重力势能功和能的关系

合集下载

功和能量变化的关系

功和能量变化的关系

13.从地面A处竖直上抛一小球,经B点时动能 为EK,AB = h。小球落回AB中点C处的动能 仍为EK。已知空气阻力f = 0.1mg。求:小球 在上抛过程中能上升的最大高度 H =? 设:B再往上为h1,则最大高度H=h+h1 从B到C:mgh/2-0.1mg(2h1+0.5h)=0
B C A
功和能量变化的关系
F1赛车发动机在 2.3s内使车速度由 零增为100km/h。
拉弓射箭,弓 热气球上升,重 的弹性势能不 力势能增加。 断增加。
对物体做功,能改变物体的能量。
功和能的关系
1、做功使不同形式的能量发生转化
2、物体的能量发生变化,则一定有 对应的力做了一定的功.
一.做功和动能变化的关系
1.质量为m的小车,在力F作用下,静止开始经位移S 速度变为v。力F做的功为:
v2 1 2 ma mv W=FS= 2a 2
F
F
2.质量为m、初速度为v的小车,在摩擦力f作用下,经 位移S速度减为零。在这一过程中摩擦力f做的功为:
v2 1 mv 2 W=-fS= - ma 2a 2 f
v
5.圆轨道半径R=0.5m。质量为m=10kg的小球从A处 静止释放,到B处速度vB=3 m /s。 BC长为L = 1m,球 到C处停下。求:1)圆轨道上克服阻力做的功 Wf 2) A BC轨道上的摩擦系数μ R
B C
1) mgR-wf=mv2/2 2) μmgSBC =mvB2/2
Wf =100×0.5-10×9/2=5J
mg+f/mg-f=9
1m
10.质量为m的汽车,以速度v1开始,沿斜面前 进 S 距离后速度变为v2,汽车的平均功率为 P, 所受阻力 f 是车重的k倍。求:汽车在这过程中 上升的高度H。 Pt- mgH- kmgS=m(v22–v12)/2

重力势能、弹性势能、动能及动能定理

重力势能、弹性势能、动能及动能定理

.课重力势能、弹性势能、动能和动能定理题教学目的重难点1、掌握重力势能、弹性势能和动能的概念2、熟练应用动能定理动能定理的应用教学内容【根底知识总结与稳固】一、重力做功和重力势能(1〕重力做功特点:重力对物体所做的功只跟物体的初末位置的高度有关,跟物体运动的路径无关。

物体沿闭合的路径运动一周,重力做功为零,其实恒力〔大小方向不变〕做功都具有这一特点。

如物体由 A 位置运动到 B 位置,如图 1 所示, A、 B 两位置的高度分别为h1、 h2,物体的质量为m,无论从A 到 B 路径如何,重力做的功均为:W G=mgs×cosa=mg〔h1-h2〕=mgh l -mgh2可见重力做功与路径无关。

