鱼类性别相关基因FTZ-F1的研究进展

鱼类性别相关基因FTZ-F1的研究进展
鱼类性别相关基因FTZ-F1的研究进展

973项目申报书——重要养殖鱼类功能基因组和分子设计育种的基础研究

项目名称:重要养殖鱼类功能基因组和分子设计育 种的基础研究 首席科学家:桂建芳中国科学院水生生物研究所起止年限:2010年1月-2014年8月 依托部门:中国科学院湖北省科技厅

一、研究内容 基于拟解决的鱼类分子设计育种的策略和理论基础以及鱼类分子设计育种的可行性途径这两个关键科学问题,本项目拟集中在鱼类主要经济性状如生殖、生长、抗性的功能基因组和分子设计育种的基础方面,重点解析这些主要经济性状的基因调控网络,开拓关键技术,其主要研究内容包括: 1)鱼类生殖基因调控网络及其分子设计育种的基础研究 采用基因转移、morpholino介导的基因敲降等技术,配合整体原位杂交、细胞示踪和免疫荧光定位等方法,重点解析鱼类生殖质(germ plasm)的基因调控网络;揭示重要生殖调控基因在鱼类卵母细胞成熟和卵-胚转换中的功能作用及其调控机制;探讨鱼类配子发生过程中双亲特异性甲基化在生殖调控中的作用及其及其调控网络;通过大规模RFLP分析等呈现技术,筛选雌雄个体间性别特异的DNA片段标记,进而通过Genomic Walking克隆分离与性别决定和性别分化相关基因;揭示鱼类性别决定和性别分化的基因调控网络及其作用机理;筛选鉴定出可用于鱼类分子设计育种的性别特异表达基因和分子标记;开拓生殖调控基因和分子标记用于鱼类分子设计育种的可行性途径。 2)鱼类生长的基因调控网络和分子设计育种的基础研究 采用morpholino介导的基因敲降、整体原位杂交、细胞示踪、免疫荧光定位以及组织碎片灌流和细胞孵育等在体和离体研究等技术,重点解析鱼类下丘脑/垂体控制生长的基因调控网络;揭示鱼类性成熟和生长的相互协调及其调控机理;探讨脑肠肽/生长激素/类胰岛素生长因子信号通路及其对鱼类生长的调控机制;揭示卵泡抑素等抑肌素相关基因在调控鱼类肌肉细胞增殖和鱼肉蛋白/脂肪平衡的作用机理;研制可控不育性转卵泡抑素等基因的转基因鱼品系;阐明鱼类个体大小调控基因的系统发育和进化规律;开拓生长基因调控网络和分子标记尤其是主控基因用于鱼类分子设计育种的可行性途径。 3)鱼类抗性的基因调控网络和分子设计育种的基础研究 利用我们自主建立的分离鱼类抗病毒基因的细胞模型,重点解析鱼类干扰素系统和抗菌肽基因的调控网络和抗病作用机理;揭示重要鱼类病原与宿主免疫系

转基因鱼

转基因鱼 一、体态特征 转基因鲤鱼F1代是由黄河鲤和草鱼生长激素基因组成的转“全鱼”基因鱼,它150天可长至1200克,最大可达2000克;两年可达5000克。它的生长速度比普通鲤鱼快140%以上。 吉鲤是由转基因两倍体鲤鱼与转基因四倍体鱼(两套鲤鱼染色体,两套鲫鱼染色体)结合而培育出无生育能力的吉鲤。吉鲤具有草鱼的生长快优点,又具有鲫鱼的味道。由于它不能生育,因而在推广过程中不存在与其它鱼类杂交引起生态危机之忧。 转基因鱼的生物安全性包括食品安全性、生态和遗传安全性。普通公认的转基因食品安全性评价原则是1993年欧洲经济发展合作组织(OECD)提出的“实质等同性”原则,即转基因食品及食品成份是否与市场上销售的传统食品具实质等同性。 转“全鱼”基因黄河鲤所转植的外源基因为一个与鲤鱼内源生长激素基因十分相似的草鱼生长激素基因。将草鱼生长激素基因转移到鲤鱼身上,对鲤鱼来说是安全的;与传统养殖的鲤鱼相比,转“全鱼”基因黄河鲤携带有草鱼生长激素基因,体内含有非常微量的草鱼生长激素。草鱼生长激素和鲤鱼生长激素一样,为鱼体内本来就存在的一种极不稳定的多肽,经过加热等物理处理后被分解为氨基酸,失去其激素的生理功能,和非转基因鲤鱼一样具有食用安全性。 转“全鱼”基因鱼商品化养殖后,是否会对鱼类种质资源和水生态环境产生影响?我们不妨把“全鱼”基因转移视为一种“杂交”,即一个基因与一个物种基因组的杂交。鱼类的基因组大约有10万个基因。转“全鱼”基因黄河鲤的形成机制可简单地比作一个草鱼基因与10万个鲤鱼基因的杂合。物种的杂合程度仅为草鱼与鲤鱼杂交的十万分之一。从这一点分析,转基因鱼比起任何杂交鱼要安全得多,再则,转基因鱼的繁殖能力和对环境的适应性均不占优势,即使让它进入大自然,它也不可能形成优势种群,抑制其它鱼类生长,对生态系统造成威胁。而且,转基因鱼带有的草鱼基因仅是草鱼的十万个基因片断之一,即使它能与其它鱼类进行杂交,所造成的基因混乱的可能性也很小。 鱼类是研究转基因动物的良好材料,由于1尾雌鱼能提供成千上万个卵,卵的体积也很大,且它们在体外受精和体外发育,胚胎操作较哺乳类简单。因此,继朱作言等获得第一批转基因鱼以来,世界上已有几十个实验室先后开展了这方面的研究,并取得了相当大的成就。转基因鱼是国内外获得的最成功的转基因动物之一。 二、转基因方法 1.显微注射法 显微注射法是广泛使用、效果较好的一种鱼类基因导人方法,其主要程序如下:(1)人

