碳纳米管在涂料中的应用研究概况

碳纳米管在涂料中的应用研究概况
碳纳米管在涂料中的应用研究概况

碳纳米管在涂料中的应用研究概况

周如东,吴璇,张荣伟,陆文明,陆梦南

(中海油常州涂料化工研究院213016)

摘要:碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。综述了碳纳米管的结构、性能和制备方法以及碳纳米管在导电涂料、抗静电涂料、隐身吸波涂料等一系列功能性涂料中的应用研究现状,并指出了碳纳米管应用于涂料工业亟待解决的问题。

关键词:碳纳米管;导电涂料;抗静电;隐身涂料;吸波涂料

前言

纳米材料由于其尺寸处在原子簇和宏观物体交界的过渡区域,具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等特性,展现出许多独特的物理化学性质。20世纪80年代初期纳米材料这一概念形成以后,世界各国都给予了极大关注。它所具有的独特性质,给物理、化学、材料、生物、医药等领域的研究带米新的机遇。近年来,新型纳米材料和纳米技术在涂料工业中获得了大量应用,为提高涂料性能和赋予其特殊功能开辟了一条新途径。作为一种极具发展潜力的新型纳米材料,碳纳米管(CarbonNanotubes,CNTs)具有金属或半导体的导电性、极高的机械强度、储氢能力、吸附能力和较强的微波吸收能力等特性,将其应用于涂料领域,可使传统涂层的性能得到提升并赋予其新的功能。

1.碳纳米管的结构、性能与制备方法

1.1碳纳米管的结构

碳纳米管是由单层或多层石墨片绕中心按一定角度卷曲而成的无缝、中空纳米管(原子排列结构见图1)。按照所含石墨片层数的不同,碳纳米管可以分成单壁碳纳米管(Single-wallednanotubes,SWNTs)和多壁碳纳米管

(Multi-wallednanotubes,MWNTs)。其中,SWNTs由一层石墨片组成;MWNTs 由多层石墨片组成,形状与同轴电缆相似(剖面结构见图2)。

图1 SWNTs原子排列结构示意图

图2 MWNTs剖面结构示意图

1.2碳纳米管的性能

碳纳米管因其小尺寸效应和独特的分子结构,具有优异的物理化学性能。一维分子材料和六边形完美连接结构使碳纳米管具有质量轻、强度高的特点;较大长径比及sp2、sp3杂化几率不同使碳纳米管具有优良的弹性;直径、螺旋角以及层间作用力等存在的差异使碳纳米管兼具导体和半导体的特性;独特的螺旋状分子结构使碳纳米管构筑的吸波材料具有比一般吸收材料高得多的吸收率。此外,碳纳米管还具有独特的光学性能,良好的热传导性,极高的耐酸、碱性和__热稳定性。

1.3碳纳米管的制备方法

1.3.1电弧法

石墨电弧法是最早的、最典型的碳纳米管合成方法。其原理为电弧室充惰性气体保护,两石墨棒电极靠近,拉起电弧,再拉开,以保持电弧稳定。放电过程中阳极温度相对阴极较高,所以阳极石墨棒不断被消耗,同时在石墨阴极上沉积出含有碳纳米管的产物。这种方法具有简单快速的特点,碳纳米管能够最大程度地石墨化,管缺陷少。但存在的缺点是:电弧放电剧烈,难以控制进程和产物,合成物中有碳纳米颗粒、无定形炭或石墨碎片等杂质,杂质很难分离。经过多年研究,科研工作者对该方法进行了改进,如Takizawa等人利用电弧放电法,通过改变催化剂镍和钇的比例,实现了控制产物直径分布的目的。Colbert等人将一般阴极(大石墨电极)改成一个可以冷却的铜电极,再在上面接石墨电极,这样产物的形貌和结构大为改观,使电弧法再次焕发了青春。

1.3.2催化裂解法

催化裂解法亦称为化学气相沉积法,通过烃类或含碳氧化物在催化剂的催化下裂解而成。其基本原理为将有机气体(如乙炔、乙烯等)混以一定比例的氮气作为压制气体,通入事先除去氧的石英管中,在一定的温度下,在催化剂表面裂解形成碳源,碳源通过催化剂扩散,在催化剂后表面长出碳纳米管,同时推着小的催化剂颗粒前移。直到催化剂颗粒全部被石墨层包覆,碳纳米管生长结束。该方法的优点是:反应过程易于控制,设备简单,原料成本低,可大规模生产,产率高等。缺点是:反应温度低,碳纳米管层数多,石墨化程度较差,存在较多的结晶缺陷,对碳纳米管的力学性能及物理化学性能会有不良的影响。

1.3.3离子或激光蒸发法

1996年,诺贝尔化学奖获得者之一的Smally研究小组首次利用激光蒸发法合成了纳米碳管。此后,激光蒸发法成为制备单壁碳纳米管的有效方法之一。此法在氩气气流中,用双脉冲激光蒸发含有Fe/Ni(或Co/Ni)的碳靶方法制备出直径分布范围在0.81~1.51nm的单壁碳纳米管。该法制备的碳纳米管纯度达70%~90%,基本不需要纯化,但其设备复杂、能耗大、投资成本高。

1.3.4其他合成方法

近几年来,科研工作者在改进传统制备技术的同时,探索和研究出了一系列新型碳纳米管的制备技术,其中有水热法、火焰法、超临界流体技术、水中电弧法、固相热解法、太阳能法等。较典型的如:1996年Yamamoto等人在高真空(5.33×10-3Pa)下通过氩离子束对非晶碳进行辐射的方法获得了较纯的纳米碳管。Chernozatonskii等人通过电子束蒸发涂覆在Si基体上的石墨的方法制备了规则排列的纳米碳管。Feldman等人利用电解碱金属卤化物的方法制备了直径为30~50nm的多壁纳米碳管。在碳纳米管产业化进程中,日本和美国一直处于领先的位置。目前,中国的碳纳米管生产技术在国际上也具有一定的优势,如深圳纳米港公司拥有了具有完全自主知识产权的沸腾床催化热解法生产工艺和装置,清华大学和中科院等科研院所已具备一定规模化生产的条件。

2.碳纳米管在导电涂料中的应用研究

碳纳米管与其它金属颗粒或石墨颗粒相比,较少的添加量就能形成导电网链;其密度比金属颗粒小得多,不易因重力的作用而聚沉;其与有机物的相容性优于金属颗粒。同时,碳纳米管具有很好的导电性且拥有较大的长径比,因而很适合做导电填料。国内外学者对碳纳米管的导电特性进行了大量研究,其中Ebbesen和Tombler等人对单根碳纳米管的研究表明:由于结构差异,碳纳米管可能是导体,也可能是半导体。Saito等人通过理论分析认为,根据碳纳米管的直径和螺旋角度,大约有1/3是金属导电性的,而2/3是半导体性的。Dai等人指出:完美碳纳米管的电阻要比有缺陷的碳纳米管的电阻小一个数量级或更多。Ugarte等人发现:碳纳米管的径向电阻大于轴向电阻,并且这种电阻的各向异性随着温度的降低而增大。Huang等人通过计算认为:温度在1.5×10-4K时,直径为0.7nm的碳纳米管具有超导性,预示着碳纳米管在超导领域里的应用前景。目前,碳纳米管在导电涂料中的应用研究主要是通过改变碳纳米管的结构及含量,改进碳纳米管在导电涂料中的分散以及对碳纳米管进行表面处理来平__

