关于网络变压器的四项频率特性简介

关于网络变压器的四项频率特性简介
关于网络变压器的四项频率特性简介

关于网络变压器的四项频率特性简介

在国内外生产网络变压器各公司的产品介绍中,首先列出的都是各种型号网络变压器的插入损耗、回波损耗、交越干扰和共模抑制比等四项关于频率特性方面的指标。

之所以如此,是因为这四项指标中任何一项达不到要求都会造成网络通讯不顺畅或丢包现象。因此,弄清这四项指标的物理概念和检测方法是必要的。现对网络变压的这四项指的物理意义和测量方法作简明介绍,同时还将列出对常用的网络变压器的插入损耗、回波损耗、交越干扰和共模抑制比等指标检测的结果。

安装在网卡上网络变压器的电路图图l所示是安装在计算机内部网卡中的网络变压器电路图。位于图的中间部分的长方框为多个公司生产的一种典型的网络变压器。该变压器一般都安装在网卡的输入附近。工作时,由收发器送出的上行数据信号从络变压器的Pin16.Pin15进入,由Pin10-Pin11输出,经RJ45型转接头,再通过非屏蔽双绞线送往服务器;服务器送来的下行数据信号经另一对非屏蔽双绞线和RJ45型转接头,由Pin7-Pin6进入,由Pin1.Pin2输出,然后送到网卡的收发器上。

从图l中看到,网络变压器所处工作环境有两个特点:一是通过它的数据电压信号都是平衡信号,即两信号线上电压的参考点为地线,电压的幅度大小相等,极性相反;二是驱动网络变压器信号源的内阻和网络变压器所带负载电阻的阻值均为l00Ω,处在良好的阻抗匹配状态下。因为右边与网络变压器Pin10-Pin10和Pin7.Pin6相联接的非屏蔽双绞线的特性阻抗均为l00Ω.生产网络变压器的

公司在作产品出厂检测时,不可能把每一个产品都焊接到网卡上作实际应用的测试。因为这样检测过于麻烦,效率也低。因此研发既接近实际使用条件、检测又方便、效率又高的检测方法是十分重要的课题。

1网络变压器插入损耗的定义及其检测方法

从图l中看到,网络变压器是计算机服务器之间双向交流数据电压信号链条中的一个环节。信号通过这个环节时,不可避免的会有一些衰减。插入损耗就是衡量信号衰减程度的一项指标。对同一个网络变压器来讲,它对信号衰减程度与信号的频率有关。因此,插入损耗一般指的是网络变压器对信号衰减程度与信号频率之间的关系曲线。为了便于讨论,将图l网络变压器中传送上行数据电压信号的单元电路简化成图2所示电路。在图2中,用内阻为两个50Ω的等效电压源代替驱动电路,用100Ω电阻代替非屏蔽双绞线。图中V1表示在信号与负载电阻之间插入了网络变压器后的输出电压幅度。图3所示是信号源与负载电阻之间直接用两截短导线联接时的电路图。图中V2表示在信号源与负载电阻之间直接用两截短导线联接时的输出电压幅度。

插入损耗指的是图2中V1与图3中V2的比值。

一般插入损耗都用分贝(dB)来表示:

插入损耗=20Xlog(V1/V2) (1)

检测网络变压器插入损耗一般采用网络分析仪(例如HP 8712型网络分析仪)。网络分析仪内部配备有输出阻抗为50Ω、幅度恒定、频率随着时间线性变化的正弦波信号源。此信号源的信号从RF OUT 端输出。通过待测产品后的正弦波信号从网络分析仪RF IN输入。网络分析仪对从RF IN输入的正弦波信号进行检波,并将检波出来的与输入信号幅度成比例的电压信号数字化。数字化后的数据按照频率的顺序存入网络分析仪内部微型计算机内存的相应单元中。检测完成后,网络分析仪用这数据按照频率的顺序在屏幕上示出一条曲线。

网络分析仪的输入、输出阻抗均为50Ω,而且又是非平衡信号,因而不能直接与网络变压器相联接。在校正(Calibration)检测系统和检测产品时,必须在网络分析仪与网络变压器之间加上平衡非平衡50Ω/100Ω阻抗转换器。

图4所示是检测网络变压器TX单元电路插入损耗时的电路图。测完TX单元电路之后,再将图4中平衡--- 非平衡50Ω/100Ω阻抗转换器的相应接点转接到RX 单元电路的相应Pin脚上,再对RX单元电路进行检测。

在检测产品之前需要对检测系统进行校正。校正时,用两根短导线代替图4中的网络变压器。其中一根短导线联接到两个平衡非平衡50Ω/100Ω阻抗转换器上面的接头上,另一根联接到其下面的接头上。校正完成后,HP 8712把图4所示状态作为无损耗的参考标准。并在显示屏上示出一条插入损为0dB的水平线。因此人们习惯上把对测系统的正过称为“归零”。

检测产品时,去掉两条短路线,换上待测产品。显示屏上将示出插入产品后的幅度随着频率改变而变化的插入损耗曲线。图5所示是测得的TX和RX两个单元电路插入损耗曲线。

2网络变压器回波损耗的定义及其检测方法

在信号源内阻与负载电阻均为10OΩ的发送或接收系统之间插入网络变压器之后,不仅对信号幅度有一定的衰减,还会在一定程度上破坏阻抗匹配。在阻抗失配的情况下,电压信号在传送过程中就会产生反射。反射信号叠加在有用信号上,同样会造成误码或丢包现象。回波损耗是用来衡量插入网络变压器后系统阻抗失配程度与信号频率之间的关系曲线。

回波损耗的定义是:传输系统中插入了网络变压器后反射信号与入射信号的比值。

一般回波损耗也用分贝(dB)来表示:

回波损耗=20×log(Vr/Vi) (2) (2)中的vi为入射信号的幅度,Vr为反射信号的幅度。

检测网络变压器回波损耗的仪器仍然是网络分析仪。不过要对它重新设置,要由传送(Transmission) 状态改到回波(Reflection)状态。设置在传送状态下,用到了网络分析仪的RF OUT联接头和RF IN联接头,而在回波状态下,只用网络分析仪

的RF OUT联接头。图6所示是网络分析仪检测网络变压器TX单元电路回波损耗的电路图。

在检测之前要对检测系统进行校正。在回波状态下校正有3个步骤:

第一步开路(Open)校正。校正方法是取走图6中的待测网络变压器和lOOΩ电阻,使平衡--非平衡50Ω/100Ω阻抗转换器右端处于开路状态。第二步短路(Short)校正。校正方法是在第一步的基础上,用短导线将平衡非平衡5OΩ/100Ω阻抗转换器右端的两联接头短路。

第三步标准负载(Load)校正。校正方法是在第二步的基础上,去掉短导线用比较精确的100Ω电阻接到阻抗转换器右端的两联接头上。完成第三步校正后,在网络分析仪显示屏上将出现一条低于.60dB 的带有统计起伏的水平线。这条水平线表示回波信号的幅度接近零。

然后再按图6所示方法接入待测网络变压器。此时显示屏就会示出接入了待测网络变压器后的回波损耗对频率的关系曲线。图7所示是测得典型网络变压TX 和RX两个单元电路的回波损耗曲线。