鱼类基因组操作与定向育种.

中国科学: 生命科学2014年第44卷第12期: 1253 ~ 1261 SCIENTIA SINICA Vitae https://www.360docs.net/doc/709198595.html, https://www.360docs.net/doc/709198595.html, 引用格式: 叶鼎, 朱作言, 孙永华. 鱼类基因组操作与定向育种. 中国科学: 生命科学, 2014, 44: 1253–1261 英文版见: Ye D, Zhu Z Y, Sun Y H. Fish genome manipulation and directional breeding. Sci China Life Sci, 2015, 58, in press 《中国科学》杂志社SCIENCE CHINA PRESS 鱼类生物学和生物技术专辑 评述 鱼类基因组操作与定向育种 叶鼎, 朱作言, 孙永华* 中国科学院水生生物研究所, 淡水生态与生物技术国家重点实验室, 武汉 430072 * 联系人, E-mail: yhsun@https://www.360docs.net/doc/709198595.html, 收稿日期: 2014-09-15; 接受日期: 2014-10-29 国家重点基础研究发展计划(批准号: 2010CB126306, 2012CB944504)、国家自然科学基金(批准号: 31222052)、中国科学院知识创新工程重要方向项目(批准号: KSCX2-EW-N-004-4)和淡水生态与生物技术国家重点实验室自主研究项目(批准号: 2011FBZ23)资助 摘要水产养殖已成为全球范围内发展最快的农业产业之一, 可持续发展水产养殖的关键在于培育具有优良性状的养殖品种. 基因组操作技术为快速、定向的鱼类遗传育种提供了一条重要的可行性途径. 本文回顾了基于经典基因组操作技术的鱼类育种方法学历史, 如多倍体育种及细胞核移植等. 然后重点介绍并展望了基于转基因技术及新近发展的基因组编辑技术的鱼类定向育种方法. 后两种技术的发展和应用将会为未来的鱼类种业带来更加高效和更具预见性的育种新方法. 关键词 鱼类定向育种多倍体育种细胞核移植转基因鱼 基因组编辑 鱼类蛋白是人类最为重要的蛋白质来源之一. 由于过度捕捞导致渔业资源衰竭, 水产养殖已成为全球范围内最受关注和发展最快的农业产业之一[1]. 可持续发展水产养殖的关键在于培育具有优良性状的养殖品种. 现阶段, 鱼类养殖面临着近亲繁殖所带来的种质退化、鱼病频发、产量和品质下降等问题[2]. 因此, 筛选和培育高产、抗病、优质的养殖品种是可持续发展渔业的重中之重. 在过去几十年间, 种内杂交[3]和种间杂交[4]等传统育种方法给人们提供了大量的优质鱼类产品. 然而, 杂交育种通常需要多代的循环选育才能造就具有某一优良性状且不表现出负面效应的新品种. 另外,利用这些方法, 也无法窥见这些优良性状背后的遗传机制, 使得选育品种的目标性状往往具有不可预见性. 因此, 亟需开发高效并可预测的育种方法来培育高产优质的鱼类新品种. 本文首先回顾基于经典基因组操作技术的鱼类育种方法学历史, 如多倍体育种[5]及细胞核移植[6]等. 然后, 重点介绍基于转基因技术及新近发展的基因组编辑技术的鱼类定向育种方法. 后两种技术的发展将会给未来的鱼类种业带来更加高效和更具预见性的育种新方法, 而基于经典和新兴基因组操作技术相结合的综合育种技术将极有可能成为未来鱼类育种的主导技术. 1 多倍体育种 多倍体育种通常通过倍性操作来实现. 倍性操作是一种通过人工干预致使染色体加倍的方法, 它可以说是基因组操作中最为经典的方法[5]. 在一些鱼类物种中, 雌、雄性或不育个体往往表现出不同的生长速率, 因此如何高效获得单性群体或不育群体往往是鱼类育种学家追求的目标. 在所有有关鱼类性别控制或育性控制的方法中, 倍性操作是使用最早也是目前为止最为有效的方法之一. 此外, 这一方法