衡导电涂料的导电性和其他各项性能。中国科学院成都有机化学研究所对碳纳米管在导电涂料中的应用进行了系统的研究。研究发现:碳纳米管作为导电涂料的导电介质时,其管径越小,所制得的导电涂料导电性越好。碳纳米管作为导电介质,其最佳长径比约为250。当碳纳米管长径比大于250时,所得涂料的导电性随长径比的增大而减小;当碳纳米管长径比小于250时,所得涂料的导电性随长径比的增大而增大。当碳纳米管含量为0.5%~8.0%时,涂料处于抗静电区域;碳纳米管含量大于8.0%时,涂料处于导电区域。范凌云等人制备了一系列丙烯酸酯/碳纳米管导电涂料,考察了涂料相应的电性能、硬度、附着力、柔韧性等。结果表明:碳纳米管的含量对涂料的电性能有很大影响。在一定范围内,其含量越高,涂料的导电性能越好,但在含量超过25%以后,碳纳米管/丙烯酸酯涂料的导电性能几乎不再变化。沈阳金纳新材料有限公司发明了一种导电、电磁屏蔽涂料,其特征在于:该涂料为含有一维纳米碳材料(包括纳米碳管和纳米碳纤维)和粘接剂的组合物,涂覆于制品表面可以制备具有导电、电磁屏蔽功能的涂层。据介绍,台湾的技术人员以涂银碳纳米管、涂镍碳纳米管及碳纳米管作为导电填料,比较了几种填料制备的电磁屏蔽涂料的屏蔽性能和力学性能。结果表明:使用碳纳米管可以大大降低填料使用量,在碳纳米管表面涂上一层薄金属膜可以大大提高碳纳米管的导电性,使之满足电磁屏蔽材料的要求。在碳纳米管水性导电涂料方面,同济大学研发了含碳纳米管水性聚氨酯导电涂料,该导电涂料的涂膜体积电阻率为1×10-5~4×10-4Ω/cm,表面电阻率为1×10-1~2×102Ω,附着力0级,屏蔽效能为70~85dB。在碳纳米管抗静电涂料方面,冯辉昌等人研制了储油罐碳纳米管导静电防腐涂料,该研究以碳纳米管和云母粉复合作为导静电涂料的导电体,在提高涂膜导静电性能的同时解决了以往导静电涂料抗静电性能与耐油耐热防腐性能难以兼顾的技术难题。余颖等人采用热压和喷涂两种方法在聚丙烯和聚苯乙烯两种塑料表面涂覆了碳纳米管,研究了这两种方法对碳纳米管覆膜塑料表面所达到的抗静电性的影响。两种方法制成的抗静电覆膜都能大大降低塑料的表面电阻,但喷涂法更能使碳纳米管在塑料表面均匀分散,从而使塑料表面抗静电性能更加稳定。

3.碳纳米管在隐身吸波涂料中的应用研究

隐身吸波涂料作为涂覆型吸波材料中的重要一员,主要由粘结剂和吸收剂组成。粘结剂是使涂层牢固粘附于被涂物表面形成连续膜的主要物质,主要有氯磺化聚乙烯、环氧树脂和聚氨酯等;吸收剂主要有:导电炭黑、羰基铁吸收剂、铁氧体吸收剂、金属及氧化物超细粉末、多晶铁纤维、纳米吸收剂、导电高分子、等离子体、视黄基席夫碱盐、手征性吸收剂等。具有特定电磁参数吸收剂是吸波涂料的关键,它决定了吸波涂料的吸波性能。

碳纳米管由于其特有的螺旋、管状结构,高的损耗止切角及独特的AB效应等,呈现出更好的高频宽带吸收特性,在2~18GHz范围内有更小的介电损耗。并且由于其质量轻、强度高、耐腐蚀、耐高温、抗氧化等优点,将其作为吸波剂添加到高聚物中,制备出兼具吸波性能和优越力学性能的隐身吸波涂料,将是隐身吸波涂料研制的重要方向之一。当前,波音公司正在尝试用碳纳米管作为隐形飞机的新型隐身涂层(环氧树脂/碳纳米管)的吸波剂。曹茂盛,高正娟等人利用碳纳米管的螺旋结构和手征性质,制备的碳纳米管/聚酯复合涂层在8~40GHz频段具有良好的吸波性能。孙晓刚等人将不同质量分数的碳纳米管和环氧树脂充分

混合,制成复合吸波涂料。使用反射率扫频测量系统HP8757E标量网络分析仪检测复合材料的吸波性能。结果表明:复合材料在2~18GHz频段均有良好的吸波性能。碳纳米管具有优良的电性能且基本没有磁性,单独采用碳纳米管作为吸波剂不能利用磁损耗机制来消耗更多的电磁波能量。目前主要通过化学表面修饰或者表面包覆方法使碳纳米管可以同时实现通过磁损耗与电损耗两种机制来损耗电磁波能量。其中,北京化工大学沈曾民、浙江大学陈小华、中科院金属研究所杜金红开展了碳纳米管表面化学镀镍技术的研究。他们通过加强碳纳米管表面的氧化、敏化和活化处理,调整传统的化学镀镍溶液配方和反应条件,使反应在尽可能低的速率下进行,在碳纳米管表面实现了金属镍的镀覆。将镀镍纳米管与环氧树脂混合物制成的吸波涂层,在2~18GHz范围内测试其吸波性能,镀镍碳纳米管最大反射衰减达12dB,虽然吸收峰比碳纳米管小,但吸收峰有宽化的趋势,这对吸波性能是有利的。毕红等人制备了表面镀钴的多壁碳纳米管,并将其均匀分散在环氧树脂基体中固化成膜形成镀钴碳纳米管/环氧树脂基复合材料。该复合材料在0.5~40GHz频段内的吸收峰往高频方向移动,吸收强度略有增加。孙晓刚等人以碳纳米管为雷达吸波剂进行稀土掺杂,并与环氧树脂充分混和制成复合吸波材料,用适量稀土氧化物改性后,碳纳米管的吸波性能大幅提高。清华大学研制了一种含碳纳米管复合涂层型吸波材料,该涂层可以改变材料的介电参数和电磁参数,从而有效地调整材料吸波峰值的频率区间。

