如何构建载体

如何构建载体
如何构建载体

如何构建载体

1 启动子的选用和改造

外源基因表达量不足往往是得不到理想的转基因植物的重要原因。由于启动子在决定基因表达方面起关键作用,因此,选择合适的植物启动子和改进其活性是增强外源基因表达首先要考虑的问题。

目前在植物表达载体中广泛应用的启动子是组成型启动子,例如,绝大多数双子叶转基因植物均使用CaMV35S启动子,单子叶转基因植物主要使用来自玉米的Ubiquitin启动子和来自水稻的Actinl启动子。在这些组成型表达启动子的控制下,外源基因在转基因植物的所有部位和所有的发育阶段都会表达。然而,外源基因在受体植物内持续、高效的表达不但造成浪费,往往还会引起植物的形态发生改变,影响植物的生长发育。为了使外源基因在植物体内有效发挥作用,同时又可减少对植物的不利影响,目前人们对特异表达启动子的研究和应用越来越重视。已发现的特异性启动子主要包括器官特异性启动子和诱导特异性启动子。例如,种子特异性启动子、果实特异性启动子、叶肉细胞特异性启动子、根特异性启动子、损伤诱导特异性启动子、化学诱导特异性启动子、光诱导特异性启动子、热激诱导特异性启动子等。这些特异性启动子的克隆和应用为在植物中特异性地表达外源基因奠定了基础。例如,瑞士CIBA-GEIGY公司使用PR-IA启动子控制转基因烟草中Bt毒蛋白基因的表达,由于该启动子可受水杨酸及其衍生物诱导,通过喷酒廉价、无公害的化学物质,诱导抗虫基因在虫害重发生季节表达,显然是一个十分有效的途径。

在植物转基因研究中,使用天然的启动子往往不能取得令人满意的结果,尤其是在进行特异表达和诱导表达时,表达水平大多不够理想。对现有启动子进行改造,构建复合式启动子将是十分重要的途径。例如,Ni等人将章鱼碱合成酶基因启动子的转录激活区与甘露碱合成酶基因启动子构成了复合启动子,GUS表达结果表示:改造后的启动子活性比35S启动子明显提高。吴瑞等人将操作诱导型的PI-II基因启动子与水稻Actinl基因内含子1进行组合,新型启动子的表达活性提高了近10倍(专利)。在植物基因工程研究中,这些人工组建的启动子发挥了重要作用。

2 增强翻译效率

为了增强外源基因的翻译效率,构建载体时一般要对基因进行修饰,主要考虑三方面内容:

2.1添加5`-3`-非翻译序列

许多实验已经发现,真核基因的5`-3`-非翻译序列(UTR)对基因的正常表达是非常必要的,该区段的缺失常会导致mRNA的稳定性和翻译水平显著下降。例如,在烟草花叶病毒(TMV)的126kDa 蛋白基因翻译起始位点上游,有一个由68bp核苷酸组成的Ω元件,这一元件为核糖体提供了新的结合位点,能使Gus基因的翻译活性提高数十倍。目前已有许多载体中外源基因的5`-端添加了Ω翻译增强序列。Ingelbrecht等曾对多种基因的 3`-端序列进行过研究,发现章鱼碱合成酶基因的3`-端序列能使NPTII基因的瞬间表达提高20倍以上。另外,不同基因的3`-端序列增进基因表达的效率有所不同,例如,rbcS3`-端序列对基因表达的促进作用比查尔酮合酶基因的3`-端序列高60倍。

2.2 优化起始密码周边序列

虽然起始密码子在生物界是通用的,然而,从不同生物来源的基因各有其特殊的起始密码周边序列。例如,植物起始密码子周边序列的典型特征是AACCAUGC,动物起始密码子周边序列为CACCAUG,原核生物的则与二者差别较大。Kozak详细研究过起始密码子ATG周边碱基定点突变后对转录和翻译所造成的影响,并总结出在真核生物中,起始密码子周边序列为ACCATGG时转录和翻译效率最高,特别是-3位的A对翻译效率非常重要。该序列被后人称为Kozak序列,并被应用于表达载体的构建中。例如,有一个细菌的几丁质酶基因,原来的起始密码周边序列为UUUAUGG,当被修饰为ACCAUGG,其在烟草中的表达水平提高了8倍。因此,利用非植物来源的基因构建表达载体时,应根据植物起始密码子周边序列的特征加以修饰改造。

2.3对基因编码区加以改造

如果外源基因是来自于原核生物,由于表达机制的差异,这些基因在植物体内往往表达水平很低,例如,来自于苏云金芽孢杆菌的野生型杀虫蛋白基因在植物中的表达量非常低,研究发现这是由于原核基因与植物基因的差异造成了mRNA稳定性下降。美国Monsanto公司Perlak等人在不改变毒蛋白氨基酸序列的前提下,对杀虫蛋白基因进行了改造,选用植物偏爱的密码子,增加了GC含量,去除原序列下影响mRNA稳定的元件,结果在转基因植株中毒蛋白的表达量增加了30~100倍,获得了明显的抗虫效果。

3 消除位置效应

当外源基因被移人受体植物中之后,它在不同的转基因植株中的表达水平往往有很大差异。这主要是由于外源基因在受体植物的基因组内插入位点不同造成的。这就是所谓的"位置效应"。为了消除位置效应,使外源基因都能够整合在植物基因组的转录活跃区,在目前的表达载体构建策略中通常会考虑到核基质结合区以及定点整合技术的应用。

核基质结合区(matrix association region,MAR)是存在于真核细胞染色质中的一段与核基质特异结合的DNA序列。一般认为,MAR序列位于转录活跃的DNA环状结构哉的边界,其功能是造成一种分割作用,使每个转录单元保持相对的独立性,免受周围染色质的影响。有关研究表明,将MAR置于目的基因的两侧,构建成包含MAR-gene-MAR结构的植物表达载体,用于遗传转化,能明显提高目的基因的表达水平,降低不同转基因植株之间目的基因表达水平的差异,减少位置效应。例如,Allen等人研究了异源MAR(来自酵母)和同源MAR(来自烟草)对Gus基因在烟草中表达的影响,发现酵母的MAR能使转基因表达水平平均提高12倍,而烟草本身的MAR能使转基因的表达水平平均提高60倍。使用来源于鸡溶菌酶基因的MAR也可起到同样作用。

另一可行的途径是采用定点整合技术,这一技术的主要原理是,当转化载体含有与寄主染色体同源的DNA片段时,外源基因可以通过同源重组定点整合于染色体的特定部位。实际操作时首先要分离染色体转录活性区域的DNA片段,然后构建植物表达载体。在微生物的遗传操作中,同源重组定点整合已成为一项常规技术,在动物中外源基因的定点整合已获得成功,而在植物中除了叶绿体表达载体可实现定点整合以外,细胞核转化中还很少有成功的报道。

4 构建叶绿体表达载体

为了克服细胞核转化中经常出现的外源基因表达效率低,位置效应及由于核基因随花粉扩散而带来的不安全性等问题,近几年出现的一种新兴的遗传转化技术--叶绿体转化,正以它的优越性和发展前景日益为人们所认识并受到重视。到目前为止,已在烟草、水稻、拟南芥、马铃薯和油菜(侯丙凯等,等发表)5种植物中相继实现了叶绿体转化,使得这一转化技术开始成为植物基因工程中新的生长点。

由于目前多种植物的叶绿体基因组全序列已被测定,这就为外源基因通过同源重组机制定点整合进叶绿体基因组奠定了基础,目前构建的叶绿体表达载体基本上都属于定点整合载体。构建叶绿体表达载体基本上都属于定点事例载体。构建叶绿体表达载体时,一般都在外源基因表达盒的两侧各连接一段叶绿体的DNA序列,称为同源重组片段或定位片段(Targeting fragment)。当载体被导入叶绿体后,通过这两个片段与叶绿体基因组上的相同片段发生同源重组,就可能将外源基因整合到叶绿体基因组的特定位点。在以作物改良为目的的叶绿体转化中,要求同源重组发生以后,外源基因的插入既不引起叶绿体基因原有序列丢失,又不致于破坏插入点处原有基因的功能。为满足这一要求,已有的工作都选用了相邻的两个基因作为同源重组片段,例如rbcL/accD,16StrnV/rpsl2rps7,psbA/trnK,rps7/ndhB。当同源重组发生以后,外源基因定点插入在两个相邻基因的间隔区,保证了原有基因的功能不受影响。最近,Daniel等利用烟草叶绿体基因trnA和trnI作为同源重组片段,构建了一种通用载体(universal vector)。由于trnA和trnI的DNA 序列在高等植物中是高度保守的,作者认为这种载体可用于多种不同植物的叶绿体转化。如果这种载体的通用性得到证实,那么这项工作无疑为构建方便而实用的新型叶绿体表达载体提供了一个好的思路。