3网络变压器交越干扰的定义及其检测方法

从图l看到,在一个典型网络变压器中有TX和Rx两个单元电路。虽然两个单元电路之间没有直接的联系通道,但由于它们的距离很近,通过空间感应或寄生参数的耦合仍然有交越干扰的现象。网络变压器交越干扰的定义是:两个单元电路中的一个单元电路中的信号V1与感应到另一个单元电路中的信号V2之比值。

一般交越干扰也用分贝(dB)来表示:

交越干扰=20×log(V2/V1) (3)

检测网络变压器交越干扰时,网络分析仪仍设置在Transmission状态下。图8所

示是检测网络变压器TX和RX两单元电路之间交越干扰时的电路图。从图中看到,来自8712网络分析仪RF OUT的扫频信号只加在TX单元电路上,而网络分析仪RF IN接收的却是RX单元电路的信号。TX和RX两单元电路另一端的IOO Ω电阻用来代替实际工作状态下所接的特性阻抗为lOOΩ的非屏蔽双绞线。检测交越干扰之前仍然要对检测系进行校正。校正方法与检测网络变压器插入损耗时相同。图9所示是测得的典型网络变压器TX和R.X两个单元电路之间交越干扰对频率的关系曲线。

4网络变压器共模抑制比的定义及其检测方法

局域网中传送的数据电压信号采用的是平衡信号。在理想情况下,只有平衡信号通过网络变压器。但计算机内部的非平衡信号通过某些寄生渠道会感应到与之相联接的网络变压器上,形成共模干扰信号。网络变压器的另一端接的是长达数十米的非屏蔽双绞线。非屏蔽双绞线上接收到的来自外界的共模干扰信号又会通过网络变压器传回到计算机内部。接在计算机与非屏蔽双绞线之间的网络变压器对共模干扰信号有抑制作用。网络变压器共模抑制比的定义是:网络变压器输入端的共模干扰信号幅度V'm与输出端的共模干扰信号幅度Vout之比值。一般共模抑制比也用分贝(dB)来表示:

共模抑制比=20~log(Vout/V-m) (4)

检测网络变压器共模抑制比时,网络分析仪仍然设置在Transmission状态下。图l0所示是检测网络变压器TX和RX两单元电路的共模抑制比时的电路图。

网络变压器工作时,其输入和输出端都接有100Ω的电阻。为了模仿实际实情况,检测网络变压器共模抑制比时,在其相应的Pin脚上各接有50Ω的电阻。Rl、R2两个50Ω电阻串联起来作为输入端的100Ω电阻;、R5两个50Ω电阻串联

起来作为输出端的100Ω电阻。R3和两个50Ω电阻是两段特性阻抗为50Ω电缆的匹配电阻。检测网络变压器共模抑制比前,仍然要对检测系统进行校正。校正方法是取走图lO中待测产品和所有电阻,利用50Ω的电缆转接头将接在网络分析仪RF OUT和I IN上的两电缆联起来,再按下校正按键。

图ll所示是测得典型网络变压器的TX和RX两个单元电路的共模抑制比对频率的关系曲线。

参考《电阻、扼流圈组成的平衡与非平衡之间阻抗转换器.教学与

科技》

网络性能测试与分析复习整理

网络性能测试与分析(林川)复习整理 对一台具有三层功能的防火墙进行测试,可以参考哪些和测试相关的RFC文档? RFC3511、RFC3222、RFC2889、RFC2544 IP包头的最大长度为多少?为什么? 答:60字节,固定部分20字节,可变部分40字节 在数据传输层面,用以衡量路由器性能的主要技术指标有哪些? 答:(1)吞吐量;(2)延迟;(3)丢包率;(4)背对背;(5)时延抖动;(6)背板能力;(7)系统恢复;(8)系统恢复。 什么是吞吐量?简述吞吐量测试的要点? 答:吞吐量是描述路由器性能优劣的最基本参数,路由设备说明书和性能测试文档中都包含该参数。是指在没有丢包的情况下,路由设备能够转发的最大速率。要点:零丢包率。什么是延迟?为什么RFC2544规定延迟测试发包速率要小于吞吐量? 答:延迟是指包的第一个比特进入路由器到最后一个比特离开路由器的时间间隔,又叫时延。 丢包率测试的目的是什么?简述丢包率与吞吐量之间的关系? 答:丢包率测试的目的是确定DUT在不同的负载和帧长度条件下的丢包率。 什么是背对背?什么情况下需要进行背对背测试? 答:背对背指的是在一段较短的时间内,以合法的最小帧间隙在传输介质上连续发送固定长度的包而不引起丢包时的包数量,IEEE规定的以太网帧间的最小帧间隙为96比特。该指标用于测试路由器缓存能力。 大量的路由更新消息、频繁的文件传送和数据备份等操作都会导致数据在一段时间内急剧增加,甚至达到该物理介质的理论速率。为了描述此时路由器的表现,就要进行背对背突发的测试。 吞吐量:是指在没有丢包的情况下,路由设备能够转发的最大速率。对网络、设备、端口、虚电路或其他设施,单位时间内成功地传送数据的数量(以比特、字节、分组等测量)。 延迟:是指包的第一个比特进入路由器到最后一个比特离开路由器的时间间隔,又叫时延。丢包率:是指路由器在稳定负载状态下,由于缺乏资源而不能被网络设备转发的包占所有应该被转发的包的百分比。丢包率的衡量单位是以字节为计数单位,计算被落下的包字节数占所有应该被转发的包字节数的百分比。 背对背:是指在一段较短的时间内,以合法的最小帧间隙在传输介质上连续发送固定长度的包而不引起丢包时的包数量,IEEE规定的以太网帧间的最小帧间隙为96比特。 转发率:通过标定交换机每秒能够处理的数据量来定义交换机的处理能力。交换机产品线按转发速率来进行分类。若转发速率较低,则无法支持在其所有端口之间实现全线速通信。包转发速率是指交换机每秒可以转发多少百万个数据包(Mpps),即交换机能同时转发的数据包的数量。包转发率以数据包为单位体现了交换机的交换能力。路由器的包转发率,也称端口吞吐量,是指路由器在某端口进行的数据包转发能力,单位通常使用pps(包每秒)来衡量。 。 网络测试定义: 以科学的方法,通过测量手段/工具,取得网络产品或正在运行网络的性能参数和服务质量参数。这些参数包括可用性、差错率、吞吐量、时延、丢包率、连接建立时间、故障检测和

变压器运行特性分析报告

课程设计名称:电机与拖动课程设计 题目:变压器运行特性分析计算 专业: 班级: 姓名: 学号:

课程设计成绩评定表

变压器在我们的生活中无处不在,为了适应不同的使用目的和工作条件,现实生活中有很多种类型的变压器,常用的变压器有:电力变压器、特殊用途的电源变压器、测量用变压器、控制变压器,且这些类型的变压器在结构和性能上的差别也很大。虽然这些变压器有所不同,但是它们的基本原理是相同的。本设计通过对变压器的变换关系即电压变换、电流变换、阻抗变换,分析研究出变压器运行时的基本方程式,并通过相应的折算得出变压器的等值电路,从而完成对变压器空载,变压器负载运行,变压器空载合闸,变压器副边突然短路时的分析与计算。为了简化计算、减少计算量,本设计在相应的计算上使用MATLAB软件进行辅助。通过本设计的研究计算能对变压器的分析和计算方法有初步的了解,对变压器出现空载、负载运行、空载合闸、副边突然短路时的电压、电流变化有准确的认识。 关键词:变压器;基本方程式;折算;等值电路;MATLAB计算

