)min =2 2.

15.定义在R 上的奇函数f(x),当x ≥0时,f(x)=?????

-2x x +1

,x ∈[0,1,

1-|x -3|,x ∈[1,+∞,则函数F(x)=f(x)

1

π

的所有零点之和为________. 【答案】

1

1-2π

【解析】 由题意知,当x<0时, f(x)=?????

-2x 1-x ,x ∈-1,0,|x +3|-1,x ∈-∞,-1],

作出函数f(x)的图象如图所示,

设函数y =f(x)的图象与y =1

π交点的横坐标从左到右依次为x 1,x 2,x 3,x 4,x 5,由图象的对称性可知,x 1+

x 2=-6,x 4+x 5=6,x 1+x 2+x 4+x 5=0,令-2x 1-x =1π,解得x 3=11-2π,所以函数F(x)=f(x)-1

π的所有

零点之和为

1

1-2π

. 16.对于函数f(x)与g(x),若存在λ∈{x ∈R |f(x)=0},μ∈{x ∈R |g(x)=0},使得|λ-μ|≤1,则称函数f(x)与g(x)互为“零点密切函数”,现已知函数f(x)=e x -2

+x -3与g(x)=x 2

-ax -x +4互为“零点密切

函数”,则实数a 的取值范围是________. 【答案】 [3,4]

【解析】 由题意知,函数f(x)的零点为x =2, 设g(x)的零点为μ,满足|2-μ|≤1, 因为|2-μ|≤1,所以1≤μ≤3. 方法一 因为函数g(x)的图象开口向上, 所以要使g(x)的至少一个零点落在区间[1,3]上,

则需满足g(1)g(3)≤0,或?????

g

1>0,

g 3>0,Δ≥0,

1

解得103≤a ≤4,或3≤a<10

3,得3≤a ≤4.

故实数a 的取值范围为[3,4].

方法二 因为g(μ)=μ2

-a μ-μ+4=0, a =μ2

-μ+4μ=μ+4μ

-1,

因为1≤μ≤3,所以3≤a≤4. 故实数a的取值范围为[3,4].

数学高考复习基本初等函数专题强化练习(附答案)

数学2019届高考复习基本初等函数专题强化练 习(附答案) 初等函数包括代数函数和超越函数,以下是基本初等函数专题强化练习,希望对考生复习数学有帮助。 1.(文)(2019江西文,4)已知函数f(x)=(aR),若f[f(-1)]=1,则a=() A. -1 B.-2 C.1 D.2 [答案] A [解析] f(-1)=2-(-1)=2, f(f(-1))=f(2)=4a=1,a=. (理)(2019新课标理,5)设函数f(x)=则f(-2)+f(log212)=() A.3 B.6 C.9 D.12 [答案] C [解析] 考查分段函数. 由已知得f(-2)=1+log24=3,又log2121,所以 f(log212)=2log212-1=2log26=6,故f(-2)+f(log212)=9,故选C. 2.(2019哈三中二模)幂函数f(x)的图象经过点(-2,-),则满足f(x)=27的x的值是() A. B.

C. D. [答案] B [解析] 设f(x)=x,则-=(-2),=-3, f(x)=x-3,由f(x)=27得,x-3=27,x=. 3.(文)已知命题p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数.则在命题q1:p1p2,q2:p1p2,q3:(p1)p2和q4:p1(p2)中,真命题是() A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4 [答案] C [解析] y=2x在R上是增函数,y=2-x在R上是减函数, y=2x-2-x在R上是增函数,所以p1:函数y=2x-2-x在R上为增函数为真命题,p2:函数y=2x+2-x在R上为减函数为假命题,故q1:p1p2为真命题,q2:p1p2是假命题,q3:(p1)p2为假命题,q4:p1(p2)是真命题.故真命题是q1、q4,故选C. [点拨] 1.由指数函数的性质首先判断命题p1、p2的真假是解题关键,再由真值表可判定命题q1、q2、q3、q4的真假. 2.考查指、对函数的单调性是这一部分高考命题的主要考查方式之一.常常是判断单调性;已知单调性讨论参数值或取 值范围;依据单调性比较数的大小等. (理)已知实数a、b,则2a2b是log2alog2b的()

函数与方程思想在高中的应用

函数与方程思想在高考中的应用 组长:潘云鹏 12033034 组员:夏炎 12304177 杨岑 12304154 张瑶 12304184 孙雪 12304013 高清华 12304196 谭博闻 12304159 郭志岩 12304143 刘春旭 12304009 函数与方程思想在高考中的应用