由于叶绿体基因组的高拷贝性,定点整合进叶绿体基因组的外源基因往往会得到高效率表达,例如McBride等人首次将Bt CryIA(c)毒素基因转入烟草叶绿体,Bt毒素蛋白的表达量高达叶子总蛋白的3%~5%,而通常的核转化技术只能达到0.001%~0.6%。最近,Kota等将Bt Cry2Aa2蛋白基因转入烟草转入烟草叶绿体,也发现毒蛋白在烟草叶子中的表达量很高,占可溶性蛋白的2%~3%,比细胞核转化高出20~30倍,转基因烟草不仅能抗敏感昆虫,而且能够百分之百地杀死那些产生了高抗性的昆虫。Staub等最近报道,将人的生长激素基因转入烟草叶绿体,其表达量竟高达叶片总蛋白的7%,比细胞核转化高出300倍。这些实验充分说明,叶绿体表达载体的构建和转化,是实现外源基因高效表达的重要途径之一。

5 定位信号的应用

上述几种载体优化策略主要目的是提高外源基因的转录和翻译效率,然而,高水平表达的外源蛋白能否在植物细胞内稳定存在以及积累量的多少是植物遗传转化中需要考虑的另一重要问题。

近几年的研究发现,如果某些外源基因连接上适当的定位信号序列,使外源蛋白产生后定向运输到细胞内的特定部位,例如:叶绿体、内质网、液泡等,则可明显提高外源蛋白的稳定性和累积量。这是因为内质网等特定区域为某些外源蛋白提供了一个相对稳定的内环境,有效防止了外源蛋白的降解。例如,Wong等将拟南芥rbcS亚基的转运肽序列连接于杀虫蛋白基因之前,发现杀虫蛋白能够特异性地积累在转基因烟草的叶绿体内,外源蛋白总的积累量比对照提高了10~20倍。最近,叶梁、宋艳茹等也将rbcS亚基的转运肽序列连接于PHB合成相关基因之前,试图使基因表达产物在转基因油菜种子的质体中积累,从而提高外源蛋白含量。另外,Wandelt等和Schouten 等将内质网定位序列(四肽KDEL的编码序列)与外源蛋白基因相连接,发现外源蛋白在转基因植物中的含量有了显著提高。显然,定位信号对于促进蛋白质积累有积极作用,但同一种定位信号是否适用于所有的蛋白还有待于进一步确定。

6 内含子在增强基因表达方面的应用

内含子增强基因表达的作用最初是由Callis等在转基因玉米中发现的,玉米乙醇脱氢酶基因(Adhl)的第一个内含子(intron 1)对外源基因表达有明显增强作用,该基因的其他内含子(例如intron8,intron9)也有一定的增强作用。后来,Vasil等也发现玉米的果糖合成酶基因的第一个内含子能使CAT表达水平提高10倍。水稻肌动蛋白基因的第三个内含子也能使报道基因的表达水平提高2~6倍。至今对内含子增强基因表达的机制不不清楚,但一般认为可能是内含子的存在增强了mRNA的加工效率和mRNA稳定性。Tanaka等人的多项研究表明,内含子对基因表达的增强作用主要发生在单子叶植物,在双子叶植物中不明显。

由于内含子对基因表达有增强作用,Mcelroy等在构建单子叶植物表达载体时,特意将水稻的肌动蛋白基因的第一个内含子保留在该基因启动子的下游。同样,Christensen等在构建载体时将玉米Ubiquitin基因的第一个内含子置于启动子下游,以增强外源基因在单子叶植物中的表达。然而,有研究指出,特定内含子对基因表达的促进作用取决于启动子强度、细胞类型、目的基因序列等多种因素,甚至有时会取决于内含子在载体上的位置。例如,玉米Adhl基因的内含子9置于Gus基因的5`端,在CaMV35S启动子调控下,Gus基因的表达未见增强;当把内含子置于Gus基因3端,在同样的启动子控制下,Gus基因的表达水平却增加了大约3倍。由此可见,内含子对基因表达的作用机制可能是很复杂的,如何利用内含子构建高效植物表达载体,目前还缺乏一个固定的模式,值得进一步探讨。

7 多基因策略

迄今为止,多数的遗传转化研究都是将单一的外源基因转入受体植物。但有时由于单基因表达强度不够或作用机制单一,尚不能获得理想的转基因植物。如果把两个或两个以上的能起协同作用的基因同时转入植物,将会获得比单基因转化更为理想的结果。这一策略在培育抗病、抗虫等抗逆性转基因植物方面已得到应用。例如,根据抗虫基因的抗虫谱及作用机制的不同,可选择两个功能互补的基因进行载体构建,并通过一定方式将两个抗虫基因同时转入一个植物中去。王伟

等将外源凝集素基因和蛋白酶抑制剂基因同时转入棉花,得到了含双价抗虫基因的转化植株。Barton等将Bt杀虫蛋白基因和蝎毒素基因同时转入烟草,其抗虫性和防止害虫产生抗性的能力大为提高(专利)。在抗病方面,本实验室蓝海燕等构建了包含β-1,3-葡聚糖酶基因及几丁质酶基因的双价植物表达载体,并将其导入油菜和棉花,结果表明,转基因植株均产生了明显的抗病性。最近,冯道荣、李宝健等将2~3个抗真菌病基因和hpt基因连在一个载体上,两个抗虫基因与bar基因连在另一个载体上,用基因枪将它们共同导入水稻植株中,结果表明,70%的R。代植株含有导入的全部外源基因(6~7个),且导入的多个外源基因趋向于整合在基因组的一个或两个位点。

一般常规的转化,尚不能将大于25kb的外源DNA片段导入植物细胞。而一些功能相关的基因,比如植物中的数量性状基因、抗病基因等,大多成"基因簇"的形式存在。如果将某些大于100kb

的大片段DNA,如植物染色体中自然存在的基因簇或并不相连锁的一系列外源基因导入植物基因组的同一位点,那么将有可能出现由多基因控制的优良性状或产生广谱的抗虫性、抗病性等,还可以赋予受体细胞一种全新的代谢途径,产生新的生物分子。不仅如此,大片段基因群或基因簇的同步插入还可以在一定程度上克服转基因带来的位置效应,减少基因沉默等不良现象的发生。最近,美国的Hamilton和中国的刘耀光分别开发出了新一代载体系统,即具有克隆大片段DNA和借助于农杆菌介导直接将其转化植物的BIBAC和TAC。这两种载体不仅可以加速基因的图位克隆,而且对于实现多基因控制的品种改良也会有潜在的应用价值。目前,关于BIBAC和TAC载体在多基因转化方面的应用研究还刚刚开始。

8 筛选标记基因的利用和删除

筛选标记基因是指在遗传转化中能够使转化细胞(或个体)从众多的非转化细胞中筛选出来的标记基因。它们通常可以使转基因细胞产生对某种选择剂具有抗性的产物,从而使转基因细胞在添加这种选择的培养基上正常生长,而非转基因细胞由于缺乏抗性则表现出对此选择剂的敏感性,不能生长、发育和分化。在构建载体时,筛选标记基因连接在目的基因一旁,两者各有自己的基因调控序列(如启动子、终止子等)。目前常用的筛选标记基因主要有两大类:抗生素抗性酶基因和除草剂抗性酶基因。前者可产生对某种抗生素的抗性,后者可产生对除草剂的抗性。使用最多的抗生素抗性酶基因包括NPTII基因(产生新霉素磷酸转移酶,抗卡那霉素)、HPT基因(产生潮霉素磷酸转移酶,抗潮霉素)和Gent基因(抗庆大霉素)等。常用的抗除草剂基因包括EPSP

