最新初中数学竞赛试题及答案汇编
初中中数学竞赛试题及答案

初中中数学竞赛试题及答案初中数学竞赛试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0或13. 若a,b,c是三角形的三边,且满足a^2 + b^2 = c^2,则这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 钝角三角形4. 一个多项式f(x) = x^3 - 6x^2 + 11x - 6,它的根是:A. 1, 2, 3B. 2, 3, 4C. 1, 3, 4D. 2, 2, 35. 一个圆的半径为5,圆心到直线的距离为4,那么直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 内切6. 以下哪个是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 椭圆7. 一个数列1, 3, 5, ..., 19,这个数列共有多少项?A. 10B. 11C. 12D. 138. 一个等差数列的首项是2,公差是3,那么第10项是:A. 29B. 32C. 35D. 389. 一个长方形的长是宽的两倍,如果长增加2米,宽增加1米,面积增加8平方米,求原长方形的宽是多少?A. 2米B. 3米C. 4米D. 5米10. 一个分数的分子与分母的和是21,如果分子增加5,分母增加1,新的分数等于1,求原分数是多少?A. 3/18B. 4/17C. 5/16D. 6/15二、填空题(每题4分,共20分)11. 如果一个数的平方根等于它本身,那么这个数是________。
12. 一个数的绝对值是它本身,这个数是非负数,即这个数是________。
13. 一个多项式f(x) = x^2 - 5x + 6可以分解为________。
14. 一个数的立方根等于它本身,这个数是________。
15. 如果一个数列的前三项是1, 2, 3,且每一项都是前一项的两倍,这个数列的第5项是________。
初一数学竞赛试题及答案

初一数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A3. 如果a和b是两个不同的正整数,且a < b,那么下列哪个不等式一定成立?A. a + b > 0B. a - b < 0C. ab > 0D. a/b < 1答案:D4. 计算下列哪个表达式的结果是正数?A. (-3) × (-2)B. (-3) × 2C. 3 × (-2)D. (-3) × (-2) × (-1)答案:A5. 一个数的绝对值是5,那么这个数可能是:B. -5C. 5或-5D. 0答案:C6. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是:A. 11B. 13C. 16D. 无法确定答案:B7. 如果一个数的平方等于9,那么这个数是:A. 3C. 3或-3D. 9答案:C8. 一个数的立方等于-8,那么这个数是:A. -2B. 2C. -8D. 8答案:A9. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10答案:A10. 一个数除以-2等于-3,那么这个数是:A. 6B. -6C. 3D. -3答案:B二、填空题(每题4分,共40分)11. 一个数的绝对值是7,这个数可能是______。
答案:7或-712. 一个数的相反数是-4,这个数是______。
答案:413. 一个数的平方等于16,这个数是______。
答案:4或-414. 一个数的立方等于-27,这个数是______。
答案:-315. 一个等腰三角形的两边长分别为4和6,那么这个三角形的周长是______。
答案:14或1616. 计算表达式(-2) × (-3) + 4的结果是______。
2023年全国初中数学竞赛试题

2023年全国初中数学竞赛试题一、选择题:1.已知实数a ≠b, 且满足(a+1)2=3-3(a+1),3(b+1)=3-(b+1)2 。
则b +a 旳值为( ) A.23; B.-23; C-2; D-132、若直角三角形旳两条直角边长为a 、b, 斜边长为c, 斜边上旳高为h, 则有( ) A.ab=h ; B. + = ; C. + = ; D.a2 +b2=2h23、一条抛物线y=ax2+bx+c 旳顶点为(4, -11), 且与x 轴旳两个交点旳横坐标为一正一负, 则a 、b 、c 中为正数旳( )A.只有a;B.只有b;C.只有c;D.只有a 和b 4.如图所示, 在△ABC 中, DE ∥AB ∥FG, 且FG 到DE 、AB 旳距离之比为1: 2。
若△ABC 旳面积为32, △CDE 旳面 积为2, 则△CFG 旳面积S=( ) A.6; B.8; C.10; D.125、假如x 和y 是非零实数, 使得∣x ∣+y=3和∣x ∣y+x3=0, 那么x+y 等于( ) A.3; B 、 ; C 、 ; D 、4- 二、填空题:6.如图所示, 在△ABC 中, AB=AC, AD=AE, ∠BAD=600, 则∠EDC=_____________(度)。
7、据有关资料记录, 两个都市之间每天旳 通话次数T 与这两个都市旳人口数m 、n (单位: 万人)以及两个都市间旳距离d (单位: km )有T= 旳关系(k为常数)。
现测得A.B.C 三个都市旳人口及它们之间旳距离如图所示, 且已知A.B 两个都市间每天旳 通话次数为t, 那么B.C 两个都市间每天旳 次数为 次(用t 表达)。
8、已知实数a 、b 、x 、y 满足a+b=x+y=2 , ax+by=5 , 则(a2+b2)xy+ab(x2+y2)= 。
9、如图所示, 在梯形ABCD 中, AD ∥BC (BC >AD ), ∠D=900, BC=CD=12, ∠ABE=45, 若AE=10, 则CE 旳长度为 。
数学竞赛试题及答案初中

