实变函数复习重点

实变函数复习重点
实变函数复习重点

●集合的交、并、差、余运算,对偶定理

●上、下限集的定义、求法

●有关函数集合的表示

●对等的判定建立、定理

●可数集的性质、判定

●基的判定

●具体集合的基: ,,[0,1],[0,1],,(),()

c

Q Q C R M M E L E,开集、闭集全体习题:11,22,28

●边界点、内点、聚点、边界E?、导集E'、闭包E等的含义和

求法

●稠密集、疏朗集、孤立集的定义、性质

●开集、闭集、完备集的定义、性质、判定、构造

●Cantor集的性质(完备、疏朗、连续势、零测)

习题:15,19,28

●外测度的性质(非负性、单调性、次可加性、次可数可加性、

条件可加性、平移不变形)

●测度的性质(非负性、单调性、可加性、可数可加性、平移

不变形、上下连续性)

●可测集定义、性质。全体M关于交、并、差、余的可列运算

及极限封闭,是 代数。

●可测集全体M的构成、构造(与开集闭集的关系)

习题:13,20,21

●可测函数的定义:

性质、判定

●可测函数全体()

M E的性质,极限封闭,与简单函数的关系●依测度收敛,几乎处处收敛,一致收敛的定义,它们之间的

关系(Egoroff, Lebesgue, Riesz定理)。

●可测函数的构成(与连续函数的关系,Lusin定理)

习题:4,18,20

●积分与可积的定义、性质、运算

●极限定理(Levi定理, Fatou引理, Vitali定理,Lebesgue控制

收敛性定理)

●积分的绝对连续性。

●R-积分和L-积分间的关系

习题:1,2,14

实变函数期末考试卷A卷完整版

实变函数期末考试卷A 卷 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实变 函数 一、 判断题(每题2分,共20分) 1.若A 是B 的真子集,则必有B A <。 (×) 2.必有比a 小的基数。 (√) 3.一个点不是E 的聚点必不是E 的内点。 (√) 4.无限个开集的交必是开集。 (×) 5.若φ≠E ,则0*>E m 。 (×) 6.任何集n R E ?都有外测度。 (√) 7.两集合的基数相等,则它们的外测度相等。 (×) 8.可测集的所有子集都可测。 (×) 9.若)(x f 在可测集E 上可测,则)(x f 在E 的任意子集上也可测。(×) 10.)(x f 在E 上可积必积分存在。 (×) 1.设E 为点集,E P ?,则P 是E 的外点.( × ) 2.不可数个闭集的交集仍是闭集. ( × ) 3.设{}n E 是一列可测集,且1,1,2,,n n E E n +?=则 1( )lim ().n n n n m E m E ∞ →∞ ==(× ) 4.单调集列一定收敛. (√ ) 5.若()f x 在E 上可测,则存在F σ型集,()0F E m E F ?-=,()f x 在F 上连续.( × ) 二、填空题(每空2分,共20分) 1.设B 是1R 中无理数集,则=B c 。 2.设1,1,,3 1,21,1R n A ???????= ,则=0A φ ,='A }0{ 。 3.设 ,2,1,0),1 1,11(=++-=n n n A n ,则=?∞=n n A 0 )1,1(- ,=?∞=n n A 1 }0{ 。 4.有界变差函数的不连续点构成的点集是 至多可列 集。

2011实变函数复习要点

2011实变函数复习要点 第一章 集合 (一)考核知识点 1. 集合的定义、简单性质及集合的并、交、补和极限运算。 2. 对等和基数及其性质。 3. 可数集合的概念及其性质。 4. 不可数集合的概念及例子。 (二)考核要求 1. 集合概念 识记:集合的概念、表示方法、子集、真子集和包含关系。 2. 集合的运算 (1)识记:集合的并、交、补概念。 De Morgan 公式 I Y Γ ααΓ αα∈ ∈= c c A A )( Y I ΓααΓαα∈∈=c c A A )( (2)综合应用:集合的并、交、补运算。 例 利用集合的并、交、补运算证明集合相等。 例 N n x x A n n n ∈-≤<--=},11:{1 1设 ]0,1[1 -=?∞=n n A ,)1,2(1 -=?∞ =n n A 3. 对等与基数 (1)识记:集合的对等与基数的概念。 (2)综合应用:集合的对等的证明 例 利用定义直接构造两集合间的1-1对应。 4. 可数集合 (1)识记:可数集合的概念和可数集合的性质,可数集合类。 (2)综合应用:可数集合的性质。 5. 不可数集合 识记:不可数集合的概念、例子。 第二章 点集 (一)考核知识点 1. n 维欧氏空间邻域、集合的距离、有界点集和区间体积概念以及邻域的性质。 2. 聚点、内点、界点、开核、边界、导集和闭包及其性质。 3. 开集、闭集及其性质。 4. 直线上的开集的构造,构成区间,康托集。