摘要本文阐述了函数思想与方程思想的概念、二者之间的相互转换及在转换时需要注意的一些问题.用典型的例题阐明用函数与方程思想方法能够轻易解决数学学科中不等式、数列、二项式定理、三角函数、平面向量、解析几何、立体几何、概率与统计、导数、实际问题等难以突破的部分,并且它也应用在其他学科领域中.并结合中学数学教学,提出教师应该在教学中有意培养学生的函数与方程思想,并且给出了具体可行性的建议. 一.函数与方程思想的概念 1.函数思想 函数思想是一种通过构造函数从而应用函数图象、性质解题的思想方法,即用运动变化的思想观点,分析和研究具体问题中的数量关系,通过函数的形式把这种数量关系表示出来,并加以研究其内在的联系,使问题获解.应用函数思想解题的基础是:常见函数的单调性、奇偶性、周期性、最值和图象变换等;熟练掌握一次函数、二次函数、指对数函数等具体特征;应用函数思想解题的关键是:善于观察题目的结构特征,揭示内在联系,挖掘隐含条件,从而恰当地构造函数和利用函数性质去解题.. 2.方程思想 方程思想是若干变量关系是通过解析式表示的,则可以把解析式看成一个等式,然后通过方程的讨论从而使问题获解.许多问题中含有常量、变量和参量,可以通过适当方式,运用方程的观点去观察、

深入分析问题的结构特点,抓住某一个关键变量,构造出这种等式来处理.两种思想方法是相辅相成的,有关方程、不等式、最值等问题,利用函数、方程观点加以分析,常可以使问题“明朗化”,从而易于找到适当解题途径. 3.函数与方程思想的相互转化 很明显,只有在对问题的观察、分析、判断等一系列的思维过程中,具备有标新立异、独树一帜的深刻性、独创性思维,才能构造出函数原型,化归为方程的问题,实现函数与方程的互相转化接轨,达到解决问题的目的. 方程与函数是中学数学的重点内容,占了相当多的份量,其中某些内容既是重点又是难点.例如,列方程(组)解应用题,函数的定义和性质,反函数的概念,平面解几里曲线的方程,方程的曲线的概念等等.方程的思想和函数的思想是处理常量数学与变量数学的重要思想,在解决一般数学问题中具有重大的方法论意义.在中学数学里,对各类代数方程和初等超越方程都作了较为系统的研究.对一个较为复杂的问题,常常先通过分析等量关系,列出一个或几个方程或函数关系式,再解方程(组)或研究这函数的性质,就能很好地解决问题.函数知识涉及到的知识点多,面广,在概念性、应用性、理解性上能达到一定的要求,有利于检测学生的深刻性、独创性思维. 二.函数思想在解题中的应用分析 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的

2021-2022年高考二轮复习专题限时集训第2讲《函数、基本初等函数的图

2021-2022年高考二轮复习专题限时集训第2讲《函数、基本初等函数的 图 (时间:10分钟+25分钟) 1.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( ) A .y =x 3 B .y =|x |+1 C .y =-x 2+1 D .y =2- |x | 2.若f (x )=1 log 1 2 (2x +1),则f (x )的定义域为( ) A.????-12,0 B.????-1 2,0 C.??? ?-1 2,+∞ D .(0,+∞) 3.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则y =f (x )的图象可能是( ) 图2-1 4.函数f (x )=? ???? -x +3a (x <0), a x (x ≥0)(a >0且a ≠1)是R 上的减函数,则a 的取值范围是( ) A .(0,1) B.???? 13,1 C.????0,13 D.??? ?0,23 1.已知函数f (x )=????? e x (x <0),ln x (x >0), 则f ????f ????1e =( ) A.1e B .e C .-1 e D .-e 2.设函数f (x )定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f (x )=2x -x ,则有( ) A .f ????13