SOX_DMRT性别决定基因家族及其应用研究进展_李楠

SOX 、DMRT 性别决定基因家族及其应用研究进展 * 李楠 1,2 王秀利 1** 仇雪梅 1 (1大连水产学院生命科学与技术学院,大连 116023;2黑龙江八一农垦大学生命科学技术学院,大庆 163319) 摘 要: SO X 基因家族是在动物中发现的一类新的编码转录因子的基因家族,其产物具有一个HM G 基序保守区,参与诸如性别决定等多种早期胚胎发育过程。到目前为止,在XX -XY 染色体性别决定系统中,只发现了两个性别决定基因:一个是SRY ,它主要在哺乳动物性别决定中起作用;一个是DM Y,它是在青鳉(Or y z ias latip es )中发现的。SRY 属于SOX 基因家族,而DM Y 则属于另一个普遍参与脊椎动物性别决定过程的D M T R 基因家族。本文综述了这两大性别决定基因的研究进展,并探讨了它们在水产养殖动物性别决定基因研究中的意义和价值。 关键词: 性别控制 SO X 基因 DM R T 基因 动物 水生动物 The Research Advances and Applications of SOX and DMRT Gene Family Li Nan 1,2 Wang Xiuli 1 Qiu Xuemei 1 (1College of L if e scie nce and Biotec hnology ,Dalian Fisher ie s Unive rsity ,Dalian 116023; 2 Colleg e of L if e science and Biotechnolog y ,H eilongj iang A ug ust First L an d Rec lamation Univ er sity ,Daqing 163319) Abstract: T he Sox g ene family of transcriptio n factor s ar e fo und thro ug hout t he animal kingdom.T hey ar e char acter ized by the presence of a H M G domain,involved in the r egulation of such diverse dev elo pmental pro cesses of early embry o -g enesis as sex deter minat ion.In the XX -XY sex determining chro mosomal sy stem,there are only tow sex deter mined gene has been found:one is the SRY g ene,which play an im po rtant ro le in mammals;the ot her is the D M Y g ene,which has been found in Or y z ias latip es .T he SR Y g ene belonged to the SO X g ene fam ily ,and DM Y belonged t o the DM T R gene family,w hich is inv olv ed in sex det erminatio n of v ertebrates.T his r eview mainly discusses the research trends and development o f SOX gene family,and DM T R gene family,and po int out the re -search value in searching for sex deter mined g ene in aquatic animals. Key words : Sex -determining co nt rol SOX DM RT A nimal Aquat ic animal 动物的性别控制是指通过对精子或胚胎的性别进行鉴定,从而达到调控子代性别的目的。随着胚胎冷冻、胚胎切割、体细胞克隆技术的日渐成熟,使得动物的性别控制显得更为重要。多少年来人们一直在不停地探索如何提高动物性别控制的准确性。随着科学技术的发展,人们不仅在细胞水平上发现了高等动物的性别决定于性别分化过程,而且还通过染色体的组型和核型分析,找到了与性别紧密相关的染色体)))性染色体。分子遗传学原理和分子 生物技术的飞速发展,使得人们在基因水平上研究动物的性别控制有了可能。如果我们掌握了某些动物的性别决定基因,利用现代分子标记技术,便可极 大的提高性别控制的准确性和有效性。1990年哺乳动物性别决定基因SRY 的发现[1],是哺乳动物性别控制领域的一项重大突破。近年来人们又发现和确定了一些与哺乳动物性别决定相关的基因(DM -RT 1、DAX1、WT1等),并提出几种基于哺乳动物性别决定基因的分子调控模型。人们在研究和应用哺 收稿日期:2005-04-07 * 基金项目:大连水产学院科研基金项目 **通讯作者:王秀利(1964-),男,博士,教授。E -mail:xiuliw ang417@sin https://www.360docs.net/doc/709198595.html, 生物技术通报 #综述与专论# BIOTECHNOLOGY BU LLETIN 2005年第3期