数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。
解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。
根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。
由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。
试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。
解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。
代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。
试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。
已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。
代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。
初中奥林匹克数学竞赛试题

初中奥林匹克数学竞赛试题一、选择题(每题3分,共30分)1. 若实数a,b满足 a + 2 +(b - 4)² = 0,则a + b的值为()。
A. - 2B. 2C. 6D. - 6答案:B。
解析:因为绝对值是非负的,一个数的平方也是非负的,要使 a + 2 +(b - 4)² = 0,那么a+2 = 0且b - 4 = 0,解得a=-2,b = 4,所以a + b=2。
2. 把多项式x² - 4x+4分解因式,结果正确的是()。
A. (x - 2)²B. (x+2)²C. (x - 4)²D. (x+4)²答案:A。
解析:x²- 4x + 4符合完全平方公式a²- 2ab+b²=(a - b)²的形式,这里a=x,b = 2,所以分解因式结果为(x - 2)²。
3. 已知一元二次方程x² - 3x - 2 = 0的两个实数根为x1,x2,则(x1 - 1)(x2 - 1)的值是()。
A. - 4B. - 2C. 0D. 2答案:C。
解析:根据韦达定理,对于一元二次方程ax²+bx + c = 0(a≠0),x1+x2=-b/a,x1x2=c/a。
在方程x² - 3x - 2 = 0中,a = 1,b=-3,c = - 2,所以x1+x2 = 3,x1x2=-2。
(x1 - 1)(x2 - 1)=x1x2-(x1+x2)+1=-2 - 3+1 = 0。
4. 一个三角形的三个内角之比为1:2:3,则这个三角形是()。
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B。
解析:设三个内角分别为x,2x,3x,因为三角形内角和为180°,所以x+2x+3x = 180°,解得x = 30°,那么三个角分别为30°,60°,90°,所以是直角三角形。
2024全国初中数学竞赛试题

1、已知直角三角形的两条直角边长度分别为3和4,则斜边上的高为:A. 2.4B. 1.2C. 5D. 不能确定(答案)A2、若a、b、c为三角形的三边长,且满足a² + b² + c² + 50 = 10a + 6b + 8c,则此三角形为:A. 直角三角形B. 等腰三角形C. 等边三角形D. 不能确定(答案)A3、解方程组 { x + 2y = 5, 3x - 4y = -2 } 时,若先消去y,则得到的方程是:A. 5x = 14B. 5x = 10C. 7x = 16D. 7x = 22(答案)B4、在平行四边形ABCD中,若∠A : ∠B = 2 : 3,则∠C的度数为:A. 60°B. 90°C. 120°D. 不能确定(答案)C5、已知 |x| = 5,y = 3,则x - y等于:A. 8或-2B. 2或-8C. -2或8D. -8或2(答案)D6、若关于x的一元二次方程x² - (k - 1)x - k = 0有两个相等的实数根,则k的值为:A. -3B. 3C. -1D. 1(答案)D7、在圆O中,弦AB的长度等于半径OA,则∠AOB的度数为:A. 30°B. 60°C. 120°D. 30°或150°(答案)B8、若a > b > 0,c < d < 0,则一定有:A. a² > b²B. c² > d²C. a/d > b/cD. a/d < b/c(答案)A9、已知一次函数y = kx + b的图像经过点(2, 3)和(-1, -3),则它的图像不经过:A. 第一象限B. 第二象限C. 第三象限D. 第四象限(答案)C10、在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为:A. 45°B. 60°C. 75°D. 90°(答案)C。
初三数学竞赛试题及答案

初三数学竞赛试题及答案一、选择题(每题5分,共20分)1. 已知a、b、c是三角形的三边,下列不等式中一定成立的是()。
A. a^2 + b^2 < c^2B. a^2 + b^2 = c^2C. a^2 + b^2 > c^2D. a^2 + b^2 ≥ c^2答案:C2. 一个数的立方根是它本身的数是()。
A. 0B. 1C. -1D. 0和1答案:D3. 一个多项式除以x-2,商式为x^2 + 2x + 3,余数为1,则这个多项式是()。
A. x^3 + 5x^2 + 7x + 1B. x^3 + 3x^2 + 7x + 1C. x^3 + 3x^2 + 7x + 2D. x^3 + 5x^2 + 7x + 2答案:D4. 已知方程x^2 - 6x + 9 = 0的两个根为x1和x2,则x1 + x2的值为()。
A. 3B. 6C. 9D. 12答案:B二、填空题(每题5分,共20分)5. 已知直角三角形的两直角边长分别为3和4,则斜边长为_________。
答案:56. 一个数的绝对值是5,则这个数是_________。
答案:±57. 已知一个二次函数的顶点坐标为(1,-2),且图象经过点(0,-1),则该二次函数的解析式为_________。
答案:y = 3(x - 1)^2 - 28. 已知一个等差数列的首项为2,公差为3,则该数列的第10项为_________。
答案:29三、解答题(每题15分,共60分)9. 已知一个等腰三角形的底边长为6,腰长为x,且该三角形的面积为12。
求x的值。
解:根据题意,等腰三角形的底边长为6,腰长为x,面积为12。
设底边的高为h,则有:1/2 × 6 × h = 12h = 4根据勾股定理,有:x^2 = 3^2 + 4^2x^2 = 9 + 16x^2 = 25x = 5所以,腰长x的值为5。
10. 已知一个二次函数的图象开口向上,且经过点(1,0)和(-1,0)。
数学竞赛初中试题及答案