基因(产生5-烯醇式丙酮酸莽草酸-3-磷酸合酶,抗草甘磷)、GOX基因(产生草甘膦氧化酶、降解草甘膦)、bar基因(产生PPT乙酰转移酶,抗Bialaphos或glufosinate)等。

上面这些当中1、2、3、5、6都是值得注意的,特别是5,因为你要向细胞外分泌。骨架载体可以选择PB I121,然后你可以在上面改动基因型。

后面的就是克隆的步骤了,相对简单。

1 首先获得目的基因加酶切位点,连入改好的载体中。

2 将质粒转入大肠杆菌DH5a扩增

3 将扩增好的质粒转入植物细胞内进行表达

4 收集根细胞外培养基检测是否有该蛋白的表达和分泌。

至于改造载体那几个步骤要是答题的话简单说说就可以了,毕竟如果真的做出一个好载体都可以自己开公司了。

简单给你说一下步骤: 1 选择合适酶切位点,主要参考你所用的载体的多克隆位点,一般建议用双酶切,这样就不存在方向验证的问题; 2 根据你所选用的酶切位点设计引物克隆基因;3 分别酶切载体和基因的PCR产物,然后回收。可以选择切胶回收,也可以用无水乙醇沉淀;4 连接酶链接5 转化 6 提质粒验证。要进行PCR 验证和酶切验证。7 测序

表达载体的构建方法及步骤

表达载体的构建方法及步骤 令狐采学 一、载体的选择及如何阅读质粒图谱 目前,载体主要有病毒和非病毒两大类,其中质粒DNA 是一种新的非病毒转基因载体。 一个合格质粒的组成要素: (1)复制起始位点Ori 即控制复制起始的位点。原核生物DNA 分子中只有一个复制起始点。而 真核生物DNA 分子有多个复制起始位点。 (2)抗生素抗性基因可以便于加以检测,如Amp+ ,Kan+ (3)多克隆位点MCS 克隆携带外源基因片段 (4)P/E 启动子/增强子 (5)Terms 终止信号 (6)加poly(A)信号可以起到稳定mRNA 作用 选择载体主要依据构建的目的,同时要考虑载体中应有合适的限制酶切位点。如果构建的目 的是要表达一个特定的基因,则要选择合适的表达载体。 载体选择主要考虑下述3点: 【1】构建DNA 重组体的目的,克隆扩增/基因表达,选择合适的克隆载体/表达载体。 【2】.载体的类型:

(1)克隆载体的克隆能力-据克隆片段大小(大选大,小选小)。如<10kb 选质粒。 (2)表达载体据受体细胞类型-原核/真核/穿梭,E.coli/哺乳类细胞表达载体。 (3)对原核表达载体应该注意:选择合适的启动子及相应的受体菌,用于表达真核蛋白质时注意克服4个困难和阅读框错位;表达天然蛋白质或融合蛋白作为相应载体的参考。 【3】载体MCS 中的酶切位点数与组成方向因载体不同而异,适应目的基因与载体易于链接,不能产生阅读框架错位。 综上所述,选用质粒(最常用)做载体的5点要求: (1)选分子量小的质粒,即小载体(1-1.5kb)→不易损坏,在细菌里面拷贝数也多(也有大载 体); (2)一般使用松弛型质粒在细菌里扩增不受约束,一般10个以上的拷贝,而严谨型质粒<10个。 (3)必需具备一个以上的酶切位点,有选择的余地; (4)必需有易检测的标记,多是抗生素的抗性基因,不特指多位Ampr(试一试)。 (5)满足自己的实验需求,是否需要包装病毒,是否需要加入荧光标记,是否需要加入标签蛋白,是否需要真核抗性(如Puro、G418)等等。 无论选用哪种载体,首先都要获得载体分子,然后采用适当的限制酶将载体DNA 进行切割,获得线性载体分子,以便于与

载体构建流程

载体构建SOP流程: GenBank查询目的基因序列→根据ORF序列利用引物设计软件设计引物→表达目的基因的组织或细胞总RNA提取→RT-PCR获取目的基因→酶切目的基因和载体→分别纯化酶切的目的基因和载体并建立连接反应→转化→初步筛选阳性克隆→阳性克隆测序→测序正确的质粒保种并重提质粒 I.获取目的基因/序列片段 一.获取序列信息 通过GENBANK数据和生物信息的方法设计目的基因或目的片段引物(shRNA、miRNA)。 PCR引物的设计原则: ①引物应用核酸系列保守区内设计并具有特异性。 ②产物不能形成二级结构。 ③引物长度一般在15~30碱基之间。 ④G+C含量在40%~60%之间。 ⑤碱基要随机分布。 ⑥引物自身不能有连续4个碱基的互补。 ⑦引物之间不能有连续4个碱基的互补。 ⑧引物5′端可以修饰。 ⑨引物3′端不可修饰。

⑩避免在引物的3’端使用碱基A。 在实际设计引物中由于ORF两末端序列本身的限制,不能完全按照上述理想的设计原则,但也切记引物不能过长或过短。过长的引物不容易打开其二级结构,与模板结合缓慢,也容易形成引物二聚体,通常不超过35bp(不包括酶切位点和保护碱基)。过短的引物特异性差,扩出其它不相关片段,最终很难得到目的片段,通常不短于18bp(不包括酶切位点和保护碱基)。要将目的基因定向克隆至相应载体,需要在上下游引物两端设计不同的酶切位点,由于酶切位点位于线性末端时酶对其识别切割能力大大降低,需依据NEB目录添加相应保护碱基,酶切时可相应增加时间。 二.制备模板 1.分离高质量RNA:成功的cDNA合成来自高质量的RNA。高质量的RNA至少应保证全长并且不含逆转录酶的抑制剂,如EDTA或SDS。RNA的质量决定了能够转录到cDNA上的序列信息量的最大值。现在实验室通常使用Trizol试剂法提取总RNA,可以从多种组织和细胞中提取高质量的非降解RNA。Trizol试剂法可以从最少100个细胞或1mg组织中提取RNA。在逆转录反应中经常加入RNase抑制剂以增加cDNA合成的长度和产量。RNase抑制剂要在第一链合成反应中,在缓冲液和还原剂(如DTT)存在的条件下加入,因为cDNA合成前的过程会使抑制剂变性,从而释放结合的可

载体构建的基本步骤

载体构建 一.原理 依赖于限制性核酸内切酶,DNA连接酶和其他修饰酶的作用,分别对目的基因和载体DNA进行适当切割和修饰后,将二者连接在一起,再导入宿主细胞,实现目的基因在宿主细胞内的正确表达。 二.操作步骤 1.摇菌 取装有液体培养基的3ml试管两支(依情况而定),每管加40-100μl菌种,过夜摇。2.提质粒 依照提质粒试剂盒中的说明书操作(根据情况最后一步洗脱时可以多洗1-2次)。 3.酶切 按下表加入试剂。 反应所需试剂体积(单位:ul) 质粒10 所需内切酶反应缓冲液 2 所需限制性内切核酸酶 1 H2O 7 将加好的EP管置于37℃保温1-2h。(依照提酶切的具体步骤操作;为了达到最佳酶切的效果,最好根据所选用的酶确定所需要的反应温度) 4.电泳检测 将酶切产物进行琼脂糖凝胶电泳,检测酶切是否成功。 5.连接 如果电泳检测酶切成功的话,则仔细将所需的片段切割下来,将胶体回收(依照胶回收试剂盒说明书操作);之后将回收的片段和载体连接,连接体系如下: 双蒸水5μL 10×T4 DNA连接缓冲液1μL 载体2μL 酶切后的目的基因1μL T4DNA连接酶1μL 总体积10μL 置于温箱,12-16℃,保温8-16h 6.转化 依照转化具体操作步骤做感受态,将上述连接产物进行转化实验,涂板培养,37℃,12-16h。 7.单克隆检测 (1)挑单克隆