(2〕重力势能定义:物体的重力势能等于它所受重力与所处高度的乘积。

公式: Ep=mgh。

单位:焦〔 J〕(3〕重力势能的相对性与重力势能变化的绝对性重力势能是一个相对量。

它的数值与参考平面的选择相关。

在参考平面内,物体的重力势能为零;在参考平面上方的物体,重力势能为正值;在参考平面下方的物体,重力势能为负值。

重力势能变化的不变性〔绝对性〕尽管重力势能的大小与参考平面的选择有关,但重力势能的变化量都与参考平面的选择无关,这表达了它的不变性〔绝对性〕。

某种势能的减小量,等于其相应力所做的功。

重力势能的减小量,等于重力所做的功;弹簧弹性势能的减小量,等于弹簧弹力所做的功。

重力势能的计算公式E p=mgh,只适用于地球外表及其附近处g 值不变时的范围。

假设g 值变化时。

不能用其计算。

二、弹力做功和弹性势能探究弹力做功与弹性势能(1〕功能关系是定义某种形式的能量的具体依据,从计算某种力的功入手是探究能的表达式的根本方法和思路。

(2〕科学探究中必须善于类比已有知识和方法并进行迁移运用。

(3〕科学的构思和猜想是创造性的表达。

可使探究工作具有针对性。

(4〕分割——转化——累加,是求变力功的一般方法,这是微积分思想的具体应用。

动能、势能、做功与能量转化的关系

动能、势能、做功与能量转化的关系

第2讲 动能 势能[目标定位] ,,,会分析决定弹性势能大小的因素.一、功和能的关系1.能量:一个物体能够对其他物体做功,那么该物体具有能量.2.功与能的关系:做功的过程就是能量转化的过程,做了多少功,就有多少能发生转化,所以功是能量转化的量度.功和能的单位相同,在国际单位制中,都是焦耳. 二、动能1.定义:物体由于运动而具有的能量.2.大小:物体的动能等于物体的质量与它的速度的平方乘积的一半,表达式:E k =12m v 2,动能的国际单位是焦耳,简称焦,用符号J 表示.3.动能是标量(填“标量〞或“矢量〞),是状态(填“过程〞或“状态〞)量. 三、重力势能 1.重力的功 (1)重力做功的特点:只与物体运动的起点和终点的位置有关,而与物体所经过的路径无关. (2)表达式W G =mg Δh =mg (h 1-h 2),其中h 1、h 2分别表示物体起点和终点的高度. 2.重力势能(1)定义:由物体所处位置的高度决定的能量称为重力势能.(2)大小:物体的重力势能等于它所受重力的大小与所处高度的乘积,表达式为E p =mgh ,国际单位:焦耳.3.重力做功与重力势能变化的关系 (1)表达式:W G =E p1-E p2=-ΔE p . (2)两种情况:4.重力势能的相对性(1)重力势能总是相对某一水平面而言的,该水平面称为参考平面,也常称为零势能面,选择不同的参考平面,同一物体在空间同一位置的重力势能不同.(2)重力势能为标量,其正负表示重力势能的大小.物体在参考平面上方时,重力势能为正值;在参考平面下方时,重力势能为负值.想一想 在同一高度质量不同的两个物体,它们的重力势能有可能相同吗?答案 有可能.假设选定两物体所处的水平面为参考平面,那么两物体的重力势能均为0. 四、弹性势能1.定义:物体由于发生形变而具有的能量.2.大小:跟形变的大小有关.弹簧被拉伸或压缩的长度越大,弹性势能就越大. 3.势能:与相互作用物体的相对位置有关的能量.一、对动能的理解 动能的表达式:E k =12m v 21.动能是状态量:动能与物体的运动状态(或某一时刻的速度)相对应.2.动能具有相对性:选取不同的参考系,物体的速度不同,动能也不同,但一般以地面为参考系.3.动能是标量:只有大小,没有方向;只有正值,没有负值. 例1 关于动能的理解,以下说法正确的选项是( ) A .但凡运动的物体都具有动能B .一定质量的物体,动能变化时,速度一定变化C .一定质量的物体,速度变化时,动能一定变化D .动能不变的物体,一定处于平衡状态 答案 AB解析 动能是物体由于运动而具有的能量,所以运动的物体都具有动能,A 正确;由于速度是矢量,当方向变化时,假设速度大小不变,那么动能不变,C 错误;但动能变化时,速度的大小一定变化,故B 正确;动能不变的物体,速度的方向有可能变化,如匀速圆周运动,是非平衡状态,故D 错误. 二、重力势能1.重力做功的特点由W=Fs cos α可知,重力做的功W=mgh,所以重力做功的大小由重力大小和重力方向上位移的大小即高度差决定,与其他因素无关,所以只要起点和终点的位置相同,不管沿着什么路径由起点到终点,重力所做的功相同.2.对重力势能的理解及计算(1)相对性:E p=mgh中的h是物体重心相对参考平面的高度.参考平面选择不同,那么物体的高度h不同,重力势能的大小也就不同,所以确定某点的重力势能首先选择参考平面.(2)系统性:重力是地球与物体相互吸引产生的,所以重力势能是物体和地球组成的系统共有,平时所说的“物体〞的重力势能只是一种简化说法.(3)重力势能是标量:无方向,但有正负.负的重力势能只是表示物体的重力势能比在参考平面上时具有的重力势能要少,这跟用正负表示温度上下是一样的.3.重力做功与重力势能变化的关系(1)重力做功是重力势能变化的原因,且重力做了多少功,重力势能就改变多少,即W G=E p1-E p2=-ΔE p.①当物体从高处向低处运动时,重力做正功,重力势能减少.②当物体从低处向高处运动时,重力做负功,重力势能增加.(2)重力做的功与重力势能的变化量均与参考平面的选择无关.(3)重力势能的变化只取决于物体重力做功的情况,与物体除重力外是否还受其他力作用以及除重力做功外是否还有其他力做功等因素均无关.例2某游客领着孩子游泰山时,孩子不小心将手中的皮球滑落,球从A点滚到了山脚下的B点,高度标记如图1所示,那么以下说法正确的选项是()图1A.从A到B的曲线轨迹长度不知道,无法求出此过程中重力做的功B.从A到B过程中阻力大小不知道,无法求出此过程中重力做的功C.从A到B重力做功mg(H+h)D.从A到B重力做功mgH答案 D解析重力做功与物体的运动路径无关,只与初末状态物体的高度差有关,从A到B的高度是H,故从A到B重力做功mgH,D正确.例3如图2所示,m,一物体质量为2 kg,m的支架上,g取10 m/s2,求:图2(1)以桌面为零势能参考平面,计算物体具有的重力势能,并计算物体由支架下落到地面过程中重力势能减少多少?(2)以地面为零势能参考平面,计算物体具有的重力势能,并计算物体由支架下落到地面过程中重力势能减少多少?(3)以上计算结果说明什么?答案(1)8 J24 J(2)24 J24 J(3)见解析解析(1)以桌面为零势能参考平面,物体距离零势能参考平面的高度h1 m,因而物体具有重力势能.E p1=mgh1=2×10× J=8 J.物体落至地面时,物体重力势能E p2=2×10×() J=-16 J.因此物体在此过程中重力势能减小量ΔE p=E p1-E p2=8 J-(-16) J=24 J.(2)以地面为零势能参考平面,物体的高度h1′=() m.因而物体具有的重力势能E p1′=mgh1′=2×10× J=24 J.物体落至地面时重力势能E p2′=0.在此过程中物体重力势能减小量ΔE′=E p1′-E p2′=24 J-0=24 J.(3)通过上面的计算可知,重力势能是相对的,它的大小与零势能参考平面的选取有关,而重力势能的变化是绝对的,它与零势能参考平面的选取无关,其变化值与重力对物体做功的多少有关.三、对弹性势能的理解1.产生原因:(1)物体发生了弹性形变.(2)物体各局部间有弹力作用.2.对同一弹簧,伸长和压缩相同的长度时弹性势能相同.3.弹性势能与弹力做功的关系:弹性势能的变化量总等于弹力对外做功的负值,表达式为W弹=-ΔE p.例4如图3所示,一个物体以速度v0冲向与竖直墙壁相连的轻质弹簧,墙壁和物体间的弹簧被物体压缩,在此过程中,以下说法正确的选项是()图3A.物体对弹簧做的功与弹簧的压缩量成正比B.物体向墙壁运动相同的位移,弹力做的功不相等C.弹簧的弹力做正功,弹性势能增加D.弹簧的弹力做负功,弹性势能增加答案BD解析由功的计算公式W=Fs cos α知,恒力做功时,做功的多少与物体的位移成正比,而弹簧对物体的弹力是一个变力,所以选项A错误;弹簧开始被压缩时弹力小,弹力做的功也少,弹簧的压缩量变大时,物体移动相同的距离做的功多,应选项B正确;物体压缩弹簧的过程,弹簧的弹力与弹力作用点的位移方向相反,所以弹力做负功,弹性势能增加,应选项C错误,D正确.对动能的理解1.下面有关动能的说法正确的选项是()A.物体只有做匀速运动时,动能才不变B.物体做平抛运动时,水平方向速度不变,物体的动能也不变C.物体做自由落体运动时,重力做功,物体的动能增加D.物体的动能变化时,速度不一定变化,速度变化时,动能一定变化答案 C解析物体只要速率不变,动能就不变,A错;做平抛运动的物体动能逐渐增大,B错;物体做自由落体运动时,速度增大,物体的动能增加,故C正确;物体的动能变化时,速度一定变化,速度变化时,动能不一定变化,故D错.对重力做功的理解2.如图4所示,某物块分别沿三条不同的轨道由离地面高h的A点滑到同一水平面上,轨道1、2是光滑的,轨道3是粗糙的,那么()图4A.沿轨道1滑下重力做的功多B.沿轨道2滑下重力做的功多C.沿轨道3滑下重力做的功多D.沿三条轨道滑下重力做的功一样多答案 D解析重力做功只与初、末位置的高度差有关,与路径无关,D选项正确.重力势能及其变化的理解3.质量为20 kg的薄铁板平放在二楼的地面上,二楼地面与楼外地面的高度差为5 m.这块铁板相对二楼地面的重力势能为________J,相对楼外地面的重力势能为________J;将铁板提高1 m,假设以二楼地面为参考平面,那么铁板的重力势能变化了________J;假设以楼外地面为参考平面,那么铁板的重力势能变化了________J.答案010*******解析根据重力势能的定义式,以二楼地面为参考平面:E p=0.以楼外地面为参考平面:E p′=mgh=20×10×5 J=103 J.以二楼地面为参考平面:ΔE p=E p2-E p1=mgh1-0=20×10×1 J=200 J.以楼外地面为参考平面:ΔE p′=E p2′-E p1′=mg(h+h1)-mgh=mgh1=20×10×1 J=200 J.弹力做功与弹性势能变化的关系4.如图5所示,在光滑水平面上有一物体,它的左端连一弹簧,弹簧的另一端固定在墙上,在力F作用下物体处于静止状态,当撤去F后,物体将向右运动,在物体向右运动的过程中以下说法正确的选项是()图5A.弹簧对物体做正功,弹簧的弹性势能逐渐减少B.弹簧对物体做负功,弹簧的弹性势能逐渐增加C.弹簧先对物体做正功,后对物体做负功,弹簧的弹性势能先减少再增加D.弹簧先对物体做负功,后对物体做正功,弹簧的弹性势能先增加再减少答案 C解析弹簧由压缩到原长再到伸长,刚开始时弹力方向与物体运动方向同向做正功,弹性势能减少.越过原长位置后弹力方向与物体运动方向相反,弹力做负功,故弹性势能增加,所以只有C正确,A、B、D错误.(时间:60分钟)题组一对动能的理解1.质量一定的物体()A.速度发生变化时其动能一定变化B.速度发生变化时其动能不一定变化C.速度不变时其动能一定不变D.动能不变时其速度一定不变答案BC解析速度是矢量,速度变化时可能只有方向变化,而大小不变,动能是标量,所以速度只有方向变化时,动能可以不变;动能不变时,只能说明速度大小不变,但速度方向不一定不变,故只有B、C正确.2.甲、乙两个运动着的物体,甲的质量是乙的2倍,乙的速度是甲的2倍,那么甲、乙两物体的动能之比为()A.1∶1 B.1∶2 C.1∶4 D.2∶1答案 B解析由动能的表达式E k=12m v2知,B正确.题组二对重力做功的理解与计算3.将一个物体由A 移至B ,重力做功( ) A .与运动过程中是否存在阻力有关 B .与物体沿直线或曲线运动有关 C .与物体是做加速、减速或匀速运动有关 D .只与物体初、末位置高度差有关 答案 D解析 将物体由A 移至B ,重力做功只与物体初、末位置高度差有关,A 、B 、C 错,D 对. 4.如图1所示,质量为m 的小球从高为h 处的斜面上的A 点滚下经过水平面BC 后,再滚上另一斜面,当它到达h4的D 点时,速度为零,在这个过程中,重力做功为( )图1A.mgh 4B.3mgh 4C .mghD .0答案 B解析 根据重力做功的公式,W =mg (h 1-h 2)=3mgh4.故答案为B.题组三 对重力势能及其变化的理解5.关于重力势能的理解,以下说法正确的选项是( ) A .重力势能有正负,是矢量B .重力势能的零势能参考平面只能选地面C .重力势能的零势能参考平面的选取是任意的D .重力势能的正负代表大小 答案 CD解析 重力势能是标量,但有正负,重力势能的正、负表示比零势能的大小,A 错误,D 正确;重力势能零势能参考平面的选取是任意的,习惯上常选地面为零势能参考平面,B 错误,C 正确.、乙两个物体的位置如图2所示,质量关系m 甲<m 乙,甲在桌面上,乙在地面上,假设取桌面为零势能面,甲、乙的重力势能分别为E p1、E p2,那么有()图2A.E p1>E p2B.E p1<E p2C.E p1=E p2D.无法判断答案 A解析取桌面为零势能面,那么E p1=0,物体乙在桌面以下,E p2<0,故E p1>E p2,故A项正确.7.一个100 m的高度,那么整个过程中重力对球所做的功及球的重力势能的变化是(g=10 m/s2)()A.JB.J的负功C.JD.J答案 C解析整个过程中重力做功W G=mgΔh×10×J,所以选项C正确.8.物体在某一运动过程中,重力对它做了40 J的负功,以下说法中正确的选项是() A.物体的高度一定升高了B.物体的重力势能一定减少了40 JC.物体重力势能的改变量不一定等于40 JD.物体克服重力做了40 J的功答案AD解析重力做负功,物体位移的方向与重力方向之间的夹角一定大于90°,所以物体的高度一定升高了,A正确;由于W G=-ΔE p,故ΔE p=-W G=40 J,所以物体的重力势能增加了40 J,B、C错误;重力做负功又可以说成是物体克服重力做功,D正确.,质量为m的小球,从离桌面H高处由静止下落,桌面离地高度为h.假设以桌面为参考平面,那么小球落地时的重力势能及整个过程中重力势能的变化分别是()图3A .mgh 减少mg (H -h )B .mgh 增加mg (H +h )C .-mgh 增加mg (H -h )D .-mgh 减少mg (H +h ) 答案 D解析 以桌面为参考平面,落地时物体的重力势能为-mgh ,初状态重力势能为mgH ,即重力势能的变化ΔE p =-mgh -mgH =-mg (H +h ).所以重力势能减少了mg (H +h ).D 正确. 10.升降机中有一质量为m 的物体,当升降机以加速度a 匀加速上升高度h 时,物体增加的重力势能为( ) A .mgh B .mgh +mah C .mah D .mgh -mah答案 A解析 重力势能的改变量只与物体重力做功有关,而与其他力的功无关.物体上升h 过程中,物体克服重力做功mgh ,故重力势能增加mgh ,选A.11.如图4所示,一条铁链长为2 m ,质量为10 kg ,放在水平地面上,拿住一端提起铁链直到铁链全部离开地面的瞬间,铁链克服重力做功________ J ;铁链的重力势能________(填“增加〞或“减少〞)________ J.图4答案 98 增加 98解析 铁链从初状态到末状态,它的重心位置提高了h =l2,因而铁链克服重力所做的功为W =12mgl =12×10××2 J =98 J ,铁链的重力势能增加了98 J.铁链重力势能的变化还可由初、末状态的重力势能来分析.设铁链初状态所在水平位置为零势能参考平面,那么E p1=0,E p2=mgl 2,铁链重力势能的变化ΔE p =E p2-E p1=mgl 2=12×10××2J=98 J,即铁链重力势能增加了98 J.题组四对弹性势能的理解12.如图5所示的几个运动过程中,物体的弹性势能增加的是()图5A.如图甲,撑杆跳高的运发动上升过程中,杆的弹性势能B.如图乙,人拉长弹簧过程中,弹簧的弹性势能C.如图丙,模型飞机用橡皮筋发射出去的过程中,橡皮筋的弹性势能D.如图丁,小球被弹簧向上弹起的过程中,弹簧的弹性势能答案 B解析选项A、C、D中物体的形变量均减小,所以弹性势能减小,选项B中物体的形变量增大,所以弹性势能增加.所以B正确..弹簧一端固定(如图6所示),另一端用钢球压缩弹簧后释放,钢球被弹出后落地.当他发现弹簧压缩得越多,钢球被弹出得越远,由此能得出的结论应是()图6A.弹性势能与形变量有关,形变量越大,弹性势能越大B.弹性势能与形变量有关,形变量越大,弹性势能越小C.弹性势能与劲度系数有关,劲度系数越大,弹性势能越大D.弹性势能与劲度系数有关,劲度系数越大,弹性势能越小答案 A,质量不计的弹簧一端固定在地面上,弹簧竖直放置,将一小球从距弹簧自由端高度分别为h1、h2的地方先后由静止释放,h1>h2,小球触到弹簧后向下运动压缩弹簧,从开始释放小球到获得最大速度的过程中,小球重力势能的减少量ΔE p1′、ΔE p2′的关系及弹簧弹性势能的增加量ΔE p1、ΔE p2的关系中,正确的一组是()图7A.ΔE p1′=ΔE p2′,ΔE p1=ΔE p2B.ΔE p1′>ΔE p2′,ΔE p1=ΔE p2C.ΔE p1′=ΔE p2′,ΔE p1>ΔE p2D.ΔE p1′>ΔE p2′,ΔE p1>ΔE p2答案 B解析速度最大的条件是弹力等于重力即kx=mg,即到达最大速度时,弹簧形变量x相同.两种情况下,对应于同一位置,那么ΔE p1=ΔE p2,由于h1>h2,所以ΔE p1′>ΔE p2′,B对.。