高一基本初等函数测试题

第二章:基本初等函数 第I 卷(选择题) 一、选择题5分一个 1.已知f(x)=a x5 +bx 3+cx +1(a≠0),若f=m,则f(﹣2014)=( ) A .﹣m ? B .m ? C.0 D .2﹣m 2.已知函数f (x )=lo ga(6﹣ax)在[0,2]上为减函数,则a 的取值范围是( ) A .(0,1) B .(1,3)?C .(1,3]?D.[3,+∞) 3.已知有三个数a=( )﹣ 2,b =4 0.3 ,c =80.2 5,则它们之间的大小关系是( ) A .a0,a≠1,f(x )=x 2 ﹣a x .当x ∈(﹣1,1)时,均有f(x)<,则实数a 的取值范围是( ) A.(0,]∪[2,+∞)?B.[,1)∪(1,2]?C.(0,]∪[4,+∞) D.[,1)∪(1,4] 5.若函数y=x 2﹣3x ﹣4的定义域为[0,m],值域为[﹣,﹣4],则m的取值范围是( ) A.(0,4]?B. C. D. 6.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A.y = (x ∈R 且x≠0)?B.y=()x (x ∈R) C.y=x(x∈R ) D .y=x 3(x∈R) 7.函数f (x)=2x ﹣1+log 2x 的零点所在的一个区间是( ) A.( 81,41) B.(41,21)?C.(2 1 ,1) D .(1,2) 8.若函数y =x 2﹣3x ﹣4的定义域为[0,m],值域为,则m 的取值范围是( ) A.(0,4]?B. C. ?D. 9.集合M ={x |﹣2≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示以M为定义域,N 为值域的函数关系的是( ) A . B. C.?D. 10.已知函数f (x)对任意的x1,x 2∈(﹣1,0)都有0 ) ()(2 121<--x x x f x f ,且函数y=f(x ﹣1)是偶 函数.则下列结论正确的是( )

函数与方程思想的典型例题

函数与方程思想的典型例题 [例1]设函数)(x f 的定义域为R ,对任意实数βα,有 ,且21)3(=πf ,0)2(=πf . (1)求证:)()()(x f x f x f --==-π; (2)若20π <≤x 时,0)(>x f ,求证:)(x f 在],0[π上单调递减; (3)求)(x f 的最小周期并*证明. [解析](1)),0()3(2)3()3(f f f f πππ=+ 且2 1)3(=πf ,1)0(=∴f . 又)()0(2)()(x f f x f x f =-+,)()(x f x f -=∴. )2()2(2)()(πππ-=-+x f f x f x f ,且0)2(=π f ,)()()(x f x f x f --=-=∴π. (2))()(x f x f =- 且20π<≤x 时,0)(>x f ,∴当2 2ππ<<-x 时,0)(>x f . 设π≤<≤210x x , 则)()()()(2121x f x f x f x f -+=-π)2()2( 22121ππ-+-+=x x f x x f . 222,2202121πππππ<-+<-<+-≤x x x x ,0)2 (,0)2(2121>-+>-+∴ππx x f x x f . )()(21x f x f >∴,即)(x f 在],0[π上单调递减. (3)由(1))()(x f x f --=-π得)()(x f x f +-=π,)2()(x f x f +-=+ππ, )()2(x f x f =+∴π,说明π2是原函数的一个周期. 假设0T 也是原函数的一个周期,且)2,0(0π∈T ,则由)()(0x f x T f =+得)()0(0T f f =. 但若],0(0π∈T 时,因原函数是单调递减函数,所以)()0(0T f f >,两者矛盾; 若)2,(0ππ∈T 时,),0(20ππ∈-T ,从而)()()2()0(000T f T f T f f =-=->π,两

函数与方程练习题.doc

圆梦教育中心高考数学专题 1. 若不等式x2+ax+1>0对于一切xe(O ,刃成立,则a的最小值是(). A. 0 B . — 2 C .—号 D . — 3 2. 已知函数f(x)=log a[&一?门对任意xw [二,+1时,f(x)的递减区间为(). 5_ 5_ A.[车,+8) B.(l , 4 ] 7_ 7_ C.[车,4-oo) D. ( 1 , T] 4. 已知f(x)=asinx+b^/^- +4 (a, beR),且f(lglog310)=5,则f(lglg3)的值是(). A. - 5 B. - 3 C. 3 D. 5 5?己知卫各上J=l(a, b, ce R),则有(). ja A. b2>4ac B. b2>4ac C. b2<4ac D. b2<4ac 6. 方程lgx+x=3的解所在的区间为_______ o A. (0,1) B. (1,2) C. (2,3) D. (3, + -) 7. f(x)定义在R 上的函数,f(x+1)=-缶,当xw[—2,T]时,f(x)=x, 则f(-3.5)为() A.—0.5 B. — 1.5 C.1.5 D.—3.5 PA丄平而丄平而0, A,B为垂足,PA = 4,PB = 2,则AB 8.设P是60°的二而角a-l-0内一点, 的长为( ) A. 2^3 B. 2^5 C? 2>/7 D?4迥 9. 若函数Xx)=(l-m)?-2/7U-5 是偶函数,则7U) () A.先增后减 B.先减后增C?单调递增D?单调递减 10. 对任意非负实数x,不等式厂一皿)Sa恒成立,処I实数a的最小值是(). 1 2 3 A. 2 B. 2 C. D.才

