高等代数II期中试卷

高等代数II期中试卷
高等代数II期中试卷

北 京 交 通 大 学

2013 -2014学年第二学期《高等代数II 》期中考试试卷

答 案

一. 填空题(本题满分30分,共10道小题,每道小题3分)

1. 已知 2312341,,,x x x αααα====和 2312341,1,(1),(1)x x x ββββ==+=+=+ 是线性空间4[]P x 的两组基, 则由基1234,,,ββββ到基1234,,,αααα的过渡矩阵

是 1111123131--??

?

- ? ?- ?

?

?。 2.已知10010A ??=

???,21010A ??= ???,3

1110A ??= ???

,41111A ??= ???是2

2?P 的基,那么,3241A ??= ???

在该基下的坐标为 (1,1,1,1)T

。 3. 设1W 是方程组12340x x x x +++=解空间,2W 是方程组12341234

0x x x x x x x x ++-=??+-+=?的解

空间,那么dim(1W ∩2W )= 1 。

4. 设12((1,0,1),(0,1,1)),((1,1,1),(1,2,3))W L W L ==,则12W W +的一组基是

(1,0,1),(0,1,1)),(1,1,1) 。

5.3R 中的向量β在基1210,1,1111?????? ? ? ? ? ? ? ? ? ?-??????下的坐标是110??

?

- ? ???

, 则β在基0111,0,1111?????? ? ? ? ? ? ? ? ? ???????

下的坐标是 110-?? ?

- ? ???

.

6. 设线性变换A 在基12,αα的矩阵为???

?

??1011,线性变换B 在基12,αα下的矩阵为

???? ??-1101,那么A+B 在基212,αα下的矩阵为 12222?

?- ? ? ???

. 7.设A 是3阶方阵,1,1,2-是A 的3个特征值。则1*

A A -+= 1/2 .

8.设矩阵10010100A a ?? ?

= ? ???

相似于对角阵,则a = 0 .

9.设A 是线性空间4[]P x 中如下定义的线性变换: A (

())()()f x f x f x '=-,

则A 的值域为 4[]P x .A 的核的维数为 0

10.复数域C 上n 阶对称矩阵的全体关于矩阵的加法和数乘构成实数域R 上的线 性空间,其维数是 n(n+1) 。

二.判断题(本题满分20分,共10道小题,每道小题2分) 11. 一个线性方程组的全体解向量必做成一个线性空间。( ╳ ) 12.平面上的向量关于下面定义的加法、数乘运算:

是实数域上的线性空间。( ╳ )

13. n n R ?的两个子空间12,V V ,其中1V 是全体迹为0的n 阶实方阵,2V 是全体n 阶实上三角阵,则和12V V +是直和。( ╳ )

1212112(,)(,)(,),

(,)(,)

x x y y x y x k x y kx y +=+=

14. n n R ?的两个子空间12,V V ,其中1V 是全体n 阶实对称矩阵,2V 是全体n 阶实反对称矩阵,则和12V V +是直和。( √ )

15. R[x]上变换A ()(1)()f x f x f x =+-是线性变换。( √ )

16.线性空间V 中定义变换A :A 04,ααβ=+其中0β是V 中固定向量。则A 为线性变换。( ╳ )

17.数域P 上有限维线性空间V 的任一个子空间W 的补空间是唯一的。 ( ╳ ) 18.两个矩阵A ,B 有相同的特征值,则A 与B 相似。( ╳ )

19.如果一个线性变换在某组基下的矩阵是对角阵,那么该线性变换的特征值互不相同。( ╳ )

20. 线性变换A 的核与值域的交是A 的不变子空间。( √ )

三.(10分)给定线性空间P 4中的两个向量 12(1,1,0,0),(0,1,1,1)αα==。 令112(,)W L αα=,212341234{(,,,)|}.W x x x x x x x x =+=+

(1) 求 12W W + 的维数和一组基; (2) 求12W W I 的维数和一组基。

解 212341234123{(,,,)|}(,,)W x x x x x x x x L βββ=+=+=

其中123111100

,,010001βββ-??????

? ? ? ? ? ?=== ? ? ? ? ? ???????

(1)1212123(,,,,).W W L ααβββ+=

12123,,,,ααβββ的一个极大线性无关组是1212,,,ααββ。所以

12W W +的维数是4,一组基是1212,,,ααββ。 5分

设122(,,,).a b a a b b b W βαα=+=+∈ 则.a a b b b ++=+即b=2a 。

12(2)a βαα=+,这样12W W I 12(2).L αα=+ 它的维数是1,一组基是122(1,3,2,2).αα+= 10分

四. (10分) 在P 2x2

上定义线性变换 A X X ??

?

???--=1111 (1)求A 在基22211211,,,E E E E 下的矩阵; (2)求A 的核和它的零度。 (3)求A 的值域和A 的秩。

解 (1) A(22211211,,,E E E E )=(???? ??-0101,???? ??-1010,???? ??-0101,???

? ??-1010)

=(22211211,,,E E E E )????

??

? ??----1010010110100101. ……….4分

(2) A 的核为{X| AX=0}={???

?

??b a b a ,a,b ∈P }.故它的零度为2…….6分

(3) A 的值域为L(???? ??-0101,???? ??-1010,???? ??-0101,???? ??-1010)=L(???? ??-0101,????

