高三数学正弦定理

三垂线定理

三垂线定理 周口市第三高级中学 王杰 教学目标 三垂线定理是反映三种垂直关系的定理。要求熟练掌握三垂线定理及逆定理,并据此 能够进行推理,论证和解决有关问题。进一步提高学生利用数学知识解决实际问题的能力。 教学重难点 三垂线定理及其逆定理的理解和应用 教学方法 启发式教学法 依知识点的形成过程,实际问题的分析过程,启发学生寻求证明的途径,解决问题的 思路。 教学过程 引例: 如图,已知PA ⊥平面ABC ,∠ABC=90°,求证:BC ⊥PB 。 证明:∵PA ⊥平面ABC ,BC 在平面ABC 内, ∴PA ⊥BC ,又∠ABC=90°, ∴BC ⊥AB ∴BC ⊥平面PAB ,PB 在平面PAB 内 ∴BC ⊥PB 思考: (1)证明线线垂直的方法有哪些? (2)三垂线定理及其逆定理的主要内容。 线线垂直的方法 : (1)a ⊥? ,b 在?内,则a ⊥b (2)a ∥b ,m ⊥b ,则a ⊥m (3)三垂线定理及其逆定理 三垂线定理包含几种垂直关系? ○ 1线面关系 ○2线射垂直 ○3线斜垂直 定理 直线和平面垂直 平面内的直线和平面 平面内的直线和平 的一条斜线射影垂直 面的一条斜线垂直 逆定理 三垂线定理: 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么, 它就和这条斜线垂直。 三垂线定理的逆定理: 在平面内的一条直线,如果和这个平面的一条斜线垂直,那 么,它也和这条斜线的射影垂直。 B

例1: 如图所示,已知PA ⊥平面ABC ,∠ACB= 90°, AQ ⊥PC ,AR ⊥PB ,试 证?PBC 、 ?PQR 为直角三角形。 证明:∵PA ⊥平面ABC ,∠ACB= 90°∴AC ⊥BC ∵AC 是斜线PC 在平面ABC 的射影 ∴BC ⊥PC ∴?PBC 是直角三角形;∴BC ⊥平面PAC ∵AQ 在平面PAC 内,∴BC ⊥AQ ,又PC ⊥AQ , ∴ AQ ⊥平面PBC ,∴QR 是AR 在平面PBC 的射影 又AR ⊥PB ,∴QR ⊥PB (三垂线逆定理), ∴?PQR 是直角三角形。 小结: 凡是能够使用三垂线定理或逆定理证明的结论,都能由线面垂直的性质来证明, 而我们的目标应该是能够熟悉这两个定理的直接应用。 例2. 在四面体ABCD 中,已知AB ⊥CD ,AC ⊥BD 求证:AD 证明:作AO ⊥平面BCD 于点O ,连接BO ,CO ,DO 则BO ,CO ,DO 分别为AB ,AC ,AD 在平面BCD 上的射影。 ∵AB ⊥CD ,∴BO ⊥CD ,同理CO ⊥BD 于是O 是△BCD 的垂心, ∴DO ⊥BC ,于是AD ⊥BC. 小结:运用三垂线定理及逆定理,必然要找出斜线,及作出该斜线在平面内的射影. 例3 . 如图,已知DB 、EC 都垂直于正三角ABC 所在的平面,,BC=EC=2DB , 求平面ADE 与平面ABC 所成二面角的平面角。 解:延长ED 、BC 交于F ,连AF ,则AF 为二面角的棱 由已知DB 、EC 都垂直正三角ABC ,∴ DB//EC 又BC=EC=2DB ∴ FB=BC=AB ,∴ ?FAC 为直角三角形,且FA ⊥AC 而EC ⊥平面ABC ∴ AF ⊥AE (三垂线定理) 于是∠EAC 为平面ABC 与平面ADE 的平面角, 又EC=AC ,∴ ∠EAC= 45° ∴ 二面角的平面角为45°。 思考:本题还可以用什么方法求二面角的平面角? ( 用 c o s ABC ADE s S θ??= ) 小结:求二面角往往是作出二面角的平面角,先确定二面角的棱,再设法过棱上一点在 二面角的两个半平面上作棱的两条垂线以找到平面角,从而转化为平面问题来解决。作二面角的平面角常用的方法有(1)定义法(2)三垂线定理法(3)作垂面法。 此外射影面积定理也是求二面角大小的一种常用方法。学习空间向量之后,我们还有另外的方法来求二面角,例如法向量法等. 例4: 直角三角形ABC 中,∠B= 90°,∠C= 30°,D 是BC 的中点,AC=2, DE ⊥平面ABC 且DE=1,求E 到斜线AC 的距离? 解:过点D 作DF ⊥AC 于F ,连结EF , ∵DE ⊥平面ABC ,由三垂线定理知EF ⊥AC 即E 到斜线AC 的距离为EF 在Rt ?ABC 中, ∠B= 90°,∠C= 30°,C=2 A

