分离变数法

分离变数法
分离变数法

幻灯

片 28

幻灯

片 29

幻灯片30

幻灯片31

幻灯片32

幻灯片33

幻灯片34 幻灯片

35

幻灯片36

幻灯片37

幻灯片38

幻灯片39

幻灯片40

幻灯片41

幻灯片42

幻灯片43

幻灯片44 幻灯片

45

幻灯片46

幻灯片47

幻灯片48

幻灯片49

幻灯片50

幻灯片51

幻灯片52

幻灯片53

幻灯片54 幻灯片

55

幻灯片56

幻灯片57

幻灯片58

幻灯片59

幻灯片60

幻灯片61

幻灯片62 多

广

u

a

u

t2

2?

=

'2

2=

+T

w

a

T

2

2

2/

)

/('w

v

v

T

a

T-=

?

=

2

2

=

+

?v

w

v

)

exp(2

2t w

a

A

T-

=0

/"

/"2=

+

+w

Y

Y

X

X

"21=

+X

w

X0

"22=

+Y

w

Y

)

,()(y

x

v t

T

u=

)

(

)

(y

Y

x

X

v=热

程2

2

2

2

1

w

w

w=

+

幻灯片63

幻灯片64 幻灯片65

幻灯片66

幻灯片67

幻灯片68

幻灯片69

70

幻灯片71

层析分离技术

第六章层析分离技术 第一节吸附 一、吸附层析的原理与特点 吸附是利用吸附剂对液体或气体中某一组分具有选择吸附的能力,使其富集在吸附剂表面,而从混合物中的分离的的过程。 典型的吸附过程包括四个步骤: 固体内部分子所受分子间的作用力是对称的,而固体表面分子所受力是不对称的。向内的一面受内部分子的作用力较大,而表面向外一面所受的作用力较小, 因而当气体分子或溶液中溶质分子在运动过程中碰到固体表面时就会被吸引而停留在固体表面上。 吸附的类型 (1)物理吸附: 放热,可逆,单分子层或多分子层,选择性差 (2)化学吸附: 放热量大,单分子,选择性强 (3)交换吸附: 吸附剂吸附后同时放出等当量的离子到溶液中 物理吸附与化学吸附的特点 吸附法特点 (1)不用或少用有机溶剂 (2)操作简便、安全、设备简单 (3)生产过程pH 变化小 (4)从稀溶液分离溶质 (5)吸附剂对溶质的作用小 (6)吸附平衡为非线性 (7)选择性较差 吸附法的应用 气体过滤 水处理

脱色、除臭 目标产物的分离 二、吸附剂(固定相)的选择 吸附剂通常应具备以下特征: ?表面积大、颗粒均匀、 ?对被分离的物质具有较强的吸附能力 ?有较高的吸附选择性 ?机械强度高 ?再生容易、性能稳定 ?价格低廉。 常用的吸附剂有极性的和非极性的两种。 羟基磷灰石、硅胶、氧化铝等属前者,活性炭属后者 人工合成的如大网格吸附剂、分子筛等两种都有。但大多属非极性的常用的吸附剂 1大网格聚合物吸附剂: 2活性碳:助滤,脱色,去热原 使用:偏酸性(pH 5-7),加热(50-60℃)搅拌30min 活性白土:脱组胺类过敏物,脱色。 硅藻土:助滤,澄清 1.大网格聚合物吸附 树脂的网络骨架 大网格树脂吸附法 Ⅰ. 基本概念 一.什么是大网格树脂吸附法? 将多孔的大网格吸附树脂作为吸附剂,利用表面分子与物 质分子间范德华引力,把液相中物质吸附到吸附树脂表面。 ◆大网格树脂吸附法与离子交换法的比较: 相同:①操作方法:静态法、动态法; ②骨架结构:树脂均有溶胀孔隙和永久孔隙的大 网格骨架结构。 区别 介质不同: 离交法-离交树脂,骨架上接有离子交换基团,利用表面层 和孔隙中离子基团起作用; 吸附法-吸附树脂,无离交基团(称白球),利用外表面和

第10章_其他分离过程(萃取)

第十章 其他分离过程
本章主要内容
第十章
第一节 萃取
其他分离过程
第二节 膜分离
第一节 萃取
本节的主要内容
一、萃取分离的特点 二、萃取过程的热力学基础 三、萃取剂的选择 四、萃取过程的流程与计算 其中的溶剂B 称为稀释剂
第一节 萃取
一、萃取分离的特点
? 利用混合液中被分离组分A在两相中分配差异的性 质,使该组分从混合液中分离。 ? 该过程称为液-液萃取,或溶剂萃取,或液体萃取。 ? 萃取过程是物质由一相转到另一相的传质过程。
第一节 萃取
萃取分离的特点
? 可在常温下操作,无相变; ? 萃取剂选择适当可以获得较高分离效率; ? 对于沸点非常相近的物质可以进行有效分离; ? 利用萃取分离混合液时,混合液中的溶质既可是挥发 性物质,也可以是非挥发性物质,如无机盐类等。
第一节 萃取
在环境领域中的应用
? 萃取法主要用于水处理,通常用于萃取工业废水 中有回收价值的溶解性物质; ? 从染料废水中提取有用染料; ? 从洗毛废水中提取羊毛脂; ? 含酚废水的萃取处理等。
1

