少齿差行星齿轮减速器的设计本科毕业设计

少齿差行星齿轮减速器的设计本科毕业设计
少齿差行星齿轮减速器的设计本科毕业设计

本科毕业设计(论文)

少齿差行星齿轮减速器的设计

毕业设计(论文)原创性声明和使用授权说明

原创性声明

本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:

指导教师签名:日期:

使用授权说明

本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:

学位论文原创性声明

本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日

导师签名:日期:年月日

指导教师评阅书

评阅教师评阅书

教研室(或答辩小组)及教学系意见

摘要

对少齿差行星齿轮减速器国内外的发展现状、优缺点、结构型式和其传动原理进行了一定的阐述。在设计过程当中,对内啮合传动产生的各种干涉进行了详细验算;从如何提高转臂轴承的寿命为出发点,来计算选择减速器齿轮的模数,进行少齿差内齿轮副的设计计算,最终合理设计减速器的整体结构。

关键词:少齿差行星传动;行星齿轮减速器;内齿轮副

Abstract

Having expounded the planetary gear reducer of a few-tooth difference

about its development of the status quo at home and abroad, the advantages and disadvantages, structural type and principle of its transmission. Among the process of designing, having checked detailedly about the interference which generated by internal mesh transmission. From how to improve the life of bearing arms to the starting point, choosing and calculating the modulus of the gear reducer for designing the internal gear pair of a few-tooth difference and the final overall structure of the reducer.

Key words:Small tooth number difference planet transmission; Planetary gear reducer; Annular gear

目 录

摘要 (Ⅰ)

ABSTRACT (Ⅱ)

1 绪论 (1)

1.1 概述 (1)

1.2 少齿差行星减速器的结构型式 (2)

1.2.1 N 型少齿差行星减速器 (2)

1.2.2 NN 型少齿差行星减速器 (3)

1.3 国内外研究状况 (5)

1.4 发展趋势 (6)

1.5 本课题的意义与设计任务 (7)

1.5.1 本课题的设计意义 (7)

1.5.2 设计任务 (7)

2 减速器结构型式的确定 (8)

2.1 减速器结构型式的确定 (8)

3 减速器的内齿和外齿轮参数的确定 (10)

3.1齿轮齿数确定 (10)

3.2主要零件的材质和齿轮精度 (10)

3.3 啮合角、变位系数确定 (10)

3.3.1 确定啮合角和外齿轮变位系数c x 及内齿轮变位系数b x (10)

3.3.2 计算四个导数 (11)

3.3.3 计算(1)(1),c b x x 及相应的'α (12)

4 几何尺寸计算及主要限制条件检查 (14)

4.1 切削内齿轮插齿刀的选用 (14)

4.1.1 径向切齿干涉 (14)

4.1.2 插齿啮合角'

0b α (15)

4.2 切削内齿轮的其他限制条件检查 (15)

4.2.1 展成顶切干涉 (15)

4.2.2 齿顶必须式渐开线 (15)

4.3 切削外齿轮的限制条件检查 (16)

4.4 内齿轮其他限制条件检查 (16)

4.4.1 渐开线干涉 (16)

4.4.2 外齿轮齿顶与内齿轮啮合线过渡曲线干涉 (16)

4.4.3 内齿轮齿顶与外齿轮齿根过渡曲线干涉 (16)

4.4.4 顶隙检查 (17)

5 强度计算 (19)

5.1 转臂轴承寿命计算 (19)

5.2 销轴受力 (19)

5.3 销轴的弯曲应力 (19)

6 轴的设计 (20)

6.1 轴的材料选择 (20)

6.2 轴的机构设计 (21)

6.2.1 输入偏心轴的结构设计 (21)

6.2.2 输出轴的机构设计 (22)

6.3 强度计算 (23)

6.3.1 输入轴上受力分析 (23)

6.3.2 输入轴支反力分析 (23)

6.3.3 轴的强度校核 (24)

7 浮动盘式输出机构设计及强度计算 (26)

7.1 机构形式 (26)

7.2几何尺寸的确定 (26)

7.3 销轴与浮动盘平面的接触应力 (26)

8 效率计算 (27)

8.1 啮合效率 (27)

8.1.1 一对内啮合齿轮的效率 (27)

8.1.2 行星结构的啮合效率 (27)

8.2 输出机构的效率 (27)

8.2.1 用浮动盘输出机构 (27)

8.2.2 行星机构 (28)

8.3 转臂轴承效率 (28)

8.4 总效率 (28)

9 箱体与附件的设计 (29)

9.1 减速器箱体的基本知识简介 (29)

9.2 减速器箱体材料和尺寸的确定 (31)

9.3 减速器附件的设计 (31)

9.3.1 配重的设计 (31)

9.3.2减速器附件设计 (32)

10 工作条件 (34)

总结 (35)

参考文献 (36)

致谢 (1)

1 绪论

1.1 概述

随着现代工业的高速发展,机械化和自动化水平的不断提高,各工业部门需要大量的减速器,并要求减速器体积小,重量轻,传动比范围大,效率高,承载能力大,运转可靠以及寿命长等。减速器的种类虽然很多,但普通的圆柱齿轮减速器的体积大,结构笨重;普通的蜗轮减速器在大的传动比时,效率较低;摆线针轮行星减速器虽能满足以上提出的要求,但成本较高,需要专用设备制造;而渐开线少齿差行星减速器不但基本上能满足以上提出的要求,并可用通用刀具在插齿机上加工,因而成本较低。能适应特种条件下的工作,在国防,冶金,矿山,化工,纺织,食品,轻工,仪表制造,起重运输以及建筑工程等工业部门中取得广泛的应用。

渐开线少齿差行星减速器具有以下优点:

1.结构紧凑、体积小、重量轻由于采用内啮合行星传动,所以结构紧凑;当传动比相等时,与同功率的普通圆柱齿轮减速器相比,体积和重量均可减少三分之一至三分之二;

2.传动比范围大 N型一级减速器的传动比为10~100以上;二级串联的减速器,传动比可达一万以上;三级串联的减速器,传动比可达百万以上。NN 型一级减速器的传动比为100~1000以上;

3.效率高 N型一级减速器的传动比为10~100时,效率为80~94%;NN 型当传动比为10~200时,效率为70~93%.效率随着传动比的增加而降低。

4.运转平稳、噪音小、承载能力大由于式内啮合传动,两啮合齿轮一位凹齿,一为凸齿,两齿的曲率中心在同一方向。曲率半径接近相等,因此接触面积大,使轮齿的接触强度大为提高,又采用短齿制,轮齿的弯曲强度也提高了。此外,少齿差传动时,不是一对轮齿啮合,而是3~9对轮齿同时接触受力,所以运转平稳,噪音小,并且在相同模数的情况下,其传递力矩臂普通圆周齿轮减速器大。

5.结构简单、加工方便、成本低;

6.输入轴和输出轴在同一轴线上,安装和使用较为方便;

7.运转可靠、使用寿命长。

但是,这种减速器还存在以下缺点:

1.计算较复杂当内齿轮与行星轮的齿数差小于5时,容易产生各种干涉,为了避免这些干涉,需采用变位齿轮,所以计算较复杂。

2.转臂轴承受力较大,寿命较短由于齿轮变位后啮合角较大,所以转臂轴承上径向载荷较大;并且轴承转速还稍高于输入轴转速,所以转臂轴承是减速器的薄弱环节,因而使高速轴传递的功率受到限制。

3.有的结构需加平衡块NN型及某些N型减速器,需要仔细地进行动平衡,否则会引起较大的振动。

1.2 少齿差行星减速器的结构型式

少齿差行星齿轮减速器常用的结构型式有N型和NN型两种。

1.2.1 N型少齿差行星减速器

N型少齿差行星减速器按其输出机构的型式不同可分为十字滑块式、浮动式和孔销式三种。现以孔销式为例来简述其组成和原理。

图1-1

图1-2

图1-1是典型的孔销式N型减速器。它主要由偏心轴1,行星齿轮2,内齿轮3,销套4,销轴5,转臂轴承6,输出轴7和壳体等组成。

图1-2为其传动原理简图,传动原理简述如下:当电动机带动偏心轴1转动时,由于内齿轮3与机壳固定不动,迫使行星齿轮2绕内齿轮3作行星运动(既公转又自转)。但由于行星齿轮与内齿轮的齿数差很少,所以行星齿轮绕偏心轴中心所作的运动为反向低速运动。利用输出机构V将行星轮的自转运动按传动比i而传递给输出轴7,从而达到减速的目的。

1

图1-2的V结构为减速器的输出结构,其特点是从结构上保证行星齿轮上的销孔直径比销轴套的外径大两倍偏心距。在运动过程中,销轴套始终与行星齿轮上的销孔壁接触,从而使行星齿轮的自转运动通过轴套传给输出轴,以实现与输入轴方向相反的减速运动。

1.2.2 NN型少齿差行星减速器

NN型少齿差行星减速器按其输出构件的不同,又可分为外齿轮输出和内轮输出二种型式。以下以内齿轮输出为例来简述其组成和原理。

图1-3

图1-4

如图1-3所示,它主要由以下四个部分组成;

1.转臂输入轴1上做一个偏心轴颈,以构成转臂。为了达到平衡,在偏心轴颈的两侧装有平衡块2。

2.行星轮行星齿轮4和7相联结在一起,安装在偏心轴颈上;为了减少摩擦,在行星齿轮与偏心轴颈间装有两个转臂轴承3。

3.固定的内齿轮内齿轮5与机座6联接在一起,固定不动。

4.内齿轮输出内齿轮8与输出轴制成一整体,把运动输出。

传动原理简图如图1-4所示,原理简述如下:当电动机带动偏心轴1转动时,

由于内齿轮5与机壳6固定不动,迫使行星齿轮4绕内齿轮5做行星运动(既公转又自转)。但由于行星齿轮与内齿轮的齿数差很少,所以行星齿轮绕偏心轴1中心所作的运动为反向低速运动。行星轮7与输出轴上的内齿轮8作行星运动,把运动传出去,达到减速的目的。

1.3 国内外研究状况

当内啮合的两渐开线齿轮齿数差很小时,极易产生各种干涉,因此在设计过程中选择齿轮几何参数的计算十分复杂。早在1949年,苏联学者就从理论上解决了现实一齿差传动的几何计算问题。直到1960年以后,渐开线少齿差传动才得到迅速的发展。目前有销轴式、零齿差、十字滑块、浮动滑块等多种形式。

上个世纪60年代,国外就开始探讨圆弧少齿差传动,到70年代中期,日本已开始进行圆弧少齿差行星减速器的系列化生产。这种传动的特点在于:行星轮的论过曲线用凹圆弧代替了摆线。轮齿与针齿在啮合点的曲率方向相同,形成两凸圆弧的内啮合,从而提高了轮齿的接触强度和啮合效率,其针齿不带吃套,并采用半埋齿机构,既提高了弯曲强度又简化了针齿结构。此外,圆弧形轮齿的加工无需专用机床,精度也易保证,而且修配方便。

1956年我国著名的机械学家朱景梓教授根据双曲柄机构的原理提出了一种新型少齿差传动。该机构的特点式出入轴旋转时=时,行星轮不是坐摆线运动高速公转与低速自转的合成,而是通过双曲柄机构导引作圆周平动。这种独特的“双曲柄输入少齿差传动机构”的到了国内外同行的高度评价。1958年开始研制摆线针轮减速器。60年代投入工厂化生产,目前已形成系列,制定了相应的标准,并广泛用于各类机械中。1960年制成第一台二齿差渐开线行星齿轮减速器,其传动比37.5,功率为16kw,用于桥式起重机的提升机构中。

1963年朱景梓教授在太原学院学报上发表了《少齿差渐开线K-H-V型行星齿轮减速器及其设计》一文,详细阐述了渐开线少齿差传动的原理和设计方法。这些创造性的工作,为少齿差行星齿轮传动在我国的推广应用起了重要的指导作用。

双曲柄输入少齿差行星齿轮传动的优点是:能使行星轴承的载荷下降,而且当内齿板作为行星轮时,行星轴承的径向尺寸可不受限制,从而提高了行星轴承的寿命。另外,这种传动不需要输入机构,还可实现平行轴传动。效率高,使用性强。但是,由于历史原因,栓曲柄输入式少齿差传动一直没有得到应有的发展,直到近十几年来才逐渐为人们所重视。1985年重庆钢铁设计院提出了平行轴式少齿差内齿啮合齿轮传动——i环减速器,但是这种减速器的一根曲轴上要安装三片内齿板,需要制成偏心套机构,。存在着机构复杂加工分度精度要求高、曲

轴联接结构表面产生微动磨损、三套互为120的双曲柄机构之间存在国约束等问题。1993年重庆大学博士崔建昆提出新型轴销式少齿差行星齿轮传动,并对其进行了理论分析。

随着少齿差行星齿轮传动研究的深入,已成功地开发处不少新的渐开线少齿差行星齿轮传动形式。目前,我国研究出一种连杆行星齿轮传动——平行轴式少齿差内齿行星齿轮传动。该类传动是以连杆内齿轮(齿板)为行星轮。采用双曲柄输入,并且无输出机构,主要有一齿环(一片连杆行星齿板)、二齿环(两片连杆行星齿板)、三齿板及四环等机构形式的减速器。

国内外学者在齿形分析、结构优化、接触分析、结构强度、动态性能、传动效率、运动精度方面进行了大量的研究。利用计算机技术进行减速器各主要不见的是他建模、仿真、干涉检查等,缩短了产品的研发这怄气,并应用到了产品的设计中,取得了许多有价值的成果。N型内齿行星齿轮传动的基本机构式——环式减速器的传动机理进行了分析研究,建立了环视减速器系统受力分析模型,得处目前环式减速器存惯性力矩不平衡的结论。对平行动轴少齿差传动多齿接触问题动平衡进行了研究,以有限单元弹性接触分析理论为基础,建立了平行动轴少齿差传动多齿接触问题时的有限单元分析模型,提出了一种对研究平行动轴少齿差内齿轮副内核过程中实际接触齿对数、齿间载荷的分配及齿面载荷分布的分析计算方法。为平行动轴少齿差内啮合齿轮传动的承载能力的计算、齿轮几何参数的确定及几何零部件的强度分析计算提供了理论依据。通过优化后的少齿差传动装置具有较小的体积和较好的传动性能。