(二)考核要求 1. 度量空间,n 维欧氏空间 识记:邻域的概念、有界点集概念。 2. 聚点、内点和界点 识记:聚点、内点、外点、界点、孤立点、接触点、开核、边界、导集和闭包。 如 聚点与内点的关系,界点与聚点、孤立点的关系 如聚点的等价定义:设E P '∈0,存在E 中的互异的点列{}n P 使0lim P P n n =∞ → 如0P 为E 的接触点的充要条件为存在E 中点列{}n P , 使得0lim P P n n =∞ → 3. 开集,闭集 (1)识记:开集、闭集的概念。 (2)综合应用:开集和闭集的充要条件以及开集和闭集的性质。 例如何证明一个集合为开集 例如何证明一个集合为闭集 如A 为闭集当且仅当A 中的任意收敛点列收敛于A 中的点 (即闭集为对极限运算封闭的点集) 4. 直线上的开集的构造 (1)识记:直线上的开集的构造及构成区间的概念。 例设)2,0(1=G , )4,3()2,1(2?=G 21G G G ?=,求G 的构成区间. 解:G 的构成区间为(0,2)、(3,4) (2)简单应用:康托集 Cantor 集的基数为C 第三章 测度论 (一)考核知识点 1. 外测度的定义以及简单性质。 2. 可测集的卡氏条件(Caratheodory 条件)和可测集的性质。 3. 零测度集以及区间、开集和闭集的可测性;Borel 集及其可测性;G δ型集、F σ型集;可测集的构成。 (二)考核要求 1. 外测度 (1)综合应用:外测度的定义。 如设B 是有理数集,则0=*B m Cantor 集的外测度为0

实变函数习题解答(1)

第一章习题解答 1、证明 A (B C)=(A B) (A C) 证明:设x∈A (B C),则x∈A或x∈(B C),若x∈A,则x∈A B,且x∈A C,从而x∈(A B) (A C)。若x∈B C,则x∈B且x∈C,于是x∈A B且x∈A C,从而x∈(A B) (A C),因此 A (B C) ? (A B) (A C) (1) 设x∈(A B) (A C),若x∈A,则x∈A (B C),若x∈A,由x∈A B 且x∈A C知x∈B且x∈C,所以x∈B C,所以x∈A (B C),因此 (A B) (A C) ? A (B C) (2) 由(1)、(2)得,A (B C)=(A B) (A C) 。 2、证明 ①A-B=A-(A B)=(A B)-B ②A (B-C)=(A B)-(A C) ③(A-B)-C=A-(B C) ④A-(B-C)=(A-B) (A C) ⑤(A-B) (C-D)=(A C)-(B D) (A-B)=A B A-(A B)=A C(A B)=A (CA CB) =(A CA) (A CB)=φ (A CB)=A-B (A B)-B=(A B) CB=(A CB) (B CB) =(A CB) φ=A-B ②(A B)-(A C)=(A B) C(A C) =(A B) (CA CC)=(A B CA) (A B CC)=φ [A (B CC)]= A (B-C) ③(A-B)-C=(A CB) CC=A C(B C) =A-(B C) ④A-(B-C)=A C(B CC)=A (CB C) =(A CB) (A C)=(A-B) (A C) ⑤(A-B) (C-D)=(A CB) (C CD) =(A C) (CB CD)=(A C) C(B D) =(A C)-(B D)

实变函数期末考试卷A及参考答卷

2011—2012学年第1学期 数计学院09级数学与应用数学专业(1、2班) 《实变函数》期末考试卷(A)

试卷共8 页第 1 页

实变函数期末考试卷(A) 2009级本科1、2班用 考试时间2012年01月 04日 一 填空题(每小题3分,满分24分) 1 我们将定义在可测集q E ??上的所有L 可测函数所成的集合记为()M E .任取()f M E ∈,都可以确定两个非负可测函数: 试卷 共 8 页 第 2 页

()()()(),0, 0,0.f x x E f f x x E f + ∈>?=? ∈≤? 当时当时 和()()()()0, 0, ,0. x E f f x f x x E f - ∈>?=?-∈≤? 当时当时 分别称为f 的正部和负部。请你写出()()(),,f x f x f x + -和()f x 之间的关系: ()f x = , ()f x = 。 2 上题()M E 中有些元素?被称为非负简单函数,指的是: 12k E E E E =U UL U 是有限个互不相交的可测集的并集,在i E 上()i x c ?≡ (非负常数)(1,2,,i k =L ).?在E 上的L 积分定义为: ()E x dx ?= ?, 这个积分值可能落在区间 中,但只有当 时才能说?是 L 可积的。 3 若()f M E ∈是非负函数,则它的L 积分定义为: ()E f x dx = ?, 这个积分值可能落在区间 中,但只有当 时才能说f 是 L 可积的。 4 ()M E 中的一般元素f 称为是积分确定的,如果f +和f - , 即()E f x dx + ?和()E f x dx -?的值 ;但只有当 时 才能说f 是L 可积的,这时将它的积分定义为: ()E f x dx = ?。 5 从()M E 中取出一个非负函数列(){}n f x ,则法图引理的结论是不等式: ; 如果再添上条件和 就 得到列维定理的结论: 。 6 设f 和()1,2,n f n =L 都是()M E 中的可测函数,满足 ()()lim n n f x f x a e →∞ =g g 于E 或n f f ?两个条件之一。 或 的结论:

(完整版)实变函数证明题大全(期末复习)

1、设',()..E R f x E a e ?是上有限的可测函数,证明:存在定义在'R 上的一列连续函数 {}n g ,使得lim ()()..n n g x f x a e →∞ =于E 。 证明:因为()f x 在E 上可测,由鲁津定理是,对任何正整数n ,存在E 的可测子集n E , 使得1 ()n m E E n -< , 同时存在定义在1R 上的连续函数()n g x ,使得当n x E ∈时,有()()n g x f x =所以对任意的0η>,成立[||]n n E f g E E η-≥?-由此可得 1[||]()n n mE f g n m E E n -≥≤-< ,因此lim [||]0n n mE f g n →∞-≥=即()()n g x f x ?, 由黎斯定理存在{}n g 的子列{}k n g ,使得lim ()()k n k g x f x →∞ =,..a e 于E 2、设()(,)f x -∞∞是上的连续函数,()g x 为[,]a b 上的可测函数,则(())f g x 是可测函数。 证明:记12(,),[,]E E a b =-∞+∞=,由于()f x 在1E 上连续,故对任意实数1,[]c E f c >是 直线上的开集,设11 [](,)n n n E f c α β∞ =>=U ,其中(,)n n αβ是其构成区间(可能是有限 个 , n α可 能为 -∞ n β可有为 +∞ )因此 22221 1 [()][]([][])n n n n n n E f g c E g E g E g αβαβ∞ ∞ ==>=<<=><都可测。故[()]E f g c >可测。 3、设()f x 是(,)-∞+∞上的实值连续函数,则对于任意常数a ,{|()}E x f x a =>是一开集,而{|()}E x f x a =≥总是一闭集。 证明:若00,()x E f x a ∈>则,因为()f x 是连续的,所以存在0δ>,使任意(,)x ∈-∞∞, 0||()x x f x a δ-<>就有, 即任意00U(,),,U(,),x x x E x E E δδ∈∈?就有所以是 开集若,n x E ∈且0(),()n n x x n f x a →→∞≥则,由于()f x 连续,0()lim ()n n f x f x a →∞ =≥, 即0x E ∈,因此E 是闭集。 4、(1)设2121 (0,),(0,),1,2,,n n A A n n n -==L 求出集列{}n A 的上限集和下限集 证明:lim (0,)n n A →∞ =∞设(0,)x ∈∞,则存在N ,使x N <,因此n N >时,0x n <<,即

(20080619)实变函数期末复习指导(文本)

(2008.06.19)实变函数期末复习指导(文本) 中央电大教育学院陈卫宏2008年07月01日 陈卫宏:大家好!这里是“实变函数”教学活动。 考试时间 实变函数期末考试时间:7月12日,8:30~10:00. 期末考试题型比例 单选题5(20分) 填空题5(20分) 证明题4(60分) 第1章考核要求 ⑴了解集合的表示,子集,理解集合的并、交、差、补等概念,特别是一列集合的并与交的概念; ⑵掌握集合的运算律,会求一列简单集合的并、交以及上极限和下极限; ⑶熟练掌握证明两个集合相等的方法(互为子集)并会具体应用; ⑷了解单射、满射、双射及对等的概念,知道基数相等与大小的定义,会用伯恩斯坦定理; ⑸理解可列集的定义及等价条件(可排成无穷序列的形式),了解可列集的运算性质,理解有理点集是可列集; ⑹了解常见的连续集和连续集的运算,知道基数无最大者。 第2章考核要求 ⑴了解距离、收敛、邻域、孤立点、边界点、内核、导集、闭包等概念,会求简单集合的内核、导集和闭包,理解聚点的定义及其等价条件; ⑵掌握波尔查诺——维尔斯特拉斯定理的条件和结论; ⑶了解开集、闭集、完备集的定义以及开集、闭集在并、交运算之下的性质,开集与闭集互为补集,掌握直线上开集的构造;