先将AMP从冰箱中取出,待融化后,在3ml装有LB液体培养基的试管中加入3μL的AMP,用枪头混匀;取1.5 mlEP管5支(依情况可以多挑几管),给每支管中加500μL上述培养液,然后用接种环(或黄枪头)挑单克隆,挑完后用枪吹打;之后,将挑好的菌摇4-5小时,至混浊即可。 (2)单克隆检测 以每管摇好的菌液为模板,以原有的引物进行PCR,然后将PCR产物跑电泳,观察电泳图像中那几管的条带正确,将正确条带相对应管的菌液再抽取100μL,加到3ml(有LB液体培养液,AMP+)试管中,过夜摇;第二天重摇,将摇好的菌取1ml于1.5mlEP管中送测序,并保种。 注:①挑单克隆时,一定要挑单一圆润的菌落,有卫星斑的不挑。 ②别忘记往培养基中加AMP。 ③用接种环挑菌后,要在酒精灯上反复灼烧,然后再进行下一次挑菌。 三.注意事项 1.连接产物可短时间在-20℃保存,使用时可以取出进行后续实验; 2.在细胞转化时,冰浴和热激要严格控制好时间; 3.连接反应是DNA重组过程中的关键步骤,其成败的重要参数之一就是温度,因此要控制好连接温度。 4.进行黏末端连接时,会产生一定数量的载体自身环化分子,导致转化菌中过高的假阳性克隆背景。针对这一问题,常采用牛小肠碱性磷酸酶(CIP)去掉载体的5’-磷酸以抑制DNA 片段的自身环化。 参考: 1.刘进元,常智杰,赵广荣,等.分子生物学实验指导[M].北京:清华大学出版社,2002 2.周俊宜.分子生物学基本技能和策略[M].北京:科学出版社,2003:117-120 3.李海英,杨峰山,邵淑丽,等.现代分子生物学与基因工程[M].北京:化学工业出版社,2008:138-142 4.朱旭芬.基因工程实验指导[M].北京:高等教育出版社,2006:134-139

慢病毒载体包装构建过程

慢病毒载体包装构建过程 原理:慢病毒载体可以将外源基因或外源的shRNA有效地整合到宿主染色体上,从而达到持久性表达目的序列的效果。在感染能力方面可有效地感染神经元细胞、肝细胞、心肌细胞、肿瘤细胞、内皮细胞、干细胞等多种类型的细胞,从而达到良好的的基因治疗效果。对于一些较难转染的细胞,如原代细胞、干细胞、不分化的细胞等,使用慢病毒载体,能大大提高目的基因或目的shRNA的转导效率,且目的基因或目的shRNA整合到宿主细胞基因组的几率大大增加,能够比较方便快捷地实现目的基因或目的shRNA的长期、稳定表达。 概念:慢病毒载体是指以人类免疫缺陷病毒-1 (H IV-1) 来源的一种病毒载体,慢病毒载体包含了包装、转染、稳定整合所需要的遗传信息,是慢病毒载体系统的主要组成部分。携带有外源基因的慢病毒载体在慢病毒包装质粒、细胞系的辅助下,经过病毒包装成为有感染力的病毒颗粒,通过感染细胞或活体组织,实现外源基因在细胞或活体组织中表达。 辅助成分:慢病毒载体辅助成分包括:慢病毒包装质粒和可产生病毒颗粒的细胞系。 慢病毒载体包含了包装、转染、稳定整合所需要的遗传信息。慢病毒包装质粒可提供所有的转录并包装RNA 到重组的假病毒载体所需要的所有辅助蛋白。为产生高滴度的病毒颗粒,需要利用表达载体和包装质粒同时共转染细胞,在细胞中进行病毒的包装,包装好的假病毒颗粒分泌到细胞外的培养基中,离心取得上清液后,可以直接用于宿主细胞的感染,目的基因进入到宿主细胞之后,经过反转录,整合到基因组,从而高水平的表达效应分子。 基本原理:慢病毒载体系统由两部分组成,即包装成分和载体成分。

包装成分:由HIV-1基因组去除了包装、逆转录和整合所需的顺式作用序列而构建,能够反式提供产生病毒颗粒所必需的蛋白。包装成分通常被分开构建到两个质粒上,一个质粒表达Gag和Pol蛋白,另一个质粒表达Env蛋白,其目的也是降低恢复成野生型病毒的可能。将包装成分与载体成分的3个质粒共转染细胞(如人肾293T细胞),即可在细胞上清中收获只有一次性感染能力而无复制能力的、携带目的基因的HIV-1载体颗粒。 载体成分:与包装成分互补,即含有包装、逆转录和整合所需的HIV顺式作用序列,同时具有异源启动子控制下的多克隆位点及在此位点插入的目的基因。 为降低两种成分同源重组恢复成野生型病毒的可能,需尽量减少二者的同源性,如将包装成分上5′LTR换成巨细胞病毒(CMV)立即早期启动子、3′LTR换成SV40 polyA等。 一、实验流程(1和2为并列步骤) 1.慢病毒过表达质粒载体的构建 设计上下游特异性扩增引物,同时引入酶切位点,PCR(采用高保真KOD酶,3K内突变率为0%)从模板中(CDNA质粒或者文库)调取目的基因CDS区(coding sequence)连入T载体。将CDS区从T载体上切下,装入慢病毒过表达质粒载体。 2.慢病毒干扰质粒载体的构建 合成siRNA对应的DNA颈环结构,退火后连入慢病毒干扰质粒载体 3. 慢病毒载体的包装与浓缩纯化 制备慢病毒穿梭质粒及其辅助包装原件载体质粒,三种质粒载体分别进行高纯度无内毒素抽提,共转染293T细胞,转染后6 h 更换为完全培养基,培养24和48h后,分别收集富含

表达载体的构建方法及步骤

表达载体的构建方法及步骤 一、载体的选择及如何阅读质粒图谱 目前,载体主要有病毒和非病毒两大类,其中质粒DNA 是一种新的非病毒转基因载体。一个合格质粒的组成要素: (1)复制起始位点Ori 即控制复制起始的位点。原核生物DNA 分子中只有一个复制起始点。而 真核生物DNA 分子有多个复制起始位点。 (2)抗生素抗性基因可以便于加以检测,如Amp+ ,Kan+ (3)多克隆位点MCS 克隆携带外源基因片段 (4)P/E 启动子/增强子 (5)Terms 终止信号 (6)加poly(A)信号可以起到稳定mRNA 作用 选择载体主要依据构建的目的,同时要考虑载体中应有合适的限制酶切位点。如果构建的目 的是要表达一个特定的基因,则要选择合适的表达载体。 载体选择主要考虑下述3点: 【1】构建DNA 重组体的目的,克隆扩增/基因表达,选择合适的克隆载体/表达载体。【2】.载体的类型: (1)克隆载体的克隆能力-据克隆片段大小(大选大,小选小)。如<10kb 选质粒。(2)表达载体据受体细胞类型-原核/真核/穿梭,E.coli/哺乳类细胞表达载体。

(3)对原核表达载体应该注意:选择合适的启动子及相应的受体菌,用于表达真核蛋白质时注意克服4个困难和阅读框错位;表达天然蛋白质或融合蛋白作为相应载体的参考。【3】载体MCS 中的酶切位点数与组成方向因载体不同而异,适应目的基因与载体易于链接,不能产生阅读框架错位。 综上所述,选用质粒(最常用)做载体的5点要求: (1)选分子量小的质粒,即小载体(1-1.5kb)→不易损坏,在细菌里面拷贝数也多(也有大载 体); (2)一般使用松弛型质粒在细菌里扩增不受约束,一般10个以上的拷贝,而严谨型质粒<10个。 (3)必需具备一个以上的酶切位点,有选择的余地; (4)必需有易检测的标记,多是抗生素的抗性基因,不特指多位Ampr(试一试)。(5)满足自己的实验需求,是否需要包装病毒,是否需要加入荧光标记,是否需要加入标签蛋白,是否需要真核抗性(如Puro、G418)等等。 无论选用哪种载体,首先都要获得载体分子,然后采用适当的限制酶将载体DNA 进行切割,获得线性载体分子,以便于与目的基因片段进行连接。 如何阅读质粒图谱 第一步:首先看Ori 的位置,了解质粒的类型(原核/真核/穿梭质粒) 第二步:再看筛选标记,如抗性,决定使用什么筛选标记。 (1)Ampr 水解β-内酰胺环,解除氨苄的毒性。 (2)tetr 可以阻止四环素进入细胞。 (3)camr 生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr)氨基糖苷磷酸转移酶使G418(长那霉素衍生物)失活