4.碳纳米管在其他新型功能性涂料中的应用研究

美国伦斯勒理工学院的科学家将多肽分子加入到碳纳米管涂料中,经红外线照射后,被该碳纳米管涂料吸附的有害蛋白质(如炭疽、癌细胞等)将被杀死,而周围正常组织不受影响,因为正常细胞不会粘附多肽分子。目前,科研人员正在研究如何使该涂料在自然光下杀死细菌,若研究成功,该涂料的适用领域将扩展到建材扶手、门窗、散热片等容易滋生细菌的地方。英国研究人员研究发现了一种加厚的含有可导电纳米管混合物的不透明涂层。该涂料可以喷在任何物体表面,随着液体变干,纳米管在涂料内形成可让电流通过的传导网,从而使整个涂层变热,该涂层可以把楼房的整个地板变成暖气装置。当前,膨胀型防火涂料存在经受高温时容易发生开裂,热量向基材的传递速率较快等不足,而功能化的碳纳米管具有良好的柔韧性和强度,将其应用于膨胀型防火涂料可以改善涂层的强度与韧性,防止高温开裂,提高涂料受火膨胀后炭化层的致密度,进而提高涂料的防火性能。可以相信,随着碳纳米管功能化技术的发展,碳纳米管将在越来越多的功能涂料中获得应用。

5.展望

碳纳米管凭借其轻质、高强和优异的电学特性,自发现之日起就引起了全世界科学家的广泛关注。目前,经纳米材料改性的特种涂料已广泛应用于铁道、交通、建筑、兵器和石油化工等领域,若要进一步拓宽其应用领域,选用碳纳米管作为改性填料是理想的且具有良好的发展前景。但实际应用过程中,仍然存在一些亟待研究解决的问题:(1)目前,国内碳纳米管的生产成本较高,这是其广泛应用的重要制约因素。因此,需要继续探索行之有效的制备工艺以降低成本。(2)碳钠米管长径比很大,而且纳米碳管之间存在较强的范德华力,纳米碳管在涂料用高分子材料中分散时,存在易团聚、分散困难以及取向等问题。因此,

需要继续探索怎样将缠结和弯曲的纳米碳管在高分子材料中均匀分散、伸直和整齐排列,以及怎样最大限度发挥其大长径比的作用。(3)需要进一步研究碳纳米管和涂料用高分子材料两相界面的作用机理,从而形成稳定的、结合牢固的界面。(4)需要进一步研究表面处理技术对碳纳米管改性涂料性能的影响。通过深入研究,碳纳米管在涂料中的应用前景必然更加广阔,将会对更多领域产生重大而深远的影响,并带来巨大的利益。

碳纳米管吸波材料的研究现状与展望

3海南省自然基金(80628)资助;海南大学科研基金资助项目(Kyjj0419) 王生浩:男,1984年生,研究方向为吸波材料 文峰:通讯作者,男,博士,副教授 E 2mail :fwen323@1631com 碳纳米管吸波材料的研究现状与展望3 王生浩,文 峰,李 志,郝万军,曹 阳 (热带生物资源教育部重点实验室;海南大学理工学院材料科学系,海口570228) 摘要 碳纳米管因其独特的物理和化学性能10多年来一直备受关注,已有研究将其运用于军事科技领域,如 吸波材料,但目前国内关于此类研究的报道还不多。较为全面地总结了近年来国内外对碳纳米管作为吸波材料的研究成果及其目前的研究现状,即简述碳纳米管的吸波机理;详细介绍碳纳米管薄膜、活性碳纳米管、磁性金属(合金)/碳纳米管、碳纳米管/聚合物基复合吸波材料的研究现状;展望未来吸波材料的发展方向。 关键词 碳纳米管 吸波材料 吸波性能 复合 The R esearch Status and Prospect of Electromagnetic W ave 2 absorbing C arbon N anotubes WAN G Shenghao ,WEN Feng ,L I Zhi ,HAO Wanjun ,CAO Yang (Key Laboratory of Tropical Biological Resources of Chinese Education Ministry ,Department of Materids Science , School of Science and Engineering ,Hainan University ,Haikou 570228) Abstract Carbon nanotubes (CN Ts )have been given great attention due to its unique physical and chemical properties.There are some researches about CN Ts which have been applied in military science and technology ,for ex 2ample as electromagnetic wave absorbing materials (EAM ),but few papers reports this kind of research.In this pa 2per ,the research results and present status of CN Ts as EAM are summarized in general by three parts.①the wave ab 2sorbing mechanism of the CN Ts ,②the present research status of the materials ,including thin film of CN Ts ,activated CN Ts ,metal 2coated CN Ts ,and CN Ts/Polymer composite EAM ,③the f uture prospect of EAM. K ey w ords carbon nanotubes (CN Ts ),electromagnetic wave absorbing materials (EAM ),electromagnetic wave absorbing properties ,composite   0 引言 随着电子技术的发展,电磁辐射成为新的社会公害[1],尤其是射频电磁波和微波辐射已经成为又一大环境污染。电磁辐射不仅会干扰电子仪器、设备的正常工作[2~4],而且还会影响人类的身体健康[5~8]。军事上,随着探测技术的发展,在战争中实现目标隐身对提高武器系统的生存和突防打击能力有着深刻的意义[9~11]。解决电磁辐射污染和实现目标隐身的最有效方法是采用吸波材料(Electromagnetic Wave Absorbing Materials ,EAM )。作为环境科学与军事尖端技术的组成部分,电磁波吸收材料的研究已成为一个重要的科研领域。吸波材料要求吸收强、频带宽、比重小、厚度薄、环境稳定性好,而传统的吸波材料很难满足上述综合要求,出现的问题是吸收频带单一、比重大、吸收不强等,纳米技术的发展为吸波材料开拓了一个新的研究领域。纳米吸波材料具有吸收强、频带兼容性好、材料轻、性能稳定等优点,是一类新型的吸波材料。 自1991年日本N EC 公司的电镜专家S.Iijima 发现碳纳米管(Carbon Nanotubes ,CN Ts )[12]以来,CN Ts 以其独特的结构、优良的物理、化学性质和机械性能引起了世界各国科学家的广泛关注,成为物理、化学和材料科学领域的研究重点和热点。近 年来对碳纳米管复合材料的合成和应用研究是纳米科技领域的 热点之一,但有关该类材料应用于电磁波吸收材料的研究报道还很少。有关微波与吸波材料相互作用的基础理论文献[13]已有较详细的论述,本文不再赘述。本文对目前碳纳米管吸波材料的研究现状进行了论述,并针对目前存在的问题提出了相应的解决思路。 1 碳纳米管的吸波机理 碳纳米管是一维纳米材料,纳米粒子的小尺寸效应、量子尺寸效应和表面界面效应等使其具有奇特的光、电、磁、声等性质,从而使得碳纳米管的性质不同于一般的宏观材料。纳米粒子尺度(1~100nm )远小于红外线及雷达波波长,因此纳米微粒材料对红外及微波的吸收性较常规材料强。随着尺寸的减小,纳米微粒材料具有比常规粗粉体材料大3~4个数量级的高比表面积,随着表面原子比例的升高,晶体缺陷增加、悬挂键增多,容易形成界面电极极化,高的比表面积又会造成多重散射,这是纳米材料具有吸波能力的重要机理。在原子排列较庞大的界面中及具有晶体畸变、空位等缺陷的纳米粒子内部形成的固有电矩,在微波场的作用下,由于取向极化,提高了纳米粒子的介电损耗。量子尺寸效应使纳米粒子的电子能级由连续的能谱变为分裂的