势能

势能

分析数据,可以看出,对物体动能大小影响 较大的因素是 物体的速度 。 你这样判断的依据是 。 牛的质量较大,但速度较慢,动能并不大; 子弹后习题讲解
下次课再见
3. 唐诗中有“不尽长江滚滚来”的诗句, 这动人的诗句生动、形象地反映了这条大 河蕴藏了大量的 动 能.
4.—物体沿斜面匀速下滑,物体的 A.动能增加,势能减小 B.动能、势能都减小 C.动能不变,势能减小 D.动能、势能都增加 ( C)
5、在研究物体的重力势能与哪 些因素有关的实验中,让三个相 同的木桩被从空中静止释放的 铁块撞击,陷入沙坑中,如图所示, 在此实验中,我们是通过观察 木桩陷入沙坑的深度 来比较 各铁块重力势能的大小?
思考1
• 一个人将一个重为100N的物体,匀速提高 3m,这个物体的机械能增加多少? • 解:EP=mgh=100×3=300(J)
思考2:关于功和能,下列说法正确的是: • A:一个物体能够做功,它就一定具有能量。 • B:一块砖头放在桌面上 ,没有对其它物体做 功,因此它没有能量。 • C:物体具有的机械能越大,做功就越多。 • D:物体做功越多,具有的机械能就越大。
当物体从高度为h1某处下降 到高度为h2的某处时,重 力做的功为: WG=mg(h1-h2)=mgh1-mgh2
可以看出:重力做的功等于 物体重力势能的改变量。 如果h1>h2,重力对物体做正功,物体的势 能减少。如果h1<h2,重力对物体负功,物 体的重力势能就增加。
二、弹性势能
被压缩的弹簧; 例子: 被球拍击扁的网球; 被拉弯的弓…
1、高楼的住户,为什么不能随意往窗外扔东西?
2、地铁站经常设计在一个小坡上,站台前后连接 的轨道都有一个小坡度,从能量利用的角度分析, 你知道为什么要这样设计吗?

重力势能和弹性势能

重力势能和弹性势能
(2)无论是重力势能还是弹性势能都是系统所共有的能量。 重力势能:地球与物体组成的系统所共有的能量 弹性势能:弹力装置与受弹力作用的物体组成的系统所共有的能量。
关于势能,下列说法中正确的是 (BD)
A. 弹簧越长,弹性势能越大
B. 同一根弹簧拉伸量和压缩量相同时,弹性势 能相同
C. 重力势能为0的物体,不可能对别的物体做功
能量是状态量,是标量
描述某一时刻物体的物理性质, 比如瞬时速度。
功和能 (单位相同:焦耳)
物体在受到的某个力的方向上发生 了位移,则这个力对物体做了功。
物体能对外作功,该物体就具有能量
功是能量转化的量度,
一个力对一个物体做了多少功就有 多少能量发生了转移。
能量具有不同形式,并能相互转化, 转化过程中遵循能量守恒
功是过程量,是标量
描述某一段时间物体的物理性质变化, 比如速度改变量。
7.3重力势能和弹性势能
重力势能
物体由于位于高处而具有的能量叫做重力势能。
重力势能与哪些因素有关?
一、重力势能
• 1、重力做功
θ’
• ①沿AB直线路径
D
• ②沿ACB折线路径
• ③沿ADB折线路径
• ④沿APB曲线路径
• 重力做功与路径无关,只与物体的重力和始、末 • 位置的高度差有关。
WG = mg(h1-h2)= mgh1-mgh2
D. 只要重力做功,重力势能一定变化
E.物体做匀速直线运动,重力势能一定不变
F.对于位置确定的物体,重力势能的大小是确定 的
【小结】
重力做功:路径无关,只与初末位置的高度差有关。(和参考平面的选取无关)
联系:重力做正功→重力势能减少;重力做负功→重力势能增加 弹性势能:在弹性限度内,物体的形变量越大则弹性势能越 大。 势能:无论是重力势能还是弹性势能都是系统所共有的能量。 功是能量转化的量度:一个力对一个物体做了多少功就有多少能量发生了转 移。

重力势能 功和能的关系(教师版)

重力势能 功和能的关系(教师版)

重力势能功和能的关系一、重力势能的基本概念1、关于重力势能的说法中不正确的是( C )A.物体重力势能的值随参考平面的选择不同而不同B.物体的重力势能严格说是属于物体和地球这个系统的C.重力对物体做正功,物体的动能一定增加D.物体位于参考面之下其重力势能取负值2、关于重力势能与重力做功,下列说法中正确的是( AB ).(A)物体克服重力做的功等于重力势能的增加(B)在同一高度,将物体以初速v0向不同的方向抛出,从抛出到落地过程中,重力做的功相等,物体所减少的重力势能一定相等(C)重力势能等于零的物体,不可能对别的物体做功(D)用手托住一个物体匀速上举时,手的支持力做的功等于克服重力的功与物体所增加的重力势能之和.3、物体在运动过程中,克服重力做功50J,则( BD )A.重力做功为50JB.物体的重力势能一定增加50JC.物体的动能一定减小50JD.重力做功为-50J4、井深8m,井上支架高为2m,在支架上用一根3m长的绳子系住一个重100N的物体,则物体的重力势能是(以地面为参考平面)( C )A.100JB.700JC.100JD.无法确定5、沿着高度相同,坡度不同,粗糙程度也不同的斜面向上拉同一物体到顶端,以下说法中正确的是( D )A.沿坡度小,长度大的斜面上升克服重力做的功多B.沿长度大、粗糙程度大的斜面上升克服重力做的功多C.沿坡度大、粗糙程度大的斜面上升克服重力做的功少D.上述几种情况重力做功同样多6、空中某点,将三个相同小球以相同的速率v水平抛出、竖直上抛、竖直下抛,则从抛出到落地,下列说法正确的是( AC )A.重力做功相同B.重力的平均功率相同C.竖直下抛的小球的重力平均功率最大D.落地时重力的瞬时功率相同7、重为100N 长1m 的不均匀铁棒平放在水平面上,某人将它一端缓慢竖起,需做功55J ,将它另一端竖起,需做功( A )A.45JB.55JC.60JD.65J8、如图所示,一质量为m 、边长为a 的正方体与地面之间的动摩擦因数μ=0.1.为使它水平移动距离为a,可以采用将它翻倒或向前匀速平推两种方法,则( B ).(A)将它翻倒比平推前进做的功少(B)将它翻倒比平推前进做的功多(C)两种情况做功一样多(D)两种情况做功多少无法比较9、一物体做自由落体运动.在第1s 内和第2s 内,重力对该物体做的功之比为________;在第1s 末和第2s 末,重力做功的即时功率之比为________.答案:1:3,1:2(点拨:重力做功2221122W mgh mg gt mg t ==⨯=,第1s 内和前2s 内重力做功是1:4,第1s 和第2s 重力做功之比为1:3.重力做功的功率W=mg·v=mg·gt,所以第1s 末和第2s 末重力做功功率之比为1:2)10、如图所示,甲、乙两个相同的小球分别系于一根细绳和一根橡皮绳的一端,细绳和橡皮绳的另一端固定在同一点O ,将两小球都拉至水平,且绳刚拉直,然后静止起释放它们。

功能关系 考点解读(附详细解析)

功能关系 考点解读(附详细解析)

都取绝对值),则:,下列说法中正确的是(AC )的质点从顶点A由静止开始,转折点能量损耗不计,由该物体分别沿着AC、?的物块冲上一置于光滑水平面上且足够长的木板上.物块质量为m,木板质量11的子弹以初速度v0水平射入初始静止的木块,并最μmgL(3)μmgd=12mv02-12(M+m)v210 kg的木板,在F=50 N的水平拉力作用下,以的速度沿水平地面向右匀速运动.现将一个质量为m=3 kg的小铁块(可视为质点)无初速度地放在又将第二个同样的小铁块无初速度地放在木板最右端,以后木板每就在其右端无初速度地放上一个同样的小铁块.(g取10 m/s2)求:木板与地面间的动摩擦因数;刚放第三个铁块时木板的速度;停止放后续铁块)到木板停下的过程,木板运动的距离.设邮件放到皮带上与皮带发生相对滑动过程中受到的滑动摩擦力为F,则F=μmg①滑块向左运动过程中,运动方向受到皮带的阻力,到达最左端,对地速度为零,由动能定理可,其后在皮带摩擦力的作用下,摩擦力为动力,使滑块加速,假设加速至v1,则有,说明滑块返回传送带右端的速率能够达到v,A选项正确;此过程中则行李与传送带间由于摩擦而产生的总热量Q=nμmgΔ点的过程中因与斜面摩擦而产生的热量.前,做匀加速运动的位移x内物体位移的大小;物体与传送带间的动摩擦因数;内物体机械能增量及因与传送带摩擦产生的热量Q.(3)90 J126 J内物体位移等于v-t图线与t轴所围面积.其中前4 s,位移为零(观察图象+4×2 m+4×2 m=14 m.内,物体向下减速a=μg cosθ-g sinθ0=v0-at×2×0.62×0.8=0.875.1212f·(s带-s物)=f(vt-v2t)=μmg ,故A错误.θ-sinθ).故B正确.v1,则E p=12mv21,得v1=3 m/sv1。