如何构建载体和转化体检测

如何构建载体 1 启动子的选用和改造 外源基因表达量不足往往是得不到理想的转基因植物的重要原因。由于启动子在决定基因表达方面起关键作用,因此,选择合适的植物启动子和改进其活性是增强外源基因表达首先要考虑的问题。 目前在植物表达载体中广泛应用的启动子是组成型启动子,例如,绝大多数双子叶转基因植物均使用CaMV35S启动子,单子叶转基因植物主要使用来自玉米的Ubiquitin启动子和来自水稻的Actinl启动子。在这些组成型表达启动子的控制下,外源基因在转基因植物的所有部位和所有的发育阶段都会表达。然而,外源基因在受体植物内持续、高效的表达不但造成浪费,往往还会引起植物的形态发生改变,影响植物的生长发育。为了使外源基因在植物体内有效发挥作用,同时又可减少对植物的不利影响,目前人们对特异表达启动子的研究和应用越来越重视。已发现的特异性启动子主要包括器官特异性启动子和诱导特异性启动子。例如,种子特异性启动子、果实特异性启动子、叶肉细胞特异性启动子、根特异性启动子、损伤诱导特异性启动子、化学诱导特异性启动子、光诱导特异性启动子、热激诱导特异性启动子等。这些特异性启动子的克隆和应用为在植物中特异性地表达外源基因奠定了基础。例如,瑞士CIBA-GEIGY公司使用PR-IA启动子控制转基因烟草中Bt毒蛋白基因的表达,由于该启动子可受水杨酸及其衍生物诱导,通过喷酒廉价、无公害的化学物质,诱导抗虫基因在虫害重发生季节表达,显然是一个十分有效的途径。 在植物转基因研究中,使用天然的启动子往往不能取得令人满意的结果,尤其是在进行特异表达和诱导表达时,表达水平大多不够理想。对现有启动子进行改造,构建复合式启动子将是十分重要的途径。例如,Ni等人将章鱼碱合成酶基因启动子的转录激活区与甘露碱合成酶基因启动子构成了复合启动子,GUS表达结果表示:改造后的启动子活性比35S启动子明显提高。吴瑞等人将操作诱导型的PI-II基因启动子与水稻Actinl基因内含子1进行组合,新型启动子的表达活性提高了近10倍(专利)。在植物基因工程研究中,这些人工组建的启动子发挥了重要作用。 2 增强翻译效率 为了增强外源基因的翻译效率,构建载体时一般要对基因进行修饰,主要考虑三方面内容: 2.1添加5`-3`-非翻译序列 许多实验已经发现,真核基因的5`-3`-非翻译序列(UTR)对基因的正常表达是非常必要的,该区段的缺失常会导致mRNA的稳定性和翻译水平显著下降。例如,在烟草花叶病毒(TMV)的126kDa蛋白基因翻译起始位点上游,有一个由68bp核苷酸组成的Ω元件,这一元件为核糖体

质粒构建流程

质粒构建流程 一、引物设计 1)取得目的基因序列,可选用数据库NCBI 2)软件分析目的基因可用酶切位点。使用primer5分析出序列不包含的酶切位点,即为可用没切位点。 3)选择载体。根据转染细胞和实验室资源,选择合适载体。如pcDNA3.1(+), 4)选择酶切位点。对照目的基因可用酶切位点和载体上的酶切位点,选择二者共有的作为备选。载体上两个酶切位点的距离应有几十bp以上,选实验室常用酶切位点。 5)使用primer5设计目的基因引物,目的产物应包含从启动子到终止子全部碱基。 6)根据选择的酶切位点,查找对应的酶切位点保护碱基,将对应片段添加到设计的引物两端,注意酶切位点的前后顺序。一般选择三个保护碱基。 7)引物设计完成,送公司合成。 二、目的片段获取 1. RNA提取 试剂盒:Bioteke 高纯总RNA快速提取试剂盒离心柱型(裂解液RL 4℃、漂洗液RW -20℃保存) 准备:冰盒、4℃预冷离心机、EP管2套、吸附柱RA一套 操作步骤: 1)将1000μl裂解液RL加入细胞中,混合5min。 2)加200μl氯仿混合,震荡15s,室温孵育3min。 3)4℃,12000rpm离心10min。 4)最上层水相转移至新EP管中(体积约550μl) 5)加入1倍体积(550μl)70%乙醇,混匀 6)全部转移到套收集管的吸附柱RA中,4℃,10000rpm离心45s 7)弃废液,重套收集管,加500μl去蛋白液RE,12000rpm离心45s 8)弃废液,重套收集管,加700μl去漂洗液RW,12000rpm离心60s 9)弃废液,重套收集管,加500μl去漂洗液RW,12000rpm离心60s 10)弃废液,重套收集管,12000rpm空离2min 11)吸附柱放入新EP管,加50μl RNase free water于膜上,室温放置2min 12)4℃,12000rpm离心60s 13)点样:5μl RNA+ 1μl 10×buffer,1.5%琼脂糖凝胶电泳,100V,3min,可见3条亮带。14)-20℃保存 2.RNA反转录 试剂盒:TaKaRa primescript RT reagent kit with gDNA eraser(-20℃保存) 准备:冰盒,②④⑤⑥取出解冻,①③为酶不可取出,预冷离心管 操作步骤: 1)基因组DNA去除(10μl体系) ② 5×gDNA eraser buffer 2μl ① gDNA eraser 1μl

载体构建的基本步骤

载体构建的基本步骤 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

载体构建 一、原理 依赖于限制性核酸内切酶,DNA连接酶和其他修饰酶的作用,分别对目的基因和载体DNA进行适当切割和修饰后,将二者连接在一起,再导入宿主细胞,实现目的基因在宿主细胞内的正确表达。 二、操作步骤 1、摇菌(制作感受态细胞备用) 取装有液体培养基的3ml试管两支(依情况而定),每管加40-100μl菌种,过夜摇。 2、提质粒(也就是载体) 依照提质粒试剂盒中的说明书操作(根据情况最后一步洗脱时可以多洗1-2次)。 3、酶切(双酶切产生粘性末端) 反应所需试剂体积(单位:ul) 质粒 10 所需内切酶反应缓冲液 2 所需限制性内切核酸酶 1 H2O 7 将加好的EP管置于37℃保温1-2h。(依照提酶切的具体步骤操作;为了达到最佳酶切的效果,最好根据所选用的酶确定所需要的反应温度) 4、电泳检测 将酶切产物进行琼脂糖凝胶电泳,检测酶切是否成功。 回收胶:琼脂糖与缓冲液一比一制胶,经过切胶回收目的产物,也有目的产物纯化的功能; 检测胶:琼脂糖与缓冲液一比二制胶,为了检测目的条带与预期是否相符。

切胶回收与产物纯化是差不多的过程,所达到的目的是一样的:切胶回收也是一种纯化过程,它能去除非目的片段,然后用回收试剂盒进行纯化,能将很不纯的DNA溶液纯化;产物纯化是将较纯的DNA溶液进一步除去多余的杂质,用纯化试剂盒,你会发现纯化试剂盒和回收试剂盒的步骤几乎一样。 5、载体与目的基因连接 如果电泳检测酶切成功的话,则仔细将所需的片段切割下来,将胶体回收(依照胶回收试剂盒说明书操作);之后将回收的片段和载体连接。置于温箱,12-16℃,保温8-16h 6、转化(连接产物转化到感受态细胞中) 依照转化具体操作步骤做感受态,将上述连接产物进行转化实验,涂板培养,37℃, 12-16h。 7、单克隆检测 (1)挑单克隆 先将AMP从冰箱中取出,待融化后,在3ml装有LB液体培养基的试管中加入3μL的 AMP,用枪头混匀;取 mlEP管5支(依情况可以多挑几管),给每支管中加500μL上述培养液,然后用接种环(或黄枪头)挑单克隆,挑完后用枪吹打;之后,将挑好的菌摇4-5小时,至混浊即可。 (2)单克隆检测 以每管摇好的菌液为模板,以原有的引物进行PCR,然后将PCR产物跑电泳,观察电泳图像中那几管的条带正确,将正确条带相对应管的菌液再抽取100μ