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用 摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强, 因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carbon nanotubes(CNTs) are nanometer-sized carbon materials with the characteristics of unique one-dimensional geometric structure,large surface area,high electrical conductivity,elevated mechanical strength and strong chemical inertness. Selecting appropriate methods to prepare carbon nanotube composites can enhance physical and chemical properties , and these composites have a great future in many areas,especially in energy storage batteries . In this paper, based on the analysis and comparison of the advantages and disadvantages of carbon nanotube composites,the enhancement mechanisms of the CNTs catalysts are introduced. Afterward,the lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carbon nanotube; composite; energy storage batteries; application 1 引言 碳纳米管(CNTs)在2004 年被人们发现,是一种具有特殊结构的一维量子材料, 它的径向尺寸可达到纳米级, 轴向尺寸为微米级, 管的两端一般都封口, 因此它有很大的强度, 同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2 碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着

涂料论文概述

聚氨酯水分散皮革涂料原料与涂料性能检测 一、概述 随着各国环保法规对涂料体系中挥发性有机化合物(VOC)含量的严格限制,促进了以水性涂料为代表的低污染型涂料的发展。水性聚氨酯涂料是发展最快的涂料品种之一。水性聚氨酯树脂以水为分散体,安全、环保、机械性能良好,易于改性,广泛地应用于涂料、胶黏剂、皮革、油墨、印染等行业。但由于水性聚氨酯的拒油耐水性、热性能相比溶剂型聚氨酯,仍有差距,常需要对其表面及本体进行改性,以增加水性聚氨酯材料在恶劣环境下的稳定性。聚氨酯分散皮革涂料是一种以水代替有机溶剂作为分散介质的新型聚氨酯体系,也称水分散聚氨酯、水系聚氨酯或水基聚氨酯的原料。聚氨酯涂料是目前较常见的一类涂料,可以分为双组分聚氨酯涂料和单组分聚氨酯涂料。双组分聚氨酯涂料一般是由异氰酸酯预聚物(也叫低分子氨基甲酸酯聚合物)和含羟基树脂两部分组成,通常称为固化剂组分和主剂组分。这一类涂料的品种很多,应用范围也很广,根据含羟基组分的不同可分为丙烯酸聚氨酯、醇酸聚氨酯、聚酯聚氨酯、聚醚聚氨酯、环氧聚氨酯等品种。一般都具有良好的机械性能、较高的固体含量、各方面的性能都比较好。是目前很有发展前途的一类涂料品种。 二、应用领域 聚氨酯水性分散体涂料由于具有低VOC和优异性能,经济上也易为人们接受,自20世纪60年代问世以来,性能不断地改进,获得了广泛的应用。相关数据也给出了水分散聚氨酯涂料应用的一些领域。对有关应用领域在后面作重点分述,主要是叙述单组分(未改性) 聚氨酯水分散体的应用,也涉及到改性的单组分产品以及双组分聚氨酯水分散体的应用。 皮革的涂饰是干制和鞣制的皮革的表面处理,是为了改进革面的颜色、手感和外观。溶剂型聚氨酯涂料早已用于皮革表面的涂饰,由于VOC限制,逐步用水性

防静电环氧地坪静电指标的检测

防静电环氧地坪静电指标的检测 关键词:防静电、表面电阻、体积电阻、系统接地电阻 随着防静电涂料技术的进步,采用防静电地坪涂料涂装混凝土或水泥地面,来获得防止静电产生的方法越来越得到广泛应用。防静电环氧地坪具有表面平整美观、整体无缝、易清洁、易维修、防静电效果长期持久有效、造价低等特点,可以广泛的适用于电子电器制造厂车间、仓库,微机房,电气控制室,印刷厂,纺织厂等一切需防静电或防爆场所地面的涂装。 一般来讲,涂膜表面电阻值在1.0×1010以下即可消除积累在涂膜表面的静电荷,根据美国材料与试验协会标准(ASTM F150-98)的规定将电阻值在2.5 X 104Ω-1.0 X 106Ω的地板称为导电地板;而将电阻值为1X 106Ω-1.0 X 109Ω的地板称为静电耗散型地板,都可以防止静电荷的积累。 在防静电地坪涂层体系中,一般设计为渗透导电底漆层、接地铜箔网络、导电中涂找平层、导电批土层和防静电面层的五层结构。渗透导电底漆层的涂料应选用渗透性强的导电底漆,不能片面追求封闭性,以避免涂层起壳;接地铜箔网络要使用平底塑胶刮板压实自粘铜箔,以防止空鼓的产生;导电中涂找平层,在施工时,一定要注意最终表面的光滑性和平整度;导电批土层,在施工时,一定要注意不能漏涂,从而影响面层的系统电阻;因此在施工时,以刮批二道为宜。 目前的防静电地坪涂料大都是静电耗散型,容易疏导静电荷。而对防静电环氧地坪而言,静电电场的能量达到一定程度后,击穿其间介质而进行放电会对某些精密的电子元器件造成损害,所以在防静电环氧地坪做好后,首先要考虑到的是涂层的防静电指标。而主要的几项指标包括: A、表面电阻(阻值符合在1.0X105Ω-1.0X109Ω)—在一给定的通电时间之后,施加于材料表面上的标准电极之间的直流电压对于电极之间的电流的比值,在电极上可能的极化现象忽略不计。 B、系统电阻(阻值符合在5.0X104Ω-1.0X109Ω)—被测物体测试表面与被测物体接地点之间电阻总和。 C、系统接地电阻(阻值≤10Ω)—电流由接地系统流入大地再经大地流向另一接地体或向远处扩散所遇到的电阻,它包括接地线和接地体本身的电阻、接地体与大地的电阻之间的接触电阻以及两接地体之间大地的电阻或接地体到无限大远处的大地电阻。 一、表面电阻的检测: (1)检测器具: 数字兆欧表:检测电压为100∨,量程1.0×105~1.0×1012欧,精度等级不得低于2.5级;标准电极:2只, 铜制,表面镀铬,圆柱型,直径为63.5mm,重量2270g;与兆欧表配套使用,用与测试防静电地面的表面电阻,采用导电橡胶做为电极垫片(体积电阻<1.0×103欧)。 (2)环境要求:检测要尽可能地在温度为23±8℃,湿度为50±5%的环境(保持此环境24小时)下进行。 (3)检测方法: 防静电环氧地板在验收测量前,应用洁净的纱布将表面擦干净,严重玷污的应用中性液清洗干净,然后将室内空调打开,保持一定温度连续开上2—3天,在规定的温湿度条件下测量。在放置电极前先用软布条插去地表面所有尘物,电极表面在放置前要用干净的软布条粘上异丙醇不少于70%的水插试干净,晾干。将兆欧表的正极与地相连,将负极放在地板表面, 施加电压后5秒钟或数字稳定后读数,其中电极处于的位置要在离边沿