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

人教版初中数学概念公式与定理大全

人教版初中数学概念公式和定理大全 1.把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。点O叫旋转中心,转动的角叫旋转角,转动方向有顺时针和逆时针两种。 2.旋转的性质:①对应点到旋转中心距离相等。②对应点与旋转中心所连线段的夹角等于旋转角。③旋转前后图形全等。 3.把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形中心对称。这个点叫对称中心,对应点叫做关于中心的对称点。 4.中心对称性质:①中心对称的两个图形全等。②中心对称的两个图形,对称点所连线段都经过对称中心,且被对称中心所平分。 5.把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。 6.平面直角坐标系中,A点(x,y)关于原点对称的B点坐标为(-x,-y)。 四、圆 18.在一个平面内,线段OA绕它固定的一个断点O旋转一周,另一个端点A所形成的图形叫做圆,O叫做圆心,线段OA叫做半径。圆也可以看成是所有到定点的距离等于定长的点的集合。 19.连接圆上任意两点的线段叫做弦。经过圆心的弦是直径,直径是最长的弦。 20.圆上任意两点间的部分叫做弧。弧分三种:①大于半圆的弧,叫做优弧;②小于半圆的弧,叫做劣弧;③圆的直径所对的每一条弧,叫半圆。 21.能够重合的两个圆叫等圆。半径相等的圆是等圆,同圆或等圆半径相等。在同圆或等圆中,能够互相重合的弧叫做等弧。 22.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。垂径定理的推论:平分不是直径的弦的直径垂直于弦,并且平分弦所对的两条弧。 23.顶点在圆心的角叫圆心角。在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等。 24.顶点在圆上,并且两边都与圆相交的角叫圆周角。圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。圆周角定理的推论:①在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。②直径所对的圆周角是直角,90°的圆周角所对的弦是直径。 25.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫圆内接多边形,这个圆叫做多边形的外接圆。 26.圆内接四边形对角互补。 27.如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形。 28.如果圆O半径为r,点P到圆心距离为d,则: 点P在圆外<=>d>r;点P在圆上<=>d=r;点P在圆内<=>d<r; 29.不在同一直线上的三个点确定一个圆。 30.三角形三条边垂直平分线的交点叫做三角形的外心。

三垂线定理及其逆定理

三垂线定理及其逆定理 【学习内容分析】 “三垂线定理”是安排在“直线与平面的垂直的判定与性质”后进行学习的。它是线面垂直性质的延伸。利用三垂线定理及其逆定理,可将空间两直线垂直与平面两直线垂直进行互相转化,具体应用表现例如辅助我们做二面角平面角等。所以在立体几何中有核心定理的作用。 【课程目标】 一.知识与技能目标 理解和掌握三垂线定理及其逆定理的内容、证明和应用。 二.过程与方法目标 1通过对定理的学习,培养学生观察、猜想和论证数学问题的能力。 三.情感、态度和价值观目标 3、培养学生逻辑推理证明的能力和相互转化的思想。 【教学重点和难点】 一.教学重点 定理的理解和运用 二.教学难点 如何在具体图形中找出适合三垂线定理(或逆定理)的直线和平面。 【教学方法】 以教师为主导,以学生为主体,以能力发展为目标,从学生的认识规律出发进行启发式教学,运用小组学习合作探究。 【教学过程】 一复习引入: 1.复习提问 1、回顾直线与平面垂直的相关性质以及射影、斜线等概念; 设计意图(因为平面的垂线、平面的斜线及射影是三垂线定理的基础,直线与平面垂直的判定与性质又是证明三垂线定理的基本方法,因此我用提问的形式让学生温故知新,作好新课的铺垫。) 2.有意设疑,引入新课。 平面的垂线垂直于平面内的每一条直线;平面的斜线不能垂直于平面的每一条直线,但也不是与每一条直线都不垂直。那么平面的斜线与平面内的直线在什么情况下是垂直的呢 学生思考后,我再引导学生利用三角板和直尺在桌面上搭建模型(如图),使直尺与三角