重力势能

重力势能

2.如图所示, 2.如图所示,重物A的质量为m,置于水平地 如图所示 面上,其上表面联结一根竖直的轻质弹簧, 面上,其上表面联结一根竖直的轻质弹簧, 弹簧的长度为l 弹簧的长度为l,劲度系数为k,现将弹簧的 上端P缓慢地竖直上提一段距离L,使重物A离 地面时,重物具有的重力势能为_____. 地面时,重物具有的重力势能为_____.
-mgh mgh 0
mgh mgh 0
翻转一次外力做功至少多少? 翻转一次外力做功至少多少
重200N m m 铁球 木球 2m ρ h
m 1m 边长 边长a s s
h m m m m h h m M 等效思维
1.在水平面上竖直放置一轻质弹簧,有一物体在它的正 .在水平面上竖直放置一轻质弹簧, 上方自由落下,在物体压缩弹簧速度减为零时( D ) 上方自由落下,在物体压缩弹簧速度减为零时 P A.物体的重力势能最大 . B.物体的动能最大 . C.弹簧的弹性势能最大 . D.弹簧的弹性势能最小 . L
第2节 势能的改变 节
第2节 势能的改变 节
一、重力势能
1、定义: 物体由于被举高而具有的能量. 、定义 物体由于被举高而具有的能量.
2、定义式:Ep=mgh,(J),状态标量 、定义式: 状态标量
四、弹性势能
1、 发生弹性形变的物体 , 在恢 、 发生弹性形变的物体, 重力做功与重力势能变化的关系 复原状时能够对外做功, 二、重力做功与重力势能变化的关系 复原状时能够对外做功 因而具有 能量. 能量
m h 重力势能 WG =mgh 动能
二、重力做功与重力势能变化的关系 重力做功与重力势能变化的关系
WG=mg⊿ h=mgh1 - mgh2=Ep1-Ep2 ⊿ 规定:⊿ 规定 ⊿ Ep=Ep2 -Ep1 WG= - ⊿ Ep

12 重力势能 重力势能的变化与重力做功的关系 弹性势能 机械能守恒定律

12 重力势能 重力势能的变化与重力做功的关系 弹性势能 机械能守恒定律

第十三讲重力势能重力势能的变化与重力做功的关系弹性势能机械能守恒定律基本知识1.重力势能是物体由于受到重力而具有的跟物体和地球的的能量.表达式为Ep=mgh.物体重力势能的大小与有关.2.重力势能的变化与重力做功的关系:重力做正功时,重力势能减少,减少的重力势能等于重力做的正功;克服重力做功(重力做负功)时,重力势能增加,增加的重力势能等于克服重力做的功.重力所做的功只跟有关,跟物体运动的无关.3.物体由于而具有的能量叫做弹性势能,物体的越大,弹性势能越大.4.机械能是和统称,即E=Ek+Ep.5.机械能守恒定律: 的情形下,物体的动能和势能发生相互转化,机械能的总量不变,这就是机械能守恒定律,表达式为Ek1+Ep1=Ek2+Ep2.重难点突破1.判断机械能是否守恒的常用方法和常见情形(1)直接分析某一物理过程中动能与势能之和是否不变,例如物体沿斜面匀速运动,则物体机械能一定不守恒;(2)分析受力:如果只受重力,则机械能一定守恒,例如不计空气阻力时做抛体运动的物体;(3)分析受力做功:如果除重力以外有其他力,但其他力不做功,机械能也守恒,例如在光滑曲面上运动的物体机械能守恒.2.机械能守恒时几种列方程的形式(1)选取零势能面后,确定初、末位置的总机械能,列等式Ek1+Ep1=Ek2+Ep2.(2)不要选取零势能面,找出物体初、末位置动能变化量和势能变化量列等式|ΔEk|=|ΔEp|.3.如何判断机械能是否守恒(1)确定好研究对象和研究范围(哪个系统? 哪一段物理过程? 思想上一定要明确).(2)分析系统所受各力的情况及各力做功的情况(不能漏掉任何一个做功因素).(3)在下列几种情况下,系统机械能守恒①物体只受重力或弹簧弹力作用;②只有系统内的重力或弹簧弹力做功,其他力均不做功;③虽有多个力做功,但除系统内的重力或弹簧弹力以外的其他力做功的代数和为零;④系统跟外界没有发生机械能的传递,系统内外也没有机械能与其他形式能之间的转化.4.应用机械能守恒定律解题的一般步骤(1)确定研究系统(通常是物体和地球、弹簧等)和所研究的物理过程;(2)进行受力分析判断机械能是否守恒;(3)选择零势能参考面,确定物体在初、末位置的动能和势能;(4)根据机械能守恒定律列方程求解.例题分析【例1】将质量为100kg的物体从地面提升到10m 高处,在这个过程中( )A.重力做正功,重力势能增加1.0×104JB.重力做正功,重力势能减少1.0×104JC.重力做负功,重力势能增加1.0×104JD.重力做负功,重力势能减少1.0×104J【例2】在下列实例中,不计空气阻力,机械能不守恒的是( )A.做斜抛运动的手榴弹B.起重机将重物匀速吊起C.沿竖直方向自由下落的物体D.沿光滑竖直圆轨道运动的小球【例3】关于机械能是否守恒的叙述中正确的是( )A.只要重力对物体做了功,物体的机械能一定守恒B.做匀速直线运动的物体,机械能一定守恒C.外力对物体做的功为零时,物体的机械能一定守恒D.只有重力对物体做功时,物体的机械能一定守恒课堂巩固1.在游乐节目中,选手需借助悬挂在高处的绳飞越到水面的浮台上,小明和小阳观看后对此进行了讨论.如图所示,他们将选手简化为质量m=60kg的质点,选手抓住绳由静止开始摆动,此时绳与竖直方向夹角α=53°,绳的悬挂点O 距水面的高度为H =3m,绳长l不确定,不考虑空气阻力和绳的质量,浮台露出水面的高度不计.取重力加速度g=10m/s2,sin53°=0.8,cos53°=0.6.(1)若绳长l=2m,选手摆到最低点时速度的大小;(2)选手摆到最低点时对绳拉力的大小;(3)若选手摆到最低点时松手,小明认为绳越长,在浮台上的落点距岸边越远;小阳却认为绳越短,落点距岸边越远.请通过推算说明你的观点.2.如图所示,长l=1.8m 的轻质细线一端固定于O 点,另一端系一质量m=0.5kg的小球.把小球拉到A 点由静止释放,O、A 在同一水平面上,B 为小球运动的最低点.若忽略空气阻力,取B 点的重力势能为零,取重力加速度g=10m/s2.求:(1)小球受到重力的大小.(2)小球在A 点的重力势能.(3)小球运动到B 点时速度的大小.3.如图所示,一物体从A 点先后沿路径1、2运动到B点,重力做功分别为W1、W2,则它们的大小关系为( )A.W1>W2B.W1=W2C.W1<W2D.无法比较4.如图所示,桌面高为h1,质量为m 的小球从高出桌面h2 的A 点下落到地面上的B 点,在此过程中小球的重力势能( )A.增加mgh2B.增加mg(h1+h2)C.减少mgh2D.减少mg(h1+h2)5.在电梯加速上升的过程中,站在电梯里的人( )A.所受支持力做正功,机械能增加B.所受支持力做正功,机械能减少C.所受支持力做负功,机械能增加D.所受支持力做负功,机械能减少6.我国发射的“神舟七号”飞船在绕地球45圈后,于2008年9月28日胜利返航.在返回舱拖着降落伞下落的过程中,其重力做功和重力势能变化的情况为( )A.重力做正功,重力势能减小B.重力做正功,重力势能增加C.重力做负功,重力势能减小D.重力做负功,重力势能增加7.下面的实例中,机械能守恒的是( )A.小球自由下落,落在竖直弹簧上,将弹簧压缩后又被弹簧弹起来B.拉着物体沿光滑的斜面匀速上升C.跳伞运动员张开伞后,在空中匀速下降D.飞行的子弹击中放在光滑水平桌面上的木块8.关于重力做功和重力势能的变化,下列叙述正确的是( )A.做竖直上抛运动的物体,在上升阶段,重力做负功,重力势能减少B.做竖直上抛运动的物体,在上升阶段,重力做正功,重力势能增加C.做竖直上抛运动的物体,在上升阶段,重力做负功,重力势能增加D.做竖直上抛运动的物体,在上升阶段,重力做正功,重力势能减少9.一个质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度是2m/s,则下列说法中错误的是( )A.手对物体做功12JB.合外力对物体做功12JC.合外力对物体做功2JD.物体克服重力做功10J10.如图所示,质量m=50kg的跳水运动员从距水面高h=10m的跳台上以v0=5m/s的速度斜向上起跳,最终落入水中.若忽略运动员的身高.取g=10m/s2,求:(1)运动员在跳台上时具有的重力势能(以水面为参考平面);(2)运动员起跳时的动能;(3)运动员入水时的速度大小.11.如图所示,一个小孩从粗糙的滑梯上加速滑下,在下滑过程中( )A.小孩重力势能减小,动能不变,机械能减小B.小孩重力势能减小,动能增加,机械能减小C.小孩重力势能减小,动能增加,机械能增加D.小孩重力势能减小,动能增加,机械能不变12.如图所示,若选取地面处的重力势能为零,则图中静止在距地面H 高处的物体的机械能等于( )A.mghB.mgHC.mg(h+H )D.mg(H -h)13.小球由地面竖直上抛,上升的最大高度为H ,设所受阻力大小恒定,地面为零势能面.在上升至离地高度h 处,小球的动能是势能的两倍,在下落至离地高度h处,小球的势能是动能的两倍,则h 等于( )A.H/9B.2H/9C.3H/9D.4H/9。