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

碳纳米管的现状和前景

碳纳米管的现状和前景 信息技术更新日新月异,正如摩尔定律所言,集成电路的集成度每隔18 个月翻一番,即同样的成本下,集成电路的功能翻一倍。这些进步基于晶体管的发展,晶体管的缩小提高了集成电路的性能。 在硅基微电子学发展的过程中,器件的特征尺寸随着集成度的越来越高而日益减小,现在硅器件已经进入深微亚米阶段,也马上触及到硅器件发展的瓶颈,器件将不再遵从传统的运行规律,具有显著的量子效应和统计涨落特性. 为了解决这些问题,人们进行了不懈地努力,寻找新的材料和方法,来提高微电子器件的性能。研究基于碳纳米管的纳电子器件就是其中很有前途的一种方法。 碳纳米管简介 一直以来都认为碳只有两种形态——金刚石和石墨。直至1985年发现了以碳60为代表的富勒烯、从而改变了人类对碳形态的认识。1991年,日本筑波NEC研究室内科学家首次在电子显微镜里观察到有奇特的、由纯碳组成的纳米量级的线状物。此类纤细的分子就是碳纳米管 碳纳米管有许多优异的性能,如超高的反弹性、抗张强度和热稳定性等。被认为将在微型机器人、抗撞击汽车车身和抗震建筑等方面有着极好的应用前景。但是碳纳米管的第一个获得应用的领域是电子学领域、近年来,它已成为微电子技术领域的研究重要方面。 研究工作表明,在数十纳米上下的导线和功能器件可以用碳纳米管来制造,并连接成电子电路。其工作速度将过高于已有的产品而功率损耗却极低! 不少研究组已经成功地用碳纳米管制成了电子器件。例如IBM 的科学家们就用单根半导体碳纳米管和它两端的金属电极做成了场效应管(FETs)。通过是否往第三电极施加电压,可以成为开关,此器件在室温下的工作特性和硅器件非常相似,而导电性却高出许多,消耗功率也小。按理论推算,纳米级的开关的时钟频率可以达到1太赫以上,比现有的处理器要快1000倍。 碳纳米管的分类 石墨烯的碳原子片层一般可以从一层到上百层,根据碳纳米管管壁中碳原子层的数目被分为单壁和多壁碳纳米管。 单壁碳纳米管(SWNT)由单层石墨卷成柱状无缝管而形成是结构完美的单分子材料。SWNT 的直径一般为1-6 nm,最小直径大约为0.5 nm,与C36 分子的直径相当,但SWNT 的直径大于6nm 以后特别不稳定,会发生SWNT 管的塌陷,长度则可达几百纳米到几个微米。因为SWNT 的最小直径与富勒烯分子类似,故也有人称其为巴基管或富勒管。 多壁碳纳米管MWNT可看作由多个不同直径的单壁碳纳米管同轴套构而成。其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典型直径和长度分别为2~30nm 和0.1~50μm。多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常

防静电涂料

■聚合物添加剂 防静电涂料 产品简介 防静电涂料是一种长效透明防静电涂料,表面电阻107-8Ω·cm ,是由多种纳米金属材料制备而成,由纳米超微粒子的相互作用形成导电膜,导电膜中电荷移动可实现高透射率和防静电效果。 防静电涂料可用于多种基材及各种塑料薄膜等表面,具有优良的附着力、柔韧性、耐冲击强度和透明性。可自然干燥,或加热烘烤,通过130℃的热固化后的涂层硬度可达到1H ,形成透明的防静电涂层。可见光透过率80%~85%,产品的性能稳定,温度、湿度的变化对电阻值无影响,产品效果长期有效。水性体系、无毒、无味、环保。 规格指标及物理特性 规格 单位 标准 外观 蓝色透明液体 PH 值 7-8 可见光透过率 % 80以上 膜层表面硬度 H 1 方块电阻 Ω·cm 107-108 基材要求 PET 、PP 、PE 、PC 、亚克力、玻璃、等多种材料表面 溶剂 水 有效时期 长效 包装 1/1L 、 1/5L 。 搬运及储存 防静电涂料必须贮存在低温干燥处,每次使用开启包装后必须密封,避免产品受潮发粘。 产品特点及应用 ● 防静电涂料具有优良的电学和光学性质,利用其良好的导电性,抗静电性,广泛应用在涂料、塑料、纺织、高分子膜、电子产品等领域。 ●可用基材:各种PET 、PP 、PE 、PC 、亚克力、玻璃、等多种材料表面。 ●使用方法:1.涂布设备、擦涂、喷涂、淋涂。2.常温自然固化需20分钟。3.热固化方式,可以加热到100~130℃,1分钟固化成膜。

声明 *以下信息替代了买方文件。关于适销性或适用于特定用途,不存在任何明示或暗示担保。我们所提供的使用建议,不得被视为侵犯任何专利权的原因。对于因疏忽或违反条款、严格赔偿责任、民事侵权行为或与产品有关合同而产生的附带、结果性或间接损失,概不负责。买方唯一能要求赔偿的是买方的买价。数据和结果以受监控的研究或实验室研究为依据,买方应根据预定使用条件进行检测,确认这些数据和结果的准确性。并未针对以下应用进行检测,因此不建议将产品用于:长期接触粘膜、破损的皮肤或血液;或植入人体。

碳纳米管材料的研究现状及发展展望

碳纳米管材料的研究现状及发展展望 摘要: 碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。 关键词:碳纳米管;制备;性质;应用与发展 1、碳纳米管的发展历史 1985年发现了巴基球(C60);柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研 究中,发现了与金刚石、石墨的无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖) 1991年日本电气公司的S. Iijima在制备C60、对电弧放电后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径0.7-30 nm,被称为Carbon nanotubes (CNTs); 1992年瑞士洛桑联邦综合工科大学的D.Ugarte等发现了巴基葱(Carbon nanoonion); 2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳米管,稳定性稍差; 2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。 2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数目富勒烯 分子C141。 2004 ,曼彻斯特大学的科学家发现Graphene(石墨烯)。进一步激发了人们研究碳纳米材料的热潮。 2、碳纳米管的分类 2.1碳纳米管 碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳 米管、多壁碳纳米管。 2.2纳米碳纤维 纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直径介于纳米碳 管(小于100 nm)和气相生长碳纤维之间。 2.3碳球 根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。 2.4石墨烯 石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,是构建其它维度碳质材料的基本单元。 3、碳纳米管的制备 3.1电弧法