鱼类的生殖

鱼类的生殖 l.鱼类性成熟的年龄 鱼类性成熟指鱼类从孵化后经生长发育,性腺达到成熟能排精产卵。不同鱼类性成熟开始年龄不相同。即使同一种鱼,也因外界环境条件的差异,性成熟的年龄也有变化。此外,同一种鱼的不同种群或雌雄两性到达性成熟的年龄也有差异。 一般说来,分散生活的种类,性成熟的年龄较迟。如国家珍贵保护动物中华鲟,开始性成熟的年龄是4龄。欧洲鳇鱼性成熟时间为16龄。集群生活的鱼类,性成熟时间稍早,如中上层生活的青鳞小沙丁鱼和金色小沙丁鱼,1龄即达性成熟,而中下层的大黄鱼性成熟时间大多在3~4龄。也有一些更早熟的如食蚊鱼,出生后1个月即能产卵。同一种鱼,在低纬度的南方比在高纬度的北方性成熟早。如鲤鱼,在南方2龄性成熟,而在北方则要5龄才能性成熟。鲻鱼、梭鱼的雌鱼在4龄开始性成熟,而雄鱼则在2~3龄性成熟。有些鱼类的性成熟是同步的,如大银鱼,1龄全部性成熟,且雌雄同步。而有些鱼类,如黄海的鲷鱼,1龄时只有4%雌鱼性成熟,雄鱼45%性成熟,2龄鱼全部性成熟。近年来的研究表明,鱼类资源遭受过度捕捞时,鱼类趋向小型化,性成熟年龄也提早。 2.鱼类性成熟的第二性征 有些鱼类可以从外部形态特征区别雌雄,如身体大小、体色、泄殖孔向外开口等。又如板鳃鱼类的鳍脚,鳉鱼雄鱼的交接器,鳑鱼的产卵管等。它们的两性异形是稳定的。大多数鱼类只能从其内部的精巢和卵巢区别其雌雄,而不易从外形上区别。不过有些鱼类在性成熟的繁殖季节出现第二性征。如鲤科鱼类中,有些种类雄鱼身体各部多具鲜明色彩,而雌鱼多呈暗淡的灰黄色。粘皮虎鱼的雄鱼深灰色,两背鳍皆较大,第一背鳍上有黄色和黑色斑块各一个。腹鳍吸盘宽圆,棕黑色。雌鱼灰黄色,第一背鳍上有黑色条纹,第二背鳍上也有黑色条纹。腹鳍吸盘较窄,乳白色。海洋中的隆头鱼,雄鱼橙黄色,自眼部向后有5~6条蓝色条纹,而雌鱼为红色,没有条纹。 许多鱼类在繁殖季节身体出现鲜红的色彩,或原来的色彩变得更加鲜艳。一般在雄鱼中表现特别突出。生殖季节过后,色彩即行消失,这种色彩称婚姻色。

简述转基因技术原理

转基因技术的理论基础来源于进化论衍生来的分子生物学。基因片段的来源可以是提取特定生物体基因组中所需要的目的基因,也可以是人工合成指定序列的DNA片段。DNA片段被转入特定生物中,与其本身的基因组进行重组,再从重组体中进行数代的人工选育,从而获得具有稳定表现特定的遗传性状的个体。该技术可以使重组生物增加人们所期望的新性状,培育出新品种。 1992年荷兰培育出植入了人促红细胞生成素基因的转基因牛,人促红细胞生成素能刺激红细胞生成,是治疗贫血的良药。转基因技术标志着不同种类生物的基因都能通过基因工程技术进行重组,人类可以根据自己的意愿定向地改造生物的遗传特性,创造新的生命类型。同时转基因技术在药物生产中有着重要的利用价值。转基因技术,包括外源基因的克隆、表达载体、受体细胞,以及转基因途径等,外源基因的人工合成技术、基因调控网络的人工设计发展,导致了21世纪的转基因技术将走向转基因系统生物技术2000年国际上重新提出合成生物学概念,并定义为基于系统生物学原理的基因工程与转基因技术。 1.转基因的细胞学原理: (1)细胞周期及MPF:细胞周期可人工分成4个时期,分别为G1期、S期、G2期和M期。细胞在正常情况下,沿着G1-S-G2-M路线运转。S期为DNA合成期,M期为有丝分裂期,M期结束到S期开始之前为G1期,S期末到有丝分裂期(M期)为G2期。有丝分裂的启动由成熟促进因子也叫M期促进因子(maturation/mitosism/meiosis promoting factor,MPF)调控,MPF 在细胞分裂中呈周期性变化即分裂后逐渐积累,到G2晚期达到高峰,由中期向后期转换时骤然消失。因此推测MPF是真核细胞M期的一个基本调节物质,能引导细胞由间期向M期转变。MPF由蛋白激酶激活,存在于所有的真核细胞中(包括减数分裂的性细胞)。但并非所有的细胞都是周期中细胞,某些细胞在一定的条件下可以脱离细胞周期进入G0期或分化为不分裂的细胞,而且G0期细胞可通过诱导重新进入周期。 (2)通过MⅡ期的卵母细胞转基因:MⅡ期的卵母细胞的MPF含量很高,可以诱导细胞核发生一系列变化包括核膜破裂(NEBD)和早熟染色体凝集(premature chromosome condensation,PCC),处于减数分裂MⅡ期的卵母细胞无核膜的时间远远长于有丝分裂M期的细胞。所以此时期的卵母细胞可作为基因导入的受体。据此1998年Anthonv等对逆转录病毒载体感染发育早期的动物胚胎方法加以改进,用逆转录病毒载体注射MⅡ期的卵母细胞,注射完毕的卵母细胞同获能后的精子共同孵育后,体外发育至囊胚,再移植到母牛体内得到了转基因小牛。1999年Anthonv等又将精子与外源基因共孵育,然后将精子头部显微注射入MⅡ期的卵母细胞,这两种方法共同之处都是利用MⅡ期的卵母细胞无核膜,外源基因易导入的 特点。 2.转基因的胚胎学原理: (1)哺乳动物转基因的胚胎学原理:精子和卵子只有发育成熟后,精卵相遇时才能完成受精过程。精子进入卵子后头尾分离,胞核出现核仁,形成核膜,头部膨大形成雄原核;同时卵子排出第二极体形成雌原核。一般来说雄原核比雌原核大。接着雌雄原核的核膜消失,雌雄原核融合。随后细胞周期性卵裂,分裂球增加到32个时形成桑葚胚,进入子宫再发育至囊胚,此前的胚胎细胞具有很强的分化能力。从哺乳动物受精卵分裂发育的规律来看,转基因操作时较合适的部位是受精卵的雄原核,精子进入卵细胞后的1小时,雄原核和雌原核还未融合,在显微镜下容易看到雄原核。多数研究者在此时期把外源基因显微注射到雄原核,通