??-1010),

故它的秩为2………10分

五. (12分) 3][x P 表示数域P 中次数小于3的多项式连同零组成的线性空间,定义 A (())()()f x xf x f x '=-

1. 证明A 是3[]P x 上的线性变换;

2.求A 在基21,1,(1)x x --下的矩阵;

3.说明A 是否可以对角化?若可以对角化,找出一组基,使A 在该基下的矩阵为对角形。

解 1.A 保持加法,数乘运算。 2分 2. A 在基21,1,(1)x x --下的矩阵为

110002001A -?? ?

= ? ???

。 6分

3. A 有不同的特征值1,0,-1,所以可以对角化。

对应1,0,-1,A 的特征向量分别是

1112,1,0,100?????? ? ? ?

? ? ? ? ? ???????

令22111(,,)(1,1,(1))210(,,1)100x x x x αβγ?? ?

=--= ? ???

则A 在该基下的矩阵为对角形

100000001??

?

? ?-??

。 12分

六. (8分)已知线性空间3R 中向量

1231231111110,1,1;0,2,1001111αααβββ-???????????? ? ? ? ? ? ?

======- ? ? ? ? ? ? ? ? ? ? ? ?-????????????

求线性变换A 使得 A (1,2,3)i i

i αβ==;这样的线性变换是否唯一?为什么?

解 关于任意 12121232333()()x x x x x x x x αααα??

?==-+-+ ? ???

作映射A 2112123233231

232()()2322x x x x x x x x x x x x αβββ-??

?

=-+-+=- ? ?

-+??,则A 即为所求。6分 (如果算出A 在基123,,ααα下的矩阵为112132111--??

?

-- ? ?-??

也算对)

这样的线性变换是唯一的。因为线性变换被它在基上的作用唯一确定。 8分

七、证明题 (每小题5分,共10分)

1. 设V 是n 维线性空间,A 是V 上的线性变换,,λμ为A 的两个不同特征值,

V λ,V μ 分别是属于,λ

μ的特征子空间。证明dim()dim()dim()V V V V λμλμ+=+。

2. 设n 阶方阵A 满足2A A =。证明A 相似于对角形1

100??

? ?

?

? ? ? ? ??

?

O O

。 证明 1。分别取V λ的一组基12,,...,r ααα,V μ的一组基12,,...,s βββ。由属于不同特征值的特征向量线性无关,知1212,,...,,,,...,r s αααβββ线性无关,从而是V V λμ+的一组基,这样dim()dim()dim()V V V V λμλμ+=+。

2. 因为A 满足2A A =,所以A 有零化多项式2x x -,从而A 的最小多项式整除2x x -,这样证明A 的最小多项式是互不相同的一次多项式的乘积,从而A 相似

于对角形。又A的特征值不是1,就是0,所以A相似于

1

1

0?? ? ? ? ? ? ? ? ???O

O

《高等代数》期末试卷B

教育科学系14级小学教育(科学与数学)专业2014—2015学年度春学期 期末考试《高等代数Ⅱ》试卷(B ) 试卷说明:1.本试卷共2页,4个大题,满分100分,120分钟完卷; 2.试题解答全部书写在本试卷上。 班号: 学号 姓名 一、选择题:(每题3分,共15分) 1.当λ=( )时,方程组1231 231 222x x x x x x λ++=??++=?,有无穷多解。 A 1 B 2 C 3 D 4 2.若向量组中含有零向量,则此向量组( )。 A 线性相关 B 线性无关 C 线性相关或线性无关 D 不一定 3.设α是n 阶可逆矩阵A 的属于特征值λ的特征向量,在下列矩阵中,α不是( ) 的特征向量。 A 2()A E + B -3A C *A D T A 4.若A 为n 阶实对称矩阵,P 为n 阶正交阵,则1P A P -为( )。 A 实对称阵 B 正交阵 C 非奇异阵 D 奇异阵 5.设矩阵 A , B , C 均为n 阶矩阵,则矩阵A B 的充分条件是( )。 A A 与 B 有相同的特征值 B A 与B 有相同的特征向量 C A 与B 与同一矩阵相似 D A 一定有n 个不同的特征值 1.已知向量组)4,3,2,1(1=α,)5,4,3,2(2=α,)6,5,4,3(3=α,)7,6,5,4(4=α,则向量=+-+4321αααα 。 2.若120s ααα++ +=,则向量组12,, ,s ααα必线性 。 3.设向量空间1212{(,, )|0,}n n i V x x x x x x x R =++ +=∈,则V 是 维 空间。 4.A ,B 均为3阶方阵,A 的特征值为1,2,3,1B =-,则*A B B += 。 5.设矩阵A 满足条件2560A A E -+=,则矩阵A 的特征值 是 。 6.二次型yz xz xy z y x z y x f 222),,(222---++=的矩阵是____________。 二、填空题:(每题3分,共27分)

高等代数答案

第一章 多项式习题解答 1.用)(x g 除)(x f ,求商)(x q 与余式)(x r . 1)123)(,13)(223+-=---=x x x g x x x x f 9731929269 791437134373 132131232223232 ----+----+----+-x x x x x x x x x x x x x x 9 2926)(,9731)(--=-=x x r x x q . 2)2)(,12)(24+-=+-=x x x g x x x f 1 7 52 5 422225200222223232 342342-++--+-+--+---+-+-+++-x x x x x x x x x x x x x x x x x x x x x x 75)(,1)(2+-=-+=x x r x x x q . 2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1 m x m q x p m m x m x m q x p mx x mx x q px x x mx x --++++--+++--++++-+) ()1()1(01222223232 当且仅当m q p m ==++,012时q px x mx x ++-+32|1.