函数与方程思想简单应用

数学思想方法的简单应用(1) 一、函数与方程思想 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还需要函数与方程的互相转化、接轨,达到解决问题的目的。 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:y=f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解决问题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题、集合问题、数列问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。 1.证明:若 则为整数. 解析:若x+y+z+t=0,则由题设条件可得 ,于是此时(1)式的值等于-4. 若x+y+z+t≠0,则 由此可得x=y=z=t.于是(1)式的值等于4. 2.已知:函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=. (1)求a、b的值及函数f(x)的解析式; (2)若不等式f(2x)﹣k?2x≥0在x∈[﹣1,1]时恒成立,求实数k的取值范围;

基本初等函数专项训练经典题

一、简答题 1、设. (1)判断函数的奇偶性; (2)求函数的定义域和值域. 2、设函数 (Ⅰ)讨论的单调性; (Ⅱ)求在区间的最大值和最小值. 3、已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数. (1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围; (2)解关于x的方程f(x)=|f′(x)|; (3)设函数g(x)=,求g(x)在x∈[2,4]时的最小值. 4、经市场调查,某旅游城市在过去的一个月内(以30天计),旅游人数f(t)(万人)与时间t(天)的函数关系近似满足f(t)=4+,人均消费g(t)(元)与时间t(天)的函数关系近似满足g(t)=115-|t-15|. (1)求该城市的旅游日收益w(t)(万元)与时间t(1≤t≤30,t∈N*)的函数关系式; (2)求该城市旅游日收益的最小值(万元). 5、某商场对A品牌的商品进行了市场调查,预计2012年从1月起前x个月顾客对A品牌的商品的需求总量P(x)件与月份x的近似关系是: P(x)=x(x+1)(41-2x)(x≤12且x∈N*)

(1)写出第x月的需求量f(x)的表达式; (2)若第x月的销售量g(x)= (单位:件),每件利润q(x)元与月份x的近似关系为:q(x)=,问:该商场销售A品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e6≈403) 6、已知函数f(x)=x2-(1+2a)x+a ln x(a为常数). (1)当a=-1时,求曲线y=f(x)在x=1处切线的方程; (2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间. 7、某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%. (1)若建立函数y=f(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数y=+2是否符合公司要求的奖励函数模型,并说明原因; (2)若该公司采用模型函数y=作为奖励函数模型,试确定最小的正整数a的值. 8、已知函数图象上一点P(2,f(2))处的切线方程为. (Ⅰ)求的值; (Ⅱ)若方程在内有两个不等实根,求的取值范围(其中为自然对数的底,); (Ⅲ)令,如果图象与轴交于,AB中点为,求 证:. 9、已知命题p:函数y=log a(1-2x)在定义域上单调递增;命题q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x 恒成立.若p∨q是真命题,求实数a的取值范围.

中考专题--方程思想

方程应用试题 姓名___________ 应用方程思想解题时应注意:①要具备用方程思想解题的意识;②要具有正确列出方程的能力;(正确的找到等量关系)③要掌握运用方程思想解决问题的要点 一.方程思想在代数问题中的应用 (1)整式与方程思想 1.已知25A x mx n =-+,2 321B y x =-+-,若A B +中不含有一次项和常数项,则222m mn n -+的值为 2.单项式2343m n m n x y ++与422y x -是同类项,则m n 的值为 (2)函数与方程思想 3.若函数2 1 5m m y mx --=+是一次函数,且y 随x 的增大而减小,则m = 4.已知反比例函数k y x = 与一次函数2y x k =+的图像的一个交点的纵坐标是4-,则k 的值为 5.已知点(1,)P m 在正比例函数2y x =的图像上,那么点P 的坐标为 二.方程思想在几何问题中的应用 在解答几何问题中经常会①运用勾股定理建立方程;②运用相似三角形对应边成比例建立方程;③运用锐角三角函数的意义建立方程 (1)三角形和四边形与方程思想 通常解决等腰三角形相关问题时要列出方程 6.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1 B . 34 C .2 3 D .2 7.如图,如图,矩形ABCD 中,AB =2,BC =3,对角线AC 的垂直平分线分别交AD ,BC 于点E 、F ,连接CE , 则CE 的长________. 8.如图,已知等腰△ABC 中,顶角∠A=36°,BD 为∠ABC 的平分线,则 AD AC 的值为( ) . A . 1 2 B .51- C .1 D .51+ 9.如图,在△ABC 中,∠C=45°,BC=10,高AD=8,矩形EFPQ 的一边QP 在边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H 。设EF=x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值 (3)圆与方程思想 通常以半径相等或者切线长相等为突破口 以“勾股定理”为等量关系列出方程 10.如图,ABC Rt ?中,?=∠90ACB ,4=AC ,3=BC ,以BC 上一点O 为圆心作⊙O,与AC 、AB 分别相切于C 点、E 点,则⊙O 的半径为 11.如图,已知AB 是⊙O 的弦,P 是AB 上一点,若AB =10cm ,PB =4cm ,OP =5cm ,则⊙O 的半径等于______________cm 。 A ′ G D C 6题 第7题 F A D O E B C E B O 第10题 O B A P D 第11题 第8题