第一节 萃取
二、萃取过程的热力学基础
在萃取操作中至少涉及三个组分: 待分离混合液中的溶质A、稀释剂B和加入的萃取剂S 达到平衡时的两个相均为液相:萃取相和萃余相 当萃取剂和稀释剂部分互溶时,萃取相和萃余相均含有 三个组分,因此表示平衡关系时要用三角相图。
二元混 合物
第一节 萃取
纯溶质
(一)三角形相图
xmA=0.4 xmB=0.3 xmS=0.3
三元混 合物
纯稀释剂
纯溶剂相
三角形任何一个边上的任一点均代表一个二元混合物,如E点。 三角形内的任一点代表一个三元混合物,如M点。
第一节 萃取
(二)溶解度曲线与联结线
在萃取操作中,根据组分间互溶度的不同,可分为以下 三种情况: ① 溶质A可溶于稀释剂B和萃取剂S中,但稀释剂B和萃 取剂S之间不互溶。 ② 溶质A可溶于稀释剂B和萃取剂S中,但B和S之间部 分互溶。 ③ 组分A、B完全互溶,但B、S及A、S之间部分互溶。 第I类物系:第①和第②情况(以下主要讨论) 第II类物系:第③情况
第一节 萃取
在含有溶质A和稀释剂B的原混 合液中加入萃取剂S,经充分混 合,达到平衡。 ——形成萃取相E和萃余相R 如果改变萃取剂用量,将会建 萃取相 立新的平衡。 萃余相 溶解度曲线把三角形分为两个 区,曲线以内为两相区,以外 为均相区。
萃取相E及萃余相R:达到平衡时的共轭液相。 联结线:连线RE,都互不平行 P点:临界混溶点,溶液为均相
第一节 萃取
溶解度实测数据少时,如何处理?
辅助曲线: 连接F、G、H,得辅助曲线。 利用辅助曲线,可以求任一平衡 液相的共轭相,如从R点求E点。
第一节 萃取
(三)杠杆规则
混合物M分成任意两个相,或由任意 两个相E和R混合成一个相M, 则表示 组成的点M、E和R在一直线上。
E MR E MR …杠杆规则 = 或 = R ME M RE (10.2.1)
式中,E、R、M—混合液E、R及M的质量,E+R=M。
2

分离变量法

<<电磁场与电磁波>>读书报告 姓 名: 学 院: 学 号: 专 业: 题 目:分离变量法在求静态场的解的应用 成 绩: 二〇一四年四月 Xxx 工程学院 电子工程类

一.引言 分离变量法是在数学物理方法中应用最广泛的一种方法。在求解电磁场与电磁波的分布型问题和边值型问题有很重要的应用。分布型问题是指已知场源(电荷分布、电流分布)直接计算空间各点和位函数。而边值型问题是指已知空间某给定区域的场源分布和该区域边界面上的位函数(或其法向导数),求场内位函数的分布。求解这两类问题可以归结为在给定边界条件下求解拉普拉斯方程或泊松方程,即求解边值问题。这类问题的解法,例如镜像法,分离变量法,复变函数法,格林函数法和有限差分法,都是很常用的解法。这里仅对在直角坐标系情况下的分离变量法作简单介绍。 二.内容 1.分离变量法的特点: 分离变量法是指把一个多变量的函数表示成几个单变量函数乘积,从而将偏微分方程分离为几个带分离常数的常微分方程的方法,属于解析法的一种。它要求要求所给边界与一个适当的坐标系的坐标面重合.在此坐标系中,待求偏微分方程的解可表示成三个函数的乘积,每一函数仅是一个坐标的函数。我们仅讨论直角坐标系中的分离变量法. 2.推导过程: 直角坐标系中的拉普拉斯方程: 222 222 0 x y z ??? ??? ++=??? 我们假设是三个函数的乘积,即

(,,)()()()x y z X x Y y Z z ?= 其中X 只是x 的函数,同时Y 是y 的函数Z 是z 的函数,将上式带入拉普拉斯方程,得 然后上式同时除以XYZ ,得 0X Y Z X Y Z '''''' ++= 上式成立的唯一条件是三项中每一项都是常数,故可分解为下列三个方程: 即 α,β,γ为分离常数,都是待定常数,与边值有关但不能全为实数或全为虚数 。 由上式得2220αβγ++=,下面以X ”/X =α2式为例,说明X 的形式与α的关系 当α2=0时,则 当α2 <0时,令α=jk x (k x 为正实数),则 或 当α2 >0时,令α=k x ,则 或 a ,b ,c ,d 为积分常数,由边界条件决定Y(y)Z(z)的解和X(x)类似。 3解题步骤 1,2λα =±00 ()X x a x b =+12()x x jk x jk x X x b e b e -=+12()sin cos x x X x a k x a k x =+12()x x k x k x X x d e d e -=+12() s x x X x c hk x c chk x =+

层析分离技术.

F t V R R ?=m s m s V V K q q k =='b u 色层分离技术 色层分离:是一组相关技术的总称,也称为色谱分离或层析分离。 按固定相的基质(载体)类型分类: 层析:载体一般为软基质的凝胶,常用的有纤维素、琼脂糖、交联葡聚糖、交联琼脂糖、聚丙烯酰胺凝胶等,只适合在低压下操作。 色谱:载体一般为高强度的经过表面该性的硅胶、聚甲基丙烯酸或聚苯乙烯材料,适合在高压下使用。也有人将层析称为色谱。 用途:用在产品的精制阶段,目标是获得合乎使用要求的产品。 层析:一般用于生物大分子或酶的批量纯化。 高压液相色谱:具有生物活性的小分子物质的分离纯化。 色层分离过程包含两部分: ●固定相:载体或载体+功能基团 ●流动相(洗脱液):缓冲液或有机溶剂 对于高压液相色谱和低压层析,操作模式有很大区别。 液相色谱的基本原理和参数 ●保留时间(t R )和保留体积(V R ) 从进样开始到后来出现样品的浓度极大值所需的时间为保留时间,用t R 表示。在这段时间内冲洗剂(流动相)流过的体积为保留体积,用V R 表示。 理论塔板数的计算公式为:2)(σR t N = 容量因子k ' 和平衡常数K 某物质的k '定义为在分配平衡时该物质在两相中绝对量之比。而平衡常数K 为平衡时,物质在两相的浓度比:)()('m s q q k 物质在流动相的量物质在固定相的量= ) /)/(m m s s V q V q K 物质在流动相的浓度(物质在固定相的浓度= Vs 和Vm 分别为柱内固定相和流动相所占的体积。于是有 溶质在固定相停留的时间分数= ' 1'k k q q q m s s +=+ 溶质在流动相停留的时间分数'11k q q q m s m +=+= 在柱内溶质只有转移到流动相时才能沿柱的方向向前移动,所以对于一个在柱内有保留的溶质,其谱带移动速度( )总是小于流动相的移动速度( ),而等于流动相的移动速度与该谱带对应的溶质在流动相停留的时间分数之积:)' 11(k u u m b += 而当柱长一定时,溶质谱带的移动速度和流动相的移动速度与它们通过柱子所花费的时间成反 比: R o R m b t t u u = )'1(0k t t R R += 当柱外死体积可忽略不计时,m R V V =0 s m m m R KV V k V V V +=+=' 0'0001'R R R R R R R t t t t t t t k =-=-= 柱效率: 塔板高度(H )和塔板数(N )是衡量色谱柱效率的两个重要指标。 塔板高度(H ):在某一段柱长范围内溶质在固定相和流动相之间达到分配平衡,这段柱长就相当于一个理论塔板的高度(HETP 或H)。 理论塔板数的计算公式为: 式中R t 为标准偏差。 理论塔板高度为: 式中, L ? 柱长。 m u 2)(σR t N =L H =m R V V =00'0001'R R R R R R R t t t t t t t k =-=-=