本题也可用待定系数法求解.当q px x mx x ++-+32|1时,用12-+mx x 去除q px x ++3,余式为零,比较首项系数及常数项可得其商为q x -.于是有 q x mq x q m x mx x q x q px x ++--+=-+-=++)1()()1)((2323. 因此有m q p m ==++,012. 2)q px x mx x ++++242|1 由带余除法可得 )1()2()1)(1(2222224m p q x m p m m p mx x mx x q px x --++--++-+-++=++ 当且仅当0)1()2()(22=--++--=m p q x m p m x r 时q px x mx x ++++242|1.即 ???=--+=--0 10)2(22m p q m p m ,即???=+=,1,0p q m 或???==+.1,22q m p 本题也可用待定系数法求解.当q px x mx x ++++242|1时,用12++mx x 去除q px x ++24,余式为零,比较首项系数及常数项可得其商可设为q ax x ++2.于是有 )1)((2224++++=++mx x q ax x q px x .)()1()(234q x mq a x q ma x a m x ++++++++= 比较系数可得.0,1,0=+=++=+mq a p q ma a m 消去a 可得 ???=+=,1,0p q m 或???==+. 1,22q m p 3.求)(x g 除)(x f 的商)(x q 与余式)(x r . 1);3)(,852)(35+=--=x x g x x x x f 解:运用综合除法可得 327 1093913623271170 83918605023--------- 商为109391362)(234+-+-=x x x x x q ,余式为.327)(-=x r

高等代数II期末考试试卷及答案A卷

高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分) 1、线性空间[]P x 的两个子空间的交() ()11L x L x -+= 2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是 3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是 4、设3阶方阵A 的3个行列式因子分别为:()2 1,,1,λλ λ+ 则其特征矩阵E A λ-的标准形是 5、线性方程组AX B =的最小二乘解所满足的线性方程组是: 二、 单项选择题(每小题3分,共15分) 1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构: (A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。 2、( )设 是非零线性空间 V 的线性变换,则下列命题正确的是:

(A ) 的核是零子空间的充要条件是 是满射; (B ) 的核是V 的充要条件是 是满射; (C ) 的值域是零子空间的充要条件是 是满射; (D ) 的值域是V 的充要条件是 是满射。 3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0; A A B A λλ≠是一个非零常数; ()()C A λ是满秩的;()()D A λ是方阵。 4、( )设实二次型 f X AX '=(A 为对称阵)经正交变换后化为: 222 1122...n n y y y λλλ+++, 则其中的12,,...n λλλ是: ()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。 5、( )设3阶实对称矩阵A 有三重特征根“2-”,则A 的若当 标准形是: ()()()200200200020;120;120;002002012A B C ---?? ?? ?? ? ? ? --- ? ? ? ? ? ?---?????? ()D 以上各情形皆有可能。 三、 是非题(每小题2分,共10分) (请在你认为对的小题对应的括号内打“√”,否则打“?”) 1、( )设V 1,V 2均是n 维线性空间V 的子空间,且{}1 20V V = 则12V V V =⊕。 2、( )n 维线性空间的某一线性变换在由特征向量作成的基下 的矩阵是一对角矩阵。

高数C期中试卷答案

高数C期中试卷答案公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

2010-2011高等数学C (二)期中考试试卷(答案) 姓名 学号 班级 成绩 注:该试卷中含有微分方程的题目,不属于本次期中考试内容。 一、选择填空题(每空3分,共36分) 1、30 ln(1) lim sin x x t dt t x x →+-? = 2 ; 解:上式=22 /lim cos 1) 1ln(lim 22 030==-+→→x x x x x x x 等价无穷小代换 2、曲线1 y x =与直线,2y x y ==所围的平面图形的面积为2ln 2 3- 解:积分区域??? ??≤≤≤≤y x y y D 121:,所以所求面积=-=?dy y y S )1(212ln 23- 3、1 21sin x xdx -?= 0 ; 解:奇函数在对称区间上的定积分为零 4、已知函数()f x 可导,(1)2f =,1 0()5f x dx =?,则1 0()xf x dx '?=3- 解:根据分部积分:1 0()xf x dx '?352)()()(1 01 01 0-=-=-==??dx x f x xf x xdf 5、已知22123,,x x x x x x x y xe e y xe e y xe e e --=+=+=+-是某二阶线性非齐次微分方程的三个解,则该方程的通解 为 , 该微分方程对应的二阶线性齐次微分方程为 。

6、方程2 2 14 y x +=所表示的曲面类型是 椭圆柱 面 ; 7、设22(,)f u v u v v u +-=-,则(,)f x y =xy - 8、二重极限22 (,)(0,0)lim x y xy x y →+ 不存在 ; 解:由于2 2220 1lim k k x k x kx x kx y x +=+?→=→,与k 有关,所以极限不存在 9、函数(,)z f x y =在点(,)P x y 偏导数存在是函数在该点连续的 D ; A 充分非必要条件 B 必要非充分条件 C 充要条件 D 无关条件 10、二元函数sin ,0,R (,)20,0R xy x y f x y x x y ?≠∈? =??=∈?,,则(0,3)x f = 不存在 解:(0,3)x f =∞=?-??=?-?→?→?x x x x f x f x x 0 23sin lim )3,0()3,(lim 00 11、设函数2x z y =,则全微分dz =dy xy ydx y x x 1222ln 2-+ 解:dy xy ydx y dz x x 1222ln 2-+= 二、计算题(共52分) 1、(6分) 计算0 -? 解:被积函数在积分区域上连续 所以0 -?2ln 32 3 32 1 24-=-= ? =+dt t t t x 2、(6分)计算2 2 2||2x x dx x -++? 解:利用定积分的奇偶性