板的斜边垂直,引导学生猜想发现规律。经过实验,发现直尺与三角板在平面内的直角边垂直时便与斜边垂直。 启发学生把猜想、实验后得到的结论总结出来,表达成数学命题: 平面内的一条直线如果和平面的斜线的射影垂直,那么就和平面的这条斜线垂直(板书) 设计意图(为了唤起学生学习的兴趣,把学生的注意力集中起来,调动学生的思维积极性,我通过提出问题,创设情景,引导学生观察、猜想,发现新的知识,培养学生的探索能力) 二、新课讲授: 由以上的分析,我们可以抽象出如下的一个图。 PO⊥α,PA与α斜交于点A,AO ⊥a,问PA与a所成的角; 显然PO⊥α?PO a ⊥ α ? a OA a ⊥?a⊥平面POA ?PA PO I OA=O PA?平面POA 即:PA与a所成的角为900 三垂线定理来源于“线面垂直”,抓住平面α的垂线PO, 才是抓住了定理的实质与关键,并启发学生猜想逆命题的真假,学生把握住了线面垂直这个本质很容易得出三垂线定理的逆定理。 三垂线定理的逆定理:在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它和这条斜线在平面内的射线垂直。(板书) 设计意图(1证明命题。通过对猜想得到的命题的论证,加深学生对命题内容的认识,使学生的思维提高到演绎推理的水平上来。我通过启发学生进行思考讨论后再进行归纳小结,帮助学生理清证明的基本思路,培养学生相互转化的数学思想。2.利用命题变换,培养学生思维的灵活性,进一步深化对定理的学习和理解。3利用列表对比教学法,强化对三垂线定理及其逆定理内容的理解和记忆。) 剖析命题 (1).三垂线定理及其逆定理的内容反映了“四线一面”的相互关系,平面内的直线与平面的斜线以及斜线在平面上的射影垂直等价,本质就是线面垂直的定义。 (2).通过教具演示、图形分析、我再对灵活应用定理的程序进行总结: 一找垂面:即先确定平面及平面的垂线: 二找斜线:接着确定平面的斜线: 三定射影:由上面的垂足和斜足确定斜线的射影; 四证直线:即在平面内证明某一条直线与平面的斜线或斜线的射影垂直。(板书) 设计意图(为了加深对定理的理解,为灵活应用定理奠定基础,帮助学生化解难点,揭示定理的应用方法。) 三讲解例题

高三数学 二项式定理

二项式定理 1. 知识精讲: (1)二项式定理:()n n n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110(* ∈N n ) 其通项是=+1r T r r n r n b a C - (r=0,1,2,……,n ),知4求1,如:555 156b a C T T n n -+== 亦可写成:=+1r T r n r n a b a C )( ()()()n n n n r r n r n r n n n n n b C b a C b a C a C b a 11110-++-++-=---ΛΛ(*∈N n ) 特别地:()n n n r n r n n n n n x C x C x C x C x +++++=+-ΛΛ101(* ∈N n ) 其中,r n C ——二项式系数。而系数是字母前的常数。 例1.n n n n n n C C C C 13 21393-++++Λ等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 解:设n n n n n n n C C C C S 13 21393-++++=Λ,于是: n n n n n n n C C C C S 333333 3221++++=Λ=133333 32210 -+++++n n n n n n n C C C C C Λ 故选D 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求91 ()x x -的展开式中3 x 的系数及二项式系数解:(1)7 (12)x +的展开式的第四项是333317(2)280T C x x +==, ∴7 (12)x +的展开式的第四项的系数是280. (2)∵9 1()x x -的展开式的通项是9921991 ()(1)r r r r r r r T C x C x x --+=-=-, ∴923r -=,3r =, ∴3x 的系数339(1)84C -=-,3 x 的二项式系数3984C =. (2)二项展开式系数的性质:①对称性,在二项展开式中,与首末两端“等距离”的两项的 二项式系数相等,即ΛΛ,,,,22110k n n k n n n n n n n n n n C C C C C C C C ---==== ②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。如果