数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的值:(3x^2 - 2x + 1) + (x^2 + 4x - 3) = ?A. 4x^2 + 2x - 2B. 4x^2 + 2x + 2C. 5x^2 + 2x - 2D. 5x^2 + 2x + 2答案:D3. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:C4. 如果一个数的平方是36,那么这个数是?A. 6B. ±6C. 36D. ±36答案:B5. 以下哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:B6. 一个等差数列的第一项是2,公差是3,那么第5项是多少?A. 17B. 14C. 11D. 8答案:A7. 下列哪个图形的面积是最大的?A. 边长为4的正方形B. 半径为2的圆C. 长为5,宽为3的矩形D. 底为6,高为2的三角形答案:B8. 一个正方体的体积是27立方厘米,那么它的表面积是多少?A. 54平方厘米B. 63平方厘米C. 81平方厘米D. 108平方厘米答案:A9. 一个数的立方根是2,那么这个数是?A. 6B. 8C. 2D. 4答案:D10. 下列哪个方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 - 6x + 9 = 0答案:A二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是________。
答案:512. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是________厘米。
答案:2213. 如果一个数除以3余1,除以5余2,那么这个数最小是________。
初三竞赛数学试题及答案

初三竞赛数学试题及答案一、选择题(每题4分,共40分)1. 若a、b、c是三角形的三边长,且满足a²+b²+c²=ab+ac+bc,则该三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定2. 已知a、b、c是实数,且a+b+c=0,那么下列式子中一定成立的是()A. ab+bc+ca=0B. (a+b)(b+c)(c+a)=0C. a²+b²+c²=ab+bc+caD. a³+b³+c³=3abc3. 一个等腰三角形的两边长分别为6和8,那么这个三角形的周长是()A. 16B. 20C. 22D. 244. 已知x²-3x+1=0,那么x³-5x+1的值为()A. 0B. 1C. -4D. -85. 一个数的平方根是2和-2,那么这个数是()A. 4B. -4C. 0D. 26. 已知一个二次函数y=ax²+bx+c(a≠0),其图像开口向上,且与x轴有两个交点,那么下列说法正确的是()A. a>0,b²-4ac>0B. a<0,b²-4ac>0C. a>0,b²-4ac<0D. a<0,b²-4ac<07. 一个圆的半径为r,那么这个圆的面积是()A. πrB. πr²C. 2πrD. 2πr²8. 已知一个等差数列的首项为a,公差为d,那么这个数列的第n项是()A. a+(n-1)dB. a-(n-1)dC. a+ndD. a-nd9. 已知一个等比数列的首项为a,公比为q,那么这个数列的第n项是()A. aq^(n-1)B. aq^nC. a/q^(n-1)D. a/q^n10. 已知一个函数y=f(x),那么下列说法正确的是()A. f(a)=f(b) 则a=bB. f(a)≠f(b) 则a≠bC. f(a)=f(b) 则a≠bD. f(a)≠f(b) 则a=b二、填空题(每题4分,共20分)11. 已知一个三角形的三边长分别为3、4、5,那么这个三角形的面积是_________。
初中数学竞赛试题及答案pdf

初中数学竞赛试题及答案pdf一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(3无限循环)B. √2C. 3.14D. 1/32. 一个数的平方等于它本身,这个数是?A. 0B. 1C. -1D. 0或13. 如果一个等腰三角形的底边长为6,高为4,那么它的周长是多少?A. 12B. 14C. 16D. 184. 一个数列的前三项是2,4,8,那么第四项是多少?A. 16B. 32C. 64D. 1285. 一个圆的半径是5,那么它的面积是多少?A. 25πC. 75πD. 100π6. 下列哪个图形的面积是最大的?A. 边长为4的正方形B. 半径为4的圆C. 长为6,宽为4的矩形D. 底边为6,高为4的等腰三角形7. 如果一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 08. 一个数的相反数是-3,那么这个数是?A. 3B. -3C. 0D. 69. 一个数的倒数是1/4,那么这个数是?A. 4B. 1/4C. 1/2D. 210. 下列哪个表达式的值是最小的?A. 5 - 3B. 5 + 3D. 5 ÷ 3二、填空题(每题4分,共20分)11. 一个数的立方等于-8,这个数是______。
12. 如果一个直角三角形的两条直角边长分别是3和4,那么它的斜边长是______。
13. 一个数的平方根是2,那么这个数是______。
14. 如果一个数除以3的商是5,那么这个数是______。
15. 一个圆的直径是10,那么它的周长是______。
三、解答题(每题10分,共50分)16. 一个等差数列的前三项分别是3,7,11,求这个数列的第10项。
17. 一个长方形的长是宽的两倍,且周长是24,求这个长方形的面积。
18. 一个三角形的内角和是多少?19. 一个数的平方加上这个数本身等于0,求这个数。
20. 一个圆的半径增加2,那么它的面积增加了多少?答案一、选择题1. B2. D3. C4. B5. C6. B7. C8. A9. A 10. A二、填空题11. -2 12. 5 13. 4 14. 15 15. 31.4三、解答题16. 第10项是31。
全国初中数学竞赛试题(含答案)-20220207144625