载体构建

载体构建

载体构建分为以下步骤: 1.载体的选择和引物设计以扩增目标基因 2.目标片段的PCR扩增 3.载体和目标片段的限制性酶切 4.连接转化 5.挑取克隆提质粒 6.单克隆的验证及送样测序。 载体的选择 实验室常用的载体有pUC19(扩繁目标片段),pet28a(原核表达载体Kna+),pGEX-4T-1(原核表达载体Amp+),pCI-NEO(真核表达载体Amp+),pCDNA3.1(真核表达载体Amp+),pLKO.1(shRNA构建Amp+)。根据所要构建的质粒目的的差异以及载体和目标片段的酶切位点分析结果来选择载体。举例如下: 实验目的是将MYC基因插入到载体中,转染进细胞中表达。应选用真核表达载体pCI-NEO 或pCDNA3.1。 引物设计 引物设计的目的是将目标片段扩增出来以便与载体连接,所以在引物的两端应人为加上酶切位点,酶切位点前加上保护碱基。在选择酶切位点是应注意,选择的应该是目的基因片段中没有而载体上有的限制性内切酶,防止目标片段被切不完整,也便于和载体连接。 载体构建之后我们的目的是要表达,所以应该加入标签以便western blot检测蛋白是否表达。常用的标签有Flag标签、6XHis标签、HA标签和Myc标签。 Flag标签: D Y K D D D D K GAT TAC AAG GAT GAC GAC GAT AAG 6XHis标签: H H H H H H CAC CAC CAC CAC CAC CAC HA标签: Y P Y D V P D Y A TAC CCA TAC GAT GTT CCA GAT TAC GCT Myc标签: E Q K L I S E E D L 这些标签被表达成氨基酸后,特定的氨基酸序列会与相应抗体结合,在western blot时可被检测。因此,在设计引物时,这些核酸序列应位于起始密码子ATG之后。

构建载体心得和体会

转载一篇别人的载体构建的心得与体会 这两年在美帝净做克隆实验了,以前读PHD时候还觉得自己分子克隆挺牛X的,来这边之后做了各种各样的构建才知道以前是坐井观天,刚才粗粗统计了一下,在美帝一年零八个月,我构建的质粒的超过四百个,其中有很简单从PCR构建到拿WB结果的一共不到一周,也有巨难的花了四个月时间换了几次strategy才弄好激动得我半夜給老板发信的品种;有单片段酶切 插入这种不用脑型的,也有九个片段逐一插入正反向还不同的。专家不敢说,但是熟能生巧,确实积累了不少经验,现在系里从POSTDOC到PHD学生到TECH构建前很多人都跟我商 量(做博后结果成了技术员的人生真悲哀啊)。 我老板甚至开玩笑说,我们将来开个公司,我专门负责构建(这话听得我想揍他大家同意不?) 想了想还是把经验写下来,一来做个记录,二来博同行一笑,能让大家少绕点弯路则更好。 1. 准备工作 俗话说用欲善其事,必先利其器。我强烈建议大家在做构建之前先找好工具,这样起的效果事半功倍。这里说个笑话,我们系有个新PHD学生,是个印度女孩,很聪明很刻苦,她所在的 实验室也很好,不过除了她之外包括老板在内都是生物物理背景的,以前一个生物 POSTDOC在的时候还好,这个POSTDOC一走,整个实验室对分生就只有一个粗浅的概念,这个女孩就想把一个质粒上的基因插到另一个质粒上去,要是我就先查查有没有合适的酶切位点,要没有就改造一下质粒一切搞定,这女孩她不懂啊(要命的是她老板固然牛,对这方面也 不懂),自己辛辛苦苦设计了PCR引物去做PCR,P了将近5K的产物去测序,结果测的结果中间有个MUTATION,要懂行的就找找酶切位点,从原来的替换上去,然后测这下这段就行。她呢,又送去了若干了质粒一个接一个的测,一个测序反应这边是8刀,一个质粒测下来就是 40刀,她光测序就要花好几百刀(你得佩服老美实验室真有钱呀)。 这件事教育我们准备工作是多么重要。 这里推荐大家两个工具,一个都知道,PRIMER5.0。另一个工具极强大,也不知道国内流行不,叫lasergene,包括设计引物到构建图谱一应俱全,图谱非常漂亮,而且分析酶切位点等 等就超NB,如果感兴趣的话我可以給大家传一个图谱看看。 2. PCR 如果没有现成的质粒可供酶切,PCR是最理想也是最方便的策略。关于PCR具体技术坛子内帖很多,我不多说了,这里仅在构建方面谈一谈。

CRISPRCas9基因敲入试验步骤(三)donor载体构建载体构建

CRISPRCas9基因敲入试验步骤(三)donor载体构建载体构 建 1、质粒骨架的选择 CRISPR/Cas9质粒按编辑细胞类型可分为八种,Mammalian 、Bacteria 、Drosophila 、Plant、C. elegans 、Yeast 、Zebrafish 、Xenopus,根据质粒所携带的编辑基因的不同,可分为野生型的cas9、突变型的cas9、cpf1、C2c2(可剪切RNA)。当然,还有一些筛选标记,如puro、GFP、RFP、mcherry、潮霉素等等,我们可以根据自己的需求选择自己合适的质粒。这里故意还掉了一种,最具有争议的Ngago,本楼主也重复过这个试验,也和大多数重复的人一样,GFP验证试验时,看到荧光显著减弱(本人还特意构建了一种Ngago载体,效果比韩老师的效果好很多),但是当时没有验证这个减弱是切割还是敲低,非常遗憾自己想法太简单,以先入为主认为是切割而没有去验证;最终结果是刘东老师使用Ngago发现了有表型(斑马鱼的眼睛上有缺陷),这个就是很强的提示,需要去做下一步,尽管基因组上没有被切割,有表型,那势必会去看该基因表达的数据,最后才有这篇文章。刘东老师运气也很好,knock down 有表型,如果没表型,估计也会放弃。这里就说到这,有不懂的可以留言询问。。具体分类在addgene上有,网址/。

2、酶切位点的选择 插入sgRNA的酶切位点,质粒基本为这两种,BsmbI和Bbsi,具体可以参见该质粒的protocol,后续的连接、转化、验证protocol里面有,我就不啰嗦了。哦还忘了一件事,使用snapgene这个软件可以很好地看质粒图谱,非常方便,强烈推荐!!以慢病毒载体V2为例具体说明3、同源臂的设计 同源臂我们一般都是在切割位点的两端各选一段,长度大约1kb-2kb,效率还可以。当然了,有人也用40-100bp做了也做成功了,但基本原则是越长效率越高。1kb-2kb效率已经很高,所以这个最合适。有相关文献支持,自己Pubmed查看。 4、启动子、目的基因及其终止子的扩增 这里也没什么可说的,启动子在我们选择质粒的时候就决定了,当然我们还可以改造以提高sgRNA的表达效率,这个时候我们可以通过方法筛选出该物种的启动子,替换上去就ok了。 目的基因的话,如果我们要做敲除,基本就是根据基因组,在外显子区域设计sgRNA序列,切割后以非同源性末端接合(Non-homologous end joining, NHEJ),造成变异而使该基因失去功能。当然还有一种修复方式,同源性重组(Homologous recombination,HR)同源性重组修复是利用细胞内的染色体两两对应的特性,若其中一条染色体上的