初中数学各种公式 完整版

数学各种公式及性质 1.乘法与因式分解 ①(a+b)(a-b)=a2-b2;②(a±b)2=a2±2ab+b2;③(a+b)(a2-ab+b2)=a3+b3; ④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。2.幂的运算性质 ①a m×a n=a m+n;②a m÷a n=a m-n;③(a m)n=a mn;④(ab)n=a n b n;⑤(a b )n= n n a b ; ⑥a-n=1 n a ,特别:()-n=()n;⑦a0=1(a≠0)。 3.二次根式 ①()2=a(a≥0);②=丨a丨;③=×;④=(a>0,b≥0)。 4.三角不等式 |a|-|b|≤|a±b|≤|a|+|b|(定理); 加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a,b分别为向量a和向量b) |a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b ; |a-b|≥|a|-|b|;-|a|≤a≤|a|; 5.某些数列前n项之和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2; 2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6; 13+23+33+43+53+63+…n3=n2(n+1)2/4;1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3;6.一元二次方程 对于方程:ax2+bx+c=0: ①求根公式是x 24 b b ac -±-△=b2-4ac叫做根的判别式。 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根; 当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。 ②若方程有两个实数根x1和x2,则二次三项式ax2+bx+c可分解为a(x-x1)(x-x2)。

人教版初中数学公式大全精编版

人教版初中数学公式大全 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形

高中数学 2二项式定理(带答案)

二项式定理 一.二项式定理 1.右边的多项式叫做()n a b +的二项展开式 2.各项的系数r n C 叫做二项式系数 3.式中的r n r r n C a b -叫做二项展开式的通项,它是二项展开式的第1r +项,即 1(0,1,2, ,).r n r r r n T C a b r n -+== 4.二项展开式特点:共1r +项;按字母a 的降幂排列,次数从n 到0递减;二项式系数r n C 中r 从0到 n 递增,与b 的次数相同;每项的次数都是.n 二.二项式系数的性质 性质1 ()n a b +的二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即m n m n n C C -= 性质2 二项式系数表中,除两端以外其余位置的数都等于它肩上两个数之和,即11m m m n n n C C C -++= 性质3 ()n a b +的二项展开式中,所有二项式系数的和等于2n ,即012.n n n n n C C C ++ += (令1a b ==即得,或用集合的子集个数的两种计算方法结果相等来解释) 性质4 ()n a b +的二项展开式中,奇数项的二项式系数的和等于偶数项 的二项式系数的和,即 02 213 21 12.r r n n n n n n n C C C C C C +-++ ++ =++ ++ = (令1,1a b ==-即得) 性质5 ()n a b +的二项展开式中,当n 为偶数时,中间一项的二项式系数2n n C 取得最大值;当n 为奇数时,中间两项的二项式系数1 2,n n C -1 2n n C +相等,且同时取得最大值.(即中间项的二项式系数最大)

数学正弦定理证明如何证明

数学正弦定理证明如何证明 正弦定理该怎么证明呢?关于它们的证明方法之怎样的呢?下面 就是给大家的正弦定理证明方法内容,希望大家喜欢。 用三角形外接圆 证明:任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D.连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C.所以 c/sinC=c/sinD=BD=2R 类似可证其余两个等式。 ∴a/sinA=b/sinB=c/sinC=2R 用直角三角形 证明:在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H CH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB 同理,在△ABC中,b/sinB=c/sinC∴a/sinA=b/sinB=c/sinC 在直角三角形中,在钝角三角形中(略)。 用三角形面积公式 证明:在△ABC中,设BC=a,AC=b,AB=c。作CD⊥AB垂足为点D,作BE⊥AC垂足为点E,则CD=a·sinB,BE=csinA,由三角形面积公式得:AB·CD=AC·BE

即c·a·sinB=b·csinA∴a/sinA=b/sinB同理可得 b/sinB=c/sinC ∴a/sinA=b/sinB=c/sinC 用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=(a^2+b^2-c^2)/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2 =[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证 正弦定理:三角形ABC中BC/sinA=AC/sinB=AB/sinC 证明如下:在三角形的外接圆里证明会比较方便 例如,用BC边和经过B的直径BD,构成的直角三角形DBC可 以得到: 2RsinD=BC(R为三角形外接圆半径) 角A=角D 得到:2RsinA=BC 同理:2RsinB=AC,2RsinC=AB 这样就得到正弦定理了 猜你感兴趣: 1.高中数学定理证明 2.承兑延期证明