我国在这种新型的传动机构的技术水平与国际上一些工业科技水平发达的国家相比,还有很大的差距,主要由于我国从事该项技术研究设计及应用的单位和个人比较少,同时相关的书籍和资料也相当的欠缺。国外的减速器,以德国、丹麦和日本处于领先地位,特殊在材料和缔造工艺方面占据优势,减速器工作可靠性好,利用寿命长。但其传动格式仍以定轴齿轮传动为主,体积和重量问题,也未解决好。日本研制的FA型高精度减速器和美国Alan-Newton公司研制的X-Y 式减速器,在传动原理和结构上与本项目类似或相近,都为目前先进的齿轮减速器。但是我相信,在不久的将来我们做这种新型的减速器性能和构造等能赶上外国先进水平的。

目前,少齿差减速器在设计和制造过程中,还存在一些问题,如输出机构精度要求较高,对大功率减速器无实践经验,一些计算方法和图表还很不完善等等。有待今后将对以上问题进一步进行实验研究,以求改进和提高。

1.4 发展趋势

行星齿轮减速器设计DOC

1 引言 行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。然而,自20世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就,并获得了许多的研究成果。近20多年来,尤其是我国改革开放以来,随着我国科学技术水平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力奋进,使我国的行星传动技术有了迅速的发展[1] 。 2 设计背景 试为某水泥机械装置设计所需配用的行星齿轮减速器,已知该行星齿轮减速器的要求输入功率为 1 740KW p =,输入转速11000rpm n = ,传动比为35.5p i =,允许传动 比偏差0.1P i ?=,每天要求工作16小时,要求寿命为2年;且要求该行星齿轮减速器传动结构紧凑,外廓尺寸较小和传动效率高。 3 设计计算 3.1选取行星齿轮减速器的传动类型和传动简图 根据上述设计要求可知,该行星齿轮减速器传递功率高、传动比较大、工作环境恶劣等特点。故采用双级行星齿轮传动。2X-A 型结构简单,制造方便,适用于任何工况下的大小功率的传动。选用由两个2X-A 型行星齿轮传动串联而成的双级行星齿轮减速器较为合理,名义传动比可分为17.1p i =,25p i =进行传动。传动简图如图1所示:

图1 3.2 配齿计算 根据2X-A 型行星齿轮传动比 p i 的值和按其配齿计算公式,可得第一级传动的内 齿轮1b ,行星齿轮1c 的齿数。现考虑到该行星齿轮传动的外廓尺寸,故选取第一级中心齿轮1a 数为17和行星齿轮数为3p n =。根据内齿轮()11 1 1 b a p i z z =- ()17.1117103.7103b z =-=≈ 对内齿轮齿数进行圆整后,此时实际的P 值与给定的P 值稍有变化,但是必须控制在其传动比误差范围内。实际传动比为 i =1+=7.0588 其传动比误差i ?= ip i ip -= 7.17.0588 7.1 -=5℅ 根据同心条件可求得行星齿轮c1的齿数为 ()1 11243c b a z z z =-= 所求得的1ZC 适用于非变位或高度变位的行星齿轮传动。再考虑到其安装条件为: 11 2 za zb += C =40 ()整数

少齿差行星齿轮减速器计算说明书一

设计计算说明书 在少齿差内啮合传动中,由于内齿轮和外齿轮的齿数差少,在切削和装配时会产生种种干涉,以致造成产品的报废。因此,在设计减速器内齿轮副参数的时候,需要对一些参数进行合理的限制,以保证内啮合传动的强度和正确的啮合。同时要对一些主要零件进行强度校核计算。 2.1 减速器结构型式的确定 选用卧式电机直接驱动,因传动比53 i,传动i=153.53>100时,少 = 153 . 总 齿差行星齿轮减速器有两种设计方案可供选择。第一种是采用二级或多级的N 型少齿差行星齿轮减速器;第二种是采用内齿轮输出的NN型少齿差行星齿轮减速器。 以下分别阐述其特点: 图2-1 图2-1为典型二级N型少齿差齿轮减速器的传动原理简图,传动原理如下:当电动机带动偏心轴H转动时,由于内齿轮K与机壳固定不动,迫使行星齿轮绕内齿轮做行星运动;又由于行星轮与内齿轮的齿数差很少,所以行星轮绕偏心轴的中心所做的运动为反向低速运动。利用输出机构V将行星轮的自转运

动传递给输出轴,达到减速目的。减速后的动力通过输出轴传递给中心轮1,而行星轮2绕中心轮1和3做行星反向低速运动,从而达到第二次减速。 此类减速器的优点是:2K-H(负号机构)这种传动机构制造方便、轴向尺寸小, K-H-V 型的机构效率较高,承载能力大,两者串联可实现大的传动比。 缺点是:因转速很高,行星轮将产生很大的离心力作用于轴承上,此机构设计计算复杂,销孔精度要求高,制造成本高,转臂轴承载荷大。 图1-3为典型的内齿轮输出的NN 型少齿差行星齿轮减速器,这种结构的减速器优点是:内齿轮输出的N 型少齿差行星减速器的结构简单,用齿轮传力,无需加工精度较高的传输机构;零件少,容易制造,成本低于上种型式;可实现很大或极大的传动比。 缺点是:传动比越大则效率也越低,为了减少振动需添加配重。 基于经济性方面因素考虑,采用第二种方案作为本次课题的设计方案。 2.2 确定齿数差和齿轮的齿数 由《渐开线少齿差行星传动》表4-17可知,如齿数差增大,减速器的径向尺寸虽增大一些,但转臂轴承上的载荷可降低很多;并且由于齿轮直径的增大,从而可使轴承的寿命得到显著提高;此外,对减速器的效率、散热条件等也有了一定的改善。因减速器传递的功率不大,决定采用三齿差。 齿数差 : 3412Z Z Z Z Z d -=-==3 31,Z Z 分别为双联行星齿轮的齿数;42,Z Z 分别为内齿轮的齿数。 错齿差 : 31Z Z Z c -= ,取c Z =3~10,在这取值为5; 可按《机械设计手册:单行本.第11~14篇,机械传动》公式(13-6-2)计算,即 []) 1(4)(2 1 2 2总i Z Z Z Z Z Z Z c d c d c d --+++= [])()(53.153153453532 1 2 -???-+++= 999.51= 圆整得 522=Z 通过2Z 可计算其余的齿数分别为:1Z =49, 3Z =44, 4Z =47 。 由《机械设计手册:单行本.第11~14篇,机械传动》第13-436页传动比 公式验算,即 c d c d Z Z Z Z Z Z Z Z Z Z Z Z i ) (= 总++= -333 2414 1)(