高考文科数学专题练习三《基本初等函数》

专题三 基本初等函数 考点07:指数与指数函数(1—3题,8—10题,13,14题,17-19题) 考点08:对数与对数函数(4—7题,8—10题,15题,17题,20-22题) 考点09:二次函数与幂函数(11,12题,16题) 考试时间:120分钟 满分:150分 说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上 第I 卷(选择题) 一、选择题(本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是最符合题目要求的。) 1. 考点07 易 下列各式中成立的一项是( ) A. 7 1 77n n m m ??= ??? B. = ()34 x y =+ =2. 考点07 中难 函数1 1x y a -=+,(0a >且1a ≠)的图像必经过一个定点,则这个定点的坐标是( ) A. ()0,1 B.()1,2 C.()2,3 D.()3,4 3. 考点07 难 函数2 212x x y -??= ??? 的值域为( ) A. 1,2 ??+∞???? B. 1,2 ??-∞ ?? ?

C. 10,2 ?? ?? ? D. [)0,2 4. 考点08 易 已知函数|lg |,010,()16,10.2 x x f x x x <≤?? =?-+>??若,,a b c 互不相等,且()()(),f a f b f c ==则abc 的 取值范围是( ) A. (1,10) B. (5,6) C. (10,12) D. (20,24) 5.考点08 易 已知2log 0.3a =,0.12b =, 1.30.2c =,则,,a b c 的大小关系是( ) A. a b c << B.c a b << C. a c b << D. b c a << 6. 考点08中难 函数y = ) A .(0,8] B .(2,8]- C .(2,8] D .[8,)+∞ 7. 考点08中难 函数212 log (617)y x x =-+的值域是( ) A. R B. [8,)+∞ C. (,3)-∞- D. [)3,+∞ 8.考点07,考点08 易 函数()log (1)x a f x a x =++ (0a >且1a ≠)在[]0,1上的最大值与最小值之和为a ,则a 的值为( ) A. 12 B. 14

(word完整版)高三数学专题复习(函数与方程练习题)

高三数学专题复习(函数与方程练习题) 一、选择题 1、定义域为R 的函数y =f (x)的值域为[a ,b ],则函数y =f (x +a )的值域为( ) A 、[2a ,a +b ] B 、[a ,b ] C 、[0,b -a ] D 、[-a ,a +b ] 2、若y =f (x)的定义域为D ,且为单调函数,[a ,b ]D ,(a -b )·f (a)·f (b)>0,则下列命题正确为( ) A 、若f (x)=0,则x ∈(a ,b ) B 、若f (x)>0,则x ? (a ,b) C 、若x ∈(a ,b ),则f (x)=0 D 、若f (x)<0,则x ? (a ,b ) 3、设点P 为曲线y =x 3-3 x +3 2 上的任意一点,P 点处切线倾斜角为α,则α的取值范围为( ) A 、[32π,π] B 、(2π,π) C 、[0,2 π]∪(65π,π) D 、[0,2 π ]∪[32π,π) 4、设函数f (x)是定义R 上的奇函数,若f (x)的最小正周期为3,且f (1)>1,f (2)=1 3 2+-m m ,则m 的取 值范围为( ) A 、m < 32 B 、m <32且m ≠-1 C 、-1<m <32 D 、m >3 2 或m <-1 5、定义在R 上的函数f (x)在(-∞,2)上是增函数,且f (x +2)的图象关于x =0对称,则( ) A 、f (-1)<f (3) B 、f (0)>f (3) C 、f (-1)=f (3) D 、f (0)=f (3) 6、已知对一切x ∈R ,都有f (x)=f (2-x )且方程f (x)=0有5个不同的根,则这5个不同根的和为( ) A 、10 B 、15 C 、5 D 、无法确定 7、函数y =log 2 1 (x 2+kx +2)的值域为R ,则k 的范围为( ) A 、[22 ,+∞] B 、(-∞,-22)∪[22,+∞]