两栖动物性别决定相关基因的研究进展

动物学杂志Chinese Journal of Zoology 2011,46(6):134 140 两栖动物性别决定相关基因的研究进展 刘佳李忻怡张育辉 *陕西师范大学生命科学学院 西安 710062 摘要:两栖动物的性别决定机制主要包括遗传性别决定(genetic sex determination ,GSD )和环境性别决定(environmental sex determination ,ESD )。近年来,在两栖动物性别决定和性腺分化机制的研究中,运用分子生物学技术探讨性别决定相关基因及其相互关系方面的研究已获得新的成果。本文通过对DMRT 1、DAX 1、SF 1、SOX 3、SOX 9、FOXL 2、CYP 19、CYP 17在两栖动物性别决定中作用的分析,显示DAX 1、SF 1、FOXL 2、SOX 3均参与芳香化酶基因转录的调节,其中FOXL 2、SOX 3促进了CYP 19的表达,DAX 1、SF 1则与CYP 17的表达调节有关。这些结果提示,两栖动物性别决定相关基因通过作用于CYP 19、CYP 17的表达调控性别决定过程,基因和温度分别在GSD 和ESD 过程中通过影响雌、雄激素的水平而决定两栖动物性别。 关键词:两栖动物;性别决定;基因;温度中图分类号:Q953 文献标识码:A 文章编号:0250-3263(2011)06-134-07 Sex Determination-related Genes in Amphibians LIU Jia LI Xin-Yi ZHANG Yu-Hui * College of Life Science ,Shaanxi Normal University ,Xi'an 710062,China Abstract :The sexual phenotype of amphibians is determined either by chromosomal factors (genetic sex determination ,GSD ),or by environmental factors (environmental sex determination ,ESD ).Recently ,new findings on the sex determination-related genes and their interactions have obtained by utilizing molecular biology methods.Several genes such as DMRT 1,DAX 1,SF 1,SOX 3,SOX 9,FOXL 2,CYP 19and CYP 17have been found to play roles in determining the sexual phenotype of amphibians ,with DAX 1,SF 1,FOXL 2and SOX 3involved in transcriptional regulation of aromatase gene.FOXL 2and SOX 3promote CYP 19expression.DAX 1and SF 1can influence CYP 17expression.Sex-determination genes play their roles by acting on the expression of CYP 19and CYP 17.Both sex-determination related genes and temperature determine sex of amphibians by affecting estrogen and /or androgen levels.Key words :Amphibians ;Sex determination ;Gene ;Temperature 基金项目 国家自然科学基金项目(No.130770243); *通讯作者,E-mail :yu-huizhang@163.com ;第一作者介绍刘佳,女,硕士研究生;E-mail :liujia1986jj @ sina.com 。 收稿日期:2011-07-03,修回日期:2011-09-22 动物性别决定一直是生物学研究的热点内容。哺乳类的性别由性染色体决定, Y 染色体性别决定区(sex-determining region of Y-chromosome ,SRY )在性别决定中起着主导作用, SOX 9、SF 1、WT 1和DAX 1等基因也参与了胚胎性别决定的过程 [1] 。鸟类的性别也是由基因决定的, EFT 1和DMRT 1分别为雌性和雄性的性别决定候选基因 [2] 。爬行动物的一些 物种是遗传依赖性性别决定,另一些则为温度依赖性性别决定,其中温度可能通过控制性别基因表达或调节雌激素水平来决定性别 [3] 。