全国初中数学竞赛试题(含答案)20220207144625一、选择题(每题5分,共20分)1. 下列哪个数是质数?A. 2B. 3C. 4D. 52. 如果一个三角形的两边长分别为3和4,那么这个三角形的周长可能是多少?A. 7B. 10C. 11D. 123. 下列哪个分数可以化简为最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个正方形的面积是36平方厘米,那么这个正方形的边长是多少厘米?A. 6B. 7C. 8D. 9二、填空题(每题5分,共20分)1. 7的平方根是______。
2. 0.25的小数点向右移动两位后是______。
3. 一个等边三角形的边长是10厘米,那么这个等边三角形的周长是______厘米。
4. 下列哪个数是立方数?A. 2B. 3C. 4D. 5三、解答题(每题10分,共30分)1. 解方程:2x 5 = 11。
2. 计算下列表达式的值:3(2 + 4) 7。
3. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。
四、答案部分一、选择题1. A2. B3. A4. D二、填空题1. ±√72. 253. 304. C三、解答题1. x = 82. 133. 32平方厘米全国初中数学竞赛试题(含答案)20220207144625四、应用题(每题15分,共30分)1. 小明家有一块长方形的地,长是12米,宽是8米。
小明计划将这块地分成两个相同大小的正方形区域。
请问每个正方形的边长是多少米?2. 小红有一笔钱,她将其中的1/3用于购买书,剩下的钱再将其中的1/2用于购买文具。
她剩下的钱是100元。
请问小红最初有多少钱?五、证明题(每题15分,共30分)1. 证明:对于任意实数a和b,如果a < b,那么a² < b²。
2. 证明:等腰三角形的底角相等。
六、答案部分四、应用题1. 每个正方形的边长是6米。
2. 小红最初有300元。
初中数学竞赛试题及答案pdf

初中数学竞赛试题及答案pdf一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方等于9,这个数是?A. 3B. -3C. 3或-3D. 以上都不是答案:C3. 计算下列算式的结果:(2x + 3)(2x - 3) = ?A. 4x^2 - 6x + 6B. 4x^2 - 9C. 4x^2 + 6x - 9D. 4x^2 + 9答案:B4. 如果一个三角形的两边长分别为3和4,且这两边之间的夹角为90度,那么这个三角形的周长是多少?A. 7B. 8C. 9D. 10答案:D5. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A6. 一个圆的直径是10厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:C7. 以下哪个是完全平方数?A. 36B. 49C. 64D. 81答案:C8. 一个数的立方等于-8,这个数是?A. -2B. 2C. -2或2D. 以上都不是答案:A9. 计算下列算式的结果:(a + b)^2 = ?A. a^2 + 2ab + b^2B. a^2 - 2ab + b^2C. a^2 + b^2D. a^2 - b^2答案:A10. 如果一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题4分,共20分)11. 一个数的平方根是2,那么这个数是______。
答案:412. 一个等差数列的首项是2,公差是3,那么这个数列的第5项是______。
答案:1713. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是______厘米。
答案:2214. 如果一个数除以3余2,除以5余1,那么这个数可能是______(写出一个符合条件的数即可)。
答案:1115. 一个直角三角形的两直角边长分别是3厘米和4厘米,那么这个三角形的斜边长是______厘米。
数学初中竞赛试题及答案