⑷了解波雷尔有限覆盖定理、距离可达定理和隔离性定理的条件和结论; ⑸理解康托集的构造及其性质。 第3章考核要求 ⑴理解勒贝格外测度的定义及其性质,知道可列集的测度为零,区间的测度等于其体积; ⑵理解可测集的(卡拉皆屋铎利)定义,了解可测集的充分必要条件以及可测集的运算性质; ⑶熟练掌握单调可测集列极限的测度; ⑷知道Gδ型集、Fσ型集以及波雷尔集的定义,了解常见的勒贝格可测集,掌握可测集同开集、闭集和可测集同Gδ型集、Fσ型集之间的关系。 第4章考核要求 ⑴知道点集上连续函数的定义和点集上连续函数列一致收敛的极限函数的连续性,了解函数列上、下极限的概念,理解“几乎处处”的概念; ⑵熟练掌握可测函数的定义及其等价条件,掌握可测函数的判定方法,理解可测函数关于四则运算和极限运算的封闭性、连续函数和简单函数皆可测以及可测函数可表示为简单函数列的极限; ⑶了解叶果洛夫定理,理解依测度收敛的定义,知道依测度收敛与几乎处处收敛二者互不包含,理解刻划依测度收敛和几乎处处收敛之间关系的勒贝格定理和黎斯定理,知道依测度收敛的极限函数是惟一的(把几乎处处相等的函数视为同一函数); ⑷理解刻划可测函数同连续函数之间关系的鲁金定理(两种形式)。 第5章考核要求 ⑴知道测度有限集合上有界函数勒贝格积分的定义,理解测度有限集合上有界函数勒贝格可积的充分必要条件是有界可测; ⑵了解测度有限集合上有界函数勒贝格积分的简单性质,理解闭区间上有界函数黎曼可积必勒贝格可积且二者积分相等; ⑶了解一般集合上非负函数勒贝格积分存在和勒贝格可积的定义,非负函数积分存在的充分必要条件是非负可测; ⑷理解一般集合上一般函数勒贝格积分存在和勒贝格可积的定义,熟练掌握一般可测集上一般函数勒贝格积分的性质; ⑸理解积分极限定理,特别是勒贝格控制收敛定理及其应用;

实变函数论试题及答案

实变函数论测试题 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ == 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以 ∞ +=∈ 1 n m m A x ∞ =∞ =? 1n n m m A , 则可知n n A ∞ →lim ∞=∞ =? 1n n m m A 。设 ∞=∞ =∈1n n m m A x ,则有n ,使 ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →= ∞ =∞ =1n n m m A 。 2、设(){}2 2 2,1E x y x y =+<。求2E 在2 R 内的'2 E ,0 2E ,2E 。 解:(){}2 2 2,1E x y x y '=+≤, (){}222,1E x y x y =+< , (){}222,1E x y x y =+<。 3、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令 ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 4、试构造一个闭的疏朗的集合[0,1]E ?,12 m E =。 解:在[0,1]中去掉一个长度为1 6的开区间5 7 ( , )1212 ,接下来在剩下的两个闭区间 分别对称挖掉长度为11 6 3 ?的两个开区间,以此类推,一般进行到第n 次时, 一共去掉12-n 个各自长度为1 116 3 n -? 的开区间,剩下的n 2个闭区间,如此重复 下去,这样就可以得到一个闭的疏朗集,去掉的部分的测度为 11 11212166363 2 n n --+?++ ?+= 。

实变函数复习资料,带答案

《实变函数》试卷一 一、单项选择题(3分×5=15分) 1、下列各式正确的是( ) (A )1lim n k n n k n A A ∞ ∞ →∞ ===??; (B )1lim n k n k n n A A ∞ ∞ ==→∞ =??; (C )1lim n k n n k n A A ∞ ∞ →∞ ===??; (D )1lim n k n k n n A A ∞ ∞ ==→∞ =??; 2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P =' (D) P P =ο 3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数(C ){}inf ()n n f x 是可测函数;(D )若 ()()n f x f x ?,则()f x 可测 5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))(' x f 在],[b a 上L 可积 (D) ? -=b a a f b f dx x f )()()(' 二. 填空题(3分×5=15分) 1、()(())s s C A C B A A B ??--=_________ 2、设E 是[]0,1上有理点全体,则 ' E =______,o E =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都 _________________________________,则称E 是L 可测的 4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”) 5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为 [],a b 上的有界变差函数。 三、下列命题是否成立?若成立,则证明之;若不成立,则举反例

实变函数与泛函分析要点

实变函数与泛函分析概要 第一章集合基本要求: 1、理解集合的包含、子集、相等的概念和包含的性质。 2、掌握集合的并集、交集、差集、余集的概念及其运算性质。 3、会求已知集合的并、交、差、余集。 4、了解对等的概念及性质。 5、掌握可数集合的概念和性质。 6、会判断己知集合是否是可数集。 7、理解基数、不可数集合、连续基数的概念。 8、了解半序集和Zorn引理。 第二章点集基本要求: 1、理解n维欧氏空间中的邻域、区间、开区间、闭区间、体积的概念。 2、掌握内点、聚点的概念、理解外点、界点、孤立点的概念。掌握聚点的性质。 3、掌握开核、导集、闭区间的概念及其性质。 4、会求己知集合的开集和导集。 5、掌握开核、闭集、完备集的概念及其性质,掌握一批例子。 6、会判断一个集合是非是开(闭)集,完备集。 7、了解Peano曲线概念。 主要知识点:一、基本结论: 1、聚点性质§2 中T1聚点原则: P0是E的聚点? P0的任一邻域内,至少含有一个属于E而异于P0的点?存在E中互异的点列{Pn},使Pn→P0 (n→∞) 2、开集、导集、闭集的性质§2 中T2、T3 T2:设A?B,则A ?B ,· A? · B, - A? - B。 T3:(A∪B)′=A′∪B′. 3、开(闭)集性质(§3中T1、2、3、 4、5) T1:对任何E?R?,?是开集,E′和― E都是闭集。(?称为开核,― E称为闭包的理由也 在于此) T2:(开集与闭集的对偶性)设E是开集,则CE是闭集;设E是闭集,则CE是开集。T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。 T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。 T5:(Heine-Borel有限覆盖定理)设F是一个有界闭集,?是一开集族{Ui}i?I 它覆盖了F(即Fс ∪ i?IUi),则?中一定存在有限多个开集U1,U2…Um,它们