2023年高考物理一轮复习讲义——功能关系 能量守恒定律

2023年高考物理一轮复习讲义——功能关系 能量守恒定律

第4讲 功能关系 能量守恒定律目标要求 1.熟练掌握几种常见的功能关系,并会用于解决实际问题.2.掌握一对摩擦力做功与能量转化的关系.3.会应用能量守恒观点解决综合问题.考点一 功能关系的理解和应用1.对功能关系的理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化是通过做功来实现的. (2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等. 2.常见的功能关系能量功能关系表达式势能重力做功等于重力势能减少量 W =E p1-E p2=-ΔE p弹力做功等于弹性势能减少量静电力做功等于电势能减少量 分子力做功等于分子势能减少量动能 合外力做功等于物体动能变化量 W =E k2-E k1=12m v 2-12m v 02机械能 除重力和弹力之外的其他力做功等于机械能变化量W 其他=E 2-E 1=ΔE 摩擦 产生 的内能 一对相互作用的滑动摩擦力做功之和的绝对值等于产生的内能Q =F f ·x 相对电能 克服安培力做功等于电能增加量W 电能=E 2-E 1=ΔE1.一个物体的能量增加,必定有别的物体能量减少.( √ ) 2.合力做的功等于物体机械能的改变量.( × )3.克服与势能有关的力(重力、弹簧弹力、静电力等)做的功等于对应势能的增加量.( √ ) 4.滑动摩擦力做功时,一定会引起机械能的转化.( √ )1.功的正负与能量增减的对应关系(1)物体动能的增加与减少要看合外力对物体做正功还是做负功.(2)势能的增加与减少要看对应的作用力(如重力、弹簧弹力、静电力等)做负功还是做正功.(3)机械能的增加与减少要看重力和弹簧弹力之外的力对物体做正功还是做负功.2.摩擦力做功的特点(1)一对静摩擦力所做功的代数和总等于零;(2)一对滑动摩擦力做功的代数和总是负值,差值为机械能转化为内能的部分,也就是系统机械能的损失量;(3)说明:无论是静摩擦力还是滑动摩擦力,都可以对物体做正功,也可以做负功,还可以不做功.考向1功能关系的理解例1在奥运比赛项目中,高台跳水是我国运动员的强项.质量为m的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,当地的重力加速度为g,那么在他减速下降高度为h的过程中,下列说法正确的是()A.他的动能减少了FhB.他的重力势能增加了mghC.他的机械能减少了(F-mg)hD.他的机械能减少了Fh答案 D解析运动员进入水中后,克服合力做的功等于动能的减少量,故动能减少(F-mg)h,故A 错误;运动员进入水中后,重力做功mgh,故重力势能减小mgh,故B错误;运动员进入水中后,除重力外,克服阻力做功Fh,故机械能减少了Fh,故C错误,D正确.例2如图所示,弹簧的下端固定在光滑斜面底端,弹簧与斜面平行.在通过弹簧中心的直线上,小球P从直线上的N点由静止释放,在小球P与弹簧接触到速度变为零的过程中,下列说法中正确的是()A.小球P的动能一定在减小B.小球P的机械能一定在减少C.小球P与弹簧系统的机械能一定在增加D.小球P重力势能的减小量大于弹簧弹性势能的增加量答案 B解析小球P与弹簧接触后,刚开始弹力小于重力沿斜面向下的分力,合力沿斜面向下,随着形变量增大,弹力大于重力沿斜面向下的分力,合力方向沿斜面向上,合力先做正功后做负功,小球P的动能先增大后减小,A错误;小球P与弹簧组成的系统的机械能守恒,弹簧的弹性势能不断增大,所以小球P的机械能不断减小,B正确,C错误;在此过程中,根据系统机械能守恒,可知小球P重力势能的减小量与动能减小量之和等于弹簧弹性势能的增加量,即小球P重力势能的减小量小于弹簧弹性势能的增加量,D错误.考向2功能关系与图像的结合例3(多选)(2020·全国卷Ⅰ·20)一物块在高3.0 m、长5.0 m的斜面顶端从静止开始沿斜面下滑,其重力势能和动能随下滑距离s的变化如图中直线Ⅰ、Ⅱ所示,重力加速度取10 m/s2.则()A.物块下滑过程中机械能不守恒B.物块与斜面间的动摩擦因数为0.5C.物块下滑时加速度的大小为6.0 m/s2D.当物块下滑2.0 m时机械能损失了12 J答案AB解析由E-s图像知,物块动能与重力势能的和减小,则物块下滑过程中机械能不守恒,故A正确;由E-s图像知,整个下滑过程中,物块机械能的减少量为ΔE=30 J-10 J=20 J,重力势能的减少量ΔE p=mgh=30 J,又ΔE=μmg cos α·s,其中cos α=s2-h2s=0.8,h=3.0m,g=10 m/s2,则可得m=1 kg,μ=0.5,故B正确;物块下滑时的加速度大小a=g sin α-μg cosα=2 m/s2,故C错误;物块下滑2.0 m时损失的机械能为ΔE′=μmg cos α·s′=8 J,故D错误.考向3摩擦力做功与摩擦生热的计算例4(多选)如图所示,一个长为L,质量为M的木板,静止在光滑水平面上,一个质量为m的物块(可视为质点),以水平初速度v0,从木板的左端滑向另一端,设物块与木板间的动摩擦因数为μ,当物块与木板相对静止时,物块仍在长木板上,物块相对木板的位移为d,木板相对地面的位移为s,重力加速度为g.则在此过程中()A.摩擦力对物块做功为-μmg(s+d)B.摩擦力对木板做功为μmgsC.木板动能的增量为μmgdD.由于摩擦而产生的热量为μmgs答案AB解析根据功的定义W=Fs cos θ,其中s指物体对地的位移,而θ指力与位移之间的夹角,可知摩擦力对物块做功W1=-μmg(s+d),摩擦力对木板做功W2=μmgs,A、B正确;根据动能定理可知木板动能的增量ΔE k=W2=μmgs,C错误;由于摩擦而产生的热量Q=F f·Δx =μmgd,D错误.例5(多选)(2019·江苏卷·8)如图所示,轻质弹簧的左端固定,并处于自然状态.小物块的质量为m,从A点向左沿水平地面运动,压缩弹簧后被弹回,运动到A点恰好静止.物块向左运动的最大距离为s,与地面间的动摩擦因数为μ,重力加速度为g,弹簧未超出弹性限度.在上述过程中()A.弹簧的最大弹力为μmgB.物块克服摩擦力做的功为2μmgsC.弹簧的最大弹性势能为μmgsD.物块在A点的初速度为2μgs答案BC解析 物块处于最左端时,弹簧的压缩量最大,然后物块先向右加速运动再减速运动,可知弹簧的最大弹力大于滑动摩擦力μmg ,选项A 错误;物块从开始运动至最后回到A 点过程,由功的定义可得物块克服摩擦力做功为2μmgs ,选项B 正确;物块从最左侧运动至A 点过程,由能量守恒定律可知E p =μmgs ,选项C 正确;设物块在A 点的初速度为v 0,对整个过程应用动能定理有-2μmgs =0-12m v 02,解得v 0=2μgs ,选项D 错误.考点二 能量守恒定律的理解和应用1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式 ΔE 减=ΔE 增.3.应用能量守恒定律解题的步骤(1)首先确定初、末状态,分清有几种形式的能在变化,如动能、势能(包括重力势能、弹性势能、电势能)、内能等.(2)明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE 减和增加的能量ΔE 增的表达式.例6 (2020·浙江1月选考·20)如图所示,一弹射游戏装置由安装在水平台面上的固定弹射器、竖直圆轨道(在最低点E 分别与水平轨道EO 和EA 相连)、高度h 可调的斜轨道AB 组成.游戏时滑块从O 点弹出,经过圆轨道并滑上斜轨道.全程不脱离轨道且恰好停在B 端则视为游戏成功.已知圆轨道半径r =0.1 m ,OE 长L 1=0.2 m ,AC 长L 2=0.4 m ,圆轨道和AE 光滑,滑块与AB 、OE 之间的动摩擦因数μ=0.5.滑块质量m =2 g 且可视为质点,弹射时从静止释放且弹簧的弹性势能完全转化为滑块动能.忽略空气阻力,各部分平滑连接.求:(1)滑块恰好能过圆轨道最高点F 时的速度v F 大小;(2)当h =0.1 m 且游戏成功时,滑块经过E 点对圆轨道的压力F N 大小及弹簧的弹性势能E p0; (3)要使游戏成功,弹簧的弹性势能E p 与高度h 之间满足的关系. 答案 见解析解析 (1)滑块恰好能过F 点的条件为mg =m v F 2r解得v F =1 m/s(2)滑块从E 点到B 点,由动能定理得 -mgh -μmgL 2=0-12m v E 2在E 点由牛顿第二定律得F N ′-mg =m v E 2r解得F N =F N ′=0.14 N从O 点到B 点,由能量守恒定律得: E p0=mgh +μmg (L 1+L 2) 解得E p0=8.0×10-3 J(3)使滑块恰能过F 点的弹性势能 E p1=2mgr +μmgL 1+12m v F 2=7.0×10-3 J到B 点减速到0E p1-mgh 1-μmg (L 1+L 2)=0 解得h 1=0.05 m设斜轨道的倾角为θ,若滑块恰好能停在B 点不下滑, 则μmg cos θ=mg sin θ解得tan θ=0.5,此时h 2=0.2 m 从O 点到B 点E p =mgh +μmg (L 1+L 2)=2×10-3(10h +3) J 其中0.05 m ≤h ≤0.2 m.例7 如图所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数μ=34,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C 点,用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2m =4 kg ,B 的质量为m =2 kg ,初始时物体A 到C 点的距离L =1 m ,现给A 、B 一初速度v 0=3 m/s ,使A 开始沿斜面向下运动,B 向上运动,物体A 将弹簧压缩到最短后又恰好能弹回到C 点.已知重力加速度g =10 m/s 2,不计空气阻力,整个过程中轻绳始终处于伸直状态.求在此过程中:(1)物体A 向下运动刚到C 点时的速度大小; (2)弹簧的最大压缩量; (3)弹簧的最大弹性势能. 答案 (1)2 m/s (2)0.4 m (3)6 J解析 (1)在物体A 向下运动刚到C 点的过程中,对A 、B 组成的系统应用能量守恒定律可得 μ·2mg cos θ·L =12×3m v 02-12×3m v 2+2mgL sin θ-mgL解得v =2 m/s.(2)对A 、B 组成的系统分析,在物体A 从C 点压缩弹簧至将弹簧压缩到最大压缩量,又恰好返回到C 点的过程中,系统动能的减少量等于因摩擦产生的热量,即 12×3m v 2-0=μ·2mg cos θ·2x 其中x 为弹簧的最大压缩量 解得x =0.4 m.(3)设弹簧的最大弹性势能为E pm ,从C 点到弹簧最大压缩量过程中由能量守恒定律可得 12×3m v 2+2mgx sin θ-mgx =μ·2mg cos θ·x +E pm 解得E pm =6 J.课时精练1.(多选)如图所示,质量为m 的物体(可视为质点)以某一速度从A 点冲上倾角为30°的固定斜面,其减速运动的加速度为34g ,此物体在斜面上能够上升的最大高度为h ,则在这个过程中物体( )A .重力势能增加了mghB .机械能损失了12mghC .动能损失了mghD .克服摩擦力做功14mgh答案 AB解析 加速度大小a =34g =mg sin 30°+F f m ,解得摩擦力F f =14mg ,机械能损失等于克服摩擦力做的功,即F f x =14mg ·2h =12mgh ,故B 项正确,D 项错误;物体在斜面上能够上升的最大高度为h ,所以重力势能增加了mgh ,故A 项正确;动能损失量为克服合力做功的大小,动能损失量ΔE k =F 合x =34mg ·2h =32mgh ,故C 项错误.2.某同学用如图所示的装置测量一个凹形木块的质量m ,弹簧的左端固定,木块在水平面上紧靠弹簧(不连接)将其压缩,记下木块右端位置A 点,静止释放后,木块右端恰能运动到B 1点.在木块槽中加入一个质量m 0=800 g 的砝码,再将木块左端紧靠弹簧,木块右端位置仍然在A 点,静止释放后木块离开弹簧,右端恰能运动到B 2点,测得AB 1、AB 2长分别为27.0 cm 和9.0 cm ,则木块的质量m 为( )A .100 gB .200 gC .300 gD .400 g 答案 D解析 根据能量守恒定律,有μmg ·AB 1=E p ,μ(m 0+m )g ·AB 2=E p ,联立解得m =400 g ,D 正确. 3.