高中数学解题方法之分离变量法(含标准答案)

分离变量法 分离变量法是近年来发展较快的思想方法之一.高考数学试题中,求参数的范围常常与分类讨论、方程的根与零点等基本思想方法相联系.其中与二次函数相关的充分体现数形结合及分类思想方法的题目最为常见.与二次函数有关的求解参数的题目, 相当一部分题目都可以避开二次函数,使用分离变量,使得做题的正确率大大提高.随着分离变量的广泛使用,越来越多的压轴题都需要使用该思想方法. 分离变量法:是通过将两个变量构成的不等式(方程)变形到不等号(等号)两端,使两端变量各自相同,解决有关不等式恒成立、不等式存在(有)解和方程有解中参数取值范围的一种方法.两个变量,其中一个范围已知,另一个范围未知. 解决问题的关键: 分离变量之后将问题转化为求函数的最值或值域的问题.分离变量后,对于不同问题我们有不同的理论依据可以遵循.以下定理均为已知x 的范围,求a 的范围: 定理1 不等式()()f x g a ≥恒成立?[]min ()()f x g a ≥(求解()f x 的最小值);不等式 ()()f x g a ≤恒成立?[]max ()()f x g a ≤(求解()f x 的最大值). 定理2 不等式()()f x g a ≥存在解?[]max ()()f x g a ≥(求解()f x 的最大值);不等式 ()()f x g a ≤存在解?[]min ()()f x g a ≤(即求解()f x 的最小值). 定理3 方程()()f x g a =有解?()g a 的范围=()f x 的值域(求解()f x 的值域). 解决问题时需要注意:(1)确定问题是恒成立、存在、方程有解中的哪一个;(2)确定是求最大值、最小值还是值域. 再现性题组: 1、已知当x ∈R 时,不等式a+cos2x<5-4sinx 恒成立,求实数a 的取值范围。 2、若f(x)=2 33x x --在[1,4]x ∈-上有()21f x x a ≥+-恒成立,求a 的取值范围。 3、若f(x)=233x x --在[1,4]x ∈-上有2 ()251f x x a a ≥+--恒成立,求a 的取值范围。 4、若方程42210x x a -+=有解,请求a 的取值范围 5、已知32 11132 y x ax x = -++是(0,)+∞上的单调递增函数,则a 的取值范围是( ) .0A a <.22B a -≤≤.2C a <.2D a ≤ 6、求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。 再现性题组答案: 1、解:原不等式4sin cos 25x x a ?+<-+当x ∈R 时,不等式a+cos2x<5-4sinx 恒成立max a+5>(4sinx+cos2x)?-,设f(x)=4sinx+cos2x 则 22f(x)= 4sinx+cos2x=2sin x+4sinx+1=2(sinx 1)+3 --- ∴a+5>3a<2-∴

2010级色谱分离技术试题111

2010级色谱分离与技术试题 班级:工业催化10级 姓名:杨昭 学号:405504110134 1.什么是色谱分离技术? 答:色谱分离技术又称层析分离技术或色层分离技术,是一种分离复杂混合物中各个组分的有效方法。它是利用不同物质在由固定相和流动相构成的体系中具有不同的分配系数,当两相作相对运动时,这些物质随流动相一起运动,并在两相间进行反复多次的分配,从而使各物质达到分离。 2.高效液相色谱与气相色谱相比有何特点? 答:与气相色谱相比高效液相色谱具有“三高一广一快”的特点:〈1〉高压:流动相为液体,流经色谱柱时,受到的阻力较大,为了能迅速通过色谱柱,必须对载液加高压。〈2〉高效:分离效能高。可选择固定相和流动相以达到最佳分离效果,比工业精馏塔和气相色谱的分离效能高出许多倍。〈3〉高灵敏度:紫外检测器可达0.01ng,进样量在μL数量级。〈4〉应用范围广:百分之七十以上的有机化合物可用高效液相色谱分析,特别是高沸点、大分子、强极性、热稳定性差化合物的分离分析,显示出优势。〈5〉分析速度快、载液流速快:较经典液体色谱法速度快得多,通常分析一个样品在15~30 min,有些样品甚至在5 min内即可完成,一般小于1h。此外HPLC还有色谱柱可反复使用、样品不被破坏、易回收等优点,但也有缺点,与气相色谱相比各有所长,相互补充。HPLC的缺点是有“柱外效应”。在从进样到检测器之间,除了柱子以外的任何死空间(进样器、柱接头、连接管和检测池等)中,如果流动相的流型有变化,被分离物质的任何扩散和滞留都会显著地导致色谱峰的加宽,柱效率降低。HPLC检测器的灵敏度不及气相色谱。 3.分别写出速率理论在高效液相色谱法和气相色谱法(包括填充柱色谱和开管柱色谱)中的表达式,并说明理由。 答:速率理论是由荷兰学者van Deemter在1956年提出的。该方程的数学简化式为: 其中,u为流动相的线速度;A, B, C为常数,分别代表涡流扩散项系数,分子扩散项系数,传质阻力项系数。 涡流扩散项A=2λd p; 分子扩散项在气相色谱里为B/u=2γD g/u; 至于传质阻力项系数Cu对于填充柱,气相传质阻力系数Cg=0.01k2/(1+k)2*d p2/D g,固定相传质阻力系数C l=2/3*k/(1+k)2*d f2/D l,则气相色谱中的速率方程为: 在液相色谱中,涡流扩散项A=2λd p;