1 变压器结构及其组成部分 (1) 1.1变压器的基本结构 (1) 1.1.1铁芯 (1) 1.1.2绕组 (1) 1.1.3油箱和冷却装置 (2) 1.1.4绝缘套管 (2) 1.1.5其他构件 (2) 1.2变压器的额定值 (2) 2变压器的变换关系 (4) 2.1电压变换 (4) 2.2电流变换 (4) 2.3阻抗变换 (5) 3变压器等值电路及其折算关系 (6) 4变压器空载时的分析与计算 (8) 5变压器负载运行时的分析与计算 (9) 6变压器副边突然短路时分析计算 (10) 7结论 (11) 8心得体会 (12) 参考文献 (13)

以太网网络变压器和中心抽头的作用

以太网网络变压器和中心抽头的作用 (2012-02-28 10:43:30) 转载▼ 标签: 杂谈 在以太网设备中,通过PHY接RJ45时,中间都会加一个网络变压器。有的变压器中心抽头接电源,有的又接电容到地。而且接电源时,电源值又可以不一样,3.3V,2.5V,1.8V都有。这个变压器的作用到底是什么呢? 1、中间抽头为什么有些接电源?有些接地?这个主要是与使用的PHY芯片UTP口驱动类型决定的,这种驱动类型有两种,电压驱动和电流驱动。电压驱动的就要接电源;电流驱动的就直接接个电容到地即可!所以对于不同的芯片,中心抽头的接法,与PHY是有密切关系的,具体还要参看芯片的datasheet和参考设计了。 2、为什么接电源时,又接不同的电压呢?这个也是所使用的PHY芯片资料里规定的UTP 端口电平决定的。决定的什么电平,就得接相应的电压了。即如果是2.5v的就上拉到2.5v,如果是3.3v的就上拉到3.3v。 3.这个变压器到底是什么作用呢,可不可以不接呢。从理论上来说,是可以不需要接变压器,直接接到RJ45上,也是能正常工作的。但是呢,传输距离就很受限制,而且当接到不同电平网口时,也会有影响。而且外部对芯片的干扰也很大。当接了网络变压器后,它主要用于信号电平耦合。其一,可以增强信号,使其传输距离更远;其二,使芯片端与外部隔离,抗干扰能力大大增强,而且对芯片增加了很大的保护作用(如雷击);其三,当接到不同电平(如有的PHY芯片是2.5V,有的PHY芯片是3.3V)的网口时,不会对彼此设备造成影响。 总的来说,网络变压器主要有信号传输、阻抗匹配、波形修复、信号杂波抑制和高电压隔离等作用。 中心抽头作用: 1.通过提供差分线上共模噪声的低阻抗回流路径,降低线缆上共模电流和共模电压; 2.对于某些收发器提供一个直流偏置电压或功率源。 集成的RJ45共模抑制可以做的更好些,寄生参数影响也比较小; 选用独立器件有一个好处,就是可以把隔离变压器下面的地分开,即GND和PGND,内部的共模干扰不但不会出去,外部网线即使耦合噪声也会通过网线对PGND的分布电容下到机壳上

变压器空载特性试验的目的及注意事项

变压器空载特性试验的目的及注意事项 变压器空载损耗和空载电流测量、负载损耗和短路阻抗测量都是变压器的例行试验。变压器的损耗是变压器的重要性能参数,一方面表示变压器在运行过程中的效率,另一方面表明变压器在设计制造的性能是否满足要求。 变压器的空载试验就是从变压器任一组线圈施加额定电压,其它线圈开路的情况下,测量变压器的空载损耗和空载电流。空载电流用它与额定电流的百分数表示。 1、变压器空载试验的电源容量的选择:保证电源波形失真不超过5%,试品的空载容量应在电源容量的50以下;采用调压起加压,空载容量应小于调压器容量的50%;采用发电机组试验时,空载容量应小于发电机容量的25%。空载试验的试验电压是低压侧的额定电压,变压器空载试验主要测量空载损耗。空载损耗主要是铁损耗。铁损耗的大小可以认为与负载的大小无关,即空载时的损耗等于负载时的铁损耗,但这是指额定电压时的情况。如果电压偏离额定指,由于变压器铁芯中的磁感应强度处在磁化曲线的饱和段,空载损耗和空载电流都会急剧变化,因此,空载试验应在额定电压下进行。 注意:在测量大型变压器的空载或负载损耗时,因为功率因数很低,可达到cosφ小于和等于0.1。所以一定要求采用低功率因数的

瓦特表。 2、空载试验是测量额定电压下的空载损耗和空载电流,试验时高压侧开路,低压侧加压,试验电压是低压侧的额定电压,试验电压低,试验电流为额定电流百分之几或千分之几。 3、通过空载试验可以发现变压器以下缺陷:硅钢片间绝缘不良。铁芯极间、片间局部短路烧损,穿芯螺栓或绑扎钢带、压板、上轭铁等的绝缘部分损坏、形成短路,磁路中硅钢片松动、错位、气隙太大,铁芯多点接地,线圈有匝间、层间短路或并联支路匝数不等、安匝不平衡等,误用了高耗劣质硅钢片或设计计算有误。

网络性能测试与分析复习资料

题型: 一. 名词解释(5个,每个4分,共20分 吞吐量:是指在没有丢包的情况下,路由设备能够转发的最大速率。对网络、设备、端口、虚电路或其他设施,单位时间内成功地传送数据的数量(以比特、字节、 分组等测量。 延迟:是指包的第一个比特进入路由器到最后一个比特离开路由器的时间间隔, 又叫时延。 丢包率:是指路由器在稳定负载状态下,由于缺乏资源而不能被网络设备转发的包占所有应该被转发的包的百分比。丢包率的衡量单位是以字节为计数单位,计算被落下的包字节数占所有应该被转发的包字节数的百分比。 背对背:是指在一段较短的时间内,以合法的最小帧间隙在传输介质上连续发送固定长度的包而不引起丢包时的包数量,IEEE 规定的以太网帧间的最小帧间隙为96 比特。 转发率:通过标定交换机每秒能够处理的数据量来定义交换机的处理能力。交换机产品线按转发速率来进行分类。若转发速率较低,则无法支持在其所有端口之间实现全线速通信。包转发速率是指交换机每秒可以转发多少百万个数据包(Mpps, 即交换机能同时转发的数据包的数量。包转发率以数据包为单位体现了交换机的交换能力。路由器的包转发率,也称端口吞吐量,是指路由器在某端口进行的数据包转发能力,单位通常使用pps(包每秒来衡量。 二. 选择题(15个,2分一个,共30分 书上一到七章课后习题选择题 三. 解答题(4个,5分一个,共20分 1、IP包头的最大长度为多少?为什么?