(完整版)抗静电剂的研究现状及发展化

抗静电剂的研究现状及发展 1.静电的危害 静电是一种处于静止状态的电荷。一般来说,静电会在正当两个物体的解出与分离、摩擦、变形以及离子附着等情况下产生。静电的危害有很多,但大致可以分为两种。 1.1 静电的第一类危害 静电的第一类危害来源于带电体的相互作用。飞机机体与空气、灰尘、水蒸气等微粒摩擦时会使飞机带电。若不及时采取措施,飞机的无线电设备将会失灵。在印刷厂静电会使纸张粘合,极难分开,给印刷带来麻烦。静电也很容易吸附灰尘和油污造成产品污染。 1.2 静电的第二类危害 第二类危害是指由于静电火花点燃易燃物发生爆炸。平时静电产生的火花对人体基 本无害,可是在空气中充满易燃气体和粉尘时,电火花引发威力巨大的爆炸。例如,手 术台上,麻醉剂主要成分为乙醚,静电火花会引起麻醉剂的爆炸,伤害医生和病 人;在煤矿,则会引起瓦斯爆炸,会导致工人死伤,矿井报废。 2 抗静电剂的定义 抗静电剂是一类添加在树脂或涂布于高分子材料表面以防止或消散静电荷产生的化学添加剂。抗静电剂自身没有自由活动的电子,属于表面活性剂范畴,它通过离子化基团或极性基团传导或吸湿作用,构成泄露电荷通道,达到抗静电的目的。[1] 3 抗静电剂的作用机理 常用的抗静电的方法有两种,第一种是增加产品的润滑性,防止静电荷产生,第二种是加快静电荷的泄露。因此抗静电剂的使用方法也有两种,一种是涂刷、喷洒在产品表面,另一种是添加到生产材料的内部。这两种使用方法都可以提高材料的电导率,并且对应着两种作用机理。 3.1 外部抗静电剂的作用机理 通过键与空气中的水分子结合,抗静电剂的亲水基在塑料表面形成一个单分子导电膜,能够降低表面电阻,加快电荷的泄露。摩擦间隙中的介电常数高于空气中的介电常数,使电场变弱,从而导致产生的电荷减少。 3.2 内部抗静电剂的作用机理 在树脂中添加足够量的抗静电剂时,树脂表面会形成一层稠密的排列,亲水基向着空气一侧形成导电层,表面浓度高于内部。加工时,由于外界的作用可以使树脂表面的抗静

世界涂料工业现状及发展趋势

世界涂料工业现状及发 展趋势 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

内容摘要: 1. 世界涂料工业现状及发展趋势生产、消费现状 1997年世界涂料总产量约2200万乙价值600亿美元。产量分布见表1。表1...关键词:涂料,发展,生产,工业,产品,溶剂型,溶剂,聚乙烯 . 世界涂料工业现状及发展趋势 生产、消费现状 1997年世界涂料总产量约2200万乙价值600亿美元。产量分布见表1。 表1 1997年世界涂料产量分布 国家或地区产量/(万t)比例/% 西欧 北美 亚大地区 拉美 东欧 中东 其它地区 合计2200 世界各国按1997年涂料产量排序,美国第一,为517万t;日本第二,为万t;德国第三,为万t;我国第四,为165.8万t。 按销售业绩排序,1999年占全球涂料业务60%的前十位涂料生产商依次为:Akko Nobel;ICI;Sherwin-Williams;Du Pont;PPG;BASF;关西涂料;日本涂料;Valspar;RPM。 1998年全球共约销售涂料2218万t,预计到2003年将增长到2445万t。市场容量以美洲最大,占%;其次是欧洲,占%;亚大地区居第三,占%。就1998~2003年的年均增长率而论,亚大地区居首,为%;美洲为2%;欧洲为%。世界涂料市场分布及其增长情况见表2。

技术进展 在世纪之交,国外涂料工业正处于一个技术进步的重要时期。环保法规的强化,推动了涂料产品结构的调整:传统溶剂型涂料逐渐减少,高性能、低污染涂料快速增长;限制铅、铬、锌等重金属颜料在涂料中的应用,促进了低毒性颜料的开发;有机锡防污剂的限制使用,促进了无锡低毒长效防污涂料的开发;激烈的军备竞赛又刺激了隐形涂料等特殊性能专用产品的发展。 表2 世界涂料市场分布及其增长情况 1998年市场分布2003年市场分布1998~2003年年均 地区需求量/万t 占有率%需求量/万t 占有率%增长率% 美洲 欧洲 亚大地区 其它地区 合计 所谓高性能涂料,是指技术性能、使用性能和施工注能更好的涂料品种。其中包括:要求装饰性、鲜映性接近工艺品的轿车面漆;耐腐蚀性极优,具有10年以上保护期的重防腐蚀涂料;耐候性、耐久性达15年的氟碳树脂外墙涂料;电子产业、高新技术要求配套的各种涂料;塑料及橡胶制品涂料;各种功能性涂料如无锡自清洗防污涂料;防静电涂料、防火涂料、大气净化用光催化涂料、零VOC水乳胶涂料、幻觉色彩涂料;等等。 低污染涂料主要指环境适应性好的涂料,包括水性涂料,无溶剂涂料,粉未涂料,高固体分涂料,辐射固化涂料等。其中,以乳胶漆为代表的水性涂料已占涂料总量的55%,水性工业涂料已占工业涂料总量的26%,而且仍呈增长之势。为适应高性能低污染的发展方向,国外通过各种方法对树脂改性,不断推出水性树脂,氟碳树脂,硅树脂,高固体分树脂,超细无机填料,各种低毒高装饰耐候性颜料,水性涂料专用原材料等。 国外涂料生产企业不仅致力于涂料技术本身的提高,还特别重视涂料施工技术的发展,尤其对于OEM涂料施工(在线涂料涂装)的研究投入了巨额经费,远远超过对涂料产品生产本身的投入,做到了涂料技术开发与施工技术研究的紧密结合。如日本关西涂料公司研究所,就装备有能实车涂装的电泳槽(容积20m3),可大大缩短产业研发的周期,但运行费用是很可观的。 发展趋势 向集团化、规模化、专业化方向发展 当今世界涂料工业发展的最显着特点,是一些世界级的大公司通过相互收购、合资合作、技术转让等方式,使涂料生产向集团化、规模化、专业化方向发展,以强化其在某一产品市场领域的竞争能力,从而达到全球化、合理化经营的目的。荷兰阿克苏公司与瑞典Nobel公司合并组建的Akzo一Nobel公司,成为世界上最大的涂料公司之一,最引人注目。阿克苏公司美国部分为集中力量发展其优势产品卷钢涂料(占世界市场的25%)和木器涂料等,将其汽车涂