实变函数期末复习指导

实变函数期末复习指导(文本) 实变函数题型比例 单选题:5题,每题4分,共20分。 填空题:5题,每题4分,共20分。 计算与证明题:4题,每题15分,共60分。 第1章主要内容 本章所讨论的集合的基本知识是集合论的基础,包括集合的运算和集合的基数两部分. 主要内容有: 一、集合的包含关系和并、交、差、补等概念,以及集合的运算律. 关于概念的学习,应该注意概念中的条件是充分必要的,比如,B A ?当且仅当A x ∈时必有B x ∈.有时也利用它的等价形式:B A ?当且仅当B x ∈时必有A x ∈.在证明两个集合包含关系时,这两种证明方式可视具体问题而选择其一. 还要注意对一列集合并与交的概念的理解和掌握.n n A x ∞ =∈1 当且仅当x 属于这一列集 合中的“某一个”(即存在某个n A ,使n A x ∈),而n n A x ∞ =∈1 当且仅当x 属于这一列集合中 的“每一个”(即对每个n A ,都有n A x ∈).要熟练地进行集合间的各种运算,这是学习本章必备的基本技能. 读者要多做些这方面的练习. 二、映射是数学中一个基本概念,要弄清单射、满射和双射之间的区别与联系. 对集合基数部分的学习,应注意论证两个集合对等技能的训练,其方法主要有下面三种:一是依对等的定义直接构造两集间的双射;二是利用对等的传递性,如欲证C A ~,已知B A ~,此时只须证C B ~;三是应用有关定理,特别是伯恩斯坦定理,它是判断两个集合对等的常用的有效方法. 三、可列集是无限集中最重要的一类集合,它是无限集中基数最小者. 要掌握可列集的定义和运算性质,有理数集是可列的并且在直线上处处稠密,这是有理数集在应用中的两条重要性质. 四、连续集及其运算性质.要掌握长见的连续集的例子,知道基数无最大者. 第2章主要内容 本章讨论的点集理论,不仅是以后学习测度理论和新积分理论的基础,也为一般的抽象空间的研究提供了具体的模型.

实变函数第一章答案

习题1.1 1.证明下列集合等式. (1) ()()()C A B A C B A \\=; (2) ()()()C B C A C B A \\\ =; (3) ()()()C A B A C B A \\\=. 证明 (1) )()C \B (c C B A A = )()( c c C B A A B A = c C A B A )()( = )(\)(C A B A = . (2) c C B A A )(C \B)(= )()(c c C B C A = =)\()\(C A C A . (3) )(\C)\(B \c C B A A = c c C B A )( = )(C B A c = )()(C A B A c = )()\(C A B A =. 2.证明下列命题. (1) ()A B B A = \的充分必要条件是:A B ?; (2) ()A B B A =\ 的充分必要条件是:=B A ?; (3) ()()B B A B B A \\ =的充分必要条件是:=B ?. 证明 (1) A B A B B B A B B A B B A c c ==== )()()()\(的充要条 是:.A B ? (2) c c c c B A B B B A B B A B B A ===)()()(\)( 必要性. 设A B B A =\)( 成立,则A B A c = , 于是有c B A ?, 可得.?=B A 反之若,?≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ?∈且与c B A ?矛盾.

充分性. 假设?=B A 成立, 则c B A ?, 于是有A B A c = , 即.\)(A B B A = (3) 必要性. 假设B B A B B A \)()\( =, 即.\c C A B A B A == 若,?≠B 取,B x ∈ 则,c B x ? 于是,c B A x ? 但,B A x ∈ 与c C A B A =矛盾. 充分性. 假设?=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =. 3.证明定理1.1.6. 定理1.1.6 (1) 如果{}n A 是渐张集列, 即),1(1≥??+n A A n n 则{}n A 收敛且 ∞ =∞ →=1 ;lim n n n n A A (2) 如果{}n A 是渐缩集列, 即),1(1≥??+n A A n n 则{}n A 收敛且 ∞ =∞ →= 1 . lim n n n n A A 证明 (1) 设),1(1≥??+n A A n n 则对任意 ∞ =∈ 1 ,n n A x 存在N 使得,N A x ∈ 从而 ),(N n A x N ≥?∈ 所以,lim n n A x ∞ →∈ 则.lim 1 n n n n A A ∞→∞ =? 又因为 ∞ =∞ →∞ →??1 ,lim lim n n n n n n A A A 由此可见{}n A 收敛且 ∞ =∞ →= 1 ;lim n n n n A A (2) 当)1(1≥??+n A A n n 时, 对于, lim n n A x ∞ →∈存 )1(1≥?<+k n n k k 使得 ),1(≥?∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0 n n A A x k ?∈ 可见.lim 1 ∞ =∞ →?n n n n A A 又因为,lim lim 1 n n n n n n A A A ∞ →∞ →∞ =?? 所以可知{}n A 收敛且 ∞ =∞ →=1 .lim n n n n A A 4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ??? ???+≥=>∞ =n c f E c f E n 1][1 ; (2) ?? ? ???+<=≤∞ =n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈?=∞ →,则对任意实数c 有 ?????? ->=????? ?->=≥∞→∞=∞ =∞ =∞ =k c f E k c f E c f E n n k n N n N k 1lim 1][111 . 证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+ ∈Z n 使得n c x f 1)(+ ≥成