鱼类DNA提取方法

主要步骤如下: (1)取50mg左右的经无水乙醇浸泡过的肌肉样品,用灭菌的牙签挑成细丝状,自然晾干。转入1.5ml离心管中,加入500μl DNA裂解液,加入5ml 20mg/ml蛋白酶K振荡混匀。55℃水浴保温2~3小时,每隔10min摇匀一次。 (2)加入等体积的Tris饱和酚,摇匀,用封口膜封好,37℃水浴2~3小时。每隔10min摇匀一次。 (3)10,000rpm离心10min,小心转移上清液至一新离心管中,加入等体积的酚/氯仿(1:1),摇匀5~10min。 (4)10,000rpm离心10min,小心转移上清液至一新离心管中,加入等体积的氯仿,摇匀5~10min。 (5)10,000rpm离心10min,转移上清液至一新离心管中,加入0.9倍体积的异丙醇以及0.1体积的3mol/LNaAc,摇匀1~2min。 (6)置于-20℃冰箱中3小时。 2.2鱼类总DNA的纯化 试剂:70%乙醇,无水乙醇,1XTE(Ph8.0)、1%琼脂糖。 (1)将2.2.1(6)的总DNA溶液,10,000rpm离心10min,去上清液,留下沉淀。用70%乙醇500μl洗脱,剧烈摇匀,用手指弹击。重复此步骤一次。 (2)10,000rpm离心10min,去上清液,留下沉淀,加入500μl无水乙醇洗脱,剧烈摇匀,用手指弹击。 (3)10,000rpm离心10min,去上清液,把离心管斜置于超净工作台中,自然晾干。 (4)加入50μl 1XTE溶解DNA沉淀,用手指弹击,室温放置30min,取3μl DNA 用1%琼脂糖进行电泳检测。 (5)每个DNA样品分成两份,一份-20℃保存备用,另一份4℃保存进行下一步实验。 1.3.1 DNA的提取 总DNA的提取采用改进的高盐法。

鱼类性别决定与分化相关基因的研究进展

鱼类性别决定与分化相关基因的研究进展 路畅1,2,苏利娜1,朱邦科 2 (1.华中农业大学水产学院,武汉 430070; 2.宁波大学海洋学院,宁波315211) 摘要:综述了SOX、DMRT、芳香化酶、FTZ-F1、FOXL2、Pod1、GSDF、Fanconi Anemia/BRCA 等一些与鱼类性别决定与分化相关基因的研究动态和进展,旨在为系统研究鱼类性别决定机制提供参考。 关键词:性别决定基因;SOX;DMRT;芳香化酶基因;FOXL2 中图分类号:文献标识码:文章编号: Research Progress in the Sex Determination and Differentiation Genes of Fish LU Chang1, 2, SU Li-na1, ZHU Bang-ke2 (1.College of Fisheries, Huazhong Agricultural University, Wuhan Hubei 430070; 2. Faculty of Marine Sciences, Ningbo University, Ningbo Zhejiang 315211) Abstract:This article reviews the research trends and progress in some sex determination and differentiation genes of fish, such as SOX, DMRT, aromatase, FTZ-F1, FOXL2, Pod1, GSDF and Fanconi Anemia / the BRCA, to provide a reference of fish sex determination mechanism. Key words: sex determination gene;SOX;DMRT;aromatase gene;FOXL2 收稿日期: 作者简介:路畅,女,硕士研究生, 通讯作者:朱邦科,男,博士,副教授,E-mail:zhubangke@https://www.360docs.net/doc/709198595.html,