质粒载体的构建分析

质粒载体的构建 摘要:质粒载体的构建。首先要获得目的DNA。根据其目的基因序列和启动子序列设计引物,为提高目的基因产率,采用两次PCR的方法,即第一次设计引物扩增全序列基因,第二次设计带酶切位点的引物以第一次扩增产物为模板进行扩增,进而加尾连接到T-DNA上,再利用电转化的方法将连接产物转化到带有PCAMBIA1381的DH5α感受态细胞中复制表达。 关键词:质粒DNA PCR 电泳感受态转化 1.引言 质粒(plasmid)是细菌或细胞染色质以外的,能自主复制的,与细菌或细胞共生的遗传成分。其特点如下: ①是染色质外的双链共价闭合环形DNA(cccDNA),可自然形成超螺旋结构,不同质 粒大小在2-300kb之间,<15kb的小质粒比较容易分离纯化,>15kb的大质粒则不易提取。 ②能自主复制,是能独立复制的复制子。一般质粒DNA复制的质粒可随宿主细胞分裂而 传给后代。 ③质粒对宿主生存并不是必需的。某些质粒携带的基因功能有利于宿主细胞的 特定条件下生存,例如,细菌中许多天然的质粒带有抗药性基因,如编码合成能分解破坏四环素、氯霉素、氨芐表霉素等的酶基因,这种质粒称为抗药性质粒,又称R质粒,带有R质粒的细菌就能在相应的抗生素存在生存繁殖。 所以质粒对宿主不是寄生的,而是共生的。现在分子生物学使用的质粒载体

都已不是原来细菌或细胞中天然存在的质粒,而是经过了许多的人工的改造。从不同的实验目的出发,人们设计了各种不同的类型的质粒载体。 质粒载体pBR322是研究得最多,是使用最早且应用最广泛的大肠杆菌质粒载体之一。符号质粒载体pBR322中的“p代表质粒;“BR”代表两位两位研究者Bolivar和Rogigerus姓氏的字首,“322”是实验编号。 质粒载体pBR322的大小为4361bp,相对分子质量较小的是它第一个优点。优点之二是它带有一个复制起始位点,保证了该质粒只在大肠杆菌的细胞中行使复制的功能。具有两种抗生素抗性基因,可供转化子的选择标记是它的第三个优点。 质粒载体pBR322的第四个优点是具有较高的拷贝数,经过氯霉素扩增以后,每个细胞中可累积1000-3000份拷贝,该特性为重组体DNA的制备提供了极大的方便。 构建质粒载体所用的方法基本上是分子克隆技术,是在分子水平上提供一种纯化和扩增特定DNA片段的方法。常含有目的基因,用体外重组方法将它们插入克隆载体,形成重组克隆载体,通过转化与转导的方式,引入适合的寄主体内得到复制与扩增,然后再从筛选的寄主细胞内分离提纯所需的克隆载体,可以得到插入DNA的许多拷贝,从而获得目的基因的扩增。 2. 材料方法 2.1目的DNA的获得 2.1.1 引物设计 第一次引物设计: 正向引物:sinn3F 冰盒标注:P2a 引物序列:5’—AAGCAAAATCTAACCGTGTAATGTA—3’ 引物长度:25bp 反向引物:sinn3R 冰盒标注:P2b

RNA干扰载体的构建的实验流程

RNA干扰载体的构建的实验流程 RNA干扰载体主要用来研究基因表达调控,RNA干扰技术已已被广泛用于基因结构功能研究和传染性疾病及基因治疗领域,进行RNA干扰实验首先是构建RNA干扰载体,本文以pRI 系列载体为例论述了干扰载体的构建的实验流程。 产品技术背景 pRI系列载体是基于III类rna聚合酶启动子:人类H1启动子的专用于哺乳动物细胞RNA干扰的载体。H1启动子在哺乳动物细胞内合成类似siRNA分子的小分子RNA。由于H1启动子有精确的转录起始位点和终止信号,H1启动子转录产物精确生成人工设计的shRNA,shRNA 经过RISC剪切后形成有2个U突出末端的成熟siRNA。由于H1启动子对转录产物长度的严格限制,基本上杜绝了非特异性干扰片段的产生,将载体转染细胞后对其它基因的影响降到最低。 pRI系列载体已经成功用于多种哺乳动物细胞进行基因的RNA干扰。本系列中含有新霉素抗性基因的载体用于稳定表达siRNA,可以在更长时间内对基因表达抑制后的细胞功能和生理现象进行观察和分析。 插入寡核苷酸设计 pRI系列载体的使用需要将人工设计的寡核苷酸片段插入pRI系列载体中特定的酶切位点之间,寡核苷酸片段中包含了针对目标基因的mRNA设计的长度为19nt的干扰片段。 合成时需要化学合成正向和反向两条寡核苷酸。正、反向寡核苷酸退火后与载体连接,插入载体XhoI,BglII位点之间,位于载体上H1启动子下游正确的位置上。连接后的载体转入哺乳动物细胞在H1启动子作用下转录产生shRNA。 1. 选择干扰序列 在RNA干扰实验中,RNA干扰序列的选择会显著影响RNA干扰效果。我们建议您按照以下几点指导原则选择RNA干扰序列: 推荐长度为19 nt,采用21 nt序列也可以取得良好效果。 RNA干扰序列中不包含大于3 nt的连续相同碱基。 RNA干扰序列的GC含量为低到中等水平(推荐GC含量在35%到50%之间)。 不要将RNA干扰序列设计在已知的RNA-蛋白质结合位置附近。 确保RNA干扰序列与其它基因没有较高的同源性。 方向:在编码mRNA的正义链上选择RNA干扰序列。 设计RNA干扰序列是RNAi实验的关键。这里提供的设计原则可以为您设计RNA干扰序列提供帮助。但是,值得注意的是,遵循这些原则不能确保设计的RNA干扰序列对目标基因有好的抑制效果。针对一个目标基因,我们建议您至少设计3条干扰序列并且从中筛选出干扰效果好的序列。 2. 寡核苷酸设计。 (1)设计正义寡核苷酸链(5’-3’方向)。 a) 5’TCGACCC b) 19nt干扰序列正向序列(与目标mRNA一致)。 c) TTCAAGAGA(环状结构)。

载体构建

载体构建分为以下步骤: 1.载体的选择和引物设计以扩增目标基因 2.目标片段的PCR扩增 3.载体和目标片段的限制性酶切 4.连接转化 5.挑取克隆提质粒 6.单克隆的验证及送样测序。 载体的选择 实验室常用的载体有pUC19(扩繁目标片段),pet28a(原核表达载体Kna+),pGEX-4T-1(原核表达载体Amp+),pCI-NEO(真核表达载体Amp+),pCDNA3.1(真核表达载体Amp+),pLKO.1(shRNA构建Amp+)。根据所要构建的质粒目的的差异以及载体和目标片段的酶切位点分析结果来选择载体。举例如下: 实验目的是将MYC基因插入到载体中,转染进细胞中表达。应选用真核表达载体pCI-NEO 或pCDNA3.1。 引物设计 引物设计的目的是将目标片段扩增出来以便与载体连接,所以在引物的两端应人为加上酶切位点,酶切位点前加上保护碱基。在选择酶切位点是应注意,选择的应该是目的基因片段中没有而载体上有的限制性内切酶,防止目标片段被切不完整,也便于和载体连接。 载体构建之后我们的目的是要表达,所以应该加入标签以便western blot检测蛋白是否表达。常用的标签有Flag标签、6XHis标签、HA标签和Myc标签。 Flag标签: D Y K D D D D K GAT TAC AAG GAT GAC GAC GAT AAG 6XHis标签: H H H H H H CAC CAC CAC CAC CAC CAC HA标签: Y P Y D V P D Y A TAC CCA TAC GAT GTT CCA GAT TAC GCT Myc标签: E Q K L I S E E D L 这些标签被表达成氨基酸后,特定的氨基酸序列会与相应抗体结合,在western blot时可被检测。因此,在设计引物时,这些核酸序列应位于起始密码子ATG之后。

载体构建的基本步骤

1、摇菌(制作感受态细胞备用) 上述菌液PCR 有结果的菌液送测,送测结果与 预期相符则该载体构建成功。阳性单克隆筛选 上述转化得到的菌液接种到筛 选培养基中过夜培养挑菌并菌液PCR 转化 感受态细胞制备转化步骤 载体与目的基因连接 质粒与目的基因双酶切 选择内切酶摸索酶切条件(时 间和温度)电泳检测及回收纯化步骤 质粒(载体)提取 质粒选择提取步骤 目的基因克隆 引物设计PCR