行星齿轮减速器的优化设计

减速器是机械行业中十分重要的传动装置,传统的减速器设计通常3 )限制模数最小值,得: 需要有经验的人员选取适当的参数,进行反复的试凑、校核确定设计方4)限制齿宽系数b/m 的范围: ,得:案,但也不一定是最佳设计方案,而优化设计的方法则通过设计变量的选取、目标函数和约束条件的确定,建立数学模型,通过求解得到满足5)满足接触强度要求,得: 条件的最佳解,同时缩短设计周期。为了合理分配行星轮系的总传动比,并使系统体积小、质量轻,建立了具有3个设计变量、1个目标函数 和几个约束方程的优化设计数学模型,并用MATLAB 优化工具箱进行求6)满足弯曲强度要求,得:解。 2K-H (NGW )型行星齿轮减速器的优化设计: 式中: 、 -齿轮的齿形系数和应力校正系数; -许用弯曲应力。 3 所选优化方法的介绍 惩罚函数法:根据惩罚函数项的不同构成形式,惩罚函数法又可分为外点惩罚函数法、内点惩罚函数法和混合惩罚函数法三种,分别简称为外点法、内点法和混合法。 3.1 外点法:外点法的计算步骤 1)给定初始点 、收敛精度ε、初始罚因子 和惩罚因子递增系数c ,置k=0; 1-中心轮 2-行星轮 3-壳体 图1 NGW 型行星轮系机构简图 图1为NGW 型行星轮系机构简图。已知:作用于中心轮的转矩T1=1140N ·m ,传动比u =4.64,齿轮材料均为38SiMnMo ,表面淬火45-55HRC ,行星轮个数c=2,要求以重量最轻为目标,对其进行优化设计。 1 目标函数和设计变量的确定 行星齿轮减速器的重量可取太阳轮和c 个行星轮重量之和来代替, 3.2 内点法:内点法是另一种惩罚函数法 因此目标函数可简化为: 其构成形式与上式相同,但要求迭代过程始终限制在可行域内进 行。 式中:z 1-中心轮1的齿数;m-模数,单位为(mm ); b-齿宽,单位对于不等式约束 ,满足上述要求的复合函数有以下两种为(mm );c-行星轮的个数;u-轮系的传动比4.64。 影响目标函数的独立参数应列为设计变量,即 在通常情况下,行星轮个数可以根据机构类型事先选定,这样,设计变量为: 其中,惩罚因子 是一递减的正数序列,即 2 约束条件的建立 由式(2)和式(3 )可知,对于给定的某一惩罚因子 ,当点在可1)小齿轮z 1不根切,得: 行域内时,两种惩罚项的值均大于零,而且当点向约束边界靠近时,两 2)限制齿宽最小值,得: 行星齿轮减速器的优化设计 赵明侠 (宝鸡职业技术学院 机械工程系 陕西 宝鸡 721013) 摘 要: 根据可靠性设计理论和机械优化设计技术,以NGW 型行星齿轮减速器为例,初步探讨优化设计的原理和方法。关键词: 行星齿轮减速器;优化设计;优化设计方法 中图分类号:TH132 文献标识码:A 文章编号:1671-7597(2011)1010074-02 2)构造惩罚函数

CHC连环少齿差减速器

产品名称: CHC 系列齿轮连环少齿差减速器 产品类别: 减速机系列 产品性质: 推荐 点击次数: 1265 产品单价: ---元 资料下载: 点击下载 产品详细介绍 减速机系列 CHC 型齿轮连环少齿差减速器是我公司自主设计开发的新一代减速传动装置,该产品已获两项国家专利,专利号为:ZL 95 2 01831.4、ZL 200720084515.X 减速器由两部分组成:渐开线圆柱齿轮传动的高速轻载部分和连环少齿差传动低速重载部分,动力从高速轻载渐开线圆柱齿轮传动系统输入,通过中间过渡齿轮分流减速到连环少齿差传动系统中的两偏心支撑轴,两偏心支撑轴同时输入相同相位的动力,带动连环内齿板作往复平面运动。与连环内齿板內齿圈相啮合的是多齿同时进入啮合区的少齿差低速输出外齿轮,通过少齿差传动原理,又将动力汇集合流至输出外齿轮,从而实现高速轻载到低速重载的目的。 在少齿差内啮合齿轮传动中存在多齿同时啮合现象,使齿轮总载荷有各齿对同时分担,轮齿所承受的实际载荷会有大幅度降低。齿轮齿数越多,载荷集度越大,则同时进入啮合的齿数就越多。该传动装置与传统的减速器相比,其显著特点在于输出齿轮副的多齿同时进入啮合区,使得传动扭矩大大提高。该种减速器还具有传动比大(最大速比可达20000)、承载能力大(最大传动扭矩可达1000KN.m )、抗过载能力强、荷重比大(荷重比系指减速器的承载能力【Kg.m 】与自重【kg 】的比值,其比值最大可达6.5)、结构紧凑、重量轻、传动效率高、使用寿命长、维修方便、性能价格比高等特点。作为一种新型先进的传动机构,CHC 型齿轮连环少齿差减速器可广泛应用于水利水电、起重运输、冶金、矿山、建筑机械、石油、化工、国防工程、港口船舶、轻工等各大工业领域。该产品目前已形成系列产品,可替代行星齿轮减速器、摆线针轮减速器、圆柱齿轮减速器、蜗轮蜗杆

3Z型行星齿轮减速器设计

1.绪论 1.1课题研究的背景和意义 “十一五”期间我国将按照国家储备与企业储备相结合,以国家储备为主的方针,统一规划,分批建设国家战略石油储备基地。为了快速建立起我国独立的石油储备基地,根据我国国情石油储备形式以大型工业油罐为主。 在使用大型油罐进行原油储备的过程中,遇到最关键的问题就是油泥的问题,储运重未经提炼制的原油重平均约含2.2%的油泥,即对一个10万立方的储罐来说,灌满原油后其中约有2200立方的油泥成点在油罐底部。如不及时清除,再次加入原油是油泥将继续累积在一起,形成硬块,为油罐的检查及清洗增加困难。而且数量如此巨大的油泥存在于油罐底部,不经减小油罐的有效储存空间,降低储存周期寿命,造成进出阀的阻塞,而且较厚的油泥层使浮顶灌的浮顶不能不下降到底而引起浮顶倾斜,对储油安全造成威胁。因此大型原油储罐在建立时就必须增设油泥防止和消除系统,以增加油罐的储油效率,提高储油安全性,减小清灌难度。 大型原油储罐灌底油泥的防止和消除方法主要是在灌内增加油泥的混合搅拌系统,使油泥破碎细化,便于通过管线输出,我们选用了旋转喷射搅拌器。但是,其喷嘴口径相对于大型储罐的直径而言是很小的,喷嘴固定是射流束的搅拌范围是有限的,于是,在旋转喷射器入口处设置轴流涡轮,考循环油泵加压后的原油流动带动轴流涡轮高速旋转,旋转的涡轮通过主轴带动结构上完全隔绝的传动箱内一系列的减速传动使喷嘴缓慢旋转,而且通过传动箱内有关参数的选择来调节喷嘴旋转的速度,是从喷嘴喷出的射流也随之缓慢旋转,射流可打击到油罐底周向任一位置的油泥,实现彻底清除油泥,不留死角的功能。 可见,旋转喷射器中减速箱是工业油罐底油泥旋转喷射混合系统中重要的一部分。高速旋转的涡轮带动喷水嘴低速的转动,中间需要一个传动比很大的减速器连接。 1.2行星齿轮减速器研究现状及发展动态 行星齿轮传动与普通定州齿轮传动相比较,具有质量小,体积小,传动比大,承载能力大以及传动平稳和传动效率高等优点,这些已经被我过越来越多的机械工程技术人员所了解和重视。由于在各种类型的行星齿轮传动种均有效地利用了功率分流性和输入,输出地同轴性以及合理的采用了内啮合,才使得其具有了上述的许多独特的优点。行星齿轮传动不仅适用于高速,大功率而且可用于低速,大转矩的机械传动装置上。它可以用作减速,增速和变速传动,运动的合成和分解,以及其特殊的应用中:

少齿差行星齿轮减速器的设计

摘要 对少齿差行星齿轮减速器国内外的发展现状、优缺点、结构型式和其传动原理进行了一定的阐述。在设计过程当中,对内啮合传动产生的各种干涉进行了详细验算;从如何提高转臂轴承的寿命为出发点,来计算选择减速器齿轮的模数,进行少齿差内齿轮副的设计计算,最终合理设计减速器的整体结构。 关键词:少齿差行星传动;行星齿轮减速器;内齿轮副

Abstract Having expounded the planetary gear reducer of a few-tooth difference about its development of the status quo at home and abroad, the advantages and disadvantages, structural type and principle of its transmission. Among the process of designing, having checked detailedly about the interference which generated by internal mesh transmission. From how to improve the life of bearing arms to the starting point, choosing and calculating the modulus of the gear reducer for designing the internal gear pair of a few-tooth difference and the final overall structure of the reducer. Key words:Small tooth number difference planet transmission; Planetary gear reducer; Annular gear

NGW型行星齿轮减速器——行星轮的设计 (1).

目录 一.绪论 (3) 1.引言 (3) 2.本文的主要内容 (3) 二.拟定传动方案及相关参数 (4) 1.机构简图的确定 (4) 2.齿形与精度 (4) 3.齿轮材料及其性能 (5) 三.设计计算 (5) 1.配齿数 (5) 2.初步计算齿轮主要参数 (6) (1)按齿面接触强度计算太阳轮分度圆直径 (6) (2)按弯曲强度初算模数 (7) 3.几何尺寸计算 (8) 4.重合度计算 (9) 5.啮合效率计算 (10) 四.行星轮的的强度计算及强度校核 (11) 1.强度计算 (11) 2.疲劳强度校核 (15) 1.外啮合 (15) 2.内啮合 (19) 3.安全系数校核 (20)

五.零件图及装配图 (24) 六.参考文献 (25)

一.绪论 1.引言 渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。 渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。 NGW型行星齿轮传动机构的主要特点有: 重量轻、体积小。在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3; 传动效率高; 传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高; 装配型式多样,适用性广,运转平稳,噪音小; 外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。 因此NGW型渐开线行星齿轮传动已成为传动中应用最多、传递功率最大的一种行星齿轮传动。 2.本文的主要内容 NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。NGW型行星齿轮传动机构主要由太阳轮、行星轮、内齿圈及行星架所组成,

少齿差行星齿轮传动原理

少齿差行星齿轮传动原理 1.1 少齿差行星齿轮传动原理 少齿差行星齿轮传动是行星齿轮传动中的一种。由一个外齿轮与一个内齿轮组成一对内啮合齿轮副(它采用的是渐开线齿形,内外齿轮的齿数相差很小,简称为少齿差传动。一般所讲的少齿差行星齿轮传动是专指渐开线少齿差行星齿轮传动而言的。渐开线少齿差行星齿轮传动以其适用于一切功率、速度范围和一切T 作条件,受到了世界各国的广泛关注(成为世界各国在机械传动方面的重点研究方向之一。 1.1 2少齿差传动 1.2 行星齿轮传动是动轴齿轮传动的一种主要方式,其最基本的形式是2K—H 型(即两个中心轮 a,b和个转臂 H),如图 l所示,传动比为 iaH=1+Zh/Zn. 它演变出两种典型的少齿差行星齿轮传动形式 (如图 2所示:K—H—V行星齿轮传动如图 2(a)所示 (基本构件为中心轮 b、转臂H和构件V,当中心轮 b固定,转臂H 主动,构件V从动时,传动比为iHg= - Zg/(Zb-Zg).。把构件V 固定(转臂H主动,中心轮 b输出(如图2(b)所示,其传动比iHb=Zb/(Zb-Zg)。为少齿差行星齿轮传动机构实质是一个由平面四连杆机构和内啮合齿轮副组成的齿轮连杆机构。通过对不同构件作不同限制,可以设计出多种少齿差行星齿轮传动结构形式。 1.1.3 少齿差行星齿轮传动的特点 少齿差行星齿轮传动具有以下优点: (I)加工方便、制造成本较低渐开线少齿差传动的特点是用普通的渐开线齿轮刀具和齿轮机床就可以加工齿轮,不需要特殊的刀具与专用设备,材料也可采用普通齿轮材料料。 (2)传动比范围大,单级传动比为 10,1000以上。

(3)结构形式多样,应用范围广,由于其输入轴与输出轴可在同一轴线上,也 可以不在同一轴线上,所以能适应各种机械的需要。 (4) 结构紧凑、体积小、重量轻,由于采用内啮合行星传动,所以结构紧凑;当传动比相等时,与同功率的普通圆柱齿轮减速器相比,体积和重量均可减少 1/3,2,3。 (5)效率高。当传动比为 10,200时,效率为 80,,94,。效率随着传动比的增加而降低。 (6)运转平稳、噪音小、承载能力大,由于是内啮合传动(两啮合轮齿一为凹齿、一为凸齿两齿的曲率中心在同一方向(曲率半径义接近相等,因此接触面积大,使轮齿的接触强度大为提高,又采用短齿制(轮齿的弯曲强度也提高了。此外,少齿差传动时,不是一对轮齿啮合,而是 3-9对轮齿同时接触受力(所以运 转平稳,噪声小,并且在相同的模数情况下(其传递力矩比普通同柱齿轮减速器大。 基于以上特点,小到器人的关节、大到冶金矿用机械 (以及从要求不高的农用、食品机械(到要求较高的印刷和国防工业都有应用实例。 少齿差减速器的结构型式较多,常见的型式可按输出的型式、减速器的级数、行星齿轮的数目、使用安装的型式分类。 其中按输出型式可分为: (1)销轴式这种减速器使用历史较长,应用范围较广,实践证明效率较高;在 高速连续运转,功率较大或扭矩较大的使用场合下,可采用销轴式输出机构 (2)十字滑块式这种结构形式较简单,加工方便,但是承载能力及效率较销轴式低,常用于小功率、只有一个行星齿轮的结构中。 (3)浮动盘式这种结构形式较新颖,比销轴式容易加工,使用效果好。但对其效率 和承载能力还缺乏测试数据。