鱼类生殖与发育

Spawning time,spawning frequency and fecundity of Japanese chub mackerel,Scomber japonicus in the waters around the Izu Islands,Japan Tomohide Yamada a ,Ichiro Aoki a,*,Isamu Mitani b a Department of Aquatic Bioscience,Graduate school of Agricultural and Life Science,The University of Tokyo,Bunkyo,Tokyo 113,Japan b Kanagawa Prefectural Fishery Experimental Station,Youroushi,Jogashima,Misaki,Kanagawa 238-02,Japan Received 4July 1997;accepted 5April 1998 Abstract Female Japanese chub mackerel,Scomber japonicus ,were collected in 1993from April to June (36days),in the water around Izu Islands,Japan,which is one of the primary spawning areas.Spawning time,spawning frequency and batch fecundity were determined by histological methods.Temporal frequency of hydrated oocytes and new postovulatory follicles showed that female chub mackerel spawned actively from 22.00to 24.00hours.The average spawning frequency was 17.4%during this sampling period.We estimated that chub mackerel spawned every 5.7days (6.3times)during these 36days.Fifteen females spawned almost every day.Twelve females which had hydrated oocytes in their ovaries were used for estimating batch fecundity.The average batch fecundity was 89200oocytes per female,and the relative batch fecundity was 158eggs per gram female wet weight.The batch fecundity was signi?cantly correlated with condition factor.This shows that batch fecundity was affected by nutritional state of spawning female.#1998Elsevier Science B.V .All rights reserved. Keywords:Japanese chub mackerel;Batch fecundity;Postovulatory follicle;Spawning frequency;Spawning time;Ovary histology 1.Introduction Japanese chub mackerel (Scomber japonicus )is one of the most important ?shery stocks in Japan.The size of this stock increased in the 1960s and remained high in the 1970s.The stock,however,decreased continu-ously in the 1980s and is currently at a low level.Spawning dynamics is a fundamental element in assessing and managing ?sh stocks.Maturation and spawning of Japanese chub mackerel have been reported around the Izu Islands,Japan,which appears to be one of the main spawning grounds (Murayama et al.,1995;Yamada et al.,1996).Daily egg produc-tion methods (DEPM)(Alheit,1993)may be applied to estimate the spawning biomass of chub mackerel populations.Priede and Watson (1993)suggested that DEPM should be preferred for estimation of biomass in Atlantic mackerel (Scomber scombrus ).By this method,the spawning frequency de?ned as the ratio of the number of females and the batch fecundity as the number of eggs released per spawning,are essen-tial parameters.The spawning frequency and batch fecundity of chub mackerel have been reported only *Corresponding author.Tel.:+81338122111,ext.5307;fax:+81338120529;e-mail:aoki@hongo.ecc.u-tokyo.ac.jp 0165-7836/98/$±see front matter #1998Elsevier Science B.V .All rights reserved.P I I :S 0165-7836(98)00113-1