三垂线定理及其逆定理例题

三垂线定理及其逆定理例题 知识点: 1.三垂线定理;; 2.三垂线定理的逆定理; 3.综合应用; 教学过程: 1.三垂线定理:平面内一条直线,如果和这个平面的一条斜线在平面内的射影垂直,那么这条直线就和这条斜线垂直; 已知:,PA PO 分别是平面α的垂线和斜线,AO 是PO 在平面α的射影,,a α?a AO ⊥。 求证:a PO ⊥; 证明: 说明: (1)线射垂直(平面问题)?线斜垂直(空间问题); (2)证明线线垂直的方法:定义法;线线垂直判定定理;三垂线定理; (3)三垂线定理描述的是PO(斜线)、AO(射影)、a(直线)之间的垂直关系。 (4)直线a 与PO 可以相交,也可以异面。 (5)三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理。 例1.已知P 是平面ABC 外一点,,PA ABC AC BC ⊥⊥。 求证:PC BC ⊥。 例2.已知PA ⊥正方形ABCD 所在平面,O 为对角线BD 的中点。 求证:,PO BD PC BD ⊥⊥。 P B B

例4.在正方体1AC 中,求证:1111 1,AC B D AC BC ⊥⊥; 2.写出三垂线定理的逆命题,并证明它的正确性; 命题: 已知: 求证: 证明: 说明: 例2.在空间四边形ABCD 中,设,AB CD AC BD ⊥⊥。 求证:(1)AD BC ⊥; (2)点A 在底面BCD 上的射影是BCD ?的垂心; P D A B C 1 A C

例 3.求证:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上 已知: 求证: 说明:可以作为定理来用。 例5.已知:Rt ABC ?中,,3,42A AB AC π∠===,PA 是面ABC 的斜线,3 PAB PAc π ∠=∠=。 (1)求PA 与面ABC 所成的角的大小; (2)当PA 的长度等于多少的时候,点P 在平面ABC 内的射影恰好落在边BC 上; B

高考数学 《二项式定理》

二项式定理 主标题:二项式定理 副标题:为学生详细的分析二项式定理的高考考点、命题方向以及规律总结。 关键词:二项式定理,二项式系数,项系数 难度:2 重要程度:4 考点剖析: 1.能用计数原理证明二项式定理. 2.会用二项式定理解决与二项展开式有关的简单问题. 命题方向: 1.二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择、填空题的形式呈现,试题难度不大,多为容易题或中档题. 2.高考对二项式定理的考查主要有以下几个命题角度: (1)求二项展开式中的第n项; (2)求二项展开式中的特定项; (3)已知二项展开式的某项,求特定项的系数. 规律总结: 1个公式——二项展开式的通项公式 通项公式主要用于求二项式的特定项问题,在运用时,应明确以下几点: (1)C r n a n-r b r是第r+1项,而不是第r项; (2)通项公式中a,b的位置不能颠倒; (3)通项公式中含有a,b,n,r,T r+1五个元素,只要知道其中的四个,就可以求出第五个,即“知四求一”. 3个注意点——二项式系数的三个注意点 (1)求二项式所有系数的和,可采用“赋值法”; (2)关于组合式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法; (3)展开式中第r+1项的二项式系数与第r+1项的系数一般是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心,以防出错.

知 识 梳 理 1.二项式定理 二项式定理 (a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *) 二项展开式 的通项公式 T r +1=C r n a n -r b r ,它表示第r +1项 二项式系数 二项展开式中各项的系数C 0 n ,C 1n ,…,C n n 2.二项式系数的性质 (1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -k n . (2)二项式系数先增后减中间项最大 当n 为偶数时,第n 2 +1项的二项式系数最大,最大值为2n n C ;当n 为奇数时,第n +1 2项和n +3 2项的二项式系数最大,最大值为21 -n n C 或21 +n n C . (3)各二项式系数和:C 0 n +C 1n +C 2n +…+C n n =2n , C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2 n -1.