高等代数北大版第章习题参考答案

第七章 线性变换 1.? 判别下面所定义的变换那些是线性的,那些不是: 1)? 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)? 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)? 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)? 在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)? 在P[x ]中,A )1()(+=x f x f ; 6)? 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)? 把复数域上看作复数域上的线性空间, A ξξ=。 8)? 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx = k A )(α, 故A 是P 3 上的线性变换。 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i , k(A a)=i, A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y , A (k X )=k BXC k kX B ==)()(A X ,故A 是n n P ?上的线性变换。

北京大学高等代数高代II_2014期中试卷

北京大学数学学院期中试题 2013-2014学年第二学期 考试科目高等代数II 考试时间2014年4月28日 姓名学号 一.(24分)在正实数集R+上引入加法, 数乘运算: a⊕b = a b , k b = b k , ? a , b ∈ R+ , ? k∈ Q . 1) 证明: 集合R+ 在以上加法, 数乘运算下构成Q-线性空间; 2) 证明: 在Q-线性空间R+ 中, 由互异的素数p1 , p2, …, p s 组成的向量组一定线性无关; 3) 在Q-线性空间R+ 中, 求向量组6 , 60 , 18/5 ,168, 90/7的 一个极大无关组, 并将向量组每个向量用此无关组线性表出. 二.(16分)已知实矩阵A , B满足条件A 3 = 3 A– I, B = A 2 – 2 A . 1) 证明B可逆并求一个次数≤ 2的多项式g( x ) ∈ R[ x ], 使得B -1 = g( A ) ; 2) 求一个次数≤ 2的多项式h( x ) ∈ R[ x ], 使得A= h( B ) . 三.(12分)设4次齐次对称多项式f ( x1 , x 2, x 3, x 4 ) 在字典排序法下首项为x 12x 22 , 且f ( 0, 1, 1, 1) = 0 , f ( 1, 1, 1, 1) = – 5 . 将f 写成初等对称多项式σ1 , σ2 , σ3 , σ4 的多项式形式.

四.(30分)设A : X AX 是向量空间R 5到自身的线性变换, 这里 A = ∈ M 5, 5 ( R ) . 1) 求 Im A 与Ker A 的维数与基底. 2) 求 Im A + Ker A 与 Im A ? Ker A 的维数与基底. 3) 求商空间 R 5 / Ker A 的维数与一组基. 五.(10分)已知 A 是Q-线性空间V 上的线性变换, 满足条件 A 3 = A 2 . 设 I 是V 上的恒等变换. 证明: V = Ker A 2 ⊕ Ker ( A – I ) . 六.(8分)设p 是素数, f ( x ) = x p – x – 1 是有限域F p 上的多项式. 已知 f ( x ) 在F p 的某个扩域K 上有根 θ , 即存在θ ∈ K , 使得 f ( θ ) = 0 . 1) 证明: f ( x ) 在 K[ x ]中可分解为 f ( x ) = ( x – θ ) ( x – θ + 1 ) ... ( x – θ + p – 1 ) ; 2) 证明: f ( x ) 在 F p [ x ]中不可约. 注: 若域K 包含域F 作为子域, 且F 的乘法单位1F 与K 的乘法 单位1K 相同, 则称域K 是域F 的扩域. ??????? ?????????-----1121021311210001121040222

高数期中试卷A类(2013)

cos x 2013 级《高等数学》第一学期期中考试试题(A 类) 一、单项选择题(每小题 3 分,共 15 分) 1. 当 x → 0 时,与 - 1等价的无穷小是 ( ) (A ) x 4 x 2 x 2 ; (B ) - ; (C ) 4 2 x 2 ; (D ) - 。 2 2. 设a 是常数,则 lim e -a n = ( ) n →∞ (A ) 0 ; (B ) e -1 ; (C )不存在; (D )以上选项都有可能。 3. 设数列{a } 满足 lim a n +1 = A > 0 ,则 ( ) n n →∞ a n (A ){a n } 有界; (B ){a n } 不存在极限; (C ){a n } 自某项起同号; (D ){a n } 自某项起单调。 4. 设 f ( x ) 在 x = x 0 不可导,则在 x = x 0 点一定不可导的是 ( ) (A )e f ( x ) ; (B ) f ( x ) ; (C ) f 2 ( x ) ; (D )cos f ( x ) 。 5. 设 f ( x ) 在闭区间[a , b ] ( a > 0 )上有定义且单调增加。下列命题中 (1)若对于 x 0 ∈(a , b ) , lim x → x 0 f ( x ) 存在,则 f ( x ) 在 x = x 0 点连续; (2)若 f ∈ C [a ,b ],则?x 0 ∈[a , b ] ,使得 f (b ) - f (a ) = 2 f ( x 0 ) ; (3)若 xf ( x ) 在[a , b ] 上单调减少,则 f ( x ) 在[a , b ] 上连续; 正确命题的个数为 ( ) (A ) 0 ; (B ) 1 ; (C ) 2 ; (D ) 3 。 二、填空题(每小题 3 分,共 15 分) 6. 若设函数 f ( x ) 满足2 f (3x ) + f (2 - 3x ) = 6x + 1,则 f ( x ) = 。 7. 设 y = x 3 + 3x + 1,则 = 。 y =1 8. 曲线r = cos 2θ 在θ = π 4 处的切线方程为: 。 9. 已知 y = y ( x ) 由方程 x 2 y = e x - y 所确定,则 dy = 。 dx 10. 若 y = (1 + x 2 ) arctan x ,则dy = 。 三、(每小题 8 分,共 24 分) 11. 用极限定义证明: lim x →+∞ 1 + x = 0 。 12. 设 f ( x ) 在 x = 1 点附近有定义, 且在 x = 1 点可导, f (1) = 0 , f ( sin 2 x + cos x ) f '(1) = 2 ,求 lim 。 x →0 x 2 dx dy 2x + x -2