抗静电剂在静电喷涂涂料体系中的性能介绍

抗静电剂在静电喷涂涂料体系中的性能介绍 涂料 抗静电剂SYNTHRO?-STAT 303,305,316 在静电喷涂涂料体系中的性能介绍 1. 静电喷涂工艺静电喷涂是这样一种装置,它通过产生高压电的方式产生一个电场,该电场将油漆分割成细小的粒子,然后细小的油漆粒子直接附着在裸露在该电场中的任何物体的表面上。 2. 工艺的优点油漆的沉积比例高 (比普通方法高大约30%)。油漆可以方便的涂覆于锐边或者隐藏的面上。消除溶剂的细小雾粒的散发从而减少环境问题。 3. 静电喷涂油漆的特征低表面张力 (28 to 33 dynes/cm at 200C) 以便静电场的压力能够顺利的将液滴转化成细小的颗粒这个因数对于涂料在底材上的良好流平也是非常重要电阻率控制在一定范围内 (一般在 1 到 50 Megohms.cm) 电阻率<1 Megohms.cm 可能导致设备短路电阻率>50 Megohms.cm 可能导致粒子上电荷的减少从而使喷涂过程难以完成黏度调节在 30 s 涂4#杯有利于涂料颗粒的形成,同时防止在底材上流挂闪点 >200C 为了防止发生火灾 4. 静电喷涂油漆的种类水性涂料,因为其导电率太高,同时也因为其表面张力太高,不适合于采用这种工艺涂装。纤维素,聚酯,环氧,丙烯酸……等类型的涂料,含有适当的极性溶剂,可以很容易的采用静电喷涂工艺施工。气干型与烘干型醇酸,氯化橡胶,脲,马来酰胺……等类型的涂料,使用非极性的溶剂,必须在添加SYNTHRO?-STAT 303或者SYNTHRO?-STAT 305之类的导电剂之后才能采用静电喷涂的方法施工。 5. 各种用途SYNTHRO?-STAT 可以在涂料的制造阶段或者使用时(例如现场)加入. ■汽车工业■自行车框架■农用机械■花园设备■ (钢制或木制) 家具■家用电器■配电箱,, 管件…其他用途绝缘材料(木材,各种塑料)的表面处理,通过浸涂或者喷涂SYNTHRO?-STAT的水溶液或者亲水性醇溶液。 6. 各种抗静电剂的对照实验对比对象季铵盐型SYNTHRO?-STAT 303, 305 ADDITIVE 1,2,4 脂肪胺衍生物型SYNTHRO?-STAT 316 ADDITIVE 3 实验配方主要检测指标:电阻率的降低附带检测指标:油漆黏度的变化,漆膜干燥速度,光泽和黄变试验编号配方体系附录1, 2, 3, 4, 5, 6 涂料配方 A (白电油做介质) 附录7, 8, 9a, 9b 涂料配方 B (二甲苯做介质) 附录10, 11 用WORLEE公司的树脂配置的防锈漆附录12, 13 各种客户提供的涂料附录14, 15 混合溶剂 (白电油/二甲苯) 附录16到23 SYNETHRO?-STAT 303和305相互之间的比较,在溶剂介质和几种涂料配方中的性能表现 6. 结果各种类型导电剂的优缺点比较类型非离子性(脂肪胺或者氧化乙烯脂肪醇)阳离子性(季铵盐或者铵盐)产品 SYNT HRO?-STAT 316 或者ADDITIVE 3 SYNTHRO?-STAT 303, 305, 或者ADDITIVE 1, 2 和 4 干燥时间很少或者没有影响有负面影响用量需要更大的用量用量很小相容性阳离子体系相容相容非离子体系相容相容阴离子体系相容有不相容的潜在危险漆膜 黄变漆膜黄变很少或者不黄变光泽保持甚至提高(因为这类型物质本身具有润湿剂功能)涂料的电阻率可以降低可以降低溶剂的电阻率不能降低可以降低盐析在储藏过程中经常产生盐析很少或者没有盐析耐盐雾性能只有轻微的影响只有轻微的影响建议将SYNTHRO?-STAT抗静电剂和极性溶剂配合使用,这样可以减少SYNTHRO?-STAT抗静电剂的用量,从而减少产生副作用的风险。SYNTHRO?-STAT 303和305之间的优缺点比较尽管都属于同一类型的季铵盐,但是SYNTHRO?STAT 305的效果更好,因为SYNTHRO?STAT 305单位质量的电荷密度更高所以更有效。(SYNTHRO?-STAT 305的分子量比SYNTHRO?-STAT 303的分子量低) SYNTHR O?-STAT 305的用量更小一些,因此它的副作用也更小一些。在涂料体系中SYNTHRO?-STAT 305比SYNTHRO?-STAT 303 更能降低电阻率。(参见附录17, 18, 19, 20和 23)在涂料体系中,由于粘结料,颜料,润湿剂等各种组分的存在自然的抵消了SYNTHRO?-STAT 305的溶解性问题,因此涂料体系可以获得很好的长期稳定性。另一方面,对于处理用的溶剂,建议使用SYNTHRO?-STAT 303,因为其溶解性更好,而且比SYNTHRO?-STAT 305稳定性好(参见附录16)。对于配制绝缘材料表面抗静电处理,或者钢设备防腐处理用的水性溶液,也是建议使用SYNTHRO?-STAT 303 而不是SYNTHRO?-STAT 305。各种不同的抗静电剂在脂肪族媒介中的性能比较附录1 涂料配方 A: 亮光白磁漆长油度醇酸树脂 5.9 白电油 (-5% 芳香族) 5.9 钛白粉Tioxide RHD2 32.5 SYNTHRON?-DS 3198 0.5 分散剂分散 (球磨) 长油度醇酸树脂(70% 含固量) 48.2 白电油 (-5% 芳香族) 5.4 ACTIRON? S 88 B 1.5 催干剂SYNTHRO?-SKIN KEM B 0.1 防结皮剂特性黏度,涂4#杯,200C 125 秒光泽 (600C) 92 在涂料配方A中添加各种抗静电剂对于降低电阻率的效果比较——电阻率范围很宽附录 2 0.50% 1.00% 1.50%

碳纳米管材料的研究现状及发展展望[英文]

Research status and development prospect of carbon nanotubes Abstract: Carbon nanotubes due to their unique structure and excellent physical and chemical properties, and has wide application prospect and huge commercial value. This paper reviewed the methods for preparing carbon nanotubes, structural properties, application and development trend of carbon nanotubes. Keywords: carbon nanotubes; preparation; antistatic; stealth; radar absorbing coating Nanometer material because of its size in the transition region junction of atomic clusters and macroscopic objects, with the quantum size effect, small size effect, surface effect and the macroscopic quantum tunnel effect and other characteristics, exhibit many unique physical and chemical properties. Nanometer material nineteen eighties early after the formation of the concept, the world have paid great attention. It has unique properties, physical, chemical, material research, biology, medicine and other fields with meters of new opportunities. 1, carbon nanotube preparation, structure and properties 1.1, the preparation of carbon nanotubes