答:IP包的大小由MTU决定(IP数据包长度就是MTU-28(包头长度。MTU值 越大,封包就越大,理论上可增加传送速率,但MTU 值又不能设得 太大,因为封包太大,传送时出现错误的机会大增。一般默认的设置, PPPoE连接的最高MTU值是1492,而以太网(Ethernet的最高MTU 值则是1500,而在In ternet上默认的MTU大小是576字节 2、在数据传输层面,用以衡量路由器性能的主要技术指标有哪些? 答:(1 吞吐量:是指在不丢包的情况下单位时间内通过的数据包数量,也 就是指设备整机数据包转发的能力,是设备性能的重要指标。路由器吞吐量表示的是路由器每秒能处理的数据量,是路由器性能的一个直观上的反映。 (2 线速转发能力:所谓线速转发能力,就是指在达到端口最大速率的时候,路由器传输的数据没有丢包。线速转发是路由器性能的一个重要指标。简单的说就是进来多大 的流量,就出去多大的流量,不会因为设备处理能力的问题而造成吞吐量下降。 3、什么是吞吐量?简述吞吐量的测试要点。答:吞吐量时衡量交换机在不丢帧的 情况下每秒转发帧的极限能力测试要点:被 测设备的整体转发能力,即整机吞吐量 被测设备对某种单一应用的支持程度,即端口吞吐量

变压器运行特性分析

课程设计名称:电机与拖动课程设计 # 题目:变压器运行特性分析计算 专业: ( 班级: 姓名: 学号:

课程设计成绩评定表

变压器在我们的生活中无处不在,为了适应不同的使用目的和工作条件,现实生活中有很多种类型的变压器,常用的变压器有:电力变压器、特殊用途的电源变压器、测量用变压器、控制变压器,且这些类型的变压器在结构和性能上的差别也很大。虽然这些变压器有所不同,但是它们的基本原理是相同的。本设计通过对变压器的变换关系即电压变换、电流变换、阻抗变换,分析研究出变压器运行时的基本方程式,并通过相应的折算得出变压器的等值电路,从而完成对变压器空载,变压器负载运行,变压器空载合闸,变压器副边突然短路时的分析与计算。为了简化计算、减少计算量,本设计在相应的计算上使用MATLAB软件进行辅助。通过本设计的研究计算能对变压器的分析和计算方法有初步的了解,对变压器出现空载、负载运行、空载合闸、副边突然短路时的电压、电流变化有准确的认识。 关键词:变压器;基本方程式;折算;等值电路;MATLAB计算

、 1 变压器结构及其组成部分 (1) 变压器的基本结构 (1) 铁芯 (1) 绕组 (1) 油箱和冷却装置 (2) 绝缘套管 (2) 其他构件 (2) 变压器的额定值 (2) 2变压器的变换关系 (4) ' 电压变换 (4) 电流变换 (4) 阻抗变换 (5) 3变压器等值电路及其折算关系 (6) 4变压器空载时的分析与计算 (8) 5变压器负载运行时的分析与计算 (9) 6变压器副边突然短路时分析计算 (10) 7结论 (11) 8心得体会 (12) 参考文献 (13) |

网络隔离变压器

1、中间抽头为什么有些接电源?有些接地?这个主要是与使用的PHY芯片UTP口驱动类型决定的,这种驱动类型有两种,电压驱动和电流驱动。电压驱动的就要接电源;电流驱动的就直接接个电容到地即可!所以对于不同的芯片,中心抽头的接法,与PHY是有密切关系的,具体还要参看芯片的datasheet和参考设计了。 2、为什么接电源时,又接不同的电压呢?这个也是所使用的PHY芯片资料里规定的UTP 端口电平决定的。决定的什么电平,就得接相应的电压了。即如果是2.5v的就上拉到2.5v,如果是3.3v的就上拉到3.3v。 3.这个变压器到底是什么作用呢,可不可以不接呢。从理论上来说,是可以不需要接变压器,直接接到RJ45上,也是能正常工作的。但是呢,传输距离就很受限制,而且当接到不同电平网口时,也会有影响。而且外部对芯片的干扰也很大。当接了网络变压器后,它主要用于信号电平耦合。其一,可以增强信号,使其传输距离更远;其二,使芯片端与外部隔离,抗干扰能力大大增强,而且对芯片增加了很大的保护作用(如雷击);其三,当接到不同电平(如有的PHY芯片是2.5V,有的PHY芯片是3.3V)的网口时,不会对彼此设备造成影响。 总的来说,网络变压器主要有信号传输、阻抗匹配、波形修复、信号杂波抑制和高电压隔离等作用。 另: 数据汞也被叫做网络变压器或可称为网络隔离变压器。它在一块网卡上所起的作用主要有两个,一是传输数据,它把PHY送出来的差分信号用差模耦合的线圈耦合滤波以增强信号,并且通过电磁场的转换耦合到不同电平的连接网线的另外一端;一是隔离网线连接的不同网络设备间的不同电平,以防止不同电压通过网线传输损坏设备。除此而外,数据汞还能对设备起到一定的防雷保护作用。 变压器两脚加上信号电压(差模信号)时,经过磁路耦合作用在变压器的次级端感应出感生电压。对于信号电压,由于CMC两绕组同时流过的信号电流大小相等、方向相反,在CMC 的铁芯磁路中产生了方向相反的磁通,相互抵消,不影响差模信号传输。而此时CMT两绕组流过的则是大小相等,方向相同的电流,致使CMT的作用相当于一个大的电阻,阻碍差模信号的通过,对载波信号的传输影响极少。所以差模信号被直接耦合加到负载上。而对共模信号来说,主要是通过变压器的初、次级间的分布电容耦合到次级,而此时CMC两绕组流过的是大小相等、方向相同的电流,这时CMC相当于一个大的电阻,阻止共模电流的传输,而CMT两绕组则是流过大小相等、方向相反的电流,对共模信号相当于短路,这样共模电压基本上不会被传送,而被耦合到负载上。从而既能使载波信号被很好的传输,又能抑制共模干扰信号。 变压器的中间抽头。中间抽头为什么有些接电源?有些接地?这个主要是使用的phy芯片UTP(双绞线)口驱动类型决定的,有两种,如果是电压驱动的就要接电源;如果是电流驱动的就不用了,直接接个电容到地。为什么有些接2.5v?而有些又接3.3v呢?这个由PHY 芯片资料里规定的UTP端口电平决定。如果是2.5v的就上拉到2.5v,如果是3.3v的就上拉到3.3v。