取装有液体培养基的3ml试管两支(依情况而定),每管加40-100μl菌种,过夜摇。 2、提质粒(也就是载体) 依照提质粒试剂盒中的说明书操作(根据情况最后一步洗脱时可以多洗1-2次)。3、酶切(双酶切产生粘性末端) 反应所需试剂体积(单位:ul) 质粒10 所需内切酶反应缓冲液 2 所需限制性内切核酸酶 1 H2O 7 将加好的EP管置于37℃保温1-2h。(依照提酶切的具体步骤操作;为了达到最佳酶切的效果,最好根据所选用的酶确定所需要的反应温度) 4、电泳检测 将酶切产物进行琼脂糖凝胶电泳,检测酶切是否成功。 回收胶:琼脂糖与缓冲液一比一制胶,经过切胶回收目的产物,也有目的产物纯化的功能;检测胶:琼脂糖与缓冲液一比二制胶,为了检测目的条带与预期是否相符。 切胶回收与产物纯化是差不多的过程,所达到的目的是一样的:切胶回收也是一种纯化过程,它能去除非目的片段,然后用回收试剂盒进行纯化,能将很不纯的DNA溶液纯化;产物纯化是将较纯的DNA溶液进一步除去多余的杂质,用纯化试剂盒,你会发现纯化试剂盒和回收试剂盒的步骤几乎一样。 5、载体与目的基因连接 如果电泳检测酶切成功的话,则仔细将所需的片段切割下来,将胶体回收(依照胶回收试剂盒说明书操作);之后将回收的片段和载体连接。置于温箱,12-16℃,保温8-16h 6、转化(连接产物转化到感受态细胞中) 依照转化具体操作步骤做感受态,将上述连接产物进行转化实验,涂板培养,37℃,12-16h。 7、单克隆检测 (1)挑单克隆

慢病毒载体构建步骤研究

一、简介 慢病毒(Lentivirus)载体是以HIV-1(人类免疫缺陷I型病毒)为基础发展起来的基因治疗载体。区别一般的逆转录病毒载体,它对分裂细胞和非分裂细胞均具有感染能力。慢病毒载体的研究发展得很快,研究的也非常深入。该载体可以将外源基因有效地整合到宿主染色体上,从而达到持久性表达。 目前慢病毒也被广泛地应用于表达RNAi的研究中。由于有些类型细胞脂质体转染效果差,转移到细胞内的siRNA半衰期短,体外合成siRNA对基因表达的抑制作用通常是短暂的,因而使其应用受到较大的限制。采用事先在体外构建能够表达siRNA的载体, 然后转移到细胞内转录siRNA的策略,不但使脂质体有效转染的细胞种类增加,而且对基因表达抑制效果也不逊色于体外合成siRNA,在长期稳定表达载体的细胞中,甚至可以发挥长期阻断基因表达的作用。慢病毒载体能够产生表达shRNA的高滴度的慢病毒,在周期性和非周期性细胞、干细胞、受精卵以及分化的后代细胞中表达shRNA,实现在多种类型的细胞和转基因小鼠中特异而稳定的基因表达的功能性沉默,为在原代的人和动物细胞组织中快速而高效地研究基因功能,以及产生特定基因表达降低的动物提供了可能性。慢病毒作为siRNA的携带者,不但具备特异性地使基因表达沉默的能力,而且充分发挥了慢病毒载体自身所具备的优势,为基因功能的研究提供了更强有力的工具。 在所构建的siRNA表达载体中,是由RNA聚合酶Ⅲ启动子来指导RNA合成的,这是因为RNA聚合酶Ⅲ有明确的起始和终止序列,而且合成的RNA不会带poly A尾。当RNA 聚合酶Ⅲ遇到连续4个或5个T时,它指导的转录就会停止,在转录产物3’端形成1~4个U。U6和H1 RNA启动子是两种RNA聚合酶Ⅲ依赖的启动子,其特点是启动子自身元素均位于转录区的上游,适合于表达~21ntRNA和~50ntRNA茎环结构(stem loop)。在siRNA表达载体中,构成siRNA的正义与反义链,可由各自的启动子分别转录,然后两条链互补结合形成siRNA;也可由载体直接表达小发卡状RNA(small hairpin RNA, shRNA), 载体包含位于RNA聚合酶Ⅲ启动子和4~5T转录终止位点之间的茎环结构序列,转录后即可折叠成具有1~4 个U 3 ’ 突出端的茎环结构,在细胞内进一步加工成siRNA。构建载体前通常要通过合成siRNA的方法,寻找高效的siRNA,然后从中挑选符合载体要求的序列,将其引入siRNA表达载体(筛选)。 二、实验流程(大致的简单过程) 慢病毒表达载体包含了包装、转染、稳定整合所需要的遗传信息。慢病毒包装质粒可提供所有的转录并包装RNA 到重组的假病毒载体所需要的所有辅助蛋白。为产生高滴度的

micRNA载体构建流程

micRNA载体构建流程: 1.micRNA 片段PCR (1) PCR体系: 5x PrimeSTAR buffer 10.0 μL 2.5 mM dNTPs mixture 4.0 μL Primer1 (10 uM) 1.0 μL Primer2 (10 uM) 1.0 μL PrimeSTAR HS 0.3μL 模板DNA 2μL ddH2O 31.7μL 程序: 98℃ 1min; 98℃ 10s,55℃ 10min,72℃ 1.0min,30 cycles; 72℃ 10min 1.0%琼脂糖胶检测PCR结果:上样5ul 注意:PCR用50μL体系重复两管,回收时,并成一管纯化。回收完后检测纯化产物OD值,纯化产物含量最好高于50ng/ul,若产物浓度低,则再多做几份PCR再回收。 (2)纯化产物补A 上述纯化后,浓度达到要求的产物可进行补A,用于后续连接。 补A体系: 纯化产物:16.8ul 10x PCR buffer:2ul dATP(10mM):1ul (终浓度2 mM) rTaq:0.2 ul 反应条件:72℃15-30min 补A产物放于-20℃备用。 2. CD3-1250载体酶切 做第一步PCR的同时,可先做载体酶切,做好准备。

酶切体系: ddH2O:34ul 10X NEB Buffer2: 5ul Xcm1: 1-1.5ul CD3-1250质粒:10-20 ul 酶切重复6管,胶回收时可将2-3管合并为一管回收。 反应条件:37℃ 3-5小时或过夜。 1.0%琼脂糖胶检测酶切是否完全,若酶切完全,可进行后续回收。上样5ul,检测时140-150V电压,跑胶15-20min即可,勿跑太长时间。 回收:制备一块1.0%琼脂糖新胶(大孔),将酶切产物全部上样,140V-150V跑胶20min 左右。切胶回收大片段载体。 载体片段较大,需用天根胶回收纯化试剂盒回收。 回收完后检测纯化产物OD值,载体纯化产物含量最好高于50ng/ul,若产物浓度低,则再多做几份酶切再切胶回收。 3. 连接反应: 体系:PCR补A产物(约50ng/ul): 1.5ul CD3-1250载体回收产物(约50ng/ul): 1.5ul Soltion I(TAKARA):3ul 条件:16℃ 3-5小时,或过夜连接。 4. 转化DH5α感受态细胞 将上述连接产物全部用于转化,涂布Kan平板,Kan终浓度50ug/ml。倒置培养过夜。 5. 重组子鉴定 (1)菌落PCR鉴定或菌液PCR鉴定阳性克隆。PCR鉴定时别忘了加上阳性对照(col做模板)、阴性对照(不加模板)。鉴定一般用自制TAQ进行。 (2)挑选3-5个阳性克隆摇菌后提取质粒进行酶切鉴定。提质粒时用天根或生工提质粒试剂盒,集菌两次。质粒用BamH1进行酶切鉴定。 BamH1酶切鉴定体系: ddH2O:7ul 10X BamH1 Buffer: 2ul BamH1: 0.5ul 重组质粒:10.5 ul 条件:37℃ 2小时。 1.0%琼脂糖胶检测酶切结果,全部上样或上样10ul检测,检测时140-150V电压,跑胶

相关文档
最新文档