《分离工程》思考题及习题

《生化分离工程》思考题及习题 第一章 绪论 1、生化分离技术依据的分离原理有哪些? 2、生化分离工程有那些特点? 3、简述生化分离过程的一般流程 ? 4、生化分离技术的研究方向主要集中在那些方面?有哪些研究进展? 第二章 预处理与固-液分离法 1、发酵液预处理的目的是什么?主要有那几种方法? 2、何谓絮凝?何谓凝聚?各自作用机理是什么? 3、发酵液中去除杂蛋白的原因是什么?方法主要有那些? 4、固液分离的目的是什么?方法主要有那些? 5、在生化工业中常用的过滤方式那两种?各自有何特点? 6、何谓离心?离心分那两大类?各自有何特点及用途? 7、何谓密度梯度离心?其工作原理是什么? 第三章 细胞破碎法 1、革兰氏阳性菌和阴性菌在细胞壁在组成上有何区别? 2、细胞破碎主要有那几种方法? 3、机械法细胞破碎方法非机械破碎方法相比有何特点? 4、何谓化学破碎法?其原理是什么?包括那几种? 5、何谓酶法破碎法?有何特点?常用那几种酶类? 6、细胞破碎率的测定方法有那些? 7、何谓包含体?包含体的如何分离纯化? 第四章 萃取分离法 1、何谓溶媒萃取?其分配定律的适用条件是什么? 2、在溶媒萃取过程中pH值是如何影响弱电解质的提取? 3、何谓乳化液?乳化液稳定的条件是什么?常用去乳化方法有那些? 4、在发酵工业中,去乳化有何实际意义? 5、某澄清的发酵液中含260mg/l放线菌D, 现用醋酸丁酯进行多级萃取。已知平衡常数K=57.0,料液流量450升/时,有机相流量20升/时。为达到此抗生素收率为98%的要求,需要多少级的萃取过程? 6、何谓超临界流体萃取?超临界流体萃取的特点是什么? 7、何谓反胶束萃取?其原理是什么?有何特点? 8、何谓双水相萃取?双水相体系可分为那几类?目前常用的体系有那两种? 9、为什么说双水相萃取适用于生物活性大分子物质分离? 10、影响双水相萃取的因素有那些?当电解质存在,pH是如何影响双水相萃取的? 11、用双水相萃取细胞破碎(匀浆)液时,一般是把目标产物分布在上相,而细胞碎片、杂蛋白等杂质分布在下相,为什么? 第五章 沉淀分离法 1)何谓盐析沉淀?其沉淀机理是什么?有何特点? 2) 生产中常用的盐析剂有哪些?其选择依据是什么? 3) 何谓分步盐析沉淀? 4)何谓等电点沉淀?其机理是什么?pH是如何影响pI的? 5)有机溶剂沉淀的原理是什么?影响其效果的因素有那些? 6)有机沉淀法与盐析沉淀法相比有何优缺点? 7)简述各种沉淀方法的应用范围。

高中数学解题方法之分离变量法(含答案)

七、分离变量法 分离变量法是近年来发展较快的思想方法之一.高考数学试题中,求参数的范围常常与分类讨论、方程的根与零点等基本思想方法相联系.其中与二次函数相关的充分体现数形结合及分类思想方法的题目最为常见.与二次函数有关的求解参数的题目, 相当一部分题目都可以避开二次函数,使用分离变量,使得做题的正确率大大提高.随着分离变量的广泛使用,越来越多的压轴题都需要使用该思想方法. 分离变量法:是通过将两个变量构成的不等式(方程)变形到不等号(等号)两端,使两端变量各自相同,解决有关不等式恒成立、不等式存在(有)解和方程有解中参数取值范围的一种方法.两个变量,其中一个范围已知,另一个范围未知. 解决问题的关键: 分离变量之后将问题转化为求函数的最值或值域的问题.分离变量后,对于不同问题我们有不同的理论依据可以遵循.以下定理均为已知x 的范围,求a 的范围: 定理1 不等式()()f x g a ≥恒成立?[]min ()()f x g a ≥(求解()f x 的最小值);不等式()()f x g a ≤恒成立?[]max ()()f x g a ≤(求解()f x 的最大值). 定理2 不等式()()f x g a ≥存在解?[]max ()()f x g a ≥(求解()f x 的最大值);不等式()()f x g a ≤存在解?[]min ()()f x g a ≤(即求解()f x 的最小值). 定理3 方程()()f x g a =有解?()g a 的范围=()f x 的值域(求解()f x 的值域). 解决问题时需要注意:(1)确定问题是恒成立、存在、方程有解中的哪一个;(2)确定是求最大值、最小值还是值域. 再现性题组: 1、已知当x ∈R 时,不等式a+cos2x<5-4sinx 恒成立,求实数a 的取值范围。 2、若f(x)=2 33x x --在[1,4]x ∈-上有()21f x x a ≥+-恒成立,求a 的取值范围。 3、若f(x)=233x x --在[1,4]x ∈-上有2 ()251f x x a a ≥+--恒成立,求a 的取值范围。 4、若方程42210x x a -+= 有解,请求a 的取值范围 5、已知32 11132 y x ax x = -++是(0,)+∞上的单调递增函数,则a 的取值范围是( ) .0A a < .22B a -≤≤ .2C a < .2D a ≤ 6、求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。 再现性题组答案: 1、解:原不等式4sin cos 25x x a ?+<-+当x ∈R 时,不等式a+cos2x<5-4sinx 恒成立max a+5>(4sinx+cos2x)?-,设f(x)=4sinx+cos2x 则 22f(x)= 4sinx+cos2x=2sin x+4sinx+1=2(sinx 1)+3 --- ∴a+5>3a<2-∴