网络性能测试与分析复习题

a网络性能测试与分析复习题 一.名词解释 吞吐量:是指在没有丢包的情况下,路由设备能够转发的最大速率。对网络、设备、端口、虚电路或其他设施,单位时间内成功地传送数据的数量(以比特、字节、分组等测量)。 延迟:是指包的第一个比特进入路由器到最后一个比特离开路由器的时间间隔,又叫时延。 丢包率:是指路由器在稳定负载状态下,由于缺乏资源而不能被网络设备转发的包占所有应该被转发的包的百分比。丢包率的衡量单位是以字节为计数单位,计算被落下的包字节数占所有应该被转发的包字节数的百分比。 背对背:是指在一段较短的时间内,以合法的最小帧间隙在传输介质上连续发送固定长度的包而不引起丢包时的包数量,IEEE规定的以太网帧间的最小帧间隙为96比特。 转发率:通过标定交换机每秒能够处理的数据量来定义交换机的处理能力。交换机产品线按转发速率来进行分类。若转发速率较低,则无法支持在其所有端口之间实现全线速通信。包转发速率是指交换机每秒可以转发多少百万个数据包(Mpps),即交换机能同时转发的数据包的数量。包转发率以数据包为单位体现了交换机的交换能力。路由器的包转发率,也称端口吞吐量,是指路由器在某端口进行的数据包转发能力,单位通常使用pps(包每秒)来衡量。 背压(Backpressure) :当外出或输出端口出现拥塞现象时,被交换机用来通知发送端降低帧发送速度,以阻止外部数据源继续向拥塞端口传输帧的那些方法。 背对背:指的是在一段较短的时间内,以合法的最小帧间隙在传输媒介上连续发送固定长度的包不引起丢包时的包数量。 路由震荡:又叫路由波动是指由于种种原因导致到某个目的网络的路由在短期内反复撤销和重现。路由震荡通常以每秒更新路由的数量来衡量,每秒更新路由的数量越大,说明路由震荡越严重。路由震荡是路由不稳定性的主要表现,对路由器转发能力有很大的影响。 路由收敛:路由收敛是指同一个网络中所有路由器对网络拓扑的认识达到一致的过程。也被理解为路由变化通知到全网所用时间。收敛是评估路由协议的一个关键指标。路由协议的收敛速度越快,其运行性能就越好。 服务质量(QoS)定义为网络在传输数据流时要求满足的一系列服务请求,具体可量化为带宽,时延,吞吐量等性能指标 填空题: 1、一次完整的网页相应包括一个DNS请求报文,一个DNS回答报文,一个HTTP请求报文和一个HTTP响应报文。 2、标识符会被复制到对查询的回答报文中,以便让客户机用它来匹配发送的请求和接收到的回答。 3、问题区域包含着正在进行的查询信息。该区域包括:名字字段,用于指出正在被查询主机名字;类型字段,用于指出正被询问的问题类型。 4、权威区域包含了其他权威DNS服务器的记录。

变压器实验报告

专业:电子信息工程: 实验报告 课程名称:电机与拖动指导老师:卢琴芬成绩: 实验名称:单相变压器同组学生姓名:刘雪成李文鑫 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.通过空载和短路实验测定变压器的变比和参数。 2.通过负载实验测取变压器的运行特性。 二、预习要点 1.变压器的空载和短路实验有什么特点实验中电源电压一般加在哪一方较合适 2.在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小 3.如何用实验方法测定变压器的铁耗及铜耗。 三、实验项目 1.空载实验 测取空载特性U0=f(I0), P0=f(U0)。 2.短路实验 测取空载特性U K=f(I K), P K=f(U K)。 3.负载实验 (1)纯电阻负载 保持U1=U1N, cos φ2=1的条件下,测取U2=f(I2)。 四、实验线路及操作步骤 1.空载试验

实验线路如图3-1所示,被试变压器选用DT40三相组式变压器,实验用其中的一相,其额定容量P N=76W,U1N/ U2N=220/55V,I1N/I2N=0.345/1.38A。变压器的低压线圈接电源,高压线圈开路。接通电源前,选好所有电表量程,将电源控制屏DT01的交流电源调压旋钮调到输出电压为零的位置,然后打开钥匙开头,按下DT01面板上“开”的按钮,此时变压器接入交流电源,调节交流电源调压旋钮,使变压器空载电压U0=1.2 U N,然后,逐次降低电源电压,在1.2~0.5U N的范围内,测取变压器的U0、I0、 P0共取6-7组数据,记录于表2-1中,其中U=U N的点必测,并在该点附近测的点应密些。为了计算变压器的变化,在U N 以下测取原方电压的同时,测出副方电压,取三组数据记录于表3-1中。 图3-1 空载实验接线图 COSφ2=1 U1= U N= 220 伏

网络连接性能的测试实验报告

网络连接性能的测试实验报到实验目的:(1)熟悉利用ping命令工具来进行测试 (2)熟悉利用Ipconfig工具来进行测试 (3)熟悉利用网络路由跟踪Tracert进行测试 实验性质:验证性实验 实验器材:计算机(已安装Windows XP) 实验步骤: (1)利用Ping命令工具进行测试 a)检查本机的 TCP/IP 协议安装是否正确 方法:输入Ping 127.0.0.1 结果: 本机的TCP/IP 协议安装正确 b)测试本台计算机上TCP/IP的工作情况。 方法:输入Ping 192.168.1.1(本机的IP地址) 结果: 本机的TCP/IP工作正常 c)用Ping工具测试其他计算机上TCP/IP的工作情况

方法:输入Ping 219.136.19.170(其他计算机上IP地址)结果: 其他计算机上TCP/IP的工作正常 e) 用Ping工具测试和远程计算机的连接情况 方法:输入Ping https://www.360docs.net/doc/7111038834.html, 结果: 本计算机和远程计算机的连接 (2)用Ipconfig工具来进行测试 运行Ipconfig命令 方法:输入Ipconfig/all 结果:

(3)利用网络路由跟踪Tracert进行测试

a)跟踪路由 方法;输入Tracert 192.168.1.1(本计算机网关地址) 结果: b)测试本计算机到所经过的路由数 方法:输入Tracert 结果: 3G 3G(英语 3rd-generation)是第三代移动通讯技术,是指支持高速数据传输的蜂窝移动通讯技术。3G服务能够同时传送声音及数据信息,速率一般在几百kbps以上。3G是指将无线通信和国际互联网等多媒体通信结合的新一代移动通信系统,目前3G存在3种标准:CDMA2000、WCDMA、TD-SCDMA。 3G下行速度峰值理论可达3.6Mbit/s(一说2.8Mbit/s),上行速度峰值也可达384kbit/s。不可能像网上说的每秒2G,当然,下载一部电影也不可能瞬间完成。

网络变压器个人小结

网络变压器个人小结 LiuSH 各位,我们在设计路由和交换机的时候,在以太网PHY芯片和RJ45接口中间我们会用到一个很常用的器件——网络变压器,又叫做数据汞。(有一些网络变压器是集成在RJ45里面,要注意选型,目前我们少用到这一种) 网络变压器的主要作用就是信号传输、阻抗匹配、波形修复、信号杂波抑制和电压隔离等。 从理论上说,是可以不接这个网络变压器的,我们直接将PHY芯片和RJ45连上,设备也能正常工作,但是这时传输距离就会受到限制.当接了网络变压器后,其一,可以增强信号,使其传输距离更远;其二,使芯片端与外部隔离,抗干扰能力大大增强,而且对芯片增加了很大的保护作用,目前我们如果网口上面没加其它的保护芯片,有网络变压器时能过到2KV的静电和雷击;其三,当接到不同电平(如有的PHY芯片是2.5V,有的是3.3V,或1.8V)的网口时,不会对彼此设备造成影响。 如下面图所示,在发送差分线和接收差分线之间会并联两个49.9或者50Ω(精度1%)的终接电阻,这个电阻的作用是为了实现阻抗匹配,对于初次比1:1的变压器,其输入电阻和输出电阻之比也是1:1,这样并联的结果,在输出端看来就是100Ω的匹配电阻,现在我们所用的双绞线的特征阻抗大多是100Ω。