高中数学竞赛专题一 函数与方程思想

高中数学竞赛专题一函数与方程思想 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,它主要包括函数的概念、图象和性质以及几类典型的函数,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。函数思想贯穿于高中代数的全部内容,它是在学习指数函数、对数函数以及三角函数的过程中逐渐形成,并为研究这些函数服务的,如研究方程、不等式、数列、解析几何等其他内容,一直是高考的热点、重点内容。函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路. 和函数有必然联系的是方程,方程是初中代数的主要内容,初中阶段主要学习了几类方程和方程组的解法,方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略。 一、考点回顾 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。比如,对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求x的取值范围一例,我们习惯上把x当作自变量,构造函数y=x2+(p-4)x+3-p,于是问题转化为:当p∈[0,4]时,y>0恒成立,求x的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的. 如果把p看作自变量,x视为参数,构造函数y=(x-1)p+(x2-4x+3),则y是p的一次函数,就非常简单.即令 f(p)=(x-1)p+(x2-4x+3).函数f(p)的图象是一条线段,要使f(p)>0恒成立,当且仅当f(0)>0,且f(4)>0,解这个不等式组即可求得x的取值范围是(-∞,-1)∪(3,+∞).本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个非常简单的一次函数,并借助于函数的图象建立了一个关于x的不等式组来达到求解的目的 在函数的学习和复习中,要做到熟练掌握基础知识,充分理解各知识点间的内在联系,如数列中的an、Sn都可以看作是n的函数而应用函数思想以获得新的解法。要总结、归纳运用

高考数学(理科)二轮复习【专题2】函数、基本初等函数的图象与性质(含答案)

第1讲函数、基本初等函数的图象与性质 考情解读(1)高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.(2)函数图象和性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一识图,二用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以填空题的形式出现,且常与新定义问题相结合,难度较大. 1.函数的三要素 定义域、值域及对应关系 两个函数当且仅当它们的三要素完全相同时才表示同一函数. 2.函数的性质 (1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则. (2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性. (3)周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f(a+x)=f(x)(a不等于0),则其一个周期T=|a|. 3.函数的图象 对于函数的图象要会作图、识图、用图. 作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换. 4.指数函数、对数函数和幂函数的图象和性质

(1)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分01两种情况,着重关注两函数图象中的两种情况的公共性质. (2)幂函数y =x α的图象和性质,分幂指数α>0,α<0两种情况. 热点一 函数的性质及应用 例1 (1)(2014·课标全国Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________. (2)设奇函数y =f (x ) (x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈????0,1 2时,f (x )=-x 2,则f (3)+f ??? ?-3 2=________. 思维启迪 (1)利用数形结合,通过函数的性质解不等式;(2)利用f (x )的性质和x ∈[0,1 2]时的 解析式探求f (3)和f (-3 2)的值. 答案 (1)(-1,3) (2)-1 4 解析 (1)∵f (x )是偶函数, ∴图象关于y 轴对称. 又f (2)=0,且f (x )在[0,+∞)单调递减, 则f (x )的大致图象如图所示, 由f (x -1)>0,得-2