数学初中竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 一个数的绝对值是它本身,这个数是:A. 0B. 1C. -1D. 2答案:B4. 如果一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 05. 一个数的立方是-27,那么这个数是:A. 3B. -3C. 3或-3D. 0答案:B6. 计算下列算式的结果:\( \frac{2}{3} + \frac{1}{4} \)A. \( \frac{11}{12} \)B. \( \frac{7}{12} \)C. \( \frac{5}{12} \)D. \( \frac{3}{4} \)答案:A7. 计算下列算式的结果:\( 3^2 - 2^2 \)A. 3B. 5C. 7D. 9答案:B8. 计算下列算式的结果:\( (x+y)(x-y) \)A. \( x^2 - y^2 \)B. \( x^2 + y^2 \)C. \( 2xy \)D. \( -2xy \)9. 计算下列算式的结果:\( (2x+3)(2x-3) \)A. \( 4x^2 - 6x + 9 \)B. \( 4x^2 - 9 \)C. \( 4x^2 + 6x - 9 \)D. \( 4x^2 + 9 \)答案:D10. 计算下列算式的结果:\( \sqrt{49} \)A. 7B. -7C. 49D. ±7答案:D二、填空题(每题4分,共20分)11. 一个数的平方等于它本身,这个数是_______。
答案:0或112. 一个数的立方等于它本身,这个数是_______。
答案:-1, 0, 113. 一个数的绝对值是5,这个数是_______。
答案:±514. 一个数的相反数是-3,这个数是_______。
初中竞赛数学试卷及答案

一、选择题(每题5分,共20分)1. 若实数x满足方程x^2 - 4x + 3 = 0,则x的值为:A. 1B. 3C. 1或3D. 22. 在等腰三角形ABC中,AB=AC,AD是BC边上的高,且AD=4cm,AB=8cm,则BC 的长度为:A. 8cmB. 10cmC. 6cmD. 12cm3. 下列函数中,是反比例函数的是:A. y = x^2B. y = 2x + 1C. y = 1/xD. y = 3x^34. 若一个数的平方根是±2,则这个数是:A. 4B. -4C. 16D. -165. 下列等式中,正确的是:A. (a+b)^2 = a^2 + 2ab + b^2 + 2abB. (a-b)^2 = a^2 - 2ab + b^2C. (a+b)^2 = a^2 + 2ab - b^2D. (a-b)^2 = a^2 - 2ab - b^2二、填空题(每题5分,共20分)6. 若一个数的倒数是1/5,则这个数是______。
7. 若x=2,则2x-3的值为______。
8. 下列数中,是偶数的是______。
9. 在直角坐标系中,点A(3,4)关于x轴的对称点是______。
10. 若一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长是______cm。
三、解答题(每题10分,共30分)11. 解方程:3x - 5 = 2x + 1。
12. 已知等腰三角形ABC中,AB=AC,AD是BC边上的高,且AD=6cm,AB=10cm,求BC的长度。
13. 已知函数y = 2x - 3,求x的值,使得y=5。
四、应用题(15分)14. 小明从家出发去图书馆,先向东走了1000米,然后向北走了800米,最后向西走了500米到达图书馆。
请计算小明从家到图书馆的总路程。
答案:一、选择题1. C2. B3. C4. A5. B二、填空题6. 57. 18. 29. (-3,4)10. 24三、解答题11. 解:3x - 5 = 2x + 13x - 2x = 1 + 5x = 612. 解:由等腰三角形的性质知,AD=BD,因此BD=6cm。
数学初中竞赛题试卷及答案

一、选择题(每题5分,共25分)1. 下列各数中,有理数是()A. $\sqrt{2}$B. $\pi$C. $\frac{1}{2}$D. $\sqrt{3}$2. 若a、b、c是等差数列,且a+b+c=12,则abc的最大值为()A. 27B. 36C. 45D. 543. 已知函数f(x) = x^2 - 2ax + a^2,若f(x)在区间[1, 3]上的最大值是6,则a的值为()A. 2B. 3C. 4D. 54. 在△ABC中,角A、B、C的对边分别为a、b、c,若a^2 + b^2 - c^2 = 2ab,则△ABC的形状是()A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形5. 已知正方体的对角线长为$\sqrt{3}$,则它的体积是()A. $\frac{\sqrt{3}}{2}$B. $\sqrt{3}$C. $\sqrt{6}$D. 3二、填空题(每题5分,共25分)6. 若x、y是方程x^2 - 2x - 3 = 0的两个实数根,则x^2 + y^2 = _______。
7. 若a、b、c是等差数列,且a + b + c = 15,则ab + bc + ca = _______。
8. 已知函数f(x) = (x - 1)^2 - 2(x - 1) + 1,则f(x)的最小值是 _______。
9. 在△ABC中,若a = 3,b = 4,c = 5,则△ABC的面积是 _______。
10. 已知等比数列{an}的首项a1 = 2,公比q = 3,则an = _______。
三、解答题(每题15分,共30分)11. (15分)已知数列{an}满足an = 2an-1 + 1,且a1 = 1,求:(1)数列{an}的通项公式;(2)数列{an + 1}的前n项和Sn。
12. (15分)已知函数f(x) = x^3 - 3x^2 + 4x - 1,求:(1)f(x)的导数f'(x);(2)f(x)在区间[1, 2]上的最大值和最小值。
数学竞赛初中试题及答案