少齿差行星齿轮减速器的设计本科毕业设计

本科毕业设计(论文) 少齿差行星齿轮减速器的设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

NGW行星齿轮减速器轴的设计

目录 第一章绪论 (2) 1.1 行星齿轮传动的特点 (2) 1.2 本文的主要内容 (3) 第二章NGW行星齿轮减速器结构设计 (3) 2.1 设计技术参数 (3) 2.2 机构简图确定 (3) 2.3 齿形与精度 (4) 2.4 齿轮材料及其性能 (4) 第三章齿轮的优化设计 (4) 3.1 齿轮的设计 (4) 3.11配齿数 (4) 3.12初步计算齿轮主要参数 (5) 3.13几何尺寸计算 (6) 3.2 重合度计算 (7) 3.2 齿轮啮合效率计算 (7) 3.4 疲劳强度校核 (8) 3.41外啮合 (8) 3.42内啮合 (13) 第四章其他零件的设计 (14) 4.1 轴承的设计 (14) 4.2 行星架的设计 (15) 第五章输入轴的优化设计 (15) 5.1 装配方案的选择 (15) 5.2 尺寸设计 (16) 5.21初步确定轴的最小直径 (16) 5.22根据轴向定位要求确定轴的各段直径和长度 (17) 5.23轴上零件轴向定位 (17) 5.24确定轴上圆角和倒角尺寸 (18) 5.3 输入轴的受力分析 (18) 5.31求输入轴上的功率P、转速n和转矩T (18) 5.32求作用在太阳轮上的力 (18) 5.33求轴上的载荷 (19) 5.4按弯扭合成应力校核轴的强度 (21) 5.5精确校核轴的疲劳强度 (22) 5.6 按静强度条件进行校核 (28) 第六章Solidworks出图 (30) 参考文献 (34)

第一章绪论 渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。 渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。 1.1 行星齿轮传动的特点 行星齿轮传动与其他形式的齿轮传动相比有如下几个特点: (1)体积小、重量轻、结构紧凑、传递功率大、承载能力高,这个特点是由行星齿轮传动的结构等内在因素决定的。 (2)传动比大只要适当的选择行星传动的类型及配齿方案,就可以利用很少的几个齿轮而得到很大的传动比。在不作为动力传动而主要用以传递运动的行星机构中,其传动比可达到几千。此外,行星齿轮传动由于它的三个基本构件都可以传动,故可以实现运动的合成与分解,以及有级和无级变速传动等复杂的运动。 (3)传动效率高由于行星齿轮传动采用了对称的分流传动结构,即它具有数个均匀分布的行星齿轮,使作用于中心轮和转臂轴承中的反作用力相互平衡,有利于提高传动效率。在传动类型选择恰当、结构布置合理的情况下,其效率可达0.97~0.99。 (4)运动平稳、抗冲击和振动的能力较强 由于采用数个相同的行星轮,均匀分布于中心轮周围,从而可使行星轮与转臂的惯性力相互平衡。同时,也使参与啮合的齿数增多,故行星齿轮传动的运动平稳,抗冲击和振动的能力较强,工作较可靠。 在具有上述特点和优越性的同时,行星齿轮传动也存在一些缺点,如结构形

电梯少齿差传动减速器的设计

目录 目录 .................................................................................................I 摘要 .................................................................................................I Abstract ............................................................................................... II 1绪论 (1) 1.1电梯的发展状况 (1) 1.2电梯的结构组成 (3) 1.3电梯的驱动装置和制动系统 (3) 1.3.1驱动装置 (3) 1.3.2制动系统 (3) 1.3.3少齿差齿轮传动的基本原理、特点和应用 (3) 2电梯驱动系统的设计 (5) 2.1电梯用电动机的选择设计 (5) 2.1.1电梯常用电机类型 (5) 2.1.2 电动机的选择计算 (5) 2.2 制动器的设计 (6) 2.2.1 制动器的工作原理和基本要求 (6) 2.2.2 常见电磁制动器的类型: (7) 2.2.3电磁制动器的尺寸设计 (7) 3少齿差传动减速器的设计 (9)

3.1 少齿差传动传动机构的结构分析 (9) 3.2 少齿差传动的几何尺寸计算和运动参数设计 (9) 3.2.1 类型选择及齿轮齿数确定 (9) 3.2.2 基本参数的选择 (10) 3.2.3 齿顶厚 (12) 3.2.4 两个主要限制条件的验算 (15) 3.2.5 渐开线少齿差行星传动的强度计算 (16) 3.3 轴的设计计算 (21) 3.3.1 输入轴 (21) 3.3.2 输出轴 (27) 3.4 轴承的选择设计 (29) 3.4.1 轴承1、4的设计计算 (29) 3.5 减速器的箱体设计 (34) 结论 (36) 参考文献 (37) 致谢 (38)

行星减速器设计

目录 第一章概述 (1) 第二章要求分析 (2) (一)原始数据 (2) (二)系统组成框图 (2) 第三章方案拟定 (4) 第四章传动系统的方案设计 (5) 传动方案的分析与拟定 (5) 1.对传动方案的要求 (5) 2.拟定传动方案 (5) 第五章行星齿轮传动设计 (6) (一)行星齿轮传动比和效率计算 (6) (二)行星齿轮传动的配齿计算 (6) 1.传动比条件 (6) 2.同轴条件 (6) 3.装配条件 (7) 4.邻接条件 (7) (三)行星齿轮传动的几何尺寸和啮合参数计算 (8) (四)行星齿轮传动强度计算及校核 (10) 1、行星齿轮弯曲强度计算及校核 (10) 2、齿轮齿面强度的计算及校核 (11) 3、有关系数和接触疲劳极限 (11) (五)行星齿轮传动的受力分析 (13) (六)行星齿轮传动的均载机构及浮动量 (15) (七)轮间载荷分布均匀的措施 (15) 第六章行星轮架与输出轴间齿轮传动的设计 (17) (一)选择齿轮材料及精度等级 (17) (二)按齿面接触疲劳强度设 (17) (三)按齿根弯曲疲劳强度计算 (18) (四)主要尺寸计算 (18)

(五)验算齿轮的圆周速度v (18) 第七章行星轮系减速器齿轮输入输出轴的设计 (19) (一)减速器输入轴的设计 (19) 1、选择轴的材料,确定许用应力 (19) 2、按扭转强度估算轴径 (19) 3、确定各轴段的直径 (19) 4、确定各轴段的长度 (19) 5、校核轴 (19) (二)行星轮系减速器齿轮输出轴的设计 (21) 1、选择轴的材料,确定许用应力 (21) 2、按扭转强度估算轴径 (21) 3、确定各轴段的直径 (21) 4、确定各轴段的长度 (21) 5、校核轴 (22)