实变函数论考试试题及答案

实变函数论考试试题及答案 证明题:60分 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ ==UI 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以I ∞ +=∈ 1 n m m A x Y I ∞=∞ =?1n n m m A , 则可知n n A ∞ →lim YI ∞ =∞ =?1n n m m A 。设YI ∞ =∞ =∈1n n m m A x ,则有n ,使I ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →=YI ∞=∞ =1n n m m A 。 2、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令I ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 3、设在E 上()()n f x f x ?,且1()()n n f x f x +≤几乎处处成立,Λ,3,2,1=n , 则有{()}n f x .收敛于)(x f 。 证明 因为()()n f x f x ?,则存在{}{}i n n f f ?,使()i n f x 在E 上.收敛到()f x 。设 0E 是()i n f x 不收敛到()f x 的点集。1[]n n n E E f f +=>,则00,0n mE mE ==。因此 ()0n n n n m E mE ∞∞==≤=∑U 。在1 n n E E ∞ =-U 上,()i n f x 收敛到()f x , 且()n f x 是单调的。 因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。 即除去一个零集1n n E ∞ =U 外,()n f x 收敛于()f x ,就是()n f x . 收敛到()f x 。

实变函数练习题A

实变函数与泛函分析试卷A 一、判断题 1.定义在区间),(+∞-∞上的单调函数的间断点所成之集至多可数。 2.赋范空间中的压缩映射一定存在不动点。 3.平面上所有点的集合的势不能与含在其中的直线上的点集的势相等。 4.直线上互不相交的开区间所成之集为不可数集。 5.赋范空间中上压缩映射一定存在不动点。 二、填空题 1.直线上任何____可表示成至多可数的个互不相交的构成区间的并集。 2.实数集中一集合的闭包是包含此集合的所有闭集的____。 3.有限维空间上的任何两个范数都是____。 4.一闭集中所有点都是此集合的聚点,则称此集合为____。 5.在半序集中,如果所有全序集都有上界,则此半序集中有____。 三、选择题 1.直线上的单调函数的不连续点集____。 A.可数 B.至多可数 C.不可数 D.有限 2.有限维赋范空间中____中点列有收敛子列。 A.开集 B.闭集 C.有界集 D.无界集 3.Banach 空间间的____线性算子必是连续的。 A.无界 B.开 C.闭 D.有界 4.可分赋范空间的共轭空间必是____。 A.可分的 B.完备的 C.不可分的 D.不完备的 5.闭区间上____函数是Riemann 可积的。 A.有界的几乎处处连续 B.有界 C.几乎处处连续 D.Lebesgue 可积函数 四、论述题 1.证明:设F 是n 维欧几里得空间),(ρn R 中的有界闭集,映射F F T →:满足: ),,)(,(),(y x F y x y x Tx Tx ≠∈?<ρρ.求证T 在F 中存在唯一的不动点。 2.证明:设集1R E ?有界,0*>E m ,则对于任意小于E m *的正数,恒有E 的子集1 E 使得c E m =1*。 3.设,...,21αα是一列数,∞

实变函数复习提纲

实 变 函 数 复 习 提 纲 2006-7-14 第一章 集合 一、基本概念:集合、并集、交集、差集、余集;可数集合、不可数集合;映射、一一映射(对应);集合的对等,基合的基数(势、浓度). 二、基本理论: 1、集合的运算性质:并、交差、余集的运算性质;德一摩根公式; 2、集合对等的性质; 3、可数集合的性质、基数:a N =、a Q =(a >0); 4、不可数数集合的基数:c R =(c >a>0). 三、基本题目 1、集合对等的判定、求基合的基数 例 证明I =(-1,1)和R =(-∞,+∞)是对等的,并求I . 证:作映射ф:()x x 2 tan π φ=,x ∈(-1,1) ,其值域为R =(-∞,+∞)、 因()x x 2 tan π ?=,在(-1,1)是严格单调增的,∴?:()x x 2 tan π ?=是(-1,1)到R 上的一一对应, 即 I= (-1,1) x x 2 tan )(1 1π ?=-(),+∞∞-=R 由对等的定义知:I ~R . ∵I ~R ∴R I =,又c R =,∴c I =. 2 集合的运算,德。摩根律的应用 3 可数数集合的判定 第二章 点集 一、基本概念:距离、度量空间、n 维欧氏空间;聚点、内点、界点,开核、导集、闭包;开集、闭集、完备集;构成区间 二、基本理论 1、开集的运算性质 ; 2、闭集的运算性质 3、直线上开集的构造; 4、直线上闭集的构造 三、基本题目 1 求集合的开核、导集、闭包,判定开集、闭集 例 设E 为[0,1]上的有理数点的全体组成的集 1)求0 E ,'E ,E ; 2)判定E 是开集还是闭集,为什么? 解:1)对于E x ∈?,x 的任意邻域)(x U 内有无数个无理点,∴)(x U E _ ?,∴x 不是