请大家注意,我们不同的芯片的SCH中,网络变压器的中心抽头有的接了3.3V 的电平,有的接了2.5V或者1.8V,有的悬空了。实际上这个主要与PHY芯片 UTP口驱动类型决定的。这种驱动类型有两种,电压驱动和电流驱动。 电压驱动的接电源,电流驱动的直接接电容到地即可。至于为什么接电源时,所接的电压会不同,这是由所用的PHY芯片规定的UTP端口电平决定的。所以对于不同的PHY芯片,网络变压器的中心抽头会有不同的接法,我们在进行设计时, 需要仔细查看芯片资料和参考设计。再次提醒,如果我们选用了电流型驱动的PHY,而外面网络变压器中间抽头接了电源,功能就会有影响,甚至不能使用!电源要接3.3V的,也不能接为2.5V和1.8V。请注意此点! 网口差分对的走线,以及网口滤波电容和中心抽头供电端磁珠型号以及网络变压器本身的共模压抑比的参数,将直接影响到板子网口端EMI的效果。这一部分在设计的时刻就要注意!

Ethernet_Transformer网络变压器的作用

网络变压器作用、原理及主要参数 前言 图1所示的网络变压器(Ethernet Transformer,也称数据汞/网络隔离变压器)模块是网卡电路中不可或缺的部分,它主要包含中间抽头电容、变压器、自耦变压器、共模电感。该变压器一般都安装在网卡的输入端附近。工作时,由收发器送出的上行数据信号从络变压器的Pin16-Pin15进入,由Pin10-Pin11输出,经RJ45型转接头,再通过非屏蔽双绞线送往服务器;服务器送来的下行数据信号经另一对非屏蔽双绞线和RJ45型转接头,由Pin7-Pin6进入,由Pin1-Pin2输出,然后送到网卡的收发器上。 本文将主要分析网络变压器的原理、主要参数及实现的功能。 图1:网络变压器电路图 功能 Ethernet Transformer主要实现以下三个功能: 1.满足IEEE 80 2.3电气隔离要求 2.无失真传输以太网信号 3.辐射发射的抑制 电气隔离 任何CMOS制程的芯片工作的时候产生的信号电平总是大于0V的(取决于芯片的制程和设计需求),PHY输出信号送到100米甚至更长的地方会有很大的直流分量的损失。而且如果外部网线直接和芯片相连的话,电磁感应(打雷)和静电,很容易造成芯片的损坏。 再就是设备接地方法不同,电网环境不同会导致双方的0V电平不一致,这样信号从A 传到B,由于A设备的0V电平和B点的0V电平不一样,这样可能会导致很大的电流从电势高的设备流向电势低的设备。 网络变压器把PHY送出来的差分信号用差模耦合的线圈耦合滤波以增强信号,并且通过电磁场的转换耦合到连接网线的另外一端。这样不但使网线和PHY之间没有物理上的连接而换传递了信号,隔断了信号中的直流分量,还可以在不同0V电平的设备中传送数据。 网络变压器本身就是设计为耐2KV~3KV的电压的。也起到了防雷保护作用。有些朋友的网络设备在雷雨天气时容易被烧坏,大都是PCB设计不合理造成的,而且大都烧毁了设备的接口,很少有芯片被烧毁的,就是变压器起到了保护作用。

变压器效率特性

变压器运行特性分析与效率曲线 二、理论分析 2.效率和效率特性 变压器运行时将产生损耗。变压器的损耗分为铜耗和铁耗,每一类又包括基本损耗和杂散损耗。其中铁耗可视为不变损耗。基本铜耗是指电流流过绕组时所产生的直流电阻损耗。杂散铜耗主要是指漏磁场引起电流集肤效应,使绕组的有效电阻增大所增加的铜耗,以及漏磁场在结构部件中所引起的涡流损耗等。 变压器的总损耗为 ''22 k Fe Cu Fe R mI p p p P +=+=∑ 式中,电阻。为归算到二次侧的短路为相数;'' R k m 变压器的输入有功功率为1P ,输出功率为2P ,总损耗功率为P ∑,所以效率为 P P P P P ∑+==2212η 由于电力变压器的效率很高,用直接负载法测量1P 和2P 在算出效率,很难得到准确的结果,因此工程上常采用间接法来计算效率,由空载试验测出铁耗,由短路试验测出铜耗在计算效率。此时效率为 kN O N kN O P I P I S P I P P P 2222221cos 11***+++-=∑-=?η 给定以上的参数即可绘制效率曲线。

图3.变压器的效率曲线 有数学分析 2 = dI dη 可知在变压器的铜耗等于铁耗时,变压器的效率达到最 大。 图4.效率曲线的最大值 说明:图中铁耗与铜耗值与对应的坐标值并不一一对应。 附程序源代码 3.变压器的效率曲线 function xiaolv1 p0=2.4; pk=11.6; sn=1000; j=0.8; a=zeros(1,1000); b=zeros(1,1000); for i=2:1:1000 a(i)=a(i-1)+0.001; b(i)=1-(p0+(a(i)^2)*pk)/(a(i)*sn*0.8+p0+(a(i)^2)*pk); end hold on plot(a,b) xlabel('I2的标幺值 ') ylabel('效率 ') 4.效率曲线的最大值 function xiaolv2 p0=2.4; pk=11.6; sn=1000;

变压器的运行特征

一、变压器的运行特征 变压器的运行特征主要有外特征与效率特性,而表征变压器运行性能的主要指标则有电压变化率和效率。 1、电压变化率 1)外特性 变压器一次侧接上额定电压,二次侧开路时,二次侧空载电压就等于二次侧额定电压,外特性是指一次侧加额定电压,负载功率因数cosφ2一定时,二次侧端电压随负载电流变化的关系,即U2=f (I2)。变压器在纯电阻和感性负载时,外特性是下降的,而客性负载时可能是上翘的。 2)电压变化率 负载电流变化,变压器副边端电压将随着发生变化。电压调整率是变压器负载时副边端电压变化程度的一种程度。假定变压器原边接电源电压,副边开路时的端电压为额定值,当副边接入负载后,即使原来电压保持不变,副边端电压不再是额定值,原边电压保持为额定值,负载功率因数为常数,空载和负载的副边端电压之差与副边额定电压的比值,即电压变化的标么值称为电压变化率,用⊿U*表示 即 ⊿U*=(U20-U2)/U2N 式中U20—副边空载电压 U2—时的副边端电压 由于副边空载端电压U20等于副边额定电压U2N,经过折算后,公式1可写成 ⊿U*=(U20-U2)/U2N=(U'2N-U'2)/U'2N=(U10-U'2)/U1N 电压变化率是变压器的主要性能指标之一,负载电流变化时,副边端电压变化的原因,是变压器内部存在电阻和漏抗而引起内部电压降。副边电压的变化程度,即⊿U*的大小,不仅同变压器本身的阻抗有关,而且与负载的大小和性能有关。 综合上述,负载为感性时,φ2角为正值,故电压变化率为正值,即负载时的副边电压恒比空载电压低;负载为容性,φ2角为负值,故电压变化率有可能为负值,亦即负载时的副边电压可能高于空载电压。 为了保证供电电压的质量,尽可能保持副边电压的稳定,这就需要进行调压。在电力系统中调压的方法很多,例如调节发电机出口电压,用同步调相机,在负载端并联电容器等。但采用最多、最普遍的还是变压器调压。电力变压器的调压方式有两种:一种是无载调压,即在切断负载(或停电)后,用无励磁分接开关改变高压绕组分接头调压;另一种是有载分接开关调压,后者调压速度快,调压范围可达到额定电压的20%。中小型电力变压器一般三个 分接头,记作U N±2×2.5%或U N ±8×1.25%等。 2、效率 1)变压器的功率 变压器的额定容量是由额定电压和额定电流的乘积即视在功率表示的S=UI,所以变压器的整体尺寸决定视在功率,其中,额定电压决定于变压器铁芯磁通的多少,因而决定铁芯的截面。 变压器的输出功率P2=U2I2cosφ2是与φ2有关的,所以在同样的容许发热情况下,输出功率的大小取决于负载的性质(cosφ2),负载功率因数cosφ2愈高,输出功率愈大,如