一木块静置于光滑水平面上,一颗子弹沿水平方向飞来射入木块中.当子弹进入木块的深度达到最大值2.0 cm 时,木块沿水平面恰好移动距离1.0 cm.在上述过程中系统损失的机械能与子弹损失的动能之比为( ) A .1∶2 B .1∶3 C .2∶3 D .3∶2答案 C解析 根据题意,子弹在摩擦力作用下的位移为x 1=(2+1) cm =3 cm ,木块在摩擦力作用下的位移为x 2=1 cm ;系统损失的机械能转化为内能,根据功能关系,有ΔE 系统=Q =F f ·Δx ;子弹损失的动能等于子弹克服摩擦力做的功,故ΔE 子弹=F f x 1;所以ΔE 系统ΔE 子弹=23,所以C 正确,A 、B 、D 错误.4.如图所示,一质量为m的滑块以初速度v0从固定于地面的斜面底端A开始冲上斜面,到达某一高度后返回A,斜面与滑块之间有摩擦.下图分别表示它在斜面上运动的速度v、加速度a、势能E p和机械能E随时间的变化图像,可能正确的是()答案 C解析由牛顿第二定律可知,滑块上升阶段有:mg sin θ+F f=ma1;下滑阶段有:mg sin θ-F f=ma2,因此a1>a2,故选项B错误;速度-时间图像的斜率表示加速度,当上滑和下滑时,加速度不同,则斜率不同,故选项A错误;重力势能先增大后减小,且上升阶段加速度大,所用时间短,势能变化快,下滑阶段加速度小,所用时间长,势能变化慢,故选项C可能正确;由于摩擦力始终做负功,机械能一直减小,故选项D错误.5.如图所示,赫章的韭菜坪建有风力发电机,风力带动叶片转动,叶片再带动转子(磁极)转动,使定子(线圈,不计电阻)中产生电流,实现风能向电能的转化.若叶片长为l,设定的额定风速为v,空气的密度为ρ,额定风速下发电机的输出功率为P,则风能转化为电能的效率为()A.2Pπρl2v3 B.6Pπρl2v3 C.4Pπρl2v3 D.8Pπρl2v3答案 A解析风能转化为电能的工作原理为将风的动能转化为输出的电能,设风吹向发电机的时间为t,则在t时间内吹向发电机的风柱的体积为V=v t·S=v tπl2,则风柱的质量M=ρV=ρv tπl2,因此风吹过的动能为E k =12M v 2=12ρv t πl 2·v 2,在此时间内发电机输出的电能E =P ·t ,则风能转化为电能的效率为η=E E k =2Pπρl 2v3,故A 正确,B 、C 、D 错误.6.(多选)如图所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 点的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 点运动到B 点的过程中( )A .重力做功2mgRB .机械能减少mgRC .合外力做功12mgRD .克服摩擦力做功12mgR答案 CD解析 小球从P 点运动到B 点的过程中,重力做功W G =mg (2R -R )=mgR ,故A 错误;小球沿轨道到达最高点B 时恰好对轨道没有压力,则有mg =m v B 2R ,解得v B =gR ,则此过程中机械能的减少量为ΔE =mgR -12m v B 2=12mgR ,故B 错误;根据动能定理可知,合外力做功W 合=12m v B 2=12mgR ,故C 正确;根据功能关系可知,小球克服摩擦力做的功等于机械能的减少量,为12mgR ,故D 正确.7.质量为2 kg 的物体以10 m/s 的初速度,从起点A 出发竖直向上抛出,在它上升到某一点的过程中,物体的动能损失了50 J ,机械能损失了10 J ,设物体在上升、下降过程空气阻力大小恒定,则该物体再落回到A 点时的动能为(g =10 m/s 2)( ) A .40 J B .60 J C .80 J D .100 J 答案 B解析 物体抛出时的总动能为100 J ,物体的动能损失了50 J 时,机械能损失了10 J ,则动能损失100 J 时,机械能损失20 J ,此时到达最高点,由于空气阻力大小恒定,所以下落过程,机械能也损失20 J ,故该物体从A 点抛出到落回到A 点,共损失机械能40 J ,所以该物体再落回到A点时的动能为60 J,A、C、D错误,B正确.8.(多选)(2019·全国卷Ⅱ·18)从地面竖直向上抛出一物体,其机械能E总等于动能E k与重力势能E p之和.取地面为重力势能零点,该物体的E总和E p随它离开地面的高度h的变化如图所示.重力加速度取10 m/s2.由图中数据可得()A.物体的质量为2 kgB.h=0时,物体的速率为20 m/sC.h=2 m时,物体的动能E k=40 JD.从地面至h=4 m,物体的动能减少100 J答案AD解析根据题图可知,h=4 m时物体的重力势能E p=mgh=80 J,解得物体质量m=2 kg,抛出时物体的动能为E k0=100 J,由公式E k0=12可知,h=0时物体的速率为v=10 m/s,2m v选项A正确,B错误;由功能关系可知F f h4=|ΔE总|=20 J,解得物体上升过程中所受空气阻力F f=5 N,从物体开始抛出至上升到h=2 m的过程中,由动能定理有-mgh-F f h=E k-E k0,解得E k=50 J,选项C错误;由题图可知,物体上升到h=4 m时,机械能为80 J,重力势能为80 J,动能为零,即从地面上升到h=4 m,物体动能减少100 J,选项D正确.9.(多选)如图所示,楔形木块abc固定在水平面上,粗糙斜面ab与水平面的夹角为60°,光滑斜面bc与水平面的夹角为30°,顶角b处安装一定滑轮.质量分别为M、m(M>m)的两滑块A和B,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动,A、B不会与定滑轮碰撞.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()A.轻绳对滑轮作用力的方向竖直向下B.拉力和重力对M做功之和大于M动能的增加量C.拉力对M做的功等于M机械能的增加量D .两滑块组成系统的机械能损失等于M 克服摩擦力做的功答案 BD解析 根据题意可知,两段轻绳的夹角为90°,轻绳拉力的大小相等,根据平行四边形定则可知,合力方向与绳子方向的夹角为45°,所以轻绳对滑轮作用力的方向不是竖直向下的,故A 错误;对M 受力分析,受到重力、斜面的支持力、绳子拉力以及滑动摩擦力作用,根据动能定理可知,M 动能的增加量等于拉力和重力以及摩擦力做功之和,而摩擦力做负功,则拉力和重力对M 做功之和大于M 动能的增加量,故B 正确;根据除重力以外的力对物体做功等于物体机械能的变化量可知,拉力和摩擦力对M 做的功之和等于M 机械能的增加量,故C 错误;对两滑块组成系统分析可知,除了重力之外只有摩擦力对M 做功,所以两滑块组成的系统的机械能损失等于M 克服摩擦力做的功,故D 正确.10.(多选)如图所示,光滑水平面OB 与足够长粗糙斜面BC 交于B 点.轻弹簧左端固定于竖直墙面,现将质量为m 1的滑块压缩弹簧至D 点,然后由静止释放,滑块脱离弹簧后经B 点滑上斜面,上升到最大高度,并静止在斜面上.不计滑块在B 点的机械能损失.换用相同材料质量为m 2的滑块(m 2>m 1)压缩弹簧至同一点D 后,重复上述过程,下列说法正确的是( )A .两滑块到达B 点的速度相同B .两滑块沿斜面上升的最大高度相同C .两滑块上升到最高点过程克服重力做的功相同D .两滑块上升到最高点过程机械能损失相同答案 CD解析 两滑块到B 点的动能相同,但速度不同,故A 错误;两滑块在斜面上运动时加速度相同,由于质量不同,则在B 点时的速度不同,故上升的最大高度不同,故B 错误;滑块上升到斜面最高点过程克服重力做的功为mgh ,由能量守恒定律得E p =mgh +μmg cos θ·h sin θ,则mgh =E p 1+μtan θ,故两滑块上升到斜面最高点过程克服重力做的功相同,故C 正确;由能量守恒定律得E 损=μmg cos θ·h sin θ=μmgh tan θ,结合C 可知D 正确. 11.(多选)如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处有一固定挡板,挡板上固定轻质弹簧,右侧用不可伸长的轻绳连接在竖直墙上,轻绳所能承受的最大拉力为F .质量为m 的小滑块以速度v 从A 点向左滑动压缩弹簧,弹簧的压缩量达到最大时细绳恰好被拉断,再过一段时间后长木板停止运动,小滑块恰未掉落.重力加速度为g ,则( )A .细绳被拉断瞬间长木板的加速度大小为F MB .细绳被拉断瞬间弹簧的弹性势能为12m v 2 C .弹簧恢复原长时滑块的动能为12m v 2 D .滑块与长木板AB 段间的动摩擦因数为v 22gl答案 ABD解析 细绳被拉断瞬间弹簧的弹力等于F ,对长木板,由牛顿第二定律得F =Ma ,得a =F M,A 正确;滑块以速度v 从A 点向左滑动压缩弹簧,到弹簧压缩量最大时速度为0,由系统的机械能守恒得,细绳被拉断瞬间弹簧的弹性势能为12m v 2,B 正确;弹簧恢复原长时长木板与滑块都获得动能,所以滑块的动能小于12m v 2,C 错误;弹簧最大弹性势能E p =12m v 2,小滑块恰未掉落时滑到木板的最右端B ,此时小滑块与长木板均静止,又水平面光滑,长木板上表面OA 段光滑,则有E p =μmgl ,联立解得μ=v 22gl,D 正确. 12.如图所示,一物体质量m =2 kg ,在倾角θ=37°的斜面上的A 点以初速度v 0=3 m/s 下滑,A 点距弹簧上端挡板位置B 点的距离AB =4 m .当物体到达B 点后将弹簧压缩到C 点,最大压缩量BC =0.2 m ,然后物体又被弹簧弹上去,弹到的最高位置为D 点,D 点距A 点的距离AD =3 m .挡板及弹簧质量不计,g 取10 m/s 2,sin 37°=0.6,求:(结果均保留三位有效数字)(1)物体与斜面间的动摩擦因数μ;(2)弹簧的最大弹性势能E pm .答案 (1)0.521 (2)24.4 J解析 (1)物体从A 点到被弹簧弹到D 点的过程中,弹簧弹性势能没有发生变化,机械能的减少量全部用来克服摩擦力做功,即:12m v02+mgAD·sin θ=μmg cos θ·(AB+2BC+BD)代入数据解得:μ≈0.521.(2)物体由A到C的过程中,动能减少量ΔE k=12m v02重力势能减少量ΔE p=mg sin θ·AC摩擦产生的热量Q=μmg cos θ·AC由能量守恒定律可得弹簧的最大弹性势能为:E pm=ΔE k+ΔE p-Q≈24.4 J.13.如图所示,在倾角为37°的斜面底端固定一挡板,轻弹簧下端连在挡板上,上端与物块A 相连,用不可伸长的细线跨过斜面顶端的定滑轮把A与另一物体B连接起来,A与滑轮间的细线与斜面平行.已知弹簧劲度系数k=40 N/m,A的质量m1=1 kg,与斜面间的动摩擦因数μ=0.5,B的质量m2=2 kg.初始时用手托住B,使细线刚好处于伸直状态,此时物体A 与斜面间没有相对运动趋势,物体B的下表面离地面的高度h=0.3 m,整个系统处于静止状态,弹簧始终处于弹性限度内.重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)由静止释放物体B,求B刚落地时的速度大小;(2)把斜面处理成光滑斜面,再将B换成一个形状完全相同的物体C并由静止释放,发现C 恰好到达地面,求C的质量m3.答案(1) 2 m/s(2)0.6 kg解析(1)因为初始时刻A与斜面间没有相对运动趋势,即A不受摩擦力,此时有:m1g sin θ=F弹此时弹簧的压缩量为:x1=F弹k=m1g sin θk=0.15 m当B落地时,A沿斜面上滑h,此时弹簧的伸长量为:x2=h-x1=0.15 m所以从手放开B到B落地过程中以A、B和弹簧为系统,弹簧伸长量和压缩量相同,弹性势能不变,弹簧弹力不做功,根据能量守恒定律可得:m 2gh =m 1gh sin θ+μm 1g cos θ·h +12(m 1+m 2)v 2 代入数据解得:v = 2 m/s(2)由(1)分析同理可知换成光滑斜面,没有摩擦力,则从手放开C 到C 落地过程中以A 、C 和弹簧为系统,根据机械能守恒可得:m 3gh =m 1gh sin θ代入数据解得m 3=0.6 kg.。