2019中考数学正弦定理公式

2019中考数学正弦定理公式 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 中考是人生第一个岔路口,小编整理了2019 正弦定理公式内容,希望考生好好复习,做好选择。 2019中考数学正弦定理公式 正弦定理 正弦定理是三角学中的一个定理。它指出了三边、三个内角以及外接圆半径之间的关系。 定理内容 在△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R。则有 a/sinA=b/sinB=c/sinC=2R 即,在一个三角形中,各边和它所对角的正弦之比相等,该比值等于该三角形外接圆的直径。

定理变形 a:b:c=sinA:sinB:sinC 应用领域 在中,有以下的应用领域: 已知三角形的两角与一边,解三角形 已知三角形的两边和其中一边所对的角,解三角形 运用a:b:c=sinA:sinB:sinC解决角之间的转换关系 直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。 正弦定理变形形式 a=2RSinA。b=2RsinB。c=2Rsinc asinB=bsinA,bsinC=csinB,asinC=csinA 定理的意义 正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。由正弦定理在区间上的单调性可知,正弦定理非常好地描述了任意三角形中边与角的一种数量关系。

一般地,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫做解三角形。 以上是2019中考数学正弦定理公式内容,希望帮助大家,更多内容请关注教育网! 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢

(完整版)初中数学代数知识大全

初中数学代数知识大全 一、有理数的运算 1、 相反数:::0:0a a a a --的相反数为的相反数为的相反数为 2、 绝对值: 3、 倒数:1ab =,.a b 和互为倒数 或 1a b = 4、 有理数的加法:(||||)a b a b ++=++ ()(||||)a b a b -+-=-+ (||||)a b a b -+=-- ()(||||)(||||)a b a b a b +-=+-> 5、 有理数的减法:()a b a b -=+- 6、 有理数的乘法:||||a b a b ?=+? ||||a b a b -?=-? (0,0)a b ≥≥ 7、 有理数的除法:||||a b a b ÷=+÷ ||||a b a b -÷=-÷ (0,0)a b ≥≥ 8、 有理数的乘方: ()n a a a a n a a =????L 个 22() n n a a =- 21 21 () n n a a ++=-- (0)a ≥ 二、整式的运算 1、 整式的加减: (1) 非同类项的整式相加减:ab mn ab mn ±=±(不能合并!) (2) 同类项的整式相加减:()ab an b n a ±=±(合并同类项,只把系数相加减) 2、 整式的乘除: (1) 幂的八种计算 (a ) 同底数幂相乘:m n m n a a a +?= (b ) 同底数幂相除:(0)m n m n a a a a -÷=≠ (c ) 零指数:0 1(0)a a =≠ (d ) 负指数: 1 (0)p p a a a -= ≠ (e ) 积的乘方: () m m m ab a b =?

立体几何 三垂线定理及其逆定理

立体几何:三垂线定理及其逆定理
知识点:
1.三垂线定理;;
2.三垂线定理的逆定理;
3.综合应用;
1.三垂线定理:平面内一条直线,如果和这个平面的一条斜线在平面内的射影垂直,
那么这条直线就和这条斜线垂直;
已 知 : PA, PO 分 别 是 平 面 α 的 垂 线 和 斜 线 , AO 是 PO 在 平 面 α 的 射
影, a ? α , a ⊥ AO 。
求证: a ⊥ PO ;
证明:
P
纪福双
a
说明:
(1)线射垂直(平面问题) ? 线斜垂直(空间问题);
(2)证明线线垂直的方法:定义法;线线垂直判定定理;三垂 (3)三垂线定理描述的是 PO(斜线)、AO(射影)、a(直线)之间
A
O
α
(4)直线 a 与 PO 可以相交,也可以异面。
(5)三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理。
例 1.已知 P 是平面 ABC 外一点, PA ⊥ ABC, AC ⊥ BC 。
求证: PC ⊥ BC 。
P
线定理; 的垂直关系。
A B
例 2.已知 PA ⊥ 正方形 ABCD 所在平面, O 为对角线 BD 的中点。 求证: PO ⊥ BD, PC ⊥ BD 。
例 4.在正方体 AC1 中,求证: A1C ⊥ B1D1, A1C ⊥ BC1 ;
C P
B
D1
A1 D
A
D
O C
C1
B1 C
A B
P
a
2.写出三垂线定理的逆命题,并证明它的正确性;
A
O
α
大行不倦 呕心沥血 传道授业解惑!大思行广 打通大脑思维的任督二脉,大行无疆 捍卫中国文化最后良心!第 1 页

2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数 (包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

正弦定理

课题:正弦定理 授课类型:新授课●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC的边CB及∠B,使边AC绕着顶点C转动。A 思考:∠C的大小与它的对边AB的长度之间有怎样的数量关系? 显然,边AB的长度随着其对角∠C的大小的增大而增大。能否