网络变压器简介

网络变压器简介 网络变压器具体有T1/E1隔离变压器;ISDN/ADSL接口变压器;VDSL 高通/低通滤波器模块、接口变压器;T3/E3、SDH、64KBPS接口变压器;10/100BASE、1000BASE-TX网络滤波器;RJ45集成变压器;还可根据客户需要设计专用变压器。产品主要应用于:高性能数字交换机;SDH/ATM传输设备;ISDN、ADSL、VDSL、POE受电设备综合业务数字设备;FILT光纤环路设备;以太网交换机等等,如裕泰电子的YL18-2050S,YL18-3002S等比较常见! 数据泵是消费级PCI网卡上都具备的设备,数据泵也被叫做网络变压器或可称为网络隔离变压器。 它在一块网卡上所起的作用主要有两个,一是传输数据,它把PHY送出来的差分信号用差模耦合 的线圈耦合滤波以增强信号,并且通过电磁场的转换耦合到不同电平的连接网线的另外一端;一 是隔离网线连接的不同网络设备间的不同电平,以防止不同电压通过网线传输损坏设备。除此 而外,数据汞还能对设备起到一定的防雷保护作用。 编辑本段网络变压器在以太网中的作用 在以太网设备中,通过PHY接RJ45时,中间都会加一个网络变压器。有的变压器中心抽头接到地。而且接电源时,电源值又可以不一样,3.3V,2.5V,1.8V都有。这个变压器的作用分析如下: 1、中间抽头为什么有些接电源?有些接地?这个主要是与使用的PHY 芯片UTP口驱动类型决定的,这种驱动类型有两种,电压驱动和电流驱动。电压驱动的就要接电源;电流驱动的就直接接个电容到地即可!所以对于不同的芯片,中心抽头的接法,与PHY是有密切关系的,具体还要参看芯片的datasheet和参考设计了。 2、为什么接电源时,又接不同的电压呢?这个也是所使用的PHY芯片资料里规定的UTP端口电平决定的。决定的什么电平,就得接相应的电压了。即如果是2.5v的就上拉到2.5v,如果是3.3v的就上拉到3.3v。 3.这个变压器到底是什么作用呢,可不可以不接呢。从理论上来说,是可以不需要接变压器,直接接到RJ45上,也是能正常工作的。但是呢,传输距离就很受限制,而且当接到不同电平网口时,也会有影响。而且外部对芯片的干扰也很大。当接了网络变压器后,它主要用于信号电平耦合。其一,可以增强信号,使其传输距离更远;其二,使芯片端与外部隔离,抗干扰能力大大增强,而且对芯片增加了很大的保护作用(如雷击);其

变压器外特性与效率特性

一、变压器的外特性及电压变化率 变压器空载运行时,若一次绕组电压U 1不变,则二次绕组电压U 2 也是不变的。 变压器加上负载之后,随着负载电流I 2的增加,I 2 在二次绕组内部的阻抗压降也 会增加,使二次绕组输出的电压U 2 随之发生变化。另一方面,由于一次绕组电 流I 1随U 2 增加,因此I 2 增加时,使一次绕组漏阻抗上的压降也增加,一次绕组 电动势E 1和二次绕组电动势E 2 也会有所下降,这也会影响二次绕组的输出电压 U 2。变压器的外特性是用来描述输出电压U 2 随负载电流I 2 的变化而变化的情况。 当一次绕组电压U 1和负载的功率因数cosφ 2 一定时,二次绕组电压U 2 与负载电 流I 2 的关系,称为变压器的外特性。它可以通过实验求得。功率因数不同时的 几条外特性绘于图2—17中,可以看出,当cosφ 2=1时,U 2 随I 2 的增加而下降 得并不多;当cosφ 2降低时,即在感性负载时,U 2 随I 2 增加而下降的程度加大, 这是因为滞后的无功电流对变压器磁路中的主磁通的去磁作用更为显著,而使 E 1和E 2 有所下降的缘故;但当cosφ 2 为负值时,即在容性负载时,超前的无功 电流有助磁作用,主磁通会有所增加,E 1和E 2 亦相应加大,使得U 2 会随I 2 的增 加而提高。以上叙述表明,负载的功率因数对变压器外特性的影响是很大的。 图2-17 变压器外特性 在图2—17中,纵坐标用U 2/U 2N 之值表示,而横坐标用I 2 /I 2N 表示,使得在坐 标轴上的数值都在0~1之间,或稍大于1,这样做是为了便于不同容量和不同电压的变压器相互比较。 一般情况下,变压器的负载大多数是感性负载,因而当负载增加时,输出电压U 2 总是下降的,其下降的程度常用电压变化率来描述。当变压器从空载到额定负 载(I 2=I 2N )运行时,二次绕组输出电压的变化值ΔU与空载电压(额定电压) U 2N 之比的百分值就称为变压器的电压变化率,用ΔU%来表示。

网络性能测试与分析 林川 复习整理

网络性能测试与分析(林川)复习整理对一台具有三层功能的防火墙进行测试,可以参考哪些和测试相关的RFC文档 RFC3511、RFC3222、RFC2889、RFC2544 包头的最大长度为多少为什么IP 字节4060答:字节,固定部分20字节,可变部分 在数据传输层面,用以衡量路由器性能的主要技术指标有哪些 )背(65)丢包率;(4)背对背;()时延抖动;)延迟;1 答:()吞吐量;(2(3)系统恢复。8)系统恢复;板能力;(7( 什么是吞吐量简述吞吐量测试的要点 路由设备说明书和性能测试文答:吞吐量是描述路由器性能优劣的最基本参数,档中都包含该参数。是指在没有丢包的情况下,路由设备能够转发的最大速率。要规定延迟测试发包速率要小于吞吐量什么是延迟为什么RFC2544点:零丢包率。 延迟是指包的第一个比特进入路由器到最后一个比特离开路由器的时间间隔,答: 又叫时延。 丢包率测试的目的是什么简述丢包率与吞吐量之间的关系 在不同的负载和帧长度条件下的丢包率。DUT 答:丢包率测试的目的是确定 什么是背对背什么情况下需要进行背对背测试 答:背对背指的是在一段较短的时间内,以合法的最小帧间隙在传输