高一物理必修一知识点总结

高一物理必修一知识点总结

高一物理必修一知识点总结大家的高一物理学的怎么样了?物理必修一里的知识点难的并不是十分的多,但是却是高中物理的基础。

高一物理必修一知识点总结有哪些?一起来看看高一物理必修一知识点总结,欢迎查阅!高一物理知识点总结章力定义:力是物体之间的相互作用。

理解要点:(1)力具有物质性:力不能离开物体而存在。

说明:①对某一物体而言,可能有一个或多个施力物体。

②并非先有施力物体,后有受力物体(2)力具有相互性:一个力总是关联着两个物体,施力物体同时也是受力物体,受力物体同时也是施力物体。

说明:①相互作用的物体可以直接接触,也可以不接触。

②力的大小用测力计测量。

(3)力具有矢量性:力不仅有大小,也有方向。

(4)力的作用效果:使物体的形状发生改变;使物体的运动状态发生变化。

(5)力的种类:①根据力的性质命名:如重力、弹力、摩擦力、分子力、电磁力、核力等。

②根据效果命名:如压力、拉力、动力、阻力、向心力、回复力等。

说明:根据效果命名的,不同名称的力,性质可以相同;同一名称的力,性质可以不同。

重力定义:由于受到地球的吸引而使物体受到的力叫重力。

说明:①地球附近的物体都受到重力作用。

②重力是由地球的吸引而产生的,但不能说重力就是地球的吸引力。

③重力的施力物体是地球。

④在两极时重力等于物体所受的万有引力,在其它位置时不相等。

(1)重力的大小:G=mg说明:①在地球表面上不同的地方同一物体的重力大小不同的,纬度越高,同一物体的重力越大,因而同一物体在两极比在赤道重力大。

②一个物体的重力不受运动状态的影响,与是否还受其它力也无关系。

③在处理物理问题时,一般认为在地球附近的任何地方重力的大小不变。

(2)重力的方向:竖直向下(即垂直于水平面)说明:①在两极与在赤道上的物体,所受重力的方向指向地心。

②重力的方向不受其它作用力的影响,与运动状态也没有关系。

(3)重心:物体所受重力的作用点。

重心的确定:①质量分布均匀。

物体的重心只与物体的形状有关。

高中物理公式:功和能(功是能量转化的量度)

高中物理公式:功和能(功是能量转化的量度)

高中物理公式:功和能(功是能量转化的量度)W合=mvt2/2-mvo2/2或W合=ΔEK{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP注:功率大小表示做功快慢,做功多少表示能量转化多少;O0≤α<90O做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6*106J,1eV=1.60*10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。

质点的运动(1)——直线运动理解口诀:1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。

物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。

2.运用一般公式法,平均速度是简法,中间时刻速度法,初速为零比例法,再加几何图像法,求解运动好方法。

自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。

匀变速直线运动平均速度V平=s/t(定义式)2.有用推论Vt2-V02=2as3.中间时刻速度Vt/2=V平=(Vt+V0)/2(分析纸带常用)末速度Vt=V0+at;5.中间位置速度Vs/2=[(V02+Vt2)/2]1/26.位移s=V平t=V0t+at2/2加速度a=(Vt-V0)/t{以V0为正方向,a与V0同向(加速)a>0;反向则a<0}实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}(分析纸带常用逐差法求加速度)主要物理量及单位:初速度(V0):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

机械能动能和重力势能的关系

机械能动能和重力势能的关系

机械能动能和重力势能的关系机械能是物体在运动过程中所具有的能量,包括动能和势能。

动能是物体由于运动而具有的能量,与物体的质量和速度有关;势能是物体由于位置关系而具有的能量,与物体的位置和形状有关。

重力势能是物体由于位置处于地球周围存在的重力场中而具有的能量。

物体在地面上抬起时,被施加的外力克服了重力的作用,使其具有了一定的势能。

根据物理学公式,重力势能可以表示为:Ep = mgh,其中Ep表示重力势能,m表示物体的质量,g表示重力加速度,h表示物体离地面的高度。

机械能动能是物体由于运动而具有的能量,与物体的质量和速度有关。

根据物理学公式,动能可以表示为:Ek = 1/2mv²,其中Ek表示动能,m表示物体的质量,v表示物体的速度。

在物理学中,有一个重要的定律称为机械能守恒定律。

机械能守恒定律指出,在没有外力做功的情况下,一个系统的机械能保持不变,即机械能的总量始终保持不变。

根据机械能守恒定律,当物体在运动过程中,没有外力对其做功时,机械能保持不变。

在这种情况下,物体的动能和势能可以相互转化,但总的机械能保持不变。

例如,当一个物体被抛上空中时,物体具有动能和势能。

在抛出物体的瞬间,动能最大,而势能为零。

随着物体上升,动能逐渐减小,而势能增大。

当物体到达最高点时,动能为零,而势能最大。

然后,当物体下落时,势能逐渐减小,而动能增大。

当物体下落到地面时,动能最大,而势能为零。

这个例子说明了机械能的转化过程。

在整个抛体运动过程中,物体的机械能保持不变,动能和势能相互转化。

这是因为在没有外力做功的情况下,动能和势能之间存在着一种平衡关系。

总而言之,机械能动能和重力势能之间具有一定的关系。

机械能是物体在运动过程中所具有的能量,包括动能和势能。

重力势能是物体由于位置关系而具有的能量。

根据机械能守恒定律,当物体在没有外力做功的情况下,动能和势能可以相互转化,但总的机械能保持不变。

高中物理功能关系-能量守恒定律

高中物理功能关系-能量守恒定律

功能关系1.功和能(1)做功的过程就是能量转化的过程,能量的转化必须通过做功来实现。

(2)功是能量转化的量度,即做了多少功,就有多少能量发生了转化。

2.功能关系(1)重力做功等于重力势能的改变,即W G=E p1-E p2=-ΔE p(2)弹簧弹力做功等于弹性势能的改变,即W F=E p1-E p2=-ΔE p(3)除了重力和弹簧弹力之外的其他力所做的总功,等于物体机械能的改变,即W其他力=E2-E1=ΔE。