数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 已知等腰三角形的两边长分别为5和8,那么这个等腰三角形的周长是:A. 18B. 21C. 26D. 282. 一个数的平方等于它的4倍,这个数是:A. 0B. 2C. -2D. 0或23. 一个长方形的长是宽的2倍,如果宽增加2厘米,长减少2厘米,那么面积不变。
设长方形的宽为x厘米,根据题意可得方程:A. 2x(x+2) = x(x-2)B. 2x(x-2) = x(x+2)C. 2x^2 = x^2 - 4x + 4D. 2x^2 = x^2 + 4x - 44. 一个数列的前四项依次为1, 2, 4, 8,那么第五项是:A. 16B. 32C. 64D. 1285. 一个圆的直径是10厘米,那么它的面积是:A. 78.5平方厘米B. 157平方厘米C. 314平方厘米D. 785平方厘米6. 一个数的相反数是-4,那么这个数是:A. 4B. -4C. 0D. 87. 一个分数的分子比分母小3,且这个分数等于1/2,那么这个分数是:A. 1/3B. 2/5C. 3/6D. 4/78. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 09. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0, 1或-110. 一个等差数列的前三项依次为2, 5, 8,那么第四项是:A. 11B. 12C. 13D. 14二、填空题(每题4分,共20分)1. 一个数的立方根是它本身的数是______。
2. 如果一个三角形的两个内角分别是45度和45度,那么第三个内角是______度。
3. 一个数的绝对值是它本身,这个数是______。
4. 一个数的平方等于16,这个数是______。
5. 一个数的相反数是它本身,这个数是______。
三、解答题(每题10分,共50分)1. 已知一个等腰三角形的两边长分别为3和4,求这个等腰三角形的周长。
初中数学竞赛试卷带答案

一、选择题(每题5分,共25分)1. 下列各数中,哪个数是负数?A. -3B. 0C. 3D. -3.5答案:D2. 如果一个长方形的面积是24平方厘米,长是6厘米,那么宽是多少厘米?A. 2B. 3C. 4D. 5答案:B3. 下列哪个数是偶数?A. 23B. 25C. 26D. 27答案:C4. 下列哪个图形的对称轴最多?A. 等腰三角形B. 等边三角形C. 长方形答案:D5. 一个正方体的棱长为a,那么它的表面积是多少?A. 4a^2B. 6a^2C. 8a^2D. 12a^2答案:B二、填空题(每题5分,共25分)6. 1/2 + 3/4 = _______答案:5/47. 9.6 - 3.8 = _______答案:5.88. 0.3 × 0.4 = _______答案:0.129. 下列分数中,哪个是最简分数?A. 6/8B. 3/4C. 4/6D. 8/10答案:B10. 下列哪个数是整数?A. 1.5C. 1.1D. 1.01答案:A三、解答题(每题10分,共30分)11. 一个长方形的长是8厘米,宽是5厘米,求它的周长。
答案:周长= 2 × (长 + 宽) = 2 × (8 + 5) = 2 × 13 = 26厘米12. 一个梯形的上底是6厘米,下底是10厘米,高是4厘米,求它的面积。
答案:面积 = (上底 + 下底) × 高÷ 2 = (6 + 10) × 4 ÷ 2 = 16 × 4 ÷ 2 = 64 ÷ 2 = 32平方厘米13. 一个圆的半径是3厘米,求它的周长和面积。
答案:周长= 2 × π × 半径= 2 × 3.14 × 3 = 18.84厘米面积= π × 半径^2 = 3.14 × 3^2 = 3.14 × 9 = 28.26平方厘米四、附加题(10分)14. 一个等腰三角形的底边长是10厘米,腰长是13厘米,求这个三角形的面积。
全国初中数学竞赛试题及答案大全