高等代数期末卷及答案

沈阳农业大学理学院第一学期期末考试 《高等代数》试卷(1) 1 ?设 f (x) = x 4 +x ? +4x - 9 ,贝H f (一3) = 69 .. 2?当 t = _2,-2 . 时,f(x)=x 3 —3x+t 有重因式。 3.令f(x),g(x)是两个多项式,且f(x 3) xg(x 3)被x 2 x 1整除,则 f(1)=_0_^ g(1)= 0 . 0 6 2 =23 。 1 1 — -2 0 1 x , 2x 2 2x 3 x 4 二 0 7. 2x 1 x 2 -2x 3 -2x 4 二 0 的一般解为 x( ~'X 2 _'4x 3 ~3x 4 = 0 题号 -一- -二二 -三 四 五 六 七 总分 得分 、填空(共35分,每题5 分) 得分 4.行列式 1 -3 5. ■’4 10" 1 0 3 -1、 -1 1 3 '9 -2 -1 2 1 0 2」 2 0 1 < 9 9 11 <1 3 4 丿 6. z 5 0 0 1 -1 <0 2 1; 0-2 3 矩阵的积

c 亠5 刘=2x3 X4 4 x3, x4任意取值。X2 二-2x^ --x4

、(10分)令f(x),g(x)是两个多项式。求证 当且仅当(f(x) g(x), f(x)g(x))=1。 证:必要性.设(f(x) g(x), f (x)g(x)) =1。(1% 令 p(x)为 f (x) g (x), f (x)g(x)的不可约公因式,(1% 则由 p(x) | f (x)g (x)知 p(x)| f (x)或 p(x) |g(x) o (1%) 不妨设 p(x) | f (x),再由 p(x)|(f(x) g (x))得 p(x) | g(x)。故 p(x) |1 矛盾。(2%) 充分性.由(f (x) g(x), f (x)g(x)^1知存在多项式u(x), v(x)使 u(x)(f(x) g(x)) v(x)f(x)g(x)=1,(2%) 从而 u(x)f(x) g(x)(u(x) v(x) f(x)) =1,(2%) 故(f (x), g(x)) =1 o (1%) ax 「bx 2 2x 3 =1 ax 1 (2 b -1)x 2 3x 3 =1 ax 1 bx 2 - (b 3)X 3 = 2b _1 有唯一解、没有解、有无穷解?在有解情况下求其解。 解: a b 2 1 a b 2 1 a 2b -1 3 1 T 0 b —1 1 0 b J* b+3 2b-1 , b+1 2b-2 ‘ (5%) a 2 - b 0 1 0 b -1 1 0 L 0 0 b+1 2b —2 当b =1时,有无穷解:X 3 = 0, X 2 = 1 - a%,人任意取值; 当a =0,b =5时,有无穷解:x 1 = k,x^ --3,x^ 4 ,k 任意取值;(3%) 当b = T 或a =0且b =二1且b = 5时,无解。(4%) 三、(16分)a,b 取何值时,线性方程组 当a(b 2 T) = 0时,有唯一解: 5-b a(b 1) X 2 2 b+1 x3 = 2b -2 b 1 ;4%) (f(x),g(x)) =1

高等代数试题附答案

高等代数试题附答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

科目名称:《高等代数》 姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ 一、填空题(每小题5分,共25分) 1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。 2、向量组()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。 3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。 4、假设??? ? ? ??-----=175131023A 的特征根是 ,特征向量分别为 。 5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为 二、是非题(每小题2分,共20分) 1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。( ) 2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。( ) 3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。( ) 4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。( ) 5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变换。其中 ),,,()(2 4232221x x x x =ξδ。( ) 6、矩阵A 的特征向量的线性组合仍是A 的特征向量。( )

高等代数05期中试题(含答案)