层析分离技术

第四节层析分离技术 层析法又称色谱法,色层法或层离法(chromatography),是广泛应用的一种生物化学技术。层析法有多种类型,液体作为流动相的称为液相层析,气体作为流动相的称为气相层析。 按层析过程的机理不同,层析法可以分为下列几种类型: 吸咐层析:利用吸咐剂表面对不同物质吸咐性能的差异进行分离。 分配层析:利用不同物质在流动相和固定相之间的分配系数或溶解度不同,使物质分离。 离子交换层析:利用不同物质对离子交换剂亲和力不同而分离。 凝胶层析:利用某些凝胶对不同分子量的物质阻滞作用不同进行分离,亦称分子筛层析。 亲和层析:利用某些蛋白质能与配体分子特异而非共价地结合进行分离。 层析法采用的方式主要是柱层析和薄层层折,前者将固定相或载体装入柱内,使被分离的物质沿一个方向移动而达到分离,后者将吸附剂涂布成薄层,使样品在薄层上进行分离。 一、吸附层析 氧化铝,硅胶等物质具有吸咐其它一些物质的性质,而且对各种被吸附物质的吸附能力不同。吸附力的强弱,除与吸附剂本身的性质有关外,也与被吸附物质的性质有关。 (一)柱层析法 柱层析是用一根玻璃管。管内加吸附剂粉末,用溶剂湿润后,即成为吸咐柱,然后在柱顶部加入要分离的样品溶液,假如样品内含两种成分A和B,则二者被吸咐在柱上端,形成色圈,样品溶液全部流入吸附柱之后,加入合适的溶剂洗脱,A与B也就随着溶剂向下流动而移动,最后达到分离。 在洗脱过程中,管内连续发生溶解、吸附、再溶解、再吸附的现象。例如被吸附的A粒子被溶解随溶剂下移,但遇新的吸附剂,又将A吸附,随后,新溶剂又使A溶解下移。由于溶剂与吸附剂对A与B的溶解力与吸附力不完全相同。A 与B移动的距离也不同,连续加入溶剂,连续分段收集洗脱液。各成分即可顺序洗出。

第八章 分离变数法数学物理方法 梁昆淼

第八章 分离变数法 1. 设)(x X 满足方程0=-''X X λ和边界条件0)(')0('==l X X ,其中λ可为任意实数,试根据λ的可能取值求解方程,并根据边界条件确定本征值λ和本征函数。 解:可分为三种情况讨论: 1) 0>λ ,解为x x e C e C x X λλ-+=21)(,由边界条件只能得到平庸解 0)(=x X , 显然没有意义。 ----------------(3分) 2) 0=λ,解为21)(C x C x X +=,代入边界条件得01=C ,于是 22,)(C C x X =为任意常数。 ----------------(2分) 3) 0<λ,解为.sin cos )(21x C x C x X λλ-+-=,代入边界条件得 ???=-=????=-+---=-.0sin ,0. 0)cos sin (,012212l C C l C l C C λλλλλ a) 当 λ 的取值使得 0sin ≠-l λ 时,必有 01=C ,这和上两种情况一 样没有意义。 b)当 λ 的取值使得 0sin =-l λ 时, 1C 不必为 零,这种是有意义的情况。此时由 0sin =-l λ 得到本征值 λ:).,3,2,1(22 2 =-=?-=n l n n l πλλ π 综合2)和3)两种情况得本征值).,3,2,1,0(22 2 =-=n l n πλ 此时,本征解为.cos )(1x l n C x X π= ----------------(5分) 1. 2.已知复变量函数为解析函数,其实部满足

下面的条件, (1) 试给出所满足的数学物理定解问题; (2) 试用分离变数或其它方法找到泛定方程的一个特解,并利用它将或方向上的边界条件齐次化,然后求解 ; (3) 根据求出虚部。 3.设)(x X 满足方程0=+''X X λ和边界条件'(0)'(2)0X X π==,其中λ可为任意实数,试根据λ的可能取值求解方程,并根据边界条件确定本征值λ和本征函数。(本小题 11 分) 解:(1) 由题意,对于常微分方程: ()()0X x X x λ''+= (1) (0)(2)0 X X π''== (2) 现在先求解X ,对0,0,0λλλ<=>三种情况进行讨论: a) 0λ<,由(1)式的解是 12()x x X x C e C e λλ---=+ 积分常数1C ,2C ,由(2)决定,即 120C C -=,22120E E C e C e ππ----= 由此得出01=C , 02=C 而0)(≡x X 。无实际意义,即0λ<无可能性。(3分) b) 0λ=,式(1)的解是 21)(C x C x X += 则根据(2)式,有 10C =, 1(2)0X C π'== 即2C 为任意数 此时2()X x C ≡。(3分)

第六章 色谱分析法

第六章色谱分析法 第一节色谱法的来源与特点 一、色谱法的来源 色谱法(chromatography)早在1903年由俄国植物学家茨维特最先发明并定义,他在研究植物叶的色素成分时,将植物叶子的萃取物倒入填有碳酸钙的直立玻璃管内,然后加入石油醚使其自由流下,结果色素中各组分互相分离形成各种不同颜色的谱带。他称之为色谱。这种方法因此得名为色谱法,又称层析法。以后此法逐渐应用于无色物质的分离。 二、色谱法的特点和优点 色谱分析法的特点: 具有高超的分离能力,而各种分析对象又大都是混合物,为了分析鉴定它们是由什么物质组成和含量是多少,必须进行分离,所以色谱法成为许多分析方法的先决条件和必需的步骤。 色谱法的优点: (1)分离效率高。 (2)应用范围广。 它几乎可用于所有化合物的分离和测定,无论是有机物、无机物、低分子或高分子化合物,甚至有生物活性的生物大分子也可以进行分离和测定。 (3)分析速度快。 一般在几分钟到几十分钟就可以完成一次复杂样品的分离和分析。 (4)样品用量少。 用极少的样品就可以完成一次分离和测定。 (5)灵敏度高。 例如GC可以分析几纳克的样品。