实变函数期末考试题库

《实变函数》期末考试试题汇编 目录 《实变函数》期末考试模拟试题(一) (2) 《实变函数》期末考试模拟试题(二) (7) 《实变函数》期末考试模拟试题(三) (13) 《实变函数》期末考试模拟试题(四) (18) 《实变函数》期末考试模拟试题(五) (27) 《实变函数》期末考试模拟试题(六) (30) 《实变函数》期末考试模拟试题(七) (32) 《实变函数》期末考试模拟试题(八) (36) 《实变函数》期末考试模拟试题(九) (41) 《实变函数》期末考试模拟试题(十) (47) 《实变函数》期末考试题(一) (57) 《实变函数》期末考试题(二) (63)

《实变函数》期末考试模拟试题(一) (含解答) 一、选择题(单选题) 1、下列集合关系成立的是( A ) (A )(\)A B B A B ?=? (B )(\)A B B A ?= (C )(\)B A A A ?? (D )(\)B A A ? 2、若n E R ?是开集,则( B ) (A )E E '? (B )E 的内部E = (C )E E = (D )E E '= 3、设P 是康托集,则( C ) (A )P 是可数集 (B )P 是开集 (C )0mP = (D )1mP = 4、设E 是1R 中的可测集,()x ?是E 上的简单函数,则( D ) (A )()x ?是E 上的连续函数 (B )()x ?是E 上的单调函数 (C )()x ?在E 上一定不L 可积 (D )()x ?是E 上的可测函数 5、设E 是n R 中的可测集,()f x 为E 上的可测函数,若()d 0E f x x =?,则( A ) (A )在E 上,()f z 不一定恒为零 (B )在E 上,()0f z ≥ (C )在E 上,()0f z ≡ (D )在E 上,()0f z ≠ 二、多项选择题(每题至少有两个或两个以上的正确答案) 1、设E 是[0,1]中的无理点全体,则(C 、D ) (A )E 是可数集 (B )E 是闭集 (C )E 中的每一点都是聚点 (D )0mE > 2、若1E R ?至少有一个内点,则( B 、D ) (A )* m E 可以等于零 (B )*0m E > (C )E 可能是可数集 (D )E 是不可数集 3、设[,]E a b ?是可测集,则E 的特征函数()E X x 是 (A 、B 、C ) (A )[,]a b 上的简单函数 (B )[,]a b 上的可测函数 (C )E 上的连续函数 (D )[,]a b 上的连续函数 4、设()f x 在可测集E 上L 可积,则( B 、D )

实变函数复习题

1.若E有界,则m*E<正无穷 2.可数点集的外测度为零 3.设E是直线上一有界集合,m*E>0,则对任意小于m*E的正数c,恒有E的子集E1,使m*E=c 4.设S1,S2,…,Sn是一些互不相交的可测集合,Ei包含于Si,i=1,2,3...n,求证m*(E1并E2并E3...并En)=m*E1+m*E2+…+m*En 5.若m*E=0,则E可测。

6.证明康托尔(Cantor)集合的测度为0 7.设A,B包含于Rp,且m*B<正无穷,若A是可测集,证明m*(A并B)=mA+m*B-m*(A 交B) 8.证明:若E可测,则对于任意e〉0,恒有开集G及闭集F,使F包含于E包含于G,而m (G-E)〈e,m(E-F)〈e

9.设E包含于Rq,存在两列可测集{An},{Bn},使得An包含于E包含于Bn且m(Bn-An)--> 0(n-->无穷),则E可测。 10.设是一列可测集,证明和都是可测集且

11.设{En}是一列可测集,若求和m(En)<正无穷,证明m(En上极限)=0 12.设E是[0,1]中可测集,若m(E)=1,证明对任意可测集A包含于[0,1],m(E交A)=m(A) 13.设{En}是[0,1]中可测集列,若m(En)=1,n=1,2,...,则 定理5.6设E是任一可测集,则一定存在型集G,使G包含E,且m(G-E)=0。 设E是任一可测集,则一定存在型集F,使F包含于E,且m(E-F)=0。 次可数可加性证明

卡拉泰奥多里条件:m*T=m*(T交E)+m*(T交Ec)极限的测度等于测度的极限

1.证明:f(x)在E上为可测函数的充要条件是对任一有理数r,E[f〉r]可测,如果集E[f=r]可测,问f(x)是否可测?