专题5 基本初等函数与函数应用

专题5 基本初等函数与函数应用 编写:邵永芝 一、知识梳理 1、如果一个实数x 满足 ,那么称x 为a 的n 次实数方根。 2、(1)n N +∈ 时,n = ,(2)n = ;当n 为正偶 = 。 3、分数指数幂的定义:(1)规定正数的正分数指数幂的意义是:m n a = (0,1a m n N n +>∈>、,且);(2)规定正数的负分数指数幂的意义是:m n a -= (0,1a m n N n +>∈>、,且) 4、有理数指数幂的运算性质:(1)r s a a = (2)()r s a = (3)()r ab = 5、指数函数的概念:一般地, 叫做指数函数,其中x 是自变量,函数的定义域为 ,值域为 。 6、对数的概念:如果a (0,1)a a >≠的b 次幂等于N ,即 ,那么就称b 是以a 为底N 的对数,记作 ,其中a 叫做 ,N 叫做 。 7、对数与指数的关系:若0,1a a >≠,则x a =N ?log a N = 。 对数恒等式:log a N a = ;log N a a = 。 (0,1)a a >≠ 8、对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么; (1)log a (M ·N )= (2)log a M N = (3)log a M n = 9、换底公式:log a N =log log b b N a (a >0,a ≠1,b >0,b ≠1,N >0). 10、.对数函数的定义:一般地,我们把 叫做对数函数,自变量是x ;函数的定义域是(0,+∞).值域:R . 11、幂函数的定义:一般地,我们把形如 的函数称为幂函数,其中底数x 是变量,指数α是常数. 12、幂函数的性质(仅限于在第一象限内的图象): (1)定点:α>0时,图象过(0,0)和(1,1)两个定点;α≤0时,图象过只过定点(1,1). (2)单调性:α>0时,在区间[0,+∞)上是单调递增;α<0时,在区间(0,+∞)上是单调递减.

人教版数学必修一函数与方程练习题

人教版数学必修一函数与方程练习题 重点:掌握零点定理的内容及应用 二次函数方程根的分布 学会利用图像进行零点分布的分析 1. 下列函数中,不能用二分法求零点的是() 2. 如果二次函数有两个不同的零点,则的取值范围是() 3. A. B. C. D. 4. 已知函数22)(m mx x x f --=,则)(x f () A .有一个零点 B .有两个零点 C .有一个或两个零点 D .无零点 5. 已知函数)(x f 的图象是连续不间断的,有如下的)(,x f x 对应值表 A .2个 B .3个 C .4个 D .5个 6. 若方程0=--a x a x 有两个根,则a 的取值范围是( ) A .)1(∞+ B .)1,0( C .),0(+∞ D .? 7. 设函数? ??>≤++=,0,3,0,)(2x x c bx x x f 若2)2(),0()4(-=-=-f f f ,则函数x x f y -=)(的零点的个数为( ) A .1 B .2 C .3 D .4 8. 无论m 取哪个实数值,函数)2 3(232--+-=x m x x y 的零点个数都是( ) A .1 B .2 C .3 D .不确定 9. 已知函数).0(42)( 2>++=a ax ax x f 若0,2121=+ B .)()(21x f x f = C .)()(21x f x f < D .)(1x f 与)(2x f 大小不能确定 )3(2+++=m mx x y m ()6,2-[]6,2-{}6,2-()(),26,-∞-+∞

函数与方程思想在初中数学解题中的应用

函数与方程思想在初中数学解题中的应用 张猛 【内容提要】:函数与方程思想是初中数学中的基本思想。它们密切相关,有时需要互相转化来解决问题。本文对初中数学中的函数与方程思想的内涵作了探讨,并结合一些具体案例说明了函数与方程思想在初中数学解题中的应用。 关键词:函数;方程;函数与方程思想应用案例 数学知识可以记忆一时,但数学思想和方法却随时随地发挥作用,使人受益终身。近年来中考考纲已明确提出不仅要考察学生的数学知识和思维能力,还要考察学生思想方法的运用能力。其中,函数与方程思想是众多考试考查的最基本的数学思想方法之一。学生仅仅学习了函数与方程的知识是不够的,应通过解题和对解题过程的反思来领悟函数与方程思想。 一:函数与方程思想的地位与作用 函数与方程思想,简单地说,就是学会用函数和变量来思考,学会转化已知与未知的关系。在解题时,用函数思想做指导就需要把字母看作变量,把代数式看作函数,利用函数性质做工具进行分析,或者构造一个函数把表面上不是函数的问题化归为函数问题。用方程思想做指导就需要把含字母的等式看作方程,研究方程的根有什么要求。函数与方程思想在解题过程中有着密切的联系。 目前初中阶段主要数学思想有:函数与方程思想、数形结合思想、分类讨论思想,化归与转化思想、图形运动思想、数学模型思想。函数与方程思想,既是函数与方程思想的体现,也是两种思想综合运用