(完整word版)行星齿轮减速器设计.docx

1引言 行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。然而,自 20 世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。 无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就 , 并获得 了许多的研究成果。近 20 多年来,尤其是我国改革开放以来,随着我国科学技术水 平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和 技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力 奋进,使我国的行星传动技术有了迅速的发展[1]。 2设计背景 试为某水泥机械装置设计所需配用的行星齿轮减速器,已知该行星齿轮减速器的要求输入功率为p1740KW,输入转速n11000rpm ,传动比为i p35.5, 允许传动比偏差i P0.1,每天要求工作16 小时,要求寿命为 2 年;且要求该行星齿轮减速器传动结构紧凑,外廓尺寸较小和传动效率高。 3设计计算 3.1 选取行星齿轮减速器的传动类型和传动简图 根据上述设计要求可知,该行星齿轮减速器传递功率高、传动比较大、工作环境 恶劣等特点。故采用双级行星齿轮传动。2X-A 型结构简单,制造方便,适用于任何工况下的大小功率的传动。选用由两个2X-A 型行星齿轮传动串联而成的双级行星齿轮减速器较为合理,名义传动比可分为i p17.1, i p 2 5 进行传动。传动简图如图 1 所示:

图1 3.2配齿计算 根据 2X-A 型行星齿轮传动比i p的值和按其配齿计算公式,可得第一级传动的内齿轮b1 , 行星齿轮c1的齿数。现考虑到该行星齿轮传动的外廓尺寸,故选取第一级中心齿轮a1数为 17 和行星齿轮数为n p 3 。根据内齿轮z b1i p11z a1 z b17.1 1 17103.7103 对内齿轮齿数进行圆整后,此时实际的P 值与给定的 P 值稍有变化,但是必须控制在其传动比误差范围内。实际传动比为 i =1+za 1 =7.0588 zb 1 其传动比误差 ip i 7.17.0588 =5℅ i == ip7.1 根据同心条件可求得行星齿轮c1 的齿数为 z c1z b1z a1 2 43 所求得的 ZC1适用于非变位或高度变位的行星齿轮传动。再考虑到其安装条件为: za1zb1 2= C =40整数 第二级传动比i p2为 5,选择中心齿轮数为23 和行星齿轮数目为3,根据内齿轮zb1

渐开线少齿差行星传动设计要点

渐开线少齿差行星传动设计要点 作者中国七砂陆在潮 摘要:本文介绍了渐开线少齿差行星传动的设计特点,给出了简化设计的条件和计算公式。提出了在实际设计制造过程中可取的窍门和特别注意的关键点。 关键词:渐开线,少齿差,行星传动,设计,窍门 The main points to design a planetary drive with fewer differential involute gear teeth Abstract:In this thesis,the characteristics to design a planetary drive with fewer differen- tial involute gear teeth have been introduced,and also show you the conditions& the formulas for the simplified design calculation.Furthermore,the knowhows and the key strongpoints which should be kept in the process of practical design and manufacture have been put forward. Key word:Involute,fewer differential tooth,planetary drive,design,knowhow. 渐开线少齿差行星减速器,是一种新型减速器。其优点是结构紧凑,体积小、重量轻、传动比大、传动效率高、制造维修方便。因此,应用越来越广。但是由于其传动行式是内啮合行星齿轮传动,所以又产生了设计复杂,使不少希望自行设计制造者望而却步,严重影响普及应用。前些年我厂自行设计制造了一台内齿轮输出的NN型(原称2N—N)少齿差行星减速器捲筒。投入运行后效果很好。通过这次实践,我总结出一套简化设计计算又不影响结果的公式,找到了一些可以放宽要求,甚至降低制造精度又不影响使用效果的窍门,根据这些简化公式和窍门,一般厂家设计人员完全可以根据需要充满信心的自行设计制造这种减速器。因为实际的设计计算远不必象书本上介绍的那么复杂繁索,一般设备使用的减速器,其设计制造精度也没有必要那么高,我这么说绝不是要降低产品质量,而是强调:只要把握住设计要点,灵活运用,就一定可以设计制造出满意的减速器。下面就将这些简化公式和窍门介绍给大家参考。 渐开线少齿差行星传动有两大特点,其优点是由此产生的,麻烦也是它带来的。这两大特点是:行星齿轮传动和内啮合少齿差传动。下面就针对这两大特点进行分析。

对少齿差行星减速器结构的改进

[收稿日期]2008-11-28 [作者简介]黄清世(1946-),男,1969年大学毕业,硕士,教授,现主要从事机械基础方面的教学工作和机械传动、采油机械方面 的研究工作。对少齿差行星减速器结构的改进 黄清世,周传喜 (长江大学机械工程学院,湖北荆州434023) [摘要]针对现有少齿差减速器存在的问题,对其结构提出了改进意见,从而得到了一种新型的少齿差减 速器 完全平衡少齿差减速器。它主要由一根输入轴、两个对称安装的双偏心套、两个薄行星齿轮、 一个厚行星齿轮、一个内齿轮和输出系统等组成。无需附加任何配重,便能实现整机的完全平衡。具有 运转平稳、承载能力大、机械效率高等许多优点,特别适用于高速、重载场合。 [关键词]少齿差减速器;结构;平衡;机械效率 [中图分类号]T H 13 [文献标识码]A [文章编号]1673-1409(2009)01-N 085-03 渐开线少齿差行星齿轮减速器具有结构紧凑、体积小、重量轻、传动比范围大、运转平稳、制造容易、运转可靠的特点,已在轻工、化工、食品、纺织、冶金、建筑、军事装备等方面得到广泛应用。但由于其结构上的原因,也还存在承载能力不高及传动效率偏低的缺点,一般只宜用于轻载及短时工作的场合[1~3]。因此,尚有对其结构加以改进的必要。 图1 常用少齿差减速器的结构简图 1 现有渐开线少齿差行星齿轮减速器的问题分析 现有最常用的少齿差减速器的结构简图如图1。 它主要由固联着2个偏心块的输入轴、装在偏心块上 的转臂轴承、一个固定于机座的内齿轮、2个相位相 差1800并与内齿轮啮合的齿数略小于内齿轮的行星 齿轮、端面上装有若干个销轴的输出轴以及套在销轴 上的销套等组成。工作时,输入轴上的2个偏心块分 别通过2个转臂轴承带动行星齿轮绕内齿轮的轴线作 高速的公转运动和绕自身的轴线作低速的自转运动。 作行星运动的2个行星齿轮再通过其上作出的若干个 柱销孔的内壁压迫销套从而推动输出轴作低速转动。 实践证明,少齿差传动主要存在如下不足: 1)转臂轴承寿命过短。转臂轴承所受的力可以 分解成一个沿输入轴及偏心块中心连线方向的径向力 和与之垂直的切向力。该径向力等于行星轮所受柱销的压力及轮齿啮合力的径向分力的总和。由于在少齿差情况下啮合角很大,故该径向力的值很大。而切向力等于输入扭矩除以偏心距。因偏心距极小,故该切向力也很大。这就造成了转臂轴承所受的总载荷很大。此外,因行星齿轮与输入轴的转向相反,这就使得转臂轴承内外圈的相对转速等于两者转速绝对值之和。转臂轴承一是受力过大、二是转速过高,这是造成它易于失效的原因。 2)机械效率偏低。实测结果表明,少齿差行星减速器总机械效率大约在0 73~0 91之间。连续运行时功率损失较大,并会造成机体过热等不良情况,一般只宜用于轻载及短时工作的场合。影响少齿差行星减速器总机械效率的因素很多,但最主要的是轮齿啮合效率、转臂轴承效率和输出机构效率。前两者效率偏低,是各种正号机构存在的共性问题。但同样也存在这2个问题的三环传动能获得0 92~0 98 85 长江大学学报(自然科学版) 2009年3月第6卷第1期:理工 Journal of Y angtze University (Nat Sci Edit) M ar 2009,V o l 6N o 1:Sci &Eng