全国初中数学竞赛试题及答案大全试题一:代数基础题目:若\( a \), \( b \), \( c \)为实数,且满足\( a + b + c = 3 \),\( ab + ac + bc = 1 \),求\( a^2 + b^2 + c^2 \)的值。
解答:根据已知条件,我们可以使用配方法来求解。
首先,我们知道\( (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \)。
将已知条件代入,得到\( 3^2 = a^2 + b^2 + c^2 + 2 \times 1 \)。
简化后,我们得到\( a^2 + b^2 + c^2 = 9 - 2 = 7 \)。
试题二:几何问题题目:在直角三角形ABC中,∠A=90°,AB=6,AC=8,求斜边BC的长度。
解答:根据勾股定理,直角三角形的斜边BC的平方等于两直角边的平方和,即\( BC^2 = AB^2 + AC^2 \)。
代入已知数值,得到\( BC^2 = 6^2 + 8^2 = 36 + 64 = 100 \)。
因此,\( BC = \sqrt{100} = 10 \)。
试题三:数列问题题目:一个等差数列的首项是2,公差是3,求第10项的值。
解答:等差数列的第n项可以通过公式\( a_n = a_1 + (n - 1)d \)来计算,其中\( a_1 \)是首项,d是公差,n是项数。
将已知条件代入公式,得到\( a_{10} = 2 + (10 - 1) \times 3 = 2 + 9 \times 3 = 29 \)。
试题四:概率问题题目:一个袋子里有5个红球和3个蓝球,随机取出2个球,求取出的两个球颜色相同的概率。
解答:首先计算总的可能情况,即从8个球中取2个球的组合数,用组合公式C(8,2)计算。
然后计算取出两个红球或两个蓝球的情况。
两个红球的情况有C(5,2)种,两个蓝球的情况有C(3,2)种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)2000年全国初中数学竞赛试题解答 (9)2001年TI杯全国初中数学竞赛试题B卷 (14)2002年全国初中数学竞赛试题 (15)2003年“TRULY®信利杯”全国初中数学竞赛试题 (17)2004年“TRULY®信利杯”全国初中数学竞赛试题 (25)2005年全国初中数学竞赛试卷 (30)2006年全国初中数学竞赛试题 (32)2007年全国初中数学竞赛试题 (38)2008年全国初中数学竞赛试题 (46)2009年全国初中数学竞赛试题 (47)2010年全国初中数学竞赛试题 (52)2011年全国初中数学竞赛试题 (57)2012年全国初中数学竞赛试题 (60)2013年全国初中数学竞赛试题 (73)2014年全国初中数学竞赛预赛 (77)2015年全国初中数学竞赛预赛 (85)2016年全国初中数学联合竞赛试题 (94)2017年全国初中数学联赛初赛试卷 (103)2018 年初中数学联赛试题 (105)1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( ) (A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cb c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( )(A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( ) (A)12(B)14(C)16(D)184、已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四 5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。
7、已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于___________。
8、已知圆环内直径为acm ,外直径为bcm ,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为___________cm 。
9、已知方程()015132832222=+-+--a a x a a x a (其中a 是非负整数),至少有一个整数根,那么a=___________。
10、B 船在A 船的西偏北450处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是___________km 。
三、解答题:(每小题20分,共60分)11、如图,在等腰三角形ABC 中,AB=1,∠A=900,点E 为腰AC 中点,点F在底边BC 上,且FE ⊥BE ,求△CEF 的面积。
12、设抛物线()452122++++=a x a x y 的图象与x 轴只有一个交点,(1)求a 的值;(2)求618323-+a a 的值。
13、A 市、B 市和C 市有某种机器10台、10台、8台,现在决定把这些机器支援给D 市18台,E 市10台。
已知:从A 市调运一台机器到D 市、E 市的运费为200元和800元;从B 市调运一台机器到D 市、E 市的运费为300元和700元;从C 市调运一台机器到D 市、E 市的运费为400元和500元。
(1)设从A 市、B 市各调x 台到D 市,当28台机器调运完毕后,求总运费W (元)关于x (台)的函数关系式,并求W 的最大值和最小值。
(2)设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器调运完毕后,用x 、y 表示总运费W (元),并求W 的最大值和最小值。
解 答1.根据不等式性质,选B ..ABC EF2.由△=p2-4>0及p>2,设x1,x2为方程两根,那么有x1+x2=-p,x1x2=1.又由(x1-x2)2=(x1+x2)2-4x1x2,3.如图3-271,连ED,则又因为DE是△ABC两边中点连线,所以故选C.4.由条件得三式相加得2(a+b+c)=p(a+b+c),所以有p=2或a+b+c=0.当p=2时,y=2x+2,则直线通过第一、二、三象限.y=-x-1,则直线通过第二、三、四象限.综合上述两种情况,直线一定通过第二、三象限.故选B.,的可以区间,如图3-272.+1,3×8+2,3×8+3,……3×8+8,共8个,9×8=72(个).故选C.6.如图3-273,过A作AG⊥BD于G.因为等腰三角形底边上的任意一点到两腰距离的和等于腰上的高,所以PE+PF=AG.因为AD=12,AB=5,所以BD=13,所7.如图3-274,直线y=-2x+3与抛物线y=x2的交点坐标为A(1,1),B(-3,9).作AA1,BB1分别垂直于x轴,垂足为A1,B1,所以8.