第二节色谱过程和基本原理 一、色谱过程 实现色谱操作的基本条件是必须具备相对运动的两相,固定相和流动相。 色谱过程是组分的分子在流动相和固定相间多次“分配”的过程。 组分的结构和性质微小差异与固定相作用差异随流动相移动的速度不等差速迁移色谱分离。 二、色谱流出曲线和有关概念 1.色谱流出曲线 是由检测器输出的电信号强度对时间作图所绘制的曲线,又称为色谱图。 2.基线 是在操作条件下,没有组分流出时的流出曲线。基线反映仪器(主要是检测器)的噪音随时间的变化。 3.色谱峰 是流出曲线上的突起部分。 正常色谱峰、拖尾峰和前延峰。 对称因子fs(symmetry factor):衡量色谱峰的对称性。 4.定性参数

10第十章渗透气化

第十章渗透汽化 第一节概述 一、渗透汽化的发展概况 早在1917年Kober在他发表的一篇论文中第一个使用了渗透汽化(Pervaporation)这个词。该文介绍了水从蛋白质-甲苯溶液通过火棉胶器壁的选择渗透作用。但长期以来,由于未找到渗透通量高和选择性好的渗透蒸发膜材料,渗透蒸发过程一直没有得到应用。直到上世纪50年代以后,对渗透汽化的研究才较广泛展开。其中Binning等人对渗透蒸发过程进行了较系统的学术研究,发现了渗透蒸发过程潜在的工业应用价值,并于60年代在渗透汽化膜、组件和装置制造上申请了专利。70年代后期至80年代初,随着对能源危机问题的日益重视,渗透汽化的优点又重新引起学术界和技术界的兴趣,德国GFT公司在欧洲首先建立了乙醇脱水制高纯酒精的渗透蒸发装置。到90年代初已有100多套渗透蒸发装置相继投入应用。除了用于乙醇、异丙醇脱水外,还用于丙酮、乙二醇、乙酸等溶剂的脱水。 我国在1984年前后开始对渗透汽化过程进行研究,主要工作集中在优先透水膜的研制与醇水溶液的脱水。近年来主要开展优先透有机物膜、水中有机物脱除、有机物-有机物分离以及渗透汽化与反应耦合的集中过程的研究。 二、渗透汽化的分类 渗透汽化是以混合物中组分蒸汽压差为推动力,依靠各组分在膜中的溶解与扩散速率不同的性质来实现混合物分离的过程。渗透汽化装置包括预热器、膜分离器、冷凝器和真空泵等四个主要设备。料液进入渗透汽化膜分离器后,在膜两侧蒸汽压差的驱动下,扩散快的组分较多透过膜进入膜后侧,经冷凝后达到分离目的。 按照形成膜两侧蒸汽压差的方法,渗透汽化主要有以下几种形式: 1.减压渗透汽化:膜透过侧用真空泵抽真空,以造成膜两侧组分的蒸汽压差。在实验室中若不需收集透过侧物料,用该法最方便。 2.加热渗透汽化:通过料液加热和透过侧冷凝的方法,形成膜两侧组分的蒸汽压差。一般冷凝和加热费用远小于真空泵的费用,且操作也比较简单,但传质动力比第一类小。 3.吹扫渗透汽化:用载气吹扫膜的透过侧,以带走透过组分,吹扫气经冷却冷凝以回收透过组分,载气循环使用。 4.冷凝渗透汽化:当透过组分与水不互溶时,可以低压水蒸汽为吹扫载气,冷凝后水与透过组分分层后,水经蒸发器蒸发重新使用。 三、渗透汽化过程特点 渗透汽化与反渗透、超滤及气体分离等膜分离技术的最大区别在于物料透过膜时将产生相变。因此在操作过程中必须不断加入至少相当于透过物气化潜热的热量,才能维持一定的操作温度。 (一)渗透汽化特点: 1.分离系数大。针对不同物系的性质,选用适当的膜材料与制膜方法可以制得分离系数很大的膜,一般可达几十、几百、几千、甚至更高。因此只用单极即可达到很高的分离效果。 2.渗透汽化虽以组分的蒸汽压差为推动力,但其分离作用不受组分汽-液平衡的限制,而主要受组分在膜内渗透速率控制。各组分分子结构和极性等的不同,均可成为其分离依据。因此,渗透汽化适合于用精馏方法难以分离的近沸物和恒沸物的分离。 3.过程中不引入其它试剂,产品不会受到污染。

用分离变量法解常微分方程

用分离变量法解常微分方程 . 1直接可分离变量的微分方程 1.1形如 dx dy =()x f ()y ?(1.1) 的方程,称为变量分离方程,这里()x f ,()y ?分别是的连续函数. 如果?(y)≠0,我们可将(1.1)改写成 ) (y dy ?=()x f ()x d , 这样,变量就“分离”开来了.两边积分,得到 通解:?)(x dy ?=?dx x f )(+c. (1.2) 其中,c 表示该常数,?)(x dy ?,?dx x f )(分别理解为) (1y ?,()x f 的原函数.常数c 的取值必须保证(1.2)有意义.使()0=y ?的0y y =是方程(1.1)的解. 例1求解方程01122=-+-dx y dy x 的通解. 解:(1)变形且分离变量: (2)两边积分: c x dx y dy +-=-??2211, 得 c x y +-=arcsin arcsin . 可以验证1±=y 也是原方程的解,若视x 和y 是平等的,则1±=x 也是原方程的解. 我们可以用这个方法来解决中学常见的一些几何问题. 例2曲线L 上的点),(y x P 处的法线与x 轴的交点为Q ,且线段PQ 被y 轴平分.求曲线L 的方 程. 分析:这是一个利用几何条件来建立微分方程的例子.先建立法线PQ 的方程,用大写的),(Y X 表示法线上的动点,用小写的表示曲线L 上的点,法κ为过点),(y x P 的法线的斜率.