实变函数期末复习

实变函数期末复习 4.右{代}是一闭集列,贝U A n 是 n 1 A.开集 B. C.既非开集又非闭集 D. 5若f(x)可测,则它必是 A.连续函数 B. 单调函数 C 6关于简单函数与可测函数下述结论不正确的是 A. 简单函数一定是可测函数 () 闭集 无法判断 () 简单函数 D. 简单函数列的极限 () B. 简单函数列的极限是可测函数 C. 简单函数与可测函数是同一概念 D. 简单函数列的极限与 可测函数是同一概念 7设f(X )是可测集E 上的非负可测函数,则f(X ) () A.必可积 B. 必几乎处处有限 C. 必积分确定 D. 不一定积分确定 8设E 是可测集,则下列结论中正确的是 () A.若{ f n (x)}在E 上a.e 收敛于一个a.e 有限的可测函数f (x),则f n (x) —致收敛于f(x) B. 若{ f n (x)}在E 上基本上一致收敛于 f(x),则f n (x) a.e 收敛于f(x) C. 若{ f n (x)}在E 上a.e 收敛于一个a.e 有限的可测函数 f (x),则f n (x)基本上一致收敛于 f(x) D. 若{ f n (x)}在E 上a.e 收敛于一个a.e 有限的可测函数f (x),贝V f n (x) f(x) 1?设A [丄 ,2 n (1)n ],n 1,2,...则 A. lim A n n [0,1] B. lim A (0,1] n c. lim A n n (0,3] D. 皿 A n (0,3) n 2.设 A j {x : i x i -},i N ,则 A , 2 i 1 A. (-1,1 ) B.[0,1] C. D.{0} 3.集合E 的全体聚点所组成的集合称为 E 的 A.开集 B . . 边界 C. 导集 D. 选择题 闭包

第三版实变函数论课后答案

1. 证明:()B A A B -=U 的充要条件就是A B ?、 证明:若()B A A B -=U ,则()A B A A B ?-?U ,故A B ?成立、 反之,若A B ?,则()()B A A B A B B -?-?U U ,又x B ?∈,若x A ∈,则 ()x B A A ∈-U ,若x A ?,则()x B A B A A ∈-?-U 、总有()x B A A ∈-U 、故 ()B B A A ?-U ,从而有()B A A B -=U 。 证毕 2. 证明c A B A B -=I 、 证明:x A B ?∈-,从而,x A x B ∈?,故,c x A x B ∈∈,从而x A B ?∈-, 所以c A B A B -?I 、 另一方面,c x A B ?∈I ,必有,c x A x B ∈∈,故,x A x B ∈?,从而x A B ∈-, 所以 c A B A B ?-I 、 综合上两个包含式得c A B A B -=I 、 证毕 3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式与定理9、 证明:定理4中的(3):若A B λλ?(λ∈∧),则A B λλλλ∈∧ ∈∧ ?I I 、 证:若x A λλ∈∧ ∈I ,则对任意的λ∈∧,有x A λ∈,所以A B λλ?(? λ∈∧)成立 知x A B λλ∈?,故x B λλ∈∧ ∈I ,这说明A B λλλλ∈∧∈∧ ?I I 、 定理4中的(4):()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ =U U U U U 、 证:若()x A B λλλ∈∧ ∈U U ,则有' λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧ ∈?U U U U 、 反过来,若()()x A B λλλλ∈∧ ∈∧ ∈U U U 则x A λλ∈∧ ∈U 或者x B λλ∈∧ ∈U 、 不妨设x A λλ∈∧ ∈U ,则有' λ∈∧使'''()x A A B A B λλλλλλ∈∧ ∈??U U U 、 故()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ ?U U U U U 、 综上所述有()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ =U U U U U 、 定理6中第二式()c c A A λλλλ∈∧∈∧ =I U 、 证:() c x A λλ∈∧ ?∈I ,则x A λλ∈∧ ?I ,故存在' λ∈∧ ,'x A λ?所以 'c c x A A λλλ∈∧ ??U 从而有()c c A A λλλλ∈∧∈∧ ?I U 、 反过来,若c x A λλ∈∧ ∈U ,则' λ?∈∧使'c x A λ?,故'x A λ?, x A λλ∈∧ ∴?I ,从而()c x A λλ∈∧ ∈I ()c c A A λλλλ∈∧ ∈∧ ∴?I U 、 证毕 定理9:若集合序列12,,,,n A A A K K 单调上升,即1n n A A +?(相应地1n n A A +?)对一切n 都成立,则 1 lim n n n A ∞ →∞ ==U (相应地)1 lim n n n A ∞ →∞ ==I 、 证明:若1n n A A +?对n N ?∈成立,则i m i m A A ∞ ==I 、故从定理8知

相关文档
最新文档