如图3-275,当圆环为3个时,链长为当圆环为50个时,链长为9.因为a≠0,解得故a可取1,3或5.10.如图3-276,设经过t小时后,A船、B船分别航行到A1,A1C=|10-x|,B1C=|10-2x|,所以11.解法1如图3-277,过C作CD⊥CE与EF的延长线交于D.因为∠ABE+∠AEB=90°,∠CED+∠AEB=90°,所以∠ABE=∠CED.于是Rt△ABE∽Rt△CED,所以又∠ECF=∠DCF=45°,所以CF是∠DCE的平分线,点F到CE和CD的距离相等,所以所以解法2 如图3-278,作FH⊥CE于H,设FH=h.因为∠ABE+∠AEB=90°,∠FEH+∠AEB=90°,所以∠ABE=∠FEH,于是Rt△EHF∽Rt△BAE.因为所以12.(1)因为抛物线与x轴只有一个交点,所以一元二次方程有两个相等的实根,于是(2)由(1)知,a2=a+1,反复利用此式可得a4=(a+1)2=a2+2a+1=3a+2,a8=(3a+2)2=9a2+12a+4=21a+13,a16=(21a+13)2=441a2+546a+169=987a+610,a18=(987a+610)(a+1)=987a2+1597a+610=2584a+1597.又因为a2-a-1=0,所以64a2-64a-65=-1,即(8a+5)(8a-13)=-1.所以a18+323a-6=2584a+1597+323(-8a+13)=5796.13.(1)由题设知,A市、B市、C市发往D市的机器台数分别为x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.W=-800x+17200(5≤x≤9,x是整数).由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;当x=5时,W取到最大值13200元.(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别为10-x,10-y,x+y-10.于是W=200x+800(10-x)+300y+700(10-y)+400(18-x-y)+500(x+y-10)=-500x-300y+17200.W=-500x-300y+17200,且W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.当x=10,y=8时,W=9800,所以W的最小值为9800.又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200,当x=0,y=10时,W=14200,所以W的最大值为14200.1999年全国初中数学竞赛试卷一、选择题(本题共6小题,每小题5分,满分30分.每小题均给出了代号为A,B,C,D的四个结论,其中只有一个是正确的.请将正确答案的代号填在题后的括号里)1.一个凸n边形的内角和小于1999°,那么n的最大值是().A.11 B.12 C.13 D.142.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么4月份该用户应交煤气费().A.60元B.66元C.75元D.78元3.已知,那么代数式的值为().A.B.-C.-D.4.在三角形ABC中,D是边BC上的一点,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC的面积是().A.30 B.36 C.72 D.1255.如果抛物线与x轴的交点为A,B,项点为C,那么三角形ABC的面积的最小值是().A.1 B.2 C.3 D.46.在正五边形ABCDE所在的平面内能找到点P,使得△PCD与△BCD的面积相等,并且△ABP为等腰三角形,这样的不同的点P的个数为().A.2 B.3 C.4 D.5二、填空题(本题共6小题,每小题5分,满分30分)7.已知,那么x2 + y2的值为.8.如图1,正方形ABCD的边长为10cm,点E在边CB的延长线上,且EB=10cm,点P在边DC上运动,EP 与AB的交点为F.设DP=xcm,△EFB与四边形AFPD的面积和为ycm2,那么,y与x 之间的函数关系式是(0<x<10).9.已知ab≠0,a2 + ab-2b2 = 0,那么的值为.10.如图2,已知边长为1的正方形OABC在直角坐标系中,A,B两点在第Ⅰ象限内,OA与x轴的夹角为30°,那么点B的坐标是.11.设有一个边长为1的正三角形,记作A1(如图3),将A1的每条边三等分,在中间的线段上向形外作正三角形,去掉中间的线段后所得到的图形记作A2(如图4);将A2的每条边三等分,并重复上述过程,所得到的图形记作A3(如图5);再将A3的每条边三等分,并重复上述过程,所得到的图形记作A4,那么A4的周长是.12.江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等.如果用两台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完.如果要在10分钟内抽完水,那么至少需要抽水机台.三、解答题(本题共3小题,每小题20分,满分60分)13.设实数s,t分别满足19s2 + 99s + 1 = 0,t2 + 99t + 19 = 0,并且st≠1,求的值.14.如图6,已知四边形ABCD内接于直径为3的圆O,对角线AC是直径,对角线AC和BD的交点是P,AB=BD,且PC=0.6,求四边形ABCD的周长.15.有人编了一个程序:从1开始,交错地做加法或乘法(第一次可以是加法,也可以是乘法)每次加法,将上次的运算结果加2或加3;每次乘法,将上次的运算结果乘2或乘3.例如,30可以这样得到:.(1)(10分)证明:可以得到22;(2)(10分)证明:可以得到2100 + 297-2.1999年全国初中数学竞赛答案一、1.C 2.B 3.D 4.B 5.A 6.D二、7.10 8.y = 5x + 50 9.10.11.12.6三、13.解:∵s≠0,∴第一个等式可以变形为:.又∵st≠1,∴,t是一元二次方程x2 + 99x + 19 = 0的两个不同的实根,于是,有.即st + 1 =-99s,t = 19s.∴.14.解:设圆心为O,连接BO并延长交AD于H.∵AB=BD,O是圆心,∴BH⊥AD.又∵∠ADC=90°,∴BH∥CD.从而△OPB∽△CPD.,∴CD=1.于是AD=.又OH=CD=,于是AB=,BC=.所以,四边形ABCD的周长为.15.证明:(1).也可以倒过来考虑:.(或者.)(2).或倒过来考虑:.注意:加法与乘法必须是交错的,否则不能得分.2000年全国初中数学竞赛试题解答一、选择题(只有一个结论正确)1、设a ,b ,c 的平均数为M ,a ,b 的平均数为N ,N ,c 的平均数为P ,若a >b >c ,则M 与P 的大小关系是( )。