转基因罗非鱼

收稿日期:2006210225;修订日期:2007206207 基金项目:国家重点基础研究发展计划(编号:2006C B101805)资助 作者简介:贝锦新(1977— ),男,广东揭西人;博士;主要从事鱼类分子免疫学研究。E 2mail :beijinxin @https://www.360docs.net/doc/709198595.html, 通讯作者:林浩然,E 2mail :lsslhr @https://www.360docs.net/doc/709198595.html, ;T el :020********* 综述 鱼类基因数据库与生物信息学在鱼类基因开发上的应用 贝锦新 张 勇 李文笙 刘晓春 林浩然 (中山大学水生经济动物研究所,广州 510275) APP LICATION OF GEN OME DATABASES AN D BIOINFOR MATICS IN EXP LORATION FOR FISH GENES BEI Jin 2X in ,ZH ANG Y ong ,LI W en 2Sheng ,LIU X iao 2Chun and LIN Hao 2Ran (Institute o f Aquatic Economic Animals ,Sun Yat 2Sen (Zhongshan )Univer sity ,Guangzhou 510275) 关键词:鱼类基因组;同线性分析;同源比对;基因开发 K ey w ords :Fish gen ome ;C onservation of synteny ;H om ology search ;Data mining 中图分类号:Q78 文献标识码:A 文章编号:100023207(2008)0320387206 近十年来,随着分子生物学技术的发展,各国际组织间的合作研究使得资源基因组计划得以普遍实施。各种动物、植物基因组数据库均在互联网上陆续发布,生物信息量随之迅猛增长,然而如何利用并发掘这些数据蕴涵的宝藏,从中提取解释生命个体生长发育、免疫调节以及病害控制等机理的宝贵信息,已成为人类所面临的巨大挑战。因此,以获取、加工、储存、分配、分析和解读生物信息为手段,综合运用数学、计算机科学和生物学工具的交叉学科———生物信息学[1]由此诞生。也正是依靠生物信息学的辅助,人类基因组计划最终在2003年基本完成,基因组序列数据的拼接和组装也陆续完善。 各种鱼类大约占据了50%的脊椎动物种类,有着长远的进化史 [2] 。因此,利用这些丰富的鱼类资源,研究与系统发育 和进化相关的种间保守或者特异的遗传和分子机制就显得相当重要。但相对于高等脊椎动物而言,鱼类的分子生物学研究比较滞后。在鱼类基因开发过程中,大部分是通过不同鱼类或者是其他高阶元物种的基因序列同源性,设计简并引物进行目的片段扩增;或者通过表达序列标签(Ex pressed se 2 quence tags ,EST )数据库发现并筛选鱼类功能基因。随着鱼类 的基因组全序列测序拼接工作的不断完善,通过生物信息学和分子生物学的方法,新的鱼类功能基因逐渐被发现,这种技术路线采用了反向生物学的原理,即从基因到蛋白质再到功能研究的途径来发现新的生物活性分子[3]。国外科学家已经筛选到一批与发育、生殖及免疫相关的功能基因,而国内对于鱼类新功能基因的开发研究起步较晚,因此,我们应当运用生 物信息学结合分子生物学的手段,发掘鱼类以及其他生物基因组数据库中的关键信息,开发并研究鱼类重要的功能基因,使得我国在这一领域能够有创新性的成果。为此,本文综述了目前鱼类基因组数据库的研究现状,并结合例子介绍利用这些数据库进行基因开发的几种方法。 1 鱼类基因公共数据库资源 111 斑马鱼(Danio rerio ,zebrafish ) 斑马鱼隶属鲤形目(Cypriniformes )鲤科,由于个体小、周期产卵且产卵周期短、产卵量高、卵大、体外受精、胚胎透明、体外发育、胚胎早期发育快和易于大量获得样品等独有的特点而成为目前世界公认的模式脊椎动物之一。单倍体斑马鱼基因组由25条染色体组成,含有117×103Mb (1Mb =106个碱基对或bp ),大约为哺乳类基因组大小的二分之一[4]。 2001年2月开始,英国Sanger 研究所开始了斑马鱼全基因组 测序工作;主要通过BAC (Bacterial artificial chrom os ome )、PAC (P12derived artificial chrom os ome )文库的克隆测序和拼接,以 及基因组鸟枪法测序(Whole genome shotgun sequencing )和组装两种策略。目前,该研究所和国际同行已经测序并拼接了 6653条DNA 片段,包含碱基约116×103Mb (参照:http ://w w w 1sanger 1ac 1uk/Projects/D 2rerio/)。许多不同的服务器都 提供了最新的斑马鱼基因组序列拼接数据,并能进行下载和比对(表1)。同时,以美国华盛顿大学为代表的许多研究所也进行了不同规模的EST 测序工作,这些丰富的斑马鱼EST 第32卷第3期 水生生物学报 V ol.32,N o.32008年5月 ACT A HY DROBI O LOG IC A SI NIC A May ,2008

转基因动物技术应用研究进展汇总

转基因动物技术应用研究进展 摘要:本文主要对动物转基因技术发展状况作了概述,重点是近年发展的提高转基因效率的非定点整合转基因方法, 如睾丸转基因法和卵巢转基因法; 提高转基因精确性的定点整合转基因的基因打靶法作了介绍。然后对转基因技术的应用作了论述,最后对转基因技术的发展前景作了展望。 关键字:动物转基因技术;应用;展望 Progress on Techniques for Producing Transgenic Animals And their Application Abstract: This review describes the recently developed animal gene transfer techniques, including gene transfer into the testis and ovary for easily making non-site specific methods; gene targeting in embryonic stem cells, somatic cells and primordial germ cells for site specific methods.The application and prospect of transgenic technology was also discussed. Key words: animal gene transfer technique; application;prospect 动物转基因技术是将外源基因移入动物细胞并整合到基因组中, 从而使其得以表达。自Palmiter等[1] (1982)把大鼠生长激素基因导入小鼠受精卵获得超级巨鼠以来,世界各国科学家对转基因技术应用于动物生产的研究产生了极大的兴趣,并相继在兔、羊、猪、牛、鸡、鱼等动物上获得转基因成功。转基因动物研究是近年来生命科学中最热门、发展最快的领域之一,其应用已广泛渗透于分子生物学、发育生物学、免疫学、制药及畜牧育种等各个研究领域中。这项技术正在对动物生产产生一场新的革命,在提高生长速度、生产性能,改善产品品质、抗病育种、基因治疗等方面取得了可喜的进展,显示出诱人的应用前景。 1 转基因动物技术 1.1 显微注射法 这一方法是发展最早,目前应用最广泛和最为有效的制作转基因动物的方法,创始人是Jaenisch和Mintz等,Gorden等[2]和最先通过此法获得转基因动物。其基本原理是:通过显微操作仪将外源基因直接用注射器注入受精卵,利用受精卵繁殖过程中DNA的复制过程,将外源基因整合到DNA中,发育成转基因动物。 1.2 逆转录病毒载体导入法 将目的基因重组到逆转录病毒载体上,制成高滴度的病毒颗粒,人为感染着床前后的胚胎,

相关文档
最新文档