介质上连续发送固定长度的包而不引起丢包时的包数量,IEEE规定的以太网帧间的最小帧间隙为96比特。该指标用于测试路由器缓存能力。 大量的路由更新消息、频繁的文件传送和数据备份等操作都会导 致数据在一段时间内急剧增加,甚至达到该物理介质的理论速率。为了描述此时路由器的表现,就要进行背对背突发的测试。 吞吐量:是指在没有丢包的情况下,路由设备能够转发的最大速率。对网络、设备、端口、虚电路或其他设施,单位时间内成功地传送数据的数量(以比特、字节、分组等测量)。 延迟:是指包的第一个比特进入路由器到最后一个比特离开路由器的时间间隔,又叫时延。 丢包率:是指路由器在稳定负载状态下,由于缺乏资源而不能被网络设备转发的包占所有应该被转发的包的百分比。丢包率的衡量单位是以字节为计数单位,计算被落下的包字节数占所有应该被转发的包字节数的百分比。背对背:是指在一段较短的时间内,以合法的最小帧间隙在传输介质上连续发送固定长度的包而不引起丢包时的包数量,IEEE规定的以太网帧间的最小帧间隙为96比特。 转发率:通过标定交换机每秒能够处理的数据量来定义交换机的处理能力。交换机产品线按转发速率来进行分类。若转发速率较低,则无法支持在其所有端口之间实,即)Mpps现全线速通信。包转发速率是指交换机每秒可以转发多少百万个数据包(. 交换机能同时转发的数据包的数量。包转发率以数据包为单位体现了交换机的交换能力。路由器的包转发率,也称端口吞吐量,是指路由器在某

网络基准性能测试报告(模板)

网络基准性能测试 一、测试目的 通过测试网络的连通性、吞吐量、往返延时、丢包率,判断网络系统的基准性能是否符合标准DB37/T 291-2000《计算机网络检测与评估》的要求。 二、术语解释 2.1连通性 连通性反映被测试链路之间是否能够正常通信。 2.2吞吐量 吞吐量是指测试设备或被测试系统在不丢包的情况下,能够达到的最大包传输速率。 2.3响应时间 响应时间即往返延迟,是指发出请求的时刻到用户的请求的相应结果返回用户的时间间隔。 2.4丢包率 丢包率是指在吞吐量范围内测试所丢失数据包数量占所发送数据包的比率。 三、测试依据 本次测试依据DB37/T291-2000《计算机网络检测与评估》 四、网络拓扑 五、测试环境分析 网络基准性能测试在山东省标准化研究院网络管理中心完成。测试在空载环境下进行,选取省局的服务器所在网络进行负载压力测试,通过模拟大量的数据包,测试网络的基准性能,以确保网络性能可以保障业务的正常运行。

3.1防火墙访问控制策略表 注:测试时在防火墙访问控制策略中添加允许双向ping通的策略,并打开测试工具的两个默认端口才能完成测试。 3.2测试场景描述 在网络基准性能测中,选定主要通道,分四个场景,利用Chariot的数据产生功能,生成特定长度的帧,人为的给网络系统制造特定的数据流量,以测试网络的连通性、吞吐量、响应时间和丢包率。四个场景拓扑图分别如下:场景1 上述链路的选取和测试,体现了从网通线路入口到F5负载均衡上连口之间的网络性能,反映了数据经过防火墙控制策略过滤后所呈现的网络基准性能。在测试过程中,需要断开Internet连接,并在防火墙的E1接口上放置测试机A,摘除F5以及两台WEB服务器,并在F5的位置上放置测试机C。 场景2 上述链路的选取和测试,体现了从电信线路入口到F5负载均衡上连口之间的网络性能,反映了数据经过防火墙控制策略过滤后所呈现的网络基准性能。在测试过程中,需要断开Internet连接,并在防火墙的E3接口上放置测试机B,摘除F5以及两台WEB服务器,并在F5的位置上放置测试机C。

网络性能测试与分析林川复习整理完整版

网络性能测试与分析林 川复习整理 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

网络性能测试与分析(林川)复习整理 对一台具有三层功能的防火墙进行测试,可以参考哪些和测试相关的RFC文档?RFC3511、RFC3222、RFC2889、RFC2544 IP包头的最大长度为多少为什么 答:60字节,固定部分20字节,可变部分40字节 在数据传输层面,用以衡量路由器性能的主要技术指标有哪些? 答:(1)吞吐量;(2)延迟;(3)丢包率;(4)背对背;(5)时延抖动;(6)背板能力;(7)系统恢复;(8)系统恢复。 什么是吞吐量简述吞吐量测试的要点 答:吞吐量是描述路由器性能优劣的最基本参数,路由设备说明书和性能测试文档中都包含该参数。是指在没有丢包的情况下,路由设备能够转发的最大速率。要点:零丢包率。什么是延迟为什么RFC2544规定延迟测试发包速率要小于吞吐量答:延迟是指包的第一个比特进入路由器到最后一个比特离开路由器的时间间隔,又叫时延。 丢包率测试的目的是什么简述丢包率与吞吐量之间的关系 答:丢包率测试的目的是确定DUT在不同的负载和帧长度条件下的丢包率。 什么是背对背什么情况下需要进行背对背测试 答:背对背指的是在一段较短的时间内,以合法的最小帧间隙在传输介质上连续发送固定长度的包而不引起丢包时的包数量,IEEE规定的以太网帧间的最小帧间隙为96比特。该指标用于测试路由器缓存能力。 大量的路由更新消息、频繁的文件传送和数据备份等操作都会导致数据在一段时间内急剧增加,甚至达到该物理介质的理论速率。为了描述此时路由器的表现,就要进行背对背突发的测试。 吞吐量:是指在没有丢包的情况下,路由设备能够转发的最大速率。对网络、设备、端口、虚电路或其他设施,单位时间内成功地传送数据的数量(以比特、字节、分组等测量)。 延迟:是指包的第一个比特进入路由器到最后一个比特离开路由器的时间间隔,又叫时延。 丢包率:是指路由器在稳定负载状态下,由于缺乏资源而不能被网络设备转发的包占所有应该被转发的包的百分比。丢包率的衡量单位是以字节为计数单位,计算被落下的包字节数占所有应该被转发的包字节数的百分比。 背对背:是指在一段较短的时间内,以合法的最小帧间隙在传输介质上连续发送固定长度的包而不引起丢包时的包数量,IEEE规定的以太网帧间的最小帧间隙为96比特。 转发率:通过标定交换机每秒能够处理的数据量来定义交换机的处理能力。交换机产品线按转发速率来进行分类。若转发速率较低,则无法支持在其所有端口之间实现全线速通信。包转发速率是指交换机每秒可以转发多少百万个数据包(Mpps),即交换机能同时转发的数据包的数量。包转发率以数据包为单位体现了交换机的交换能力。路由器的包转发率,也称端口吞吐量,是指路由器在某端口进行的数据包转发能力,单位通常使用pps(包每秒)来衡量。

相关文档
最新文档