齿轮减速器设计方法与流程分解

《机械设计基础课程设计》 机械设计课程设计是在《机械设计基础》理论教学后进行的一个重要的综合性与实践性教学环节。是学生在校期间第一次较全面的设计训练,与毕业设计一样是工科学生向实际工作过渡的必要训练手段,对学生将来工作态度和工作能力的培养有着重要的作用。 一、课程设计的目的 1、不论哪个专业,从事何种专业技术工作,一项设计的设计思想是基本一致的。对于机械类和近似机械类专业,其程序基本相同。本课程设计的首要目的就是要使学生树立正确的设计思想,掌握机械设计的一般程序,培养学生认真负责,一丝不苟和严谨的工作态度。 2、复习、巩固已学过的有关理论基础知识。通过在设计实践中的具体运用以深化理论知识,培养学生机械设计的能力,掌握机械设计的基本计算方法和一般设计方法。 3、熟练运用机械设计资料,了解有关标准和设计规范,培养查阅资料的能力,为今后设计储备一些资料知识。 二、课题的选择 机械设计课程设计的题目一般是机械传动装置。 1、机械传动装置的定义:执行机构需要由原动机输入动力才能工作,一般来说,原动机与执行机构直接相连的情况较为少见,通常是在二者之间设置一中间装置,这一中间装置称为传动装置。 2、传动装置的功用:根据执行机构的工作要求,实现增速、减速、变速、改变运动形式或方位等。 3、设计意义:工程实践表明,传动装置是机械中的重要组成部分,在整机成本和重量中占有很大比重,并在很大程度上决定整机的技术性能和运转费用,因此正确设计

传动装置对保证整机的技术性能和质量指标有相当重要的意义。 4、本次设计的题目:一级圆柱齿轮减速器。其原因是: 1)齿轮减速器是机械传动中常用的传动装置; 2)通过这类课题的设计实践能较好的达到教学的目的; 3)在教学要求的深浅度和设计工作方面应变性较强。 三、设计工作量 设计任务:1#图(装配图)1张,3#图(零件图:齿轮和低速轴)2张,设计计算说明书1份。 设计工作包括:传动方案的拟定、查阅资料、复习和学习有关知识、设计计算、绘制装配图和零件图、整理设计计算说明书。 传动方案设计同样非常重要。例如带式运输机传动装置,在整个传动系统中,除要设计的减速器之外,还会接触到其它外传动机构。如带传动、链传动、开式齿轮传动等等。要求学生做传动装置总体设计就是使学生对机械的总体概念有进一步的认识。总体传动方案不同,减速器设计结果有很大差异。通过不同方案的对比,可以使学生增强一些优化设计的知识,而外部联接件的标准及规范往往也是设计减速器的重要依据。从而培养学生初步的机械总体设计的能力。 绘制零件工作图的目的是: 1、掌握典型零件设计,尤其是结构设计的基本知识; 2、熟悉零件设计的有关标准和设计规范,并掌握查阅方法; 3、掌握绘制零件工作图的基本知识,进一步训练学生的绘图能力。 四、设计程序及阶段指导 1、传动方案设计及计算 (1)进行传动装置的布置,确定传动比例和外传动的有关几何尺寸; (2)计算传动系统中各轴的转速、转矩、功率和效率; (3)选择电动机。 该阶段是整个设计的基础,其设计质量直接影响整个设计的优劣,学生要复习常用机械传动的应用特点,正确组合及怎样进行整体设计。要强调,该阶段设计要与齿轮传动设计计算交叉进行。因传动比的分配是影响齿轮传动和整个减速器的结构尺寸大小的

少齿差行星齿轮减速器毕业设计文献综述

本科毕业设计(论文) 文献综述 院(系):机电工程学院 专业:机械设计制造及其自动化班级:机械设计制造及其自动化姓名:学号: 201 年月日

本科生毕业设计(论文)文献综述评价表

少齿差行星齿轮减速器的设计 文献综述 1 少齿差行星齿轮减速器的特点 随着现代工业的高速发展,机械化和自动化水平的不断提高,各工业部门需要大量的减速器,并要求减速器体积小,重量轻,传动比范围大,效率高,承载能力大,运转可靠以及寿命长等。减速器的种类虽然很多,但普通的圆柱齿轮减速器的体积大,结构笨重;普通的蜗轮减速器在大的传动比时,效率较低;摆线针轮行星减速器虽能满足以上提出的要求,但成本较高,需要专用设备制造;而渐开线少齿差行星减速器不但基本上能满足以上提出的要求,并可用通用刀具在插齿机上加工,因而成本较低。能适应特种条件下的工作,在国防,冶金,矿山,化工,纺织,食品,轻工,仪表制造,起重运输以及建筑工程等工业部门中取得广泛的应用。 渐开线少齿差行星减速器具有以下优点: 1.结构紧凑、体积小、重量轻由于采用内啮合行星传动,所以结构紧凑;当传动比相等时,与同功率的普通圆柱齿轮减速器相比,体积和重量均可减少三分之一至三分之二; 2.传动比范围大 N型一级减速器的传动比为10~100以上;二级串联的减速器,传动比可达一万以上;三级串联的减速器,传动比可达百万以上。NN 型一级减速器的传动比为100~1000以上; 3.效率高 N型一级减速器的传动比为10~100时,效率为80~94%;NN 型当传动比为10~200时,效率为70~93%.效率随着传动比的增加而降低。 4.运转平稳、噪音小、承载能力大由于式内啮合传动,两啮合齿轮一位凹齿,一为凸齿,两齿的曲率中心在同一方向。曲率半径接近相等,因此接触面积大,使轮齿的接触强度大为提高,又采用短齿制,轮齿的弯曲强度也提高了。此外,少齿差传动时,不是一对轮齿啮合,而是3~9对轮齿同时接触受力,所以运转平稳,噪音小,并且在相同模数的情况下,其传递力矩臂普通圆周齿轮减速器大。 5.结构简单、加工方便、成本低; 6.输入轴和输出轴在同一轴线上,安装和使用较为方便; 7.运转可靠、使用寿命长。 但是,这种减速器还存在以下缺点: 1.计算较复杂当内齿轮与行星轮的齿数差小于5时,容易产生各种干涉,为了避免这些干涉,需采用变位齿轮,所以计算较复杂。

相关文档
最新文档