解:由题意得 y ' -=1法κ. 从而法线PQ 的方程为 )(1x X y y Y -'-=-. 又PQ 被y 轴平分,PQ 与y 轴交点M 的坐标为?? ? ??2,0y ,代入上式,得 )0(12x y y y -' -=-. 整理后,得 x y y 2-=', 分离变量,解得 c y x =+22 2 , 其中c 为任意正数,如图1. 2变量可替换的微分方程 通过上面的介绍,我们已经知道了什么方程是变量分离方程.下面,我们再介绍几种可化为变 量分离方程的类型: 2.1齐次方程 形如?? ? ??=x y dx dy ?(1.3) 的微分方程,称为齐次微分方程.这里)(u ?是u 的连续函数. 对方程(1.3)做变量变换 x y u =,(1.4) 即ux y =,于是 u dx du x dx dy +=.(1.5) 将(1.4),(1.5)代入(1.3),则原方程变为 )(u u dx du x ?=+, 图1

第六章色谱法

第六章 色谱法 基本要求 1.了解色谱法的分类及特点。 2.掌握薄层色谱法的基本原理,理解比移值R f 、的含义和展开剂的选择要求。 3.结合色谱流出曲线理解保留值、相对保留值、死体积、色谱峰区域宽度、标准偏差、峰底宽度等基本概念。理解分配系数、分配比的含义。 4.理解塔板理论,掌握柱效能指标 n 有效、H 有效的计算。 5.理解范氏方程中各项的物理意义及各项的影响因素。 6.掌握分离度R 的含义及分离度的有关计算。 7.掌握气液色谱固定相的选择原则,能根据固定相与组分分子之间的作用力决定组分出峰的顺序。 8.理解热导池检测器和氢火焰离子化检测器的工作原理。理解检测器的性能指标灵敏度和检测限的含义。 9.掌握气相色谱定量分析方法(归一化法和内标法)以及各自的特点。 10理解高效液相色谱法的基本原理及特点,掌握正相色谱法和反相色谱法的含义。 11.了解气相色谱仪、高效液相色谱仪的组成及各部分的作用。 13.了解色谱法的分类及特点。 主要计算公式: 1.分配系数K K = m S C C 2.分配比 k =m s W W 3.分配系数比 '' 12121 2 R R t t k k K K === α 4.分配系数与分配比之间的关系 S M M M S S V V k V W V W K ?== 5.分配系数或分配比与相对保留值之间的关系 2 1 21122 1K K k k t t r R R = = ''= 6.理论塔板数 n = H L =5.54(2/1W t R )2 =16(W t R )2 7.有效理论塔板数

n eff =5.54(2 /1' W t R )2 =16(W t R ')2 8.分离度 定义式 2 /)(2112W W t t R R R +-== ) ()(22112W W t t R R +- 近似式 2 1 241142R R R t t t n k k a a n R -? =+?-?= 9.灵敏度 浓度型检测器 S C =AC 1C 2C 3/W 质量型检测器 S m =AC 1C 2·60/W 10.检测限 质量型检测器: D m =2N /S m 浓度型检测器: D c =2N /S c 11.色谱峰面积 对称峰 A=1.064?h ?W 1/2 不对称峰 A=h )(2 1 85.015.0W W +? 12.定量计算 归一化法 %100%332211???????+++= n n i i i f A f A f A f A f A C 内标法 %100%??= m m f A f A C s s s i i i 外标一点法 s s i i m A A m ?= 内标对比法 对照对照 样品样品)()(%)()(%i S i s i i C A A A A C ?= 典型例题解析 例1.在1m 长的填充色谱柱上,某镇静药物A 及其异构体B 的保留时间分别为5.80min 和6.60min,峰底宽度分别为0.78min 及0.82min,空气通过色谱柱需1.10min 。计算 (1)组分B 的分配比 (2)A 及B 的分离度 (3)该色谱柱的平均有效理论塔板数和塔板高度 (4)分离度为1.5时,所需的柱长

生物化学:第十章 生化分离技术与应用-习题

第十章生化分离技术和应用 一、选择题 ⒈下列哪种方法可用于测定蛋白质的分子量() A、SDS聚丙烯酰胺凝胶电泳法; B、280/260nm紫外吸收比值; C、凯氏定氮法; D、荧光分光 光度法;E、Folin酚试剂法 ⒉氨基酸和蛋白质共有的理化性质为() A、胶体性质; B、两性性质; C、沉淀性质; D、变性性质; E、双缩脲性质 ⒊蛋白质溶液的稳定因素为() A、蛋白质溶液为真溶液; B、蛋白质在溶液中做布朗运动; C、蛋白质分子表面带有水化膜和 同性电荷;D、蛋白质溶液的黏度大;E、以上都不对 ⒋关于蛋白质在等电点时的特性描述,哪项是错误的?() A、导电性最小; B、溶解度最小; C、黏度减小; D、电泳迁移率最小; E、以上都不对 ⒌今有①、②、③、④、四种蛋白质的混合液,等电点分别为:5.0、8.6、6.8和9.2 ,在pH8.6的 条件下进行电泳分离,四种蛋白质电泳区带自正极的排列顺序为:() A、①、③、②、④; B、①、②、③、④; C、④、②、③、①; D、③、②、①、④; E、②、 ④、③、①; ⒍盐析沉淀蛋白质的原理为() A、中和电荷,破坏水化膜; B、与蛋白质结合成不溶性盐; C、次级键断裂,蛋白质构象改变; D、调节蛋白质溶液的等电点; E、以上都不是 ⒎关于下列多肽Glu-His-Arg-Val-Lys-Asp的叙述,哪个是错的?() A、在pH12时,在电场中向阳极移动; B、在pH3时,在电场中向阴极移动; C、在pH5时, 在电场中向阴极移动;D、在pH11时,在电场中向阴极移动;E、该肽的等电点大约在pH8 ⒏用下列方法测定蛋白质含量,哪一种方法需要完整的肽键() A、双缩脲反应; B、凯氏定氮; C、紫外吸收; D、茚三酮; E、奈氏试剂 ⒐蛋白质用硫酸铵沉淀后,可选用透析法除去硫酸铵,要确定硫酸铵是否从透析袋中除净,你选用 下列哪一种试剂检查() A、茚三酮试剂; B、奈氏试剂; C、双缩脲试剂; D、Folin-酚试剂; E、斐林试剂 ⒑将抗体固定在层析柱的载体上,使抗原从流经此柱的蛋白质样品中分离出来,这种技术属于() A、吸附层析; B、离子交换层析; C、分配层析; D、亲和层析; E、凝胶过滤 ⒒若用电泳分离Gly-Lys、Asp-Val和Ala-His三种二肽,在下列哪个pH值条件下电泳最合适() A、pH2以下; B、pH2-4; C、pH7-9; D、pH10-12; E、pH12以上; ⒓进行疏水层析时,以下哪种条件比较合适?() A、在有机溶剂存在时上柱,低盐溶液洗脱; B、在有机溶剂存在时上柱,高盐溶液洗脱; C、 在低盐条件下上柱,高盐溶液洗脱;D、在高盐条件下上柱,按低盐、水和有剂溶剂顺序洗脱; E、低盐缓冲液上柱,低盐洗脱 ⒔对一个富含His残基的蛋白质,在使用离子交换层析时应优先考虑() A、严格控制蛋白质上样液的浓度; B、严格控制盐浓度; C、严格控制NaCl的浓度; D、严格 控制洗脱液的pH值;E、严格控制洗脱液的体积