的体现,是研究变量与函数,相等与不等过程中的基本数学思想。 本文例析函数与方程思想在解题中的应用: 二:函数与方程思想的应用案例 通过整理与归纳,可以发现,在数学解题中,函数与方程思想常用于以下几类问题的解决。 1 求代数式的值 例1 已知 22a b ==求22(3124)(2813)a a b b -+-+的值。 解:因为24,1,,410a b ab a b x x +==-+=所以为方程的两个根。 当x a =时,2410.a a -+=可得2231243(41)11a a a a -+=-++=; 当x b =时,222410.28132(41)1111b b b b b b -+=-+=-++=可得 ∴ 原式=1?11=11。 解题反思:此题若将a ,b 的值分别代入所求式中计算,显然运算过程很麻烦。观察发现,所求式中两个括号内的二次项系数之比与一次项系数之比相等,因此可先算出a +b =4,ab =1.利用根与系数的关系构建一元二次方程,这样解起来就简便多了,体现了方程思想的简捷性。 2 解应用问题 例2 某开发公司生产的960件新产品需要精加工后才能投放市场,现有甲、乙两个工厂同时加工这批产品。已知甲厂单独完成加工任务比乙厂单独完成加工任务多用20天,而乙厂每天比甲厂多加工8件产品。公司每天需付甲厂加工费800元,每天需付乙厂加工费1200元。 (1)甲、乙两个工厂每天各加工多少件新产品? (2)请你计算两厂合作完成加工任务公司所付费用。 解:(1)设甲厂每天加工x 件新产品,则乙厂每天加工(x +8)件。 依题意得方程 960960208x x -=+。

专题二基本初等函数、导数及其应用Word

专题二 基本初等函数、导数及其应用 1.(2012·高考北京卷) 某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为( ) A .5 B .7 C .9 D .11 2.(2012·高考天津卷)已知a =21.2 ,b =? ?? ??12-0.8,c =2log 52,则a ,b ,c 的大小关系为( ) A .c

函数与方程思想总结(很好很全面)

函数与方程思想 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有 关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通 过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1 ?函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数 关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。 2 ?方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者 构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系; 3 ?函数方程思想的几种重要形式 (1) 函数和方程是密切相关的,对于函数y = f(x),当y= O时,就转化为方程f(x) = 0, 也可以把函数式y= f(x)看做二元方程y —f(x) = O。 (2) 函数与不等式也可以相互转化,对于函数y = f(x),当y > O时,就转化为不等式f(x) > 0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式; (3) 数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分 重要; (4) 函数f(x) = (1+x)^n (n ∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题; (5) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论; (6) 立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数

高中数学必修一 函数与方程的思想方法

函数与方程的思想方法 函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 函数的思想,是用运动和变化的观点、集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,再利用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想的精髓就是构造函数。 方程的思想,是分析数学问题中变量间的等量关系,从而建立方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。 方程的思想与函数的思想密切相关,函数与方程的思想方法,几乎渗透到中学数学的各个 领域,在解题中有着广泛的运用。对于函数 ) (x f y=,当0 = y时,就转化为方程0 ) (= x f, 也可以把函数式 ) (x f y=看做二元方程0 ) (= -x f y,函数与方程这种相互转化的关系十 分重要。 函数与表达式也可以相互转化,对于函数 ) (x f y=,当0 > y时,就转化为不等式 ) (> x f,借助与函数的图像与性质可以解决不等式的有关问题,而研究函数的性质,也离不开解不等式。 数列的通项或前n项和时自变量为自然数的函数,用函数观点去处理数列问题也是十分重要。 函数 ) ( ) ( ) (* N n bx a x f n∈ + =与二项式定理密切相关,利用这个函数,用赋值法和比 较系数法可以解决很多有关二项式定理的问题。 解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论。 立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决。建立空间向量后,立体几何与函数的关系就更加密切。 函数思想在解题中的应用主要表现在两个方面:一是借助初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关问题,达到化难为易、化繁为简的目的。 高考中的方程和不等式问题包括方程、不等式的求解及方程、不等式观点的应用,可以分成逐渐提高的四个层次。 第一层次:解方程或不等式,主要是指解代数(一次、二次等)方程或不等式,指数、对数方程或不等式,三角方程或不等式,复数方程等; 第二层次:对带参数的方程或不等式的讨论,常涉及二次方程的判别式、韦达定理、区间根、区间上恒成立的不等式等问题; 第三层次:转化为方程的讨论,如曲线的位置关系(包括点与曲线及直线与曲线的位置关系)、函数的性质、集合的关系等; 第四层次:构造方程或不等式求解问题。 其中第三、四层次(特别是第四层次)已经进入到方程、不等式观点应用的境界,即把方程、不等式作为基本数学工具去解决各个学科中的问题。 纵观中学数学,可谓是以函数为中心,以函数为纲,“纲举目张”,抓住了函数这个“纲”

相关文档
最新文档