《高等代数》05-06年度第一学期期中试题 一、单项选择题 1.对任意n 阶方阵A 、B 总有[ ] A. AB = BA B. | AB | = | BA | C. (AB)T =A T B T D. (AB)2=A 2B 2 2. 在下列矩阵中,可逆的是[ ] A. 000010001?? ? ? ??? B. 110220001?? ? ? ??? C. 110011121?? ? ? ??? D. 100111101?? ? ? ??? 3. 设A 是3阶方阵,且|A| = 2-,则| A -1 |等于[ ]. A. 2- B. 1 2 - C. 12 D. 2 4. 设A 是m n ?矩阵,则齐次线性方程组Ax = 0仅有零解的充分必要条件是[ ]. A. A 的行向量线性无关 B. A 的行向量线性相关 C. A 的列向量线性无关 D. A 的列向量线性相关 5.设有m 维向量组12():,,...,n I ααα,则[ ]. A. 当m < n 时,()I 一定线性相关 B. 当m > n 时,()I 一定线性相关 C. 当m < n 时,()I 一定线性无关 D. 当m > n 时,()I 一定线性无关 6.已知1β、2β是非齐次线性方程组Ax b =的两个不同的解,1α、2α是其导出组0Ax =的一个基础解系,1k 、2k 为任意常数,则方程组Ax b =的通解可表成[ ]. A. 12 11212()2 k k ββαββ-+++ B. 12 11212()2 k k ββαββ++++ C. 12 11222 k k ββαα-++ D. 12 11222 k k ββαα+++ 7. 向量组12():,,...,n I ααα,(n>1) 线性无关等价于[ ]. A. 存在一组不全为0的数n k k k ,,,21 ,使其线性组合∑=n k i i k 1 α 不等于0 B. 其中任意两个向量线性无关 C. 任何一个向量均不能用其它向量线性表出 D. 存在一个向量不能用其它向量线性表出 8. 设矩阵11 112 1231A λ?? ? = ? ?+?? 的秩为2,则λ=[ ].

高等数学试卷:答案_高等数学(A)期中

03~09级高等数学(A )(上册)试卷答案 2003级高等数学(A )(上)期中试卷 一、单项选择题(每小题4分,共12分) 1.B 2.A 3.D 二、填空题(每小题4分,共24分) 1. 5 2 2.0=x ,第一类(跳跃)间断点 3.(1)23 432(5(1))2(1)(1)(1)(1) (01)234!-+-+-+-+-+-<x ,x x x sin 6 3 <-. (用函数的单调性来证明) 五、(6分)是一个相关变化率的问题, 2 144 /==t ds m s dt π。 六、(8分) 2>-a 时,有两个相异的实根;2=-a 时,有一个实根;2<-a 时,没有实根。 七、(6分)设3 ()()=F x x f x ,对()F x 在区间[0,1]上用罗尔定理即可得证。 八、(8分) 所求点为( , )22 P a 。 2004级高等数学(A )(上)期中试卷 一. 填空题(每小题4分,共20分) 1. 3=n 2. 2=-a 3. () 10(0)90=f 4.1 (1,)2-- 5. () ()()() ()2 11, 01211--+<<+-x x x θθ 二. 选择题(每小题4分,共16分) 1.C 2.D 3.C 4.D

高等代数习题答案.doc

高等代数(北大第三版)答案 目录 第一章多项式 第二章行列式 第三章线性方程组 第四章矩阵 第五章二次型 第六章线性空间 第七章线性变换 第八章—矩阵 第九章欧氏空间 第十章双线性函数与辛空间 注: 答案分三部分,该为第二部分,其他请搜索,谢谢!

12.设 A 为一个 n 级实对称矩阵,且 A 0 ,证明:必存在实 n 维向量 X 0 ,使 X AX 0 。 证 因为 A 0,于是 A 0 ,所以 rank A n ,且 A 不是正定矩阵。故必存在非 退化线性替换 X C 1Y 使 XAX YC 1 ACY Y BY y 12 y 22 y p 2 y p 2 1 y p 2 2 y n 2 , 且在规范形中必含带负号的平方项。于是只要在 Z C 1Y 中,令 y y 2 y p 1 0, y p 1 y p 2 y n 1, 则可得一线性方程组 c 11 x 1 c 12 x 2 c 1n x n c p 1 x 1 c p 2 x 2 c pn x n , c p 1,1 x 1 c p 1, 2 x 2 c p 1,n x n 1 c n1 x 1 c n 2 x 2 c nn x n 1 由于 C 0 ,故可得唯一组非零解 X s x 1s , x 2s , , x ns 使 X s AX s 0 0 0 1 1 1 n p 0 , 即证存在 X 0,使 X AX 0 。 13 .如果 A, B 都是 n 阶正定矩阵,证明: A B 也是正定矩阵。 证 因为 A, B 为正定矩阵,所以 X AX , X BX 为正定二次型,且 X AX 0 , X BX 0 , 因此 X A B X X AX X BX 0 , 于是 X A B X 必为正定二次型,从而 A B 为正定矩阵。 14 .证明:二次型 f x 1 , x 2 , , x n 是半正定的充分必要条件是它的正惯性指数与秩相等。 证 必要性。采用反证法。若正惯性指数 p 秩 r ,则 p r 。即 f x 1 , x 2 , , x n y 2 y 2 y 2 y 2 y 2 , 1 2 p p 1 r 若令

(完整版)高等代数(下)期终考试题及答案(B卷)