第十章+膜分离

第十章 膜分离 10-1 概述 10.1.1 膜分离(Membrane Separation)的基本概念 1、半透膜 溶液中一种或几种成份不能透过而其他成份能透过之膜。 选择性透过膜。 凡是使溶液中一种或几种成分不能透过,而其它成分能透过的膜都叫着半透膜。膜分离法就是用一种特殊的半透膜将溶液隔开,使溶液中的某种溶质或溶剂(水)渗透出来,从而达到分离溶质的目的。半透膜最大的特点是选择透过性。 2、膜分离 以半透膜(选择性透过膜)分离溶液中某些物质以达到富集目标物或制备纯水的过程; 需要外界施加推动力。 10.1.2 去除对象及功能 1、膜分离的去除对象 水或废水中的盐分离子等溶解性物质; 工业废水中的酸、碱; 大分子、微生物、粘土、植物质、胶体及SS等。 2、主要功能 海水淡化;

酸、碱回收; 纯水制备; 深度处理(精处理)。 10.1.3 膜的类型 1、按膜的来源分 天然生物膜; 人工合成膜—有机膜(聚合物)、无机膜(陶瓷等); 2、按膜的组件分 管式膜—膜管直径>10mm,处理量较小; 毛细管膜—膜管直径0.5~10mm; 中空纤维膜—膜管直径<0.5mm ,处理量较大; 板框膜—处理量较小; 卷式膜—处理量较大。 3、按分离机理分 多孔膜—根据颗粒大小进行分离(超滤、微滤); 无孔膜—利用分离体系组分的溶解度和扩散性差异分离; 载体膜—利用载体分子对溶液中某成分的高度亲和性分离。

根据采用的膜的种类不同和分离的推动力不同,膜分离法可区别如下: 分离过程推动力膜用途 扩散渗析浓度差渗析膜分离溶质,回收酸、碱等 电渗析电位差离子交换膜分离离子,用于回收酸、碱,苦咸水淡化 反渗透压力差反渗透膜分离小分子溶质,用于海水淡化、去除无机离子或有机物 超滤压力差超过滤膜截留分子量大于500的大分子,去除粘土、植物质、油漆、微生物等

膜分离实验装置

实验十膜分离实验装置 一、实验目的 1.了解超滤膜分离的主要工艺设计参数。 2.了解液相膜分离技术的特点。 3.训练并掌握超滤膜分离的实验操作技术。 4.熟悉浓差极化、截流率、膜通量、膜污染等概念。 二、实验原理 膜分离是近数十年发展起来的一种新型分离技术。常规的膜分离是采用天然或人工合成的选择性透过膜作为分离介质,在浓度差、压力差或电位差等推动力的作用下,使原料中的溶质或溶剂选择性地透过膜而进行分离、分级、提纯或富集。通常原料一侧称为膜上游,透过一侧称为膜下游。膜分离法可以用于液-固(液体中的超细微粒)分离、液-液分离、气-气分离以及膜反应分离耦合和集成分离技术等方面。其中液-液分离包括水溶液体系、非水溶液体系、水溶胶体系以及含有微粒的液相体系的分离。不同的膜分离过程所使用的膜不同,而相应的推动力也不同。目前已经工业化的膜分离过程包括微滤(MF)、反渗透(RO)、纳滤(NF)、超滤(UF)、渗析(D)、电渗析(ED)、气体分离(GS)和渗透汽化(PV)等,而膜蒸馏(MD)、膜基萃取、膜基吸收、液膜、膜反应器和无机膜的应用等则是目前膜分离技术研究的热点。膜分离技术具有操作方便、设备紧凑、工作环境安全、节约能量和化学试剂等优点,因此在20世纪60年代,膜分离方法自出现后不久就很快在海水淡化工程中得到大规模的商业应用。目前除海水、苦咸水的大规模淡化以及纯水、超纯水的生产外,膜分离技术还在食品工业、医药工业、生物工程、石油、化学工业、环保工程等领域得到推广应用。 表10-1、各种膜分离方法的分离范围 膜分离类型分离粒径(μm) 近似分子量常见物质 过滤>1 砂粒、酵母、花粉、血红蛋白 微滤0.06-10 >500000 颜料、油漆、树脂、乳胶、细菌超滤0.005-0.1 6000-500000 凝胶、病毒、蛋白、碳黑 纳滤0.001-0.011 200-6000 染料、洗涤剂、维生素 反渗透<0.001 <200 水、金属离子

相关文档
最新文档