碳纳米材料概述

碳纳米材料概述 名字:唐海学号:1020560120 前言 纳米碳材料是指分散相尺度至少有一维小于100nm的碳材料。分散相既可以由碳原子组成,也可以由异种原子(非碳原子)组成,甚至可以是纳米孔。纳米碳材料主要包括三种类型:碳纳米管,碳纳米纤维,纳米碳球。 近年来,碳纳米技术的研究相当活跃,多种多样的纳米碳结晶、针状、棒状、桶状等层出不穷。2000年德国和美国科学家还制备出由20个碳原子组成的空心笼状分子。根据理论推算,包含20个碳原子仅是由正五边形构成的,C60分子是富勒烯式结构分子中最小的一种,考虑到原于间结合的角度、力度等问题,人们一直认为这类分子很不稳定,难以存在。德、美科学家制出了C60笼状分子为材料学领域解决了一个重要的研究课题。碳纳米材料中纳米碳纤维、纳米碳管等新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域。 分类 (1)碳纳米管碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳米管、多壁碳纳米管和双壁碳纳米管。 (2)碳纤维分为丙烯腈碳纤维和沥青碳纤维两种。碳纤维质轻于铝而强力高于钢,它的比重是铁的1/4,强力是铁的10倍,除了有高超的强力外,其化学性能非常稳定,耐腐蚀性高,同时耐高温和低温、耐辐射、消臭。碳纤维可以使用在各种不同的领域,由于制造成本高,大量用于航空器材、运动器械、建筑工程的结构材料。美国伊利诺伊大学发明了一种廉价碳纤维,有高强力的韧性,同时有很强劲的吸附能力、能过滤有毒的气体和有害的生物,可用于制造防毒衣、面罩、手套和防护性服装等。 (3)碳球根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2)未完全石墨化的纳米碳球,直径在50nm 一1μm之间;(3)碳微珠,直径在11μm以上。另外,根据碳球的结构形貌可分为空心碳球、实心硬碳球、多孔碳球、核壳结构碳球和胶状碳球等。 碳纳米材料的性质及相关应用 1.力学 (1)超强纤维碳纳米管具有弹性高、密度低、绝热性好、强度高、隐身性优越、红外吸收性好、疏水性强等优点,它可以与普通纤维混纺来制成防弹保暖隐身的军用装备。 (2)材料增强体用于增强金属、陶瓷和有机材料等。并且结合碳纳米管的导热导电特性,能够制备自愈合材料。

涂料市场概况及发展趋势

涂料市场概况及前景趋势分析 1、概述 1.1涂料简介 涂料是一种可以用不同的施工工艺涂覆在物件表面,形成黏附牢固、具有一定强度、连续的固态薄膜。这样形成的膜通称涂膜,又称漆膜或涂层。 1.2涂料分类 1.2.1按涂料形态:液态涂料(溶液型、乳液型、分散型、无溶剂型)、固态涂料(粉末涂料)等 1.2.2按成膜工序:底漆、腻子、中间漆(中涂)、面漆、罩光漆等 1.2.3按涂料用途:建筑涂料、工业涂料、通用涂料、特种涂料。其中,工业1.2.4涂料包括木器涂料、车用涂料、船舶涂料、轻工涂料等 1.2.5按分散介质:水性涂料、溶剂型涂料、无溶剂型涂料等 1.2.6按涂膜功能:防锈涂料、防腐涂料、耐温涂料、防火涂料、绝缘涂料、防污涂料等 1.2.7按成膜机理:挥发性干燥涂料、热熔性干燥涂料、气干性涂料、烘干性涂料、多组分固化型涂料、辐射固化涂料等 1.2.8按施工方法喷漆、浸漆、电泳漆、自泳漆等 1.3涂料特点 1.3.1具有反射光、发光、吸收和反射红外线、吸收太阳能、屏蔽射线、标志颜色等光学性能方面的作用;还有防噪声、减振、卫生消毒、防结露、防结冰等各种不同作用等。 1.3.2长期具有保光保色性。 1.3.3涂料外观光泽,色泽细腻等。 1.3.4对底材或对旧漆膜的附着力强。 1.3.5具有硬度、冲击、柔韧性等。 2、涂料的研究现状

2.1建筑涂料 2.1.1国外建筑涂料研究现状 工业发达国家,建筑涂料为消费比例最大的一类涂料,约占涂料总产量的50%左右。目前,国外涂料生产正向规模化、集团化、自动化方向发展,从树脂合成到涂料的制备,采用规模效益,如反应装置达到了40一60立升,设备先进,自动化高.工艺稳定。涂料制备采用封闭式配料系统和自动输送系统。自动称量,自动调色,自动包装。生产效率高.人均年生产量平均达到100吨。 发达国家不仅在涂料品质上进行严格控制。还在施工规范、结构设计上进行控制。国外乳胶涂料占整个建筑涂料量的70一80%左右.品种有乙烯-醋酸乙烯类,醋酸乙烯—叔碳酸乙烯类.醋酸乙烯—丙烯酸酯类,苯乙烯—丙烯酸酯类,纯丙烯酸酯类等。溶剂型涂料占20一30%左右,主要是高性能外墙涂料,其品种有醇酸及其改性树脂、丙烯酸及其改性树脂、环氧及其改性树脂、聚氨酪及其改性树脂等。 2.1.2国内建筑涂料的研究现状 在我国建筑涂料中,聚乙烯醇类低档涂料约占40%,并有逐年下降的趋势。而内外墙乳胶漆占40%,溶剂型涂料占20%左右,主要是室内木质装饰漆和外墙涂料。 目前内墙涂料主要品种是聚醋酸乙烯、聚醋酸乙烯-丙烯酸酪、聚苯乙烯—丙烯酸、乙烯-醋酸乙烯类乳胶漆和聚乙烯醇类涂料。 外墙涂料分乳胶涂料和溶剂型涂料两类。乳胶涂料中以聚苯乙烯—丙烯酸酯和聚丙烯酸类品种为主;溶剂型涂料中以丙烯酸酪类、丙烯酸聚氨酪和有机硅接枝内烯酸类涂料为主,还有各种砂壁状和仿石型等厚质涂料。 地面涂料以聚氨酯和环氧树脂类涂料为主。 2.2我国特种涂料的研究现状 我国涂料工业面临巨大的挑战,涂料市场的竞争将是前所未有的,国内企业要想在市场中占有一席之地,新技术、新产品的开发是关键。特种涂料的开发将成为21世纪中国涂料市场的开发热点。我国各种功能型涂料——防水材料、防

相关文档
最新文档