高等代数(下)期末考试试卷及答案(B 卷) 一.填空题(每小题3分,共21分) 1. 22 3[]-2-31,(-1),(-1)P x x x x x 在中,在基下的坐标为 2. 设n 阶矩阵A 的全体特征值为12,,,n λλλL ,()f x 为任一多项式,则()f A 的全体特征值为 . 3.'=n 在数域P 上的线性空间P[x]中,定义线性变换:(,则的值域())()A A f x f x A ()-n P[x]= ,的核(0)= 1A A A 4.已知3阶λ-矩阵A (λ)的标准形为21 0 00 00 0λλλ?? ? ? ?+?? ,则A (λ)的不变 因子________________________; 3阶行列式因子 D 3 =_______________. 5. 若4阶方阵A 的初等因子是(λ-1)2,(λ-2),(λ-3),则A 的若当标准形 J= 6.在n 维欧氏空间V 中,向量ξ在标准正交基12,,,n ηηηL 下的坐标是 12(,,,)n x x x L ,那么(,)i ξη= 7. 两个有限维欧氏空间同构的充要条件是 . 二. 选择题( 每小题2分,共10 分) 1.( ) 已知{(,),,,}V a bi c di a b c d R =++∈为R 上的线性空间, 则dim(V)为 (A) 1; (B) 2; (C) 3; (D) 4 2. ( ) 下列哪个条件不是n 阶复系数矩阵A 可对角化的充要条件 (A) A 有n 个线性无关的特征向量; (B) A 的初等因子全是1次的; (C) A 的不变因子都没有重根; (D) A 有n 个不同的特征根; 3.( ) 设三阶方阵A 的特征多项式为322)(23+--=λλλλf ,则=||A

高数上期中试卷及答案

2015-2016学年第一学期高数期中试卷 一、(每小题6分,共12分) 1 、求函数()f x = 的定义域和值域。 解:由02sin ≥x 得: 1 2(21)()2 k x k k x k ππππ≤≤+?≤≤+ 所以定义域为1 {|();}2 D x k x k k Z ππ=≤≤+ ∈ 由12sin 0≤≤x 得:12sin 0≤≤x ,所以值域为]1,0[ 2 、判断函数21,0()0x x f x x +≤?=>在分段点0x =处的左右极限,并据此判断函数在 这点的极限是否存在。 解:0 0/21 lim ()lim lim 2 x x x x f x x ++ +→→→=== 00 lim ()lim(21)1x x f x x - - →→=+= 因为0 lim ()lim ()x x f x f x +-→→≠,所以函数在0x =处的极限不存在。 二、(每小题6分,共12分)1、31 13lim( )11x x x →--- 2、01cos lim sin x x x x →- 解:1、233211113221 lim( )lim lim 11113x x x x x x x x x x →→→+-+-===--- 2、22001cos /21 lim lim sin 2 x x x x x x x →→-== 三、(10分)求2(1)sin x x y e x =-的间断点,并判断间断点的类型。 解:由(1)sin 0()x e x x k k Z π-=?=∈,所以函数的间断点为()x k k Z π=∈ 因为22 200lim lim 1(1)sin x x x x x e x x →→==-,所以0x =是可去间断点 因为2 (0) lim (1)sin x x k k x e x π→≠=∞-,所以(,0)x k k Z k π=∈≠是无穷间断点。

厦门大学《高等代数》期末试题及答案(数学系)

10-11学年第一学期厦门大学《高等代数》期末试卷 厦门大学《高等代数》课程试卷 数学科学学院 各 系 2010 年级 各 专业 主考教师:杜妮、林鹭 试卷类型:(A 卷) 2011.1.13 一、 单选题(32 分. 共 8 题, 每题 4 分) 1) 设b 为 3 维行向量, 123123 V {(,,)|(,,)} x x x x x x b == ,则____。C A)对任意的b ,V 均是线性空间;B)对任意的b ,V 均不是线性空间;C)只有当 0 b = 时,V 是线性空间;D)只有当 0 b 1 时,V 是线性空间。 2)已知向量组 I : 12 ,,..., s a a a 可以由向量组 II : 12 ,,..., t b b b 线性表示,则下列叙述正确的是____。 A A)若向量组 I 线性无关,则s t £ ;B)若向量组 I 线性相关,则s t > ; C)若向量组 II 线性无关,则s t £ ;D)若向量组 II 线性相关,则s t > 。 3)设非齐次线性方程组AX b = 中未定元个数为 n ,方程个数为m ,系数矩阵 A 的秩为 r ,则____。 D A)当r n < 时,方程组AX b = 有无穷多解; B) 当r n = 时,方程组AX b = 有唯一解;C)当r m < 时,方程组AX b = 有解;D)当r m = 时,方程组AX b = 有解。 4) 设 A 是m n ′ 阶矩阵,B 是n m ′ 阶矩阵,且AB I = ,则____。A A)(),() r A m r B m == ;B)(),() r A m r B n == ;C)(),() r A n r B m == ; D)(),() r A n r B n == 。 5) 设 K 上 3 维线性空间 V 上的线性变换j 在基 123 ,, x x x 下的表示矩阵是 111 101 111 ?? ?÷ ?÷ ?÷ è? ,则j 在基 123 ,2, x x x 下的表示矩阵是____。C A) 121 202 121 ?? ?÷ ?÷ ?÷ è? ; B) 1 2 11 22 1 2 11 0 11 ?? ?÷ ?÷ ?÷ è? ; C)11 22 121 0 121 ?? ?÷ ? ÷ ?÷ è? ;D) 1 2 1 2 11 202 11 ?? ?÷ ?÷ ?÷ è? 。 6) 设j 是 V 到 U 的线性映射,dim V ,dim U n m == 。若m n < ,则j ____。B A)必是单射; B)必非单射; C)必是满射;D)必非满射。