用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, A 则 sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中,sin sin sin a b c A B C = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则 sin sin a b A B = , C 同理可得sin sin c b C B = , b a 从而 sin sin a b A B = sin c C = A c B

三垂线定理

三垂线定理 教学目标: 1.掌握三垂线定理及其逆定理的证明 2.正确地运用三垂线定理或逆定理证明两直线垂直 3.通过三垂线定理及三垂线逆定理的学习,渗透相对论观点 教学重点:三垂线定理及其逆定理的证明 教学难点:用三垂线定理及其逆定理证明两条异面直线的垂直 教学方法:启发式教学法 教 具:模具 教学过程 一、复习引入: 1.直线与平面垂直的定义: 2.直线与平面垂直的判定定理: 3.平面的斜线,斜线在平面内的射影: 4.引入:若平面内一条直线与斜线的射影垂直,那么它和斜线垂直吗? 二、新授: 1.三垂线定理 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 已知:,PO PA 分别是平面α的垂线和斜线,OA 是PA 在平面α内的射影,a α?,且a OA ⊥ 求证:a PA ⊥; 证明:∵PO α⊥ ∴PO a ⊥,又∵,a OA PO OA O ⊥= ∴a ⊥平面POA , ∴a PA ⊥. 说明:(1)定理的实质是判定平面内的一条直线和平面的一条斜线的垂直关系; (2)符号表达:,,PO O PA A a PA a a OA αααα⊥∈??=?⊥???⊥? . (3)这两条直线可以是相交直线,也可以是异面直线. 2.三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直 说明:符号表达: ,,PO O PA A a AO a a AP αααα⊥∈??=?⊥???⊥? . 注意:(1)三垂线指涉及的四线中三个垂直关系PA ,PO ,AO 都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理 (2)要考虑a 的位置,并注意两定理交替使用 (3)注意三垂线定理及其逆定理中的“平面内”三个字的重要性.

高三数学-二项式定理

10.3二项式定理强化训练 【基础精练】 1.在二项式(x 2-1 x )5的展开式中,含x 4的项的系数是 ( ) A .-10 B .10 C .-5 D .5 2.(2009·北京高考)若(1+2)5=a +b 2(a ,b 为有理数),则a +b = ( ) A .45 B .55 C .70 D .80 3.在( 1x + 51 x 3 )n 的展开式中,所有奇数项的系数之和为1 024,则中间项系数 是 ( ) A .330 B .462 C .682 D .792 4.如果? ?? ?? 3x 2-2x 3n 的展开式中含有非零常数项,则正整数n 的最小值为 ( ) A .10 B .6 C .5 D .3 5.在? ? ??? 2x -y 25的展开式中,系数大于-1的项共有 ( ) A .3项 B .4项 C .5项 D .6项 6.二项式41(1)n x +-的展开式中,系数最大的项是 ( ) A .第2n +1项 B .第2n +2项 C .第2n 项 D .第2n +1项和第2n +2项 7.若(x 2+1 x 3)n 展开式的各项系数之和为32,则其展开式中的常数项是________. 8.( x +2 x 2)5的展开式中x 2的系数是________;其展开式中各项系数之和为________.(用 数字作答) 9.若? ? ? ??2x - 229 的展开式的第7项为214,则x =________. 10.已知(x - 124 x )n 的展开式中,前三项系数的绝对值依次成等差数列.

(1)证明:展开式中没有常数项; (2)求展开式中所有有理项. 11.设(2x-1)5=a0+a1x+a2x2+…+a5x5,求: (1)a0+a1+a2+a3+a4; (2)|a0|+|a1|+|a2|+|a3|+|a4|+|a5|; (3)a1+a3+a5; (4)(a0+a2+a4)2-(a1+a3+a5)2. 【拓展提高】 1.在(3x-2y)20的展开式中,求: (1)二项式系数最大的项; (2)系数绝对值最大的项; (3)系数最大的项.

高中数学正弦定理

正弦定理 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等 式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的 定义,有sin a A c =,sin b B c =,又sin 1c C c ==, A 则sin sin sin a b c c A B C === b c 从而在直角三角形ABC 中,sin sin sin a b c A B C == C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的 定义,有CD=sin sin a B b A =,则sin sin a b A B =, C 同理可得 sin sin c b C B =, b a 从而sin sin a b A B =sin c C = A c B (图1.1-3)

相关文档
最新文档