大一下学期高等数学期中考试试卷及答案

大一下学期高等数学期中考试试卷及答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

大一第二学期高等数学期中考试试卷 一、填空题(本题满分15分,共有5道小题,每道小题3分),请将合适的答案填在空中。 1、已知球面的一条直径的两个端点为()532,,-和()314-,,,则该球面的方程为______________________ 2、函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为 3、曲面22z x y =+与平面240x y z +-=平行的切平面方程为 4、2222222(,)(0,0)(1cos())sin lim ()e x y x y x y xy x y +→-+=+ 5、设二元函数y x xy z 3 2+=,则=???y x z 2_______________ 二、选择填空题(本题满分15分,共有5道小题,每道小题3分)。以下每道题有四个答案,其中只有一个答案是正确的,请选出合适的答案填在空中,多选无效。 1、旋转曲面1222=--z y x 是( ) (A ).xOz 坐标面上的双曲线绕Ox 轴旋转而成; (B ).xOy 坐标面上的双曲线绕Oz 轴旋转而成; (C ).xOy 坐标面上的椭圆绕Oz 轴旋转而成; (D ).xOz 坐标面上的椭圆绕Ox 轴旋转而成. 2、微分方程23cos 2x x x y y +=+''的一个特解应具有形式( ) 其中3212211,,,,,,d d d b a b a 都是待定常数. (A).212211sin )(cos )(x d x b x a x x b x a x ++++; (B).32212211sin )(cos )(d x d x d x b x a x x b x a x ++++++; (C).32212211)sin cos )((d x d x d x b x a b x a x +++++; (D).322111)sin )(cos (d x d x d x x b x a x +++++ 3、已知直线π 22122:-=+= -z y x L 与平面4 2:=-+z y x ππ,则 ( ) (A).L 在π内; (B).L 与π不相交; (C).L 与π正交; (D).L 与π斜交. 4、下列说法正确的是( ) (A) 两向量a 与b 平行的充要条件是存在唯一的实数λ,使得b a λ=; (B) 二元函数()y x f z ,=的两个二阶偏导数22x z ??,22y z ??在区域D 内连续,则在该区域内两个二阶混合偏导必相等; (C) 二元函数()y x f z ,=的两个偏导数在点()00,y x 处连续是函数在该点可微的充分条 件;

高等代数习题及答案(1)

高等代数试卷 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、)(x p 若是数域F 上的不可约多项式,那么)(x p 在F 中必定没有根。 ( ) 2、若线性方程组的系数行列式为零,由克莱姆法则知,这个线性方程组一定是无解的。 ( ) 3、实二次型),,,(21n x x x f 正定的充要条件是它的符号差为n 。 ( ) 4、 321321;3,2,1,,,x x x i R x x x x W i 是线性空间3R 的一个子空间。( ) 5、数域F 上的每一个线性空间都有基和维数。 ( ) 6、两个n 元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。 ( ) 7、零变换和单位变换都是数乘变换。 ( ) 8、线性变换 的属于特征根0 的特征向量只有有限个。 ( ) 9、欧氏空间V 上的线性变换 是对称变换的充要条件为 关于标准正交基的矩阵为实对称矩阵。 ( ) 10、若 n ,,,21 是欧氏空间V 的标准正交基,且 n i i i x 1 ,那么 n i i x 1 2 。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写 在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、关于多项式的最大公因式的下列命题中,错误的是( ) ① n n n x g x f x g x f ,, ; ② n j i j i f f f f f j i n ,,2,1,,,1,1,,,21 ; ③ x g x g x f x g x f ,, ; ④若 1,1, x g x f x g x f x g x f 。 2、设D 是一个n 阶行列式,那么( ) ①行列式与它的转置行列式相等; ②D 中两行互换,则行列式不变符号; ③若0 D ,则D 中必有一行全是零; ④若0 D ,则D 中必有两行成比例。 3、设矩阵A 的秩为r r (>)1,那么( ) ①A 中每个s s (<)r 阶子式都为零; ②A 中每个r 阶子式都不为零;

2016《高等代数(一)》期中考试试题

湖南师范大学XXXX学院 2016-2017学年第一学期数学信统专业2016年级《高等代数(一)》课程期中考试试题课程代码:07031004考核方式:闭卷考试时量:120 分钟试卷类型:D 一、理解题(每小题20分,共20分) 1.陈述一般数域P上的多项式因式分解及唯一性定理,并重点解释你对唯一性 的理解。而后在实数域上再次叙述该定理,并解释此时的不可约多项式有哪些?

二、简答题(下面两题:要求先回答‘对’或‘错’;如果回答‘错’,请给出反举例,如果回答‘对’ 则简单给出理由。每小题10分,共20分) 1. 有人说:对于有理数域上的两个多项式()f x 和()g x ,它们在有理数域上的最大公因式与它们在实数域上的最大公因式是相等的。这种说法对吗?为什么? 解: 2. 有人说:3级行列式 3 3 3 111a b c a b c 为零的充分必要条件是,,a b c 这3个数中至少有两个相等。这种说法对吗?为什么? 解:

1. 在有理数域上将多项式 ()(5)(4)(3)(2)1f x x x x x =+++++ 分解为不可约多项式的乘积。 解: 2. 设b c ≠,计算下面n 级行列式 a b b b c a b b c c a b c c c a 解:

1. 设整数,,a b c 两两不同,以及整系数多项式()f x ,证明: ()1() (()())a b f a f b --;()2如果()f a b =,()f b c =,一定有()f c a ≠。 证: 2. 设两个n 级行列式 432323 523 5 235n a = ,423 061 561 5615n b -= 证明:当4n ≥时,有n n a b =。 证:

相关文档
最新文档