(功能原理)(1)动能的改变量、机械能的改变量分别与对应的功相等。

(2)重力势能、弹性势能、电势能的改变量与对应的力做的功数值相等,但符号相反。

(3)摩擦力做功的特点及其与能量的关系:类别比较静摩擦力滑动摩擦力不同点能量的转化方面只有能量的转移,而没有能量的转化既有能量的转移,又有能量的转化一对摩擦力的总功方面一对静摩擦力所做功的代数总和等于零一对滑动摩擦力所做功的代数和不为零,总功W=-F f·l相对,即摩擦时产生的热量相同点正功、负功、不做功方面两种摩擦力对物体可以做正功、负功,还可以不做功1.自然现象中蕴藏着许多物理知识,如图5-4-1所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的势能()图5-4-1A.增大B.变小C.不变D.不能确定解析:选A人推袋壁使它变形,对它做了功,由功能关系可得,水的重力势能增加,A正确。

能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变。

2.表达式ΔE减=ΔE增。

1.应用能量守恒定律的基本思路(1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。

2.应用能量守恒定律解题的步骤(1)分清有多少形式的能(动能、势能、内能等)发生变化。

功能关系和能量守恒定律

功能关系和能量守恒定律

功能关系和能量守恒定律班级__________ 座号_____ 姓名__________ 分数__________一、知识清单1.功能关系__能量守恒定律1.功和能(1)功是能量转化的量度,即做了多少功,就有多少能量发生了转化。

(2)做功的过程一定伴随有能量的转化,而且能量的转化必须通过做功来实现。

2.力学中常用的四种功能对应关系(1)合外力做功等于物体动能的变化:即W合=E k2-E k1=ΔE k。

(动能定理)即W G=E p1-E p2=-ΔE p。

即W弹=E p1-E p2=-ΔE p。

等于物体机械能的变化,即W其他=E2-E1=ΔE。

(功能原理) 2.应用功能关系解题的基本思路(1)受力分析:按照“一重二弹三摩擦”的顺序分析受力;(2)做功分析:判断力是否做功,做正功还是负功;(3)能量分析:“(N+1)原则”,N个力做功对应(N+1)种能量转化,明确哪种形式的能量增加,哪种形式的能量减少;(4)功能关系:求某种能量的变化找出与之对应的力做功;求力做的功找出与之对应的能量变化。

(5)能量守恒:列出减少的能量ΔE减和增加的能量ΔE增的表达式,列出能量守恒关系式:ΔE减=ΔE增.3.功能关系的选用原则(1)在应用功能关系解决具体问题的过程中,若只涉及动能的变化用动能定理分析.(2)只涉及重力势能的变化用重力做功与重力势能变化的关系分析.(3)只涉及机械能变化用除重力和弹力之外的力做功与机械能变化的关系分析.4.功能关系中的图像问题例题1. (多选)(2013·大纲卷)如图9,一固定斜面倾角为30°,一质量为m 的小物块自斜面底端以一定的初速度,沿斜面向上做匀减速运动,加速度的大小等于重力加速度的大小g 。

若物块上升的最大高度为H ,则此过程中,物块的( )A .动能损失了2mgHB .动能损失了mgHC .机械能损失了mgHD .机械能损失了12mgH2. 质量为M 的物体其初动能为100 J,从倾角为θ的足够长的斜面上的A 点向上匀减速滑行,到达斜面上的B 点时物体动能减少了80 J,机械能减少了32 J,若μ<tanθ,则当物体回到A 点时具有的动能为( ) A.60 J B.20 J C.50 J D.40 J3. (2009上海)小球由地面竖直上抛,上升的最大高度为H ,设所受阻力大小恒定,地面为零势能面.在上升至离地高度h 处,小球的动能是势能的两倍,在下落至离地高度h 处,小球的势能是动能的两倍,则h 等于( ) A .H /9B .2H /9C .3H /9D .4H /94. (2005辽宁)一物块由静止开始从粗糙斜面上的某点加速下滑到另一点,在此过程中重力对物块做的功等于( )A .物块动能的增加量B .物块重力势能的减少量与物块克服摩擦力做的功之和C .物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和D .物块动能的增加量与物块克服摩擦力做的功之和5.(2014•潍坊一模)如图所示,轻质弹簧下端固定在倾角为θ的粗糙斜面底端的挡板C 上,另一端自然伸长到A 点.质量为m 的物块从斜面上B 点由静止开始滑下,与弹簧发生相互作用,最终停在斜面上某点.下列说法正确的是( )A .物块第一次滑到A 点时速度最大B .物块停止时一定在A 点C .在物块滑到最低点的过程中,物块减少的重力势能全部转化成弹簧的弹性势能D .在物块的整个运动过程中,克服弹簧弹力做的功等于重力和摩擦力做功之和6.(多选)(2014·北京西城区期末)如图4甲所示,物体以一定的初速度从倾角α=37°的斜面底端沿斜面向上运动,上升的最大高度为3.0 m 。

重力势能

重力势能

三、重力势能具有相对性 重力势能具有相对性
对选定的参考平面而言,在参考面上方的物体的高度是正值, 对选定的参考平面而言,在参考面上方的物体的高度是正值,重力 势能也是正值;在参考面下方的物体的高度是负值,重力势能也是负值。 势能也是正值;在参考面下方的物体的高度是负值,重力势能也是负值。 讨论:有一物体在 点的重力势能是 点的重力势能是1J, 点的重力势能是0, 讨论:有一物体在A点的重力势能是 ,在B点的重力势能是 ,在C 点的重力势能是 点的重力势能是 - 2J,则物体在哪一点的重力势能最大? ,则物体在哪一点的重力势能最大?
6
实验
小结: 小结:(1)势能也叫位能. )势能也叫位能. (2)势能具有系统性:重力势能是地球和物体组成的系统共有的, )势能具有系统性:重力势能是地球和物体组成的系统共有的, 弹性势能是物体的各部分所共有的. 弹性势能是物体的各部分所共有的.
讨论
1.关于重力做功和物体的重力势能,下列说法中正确的是 .关于重力做功和物体的重力势能, A.当重力对物体做正功时,物体的重力势能一定减少 .当重力对物体做正功时, B.物体克服重力做功时,物体的重力势能一定增加 .物体克服重力做功时, C.地球上任何一个物体的重力势能都有一个确定值 . D.重力做功的多少与参考平面的选取无关 . 2.物体在运动过程中,克服重力做功为50J,则 .物体在运动过程中,克服重力做功为 , A.重力做功为 B.物体的重力势能一定增加 .重力做功为50J .物体的重力势能一定增加50J C.物体的动能一定减少 D.重力做了 .物体的动能一定减少50J .重力做了50J的负功 的负功
四、重力势能是标量 重力势能是标量 注意:重力势能的正负参与比较大小。 注意:重力势能的正负参与比较大小。

做功与能量改变的八大关系

做功与能量改变的八大关系

功和能八大关系
(1)功是能量变化的量度。

(2)功是过程物理量,能是状态物理量。

1.重力做的功等于重力势能的减小量。

即:
W G=E P1—E P2= —ΔE P
2.弹力做的功等于弹性势能的减小量。

即:
W弹力=E P1—E P2= —ΔE P
3.合外力做的功等于动能增加量。

即:
W合=ΔE k
4.功能原理:除去重力、系统内弹力以外的力做功,等于系统机械能的增量。

即:
W其=ΔE
5.滑动摩擦力做的功等于内能的增加量。

即:
F f s相对=ΔE内
(摩擦力可以做正功,也可以做负功,还可以不做功。


6.电场力做的功等于电势能的减小量。

即:
W AB=-ΔEp
W AB =q U AB
7.电流做的功等于电能的减小量。

即:
W=-ΔE
电流做功W=UIt
8.克服安培力做的的功等于电能增加量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重力势能功和能的关系
一、重力势能的基本概念
1、关于重力势能的说法中不正确的是( C )
A.物体重力势能的值随参考平面的选择不同而不同
B.物体的重力势能严格说是属于物体和地球这个系统的
C.重力对物体做正功,物体的动能一定增加
D.物体位于参考面之下其重力势能取负值
2、关于重力势能与重力做功,下列说法中正确的是( AB ).
(A)物体克服重力做的功等于重力势能的增加
(B)在同一高度,将物体以初速v0向不同的方向抛出,从抛出到落地过程中,重力做的功相等,物体所减少的重力势能一定相等
(C)重力势能等于零的物体,不可能对别的物体做功
(D)用手托住一个物体匀速上举时,手的支持力做的功等于克服重力的功与物体所增加的重力势能之和.
3、物体在运动过程中,克服重力做功50J,则( BD )
A.重力做功为50J
B.物体的重力势能一定增加50J
C.物体的动能一定减小50J
D.重力做功为-50J
4、井深8m,井上支架高为2m,在支架上用一根3m长的绳子系住一个重100N的物体,则物体的重力势能是(以地面为参考平面)( C )
A.100J
B.700J
C.100J
D.无法确定
5、沿着高度相同,坡度不同,粗糙程度也不同的斜面向上拉同一物体到顶端,以下说法中正确的是( D )
A.沿坡度小,长度大的斜面上升克服重力做的功多
B.沿长度大、粗糙程度大的斜面上升克服重力做的功多
C.沿坡度大、粗糙程度大的斜面上升克服重力做的功少
D.上述几种情况重力做功同样多
6、空中某点,将三个相同小球以相同的速率v水平抛出、竖直上抛、竖直下抛,则从抛出到落地,下列说法正确的是( AC )
A.重力做功相同
B.重力的平均功率相同
C.竖直下抛的小球的重力平均功率最大
D.落地时重力的瞬时功率相同
7、重为100N 长1m 的不均匀铁棒平放在水平面上,某人将它一端缓慢竖起,需做功55J ,将它另一端竖起,需做功( A )
A.45J
B.55J
C.60J
D.65J
8、如图所示,一质量为m 、边长为a 的正方体与地面之间的动摩擦
因数μ=0.1.为使它水平移动距离为a,可以采用将它翻倒或向前
匀速平推两种方法,则( B ).
(A)将它翻倒比平推前进做的功少
(B)将它翻倒比平推前进做的功多
(C)两种情况做功一样多
(D)两种情况做功多少无法比较
9、一物体做自由落体运动.在第1s 内和第2s 内,重力对该物体做的功之比为________;在第1s 末和第2s 末,重力做功的即时功率之比为________.
答案:1:3,1:2(点拨:重力做功222
1122W mgh mg gt mg t ==⨯=,第1s 内和前2s 内重
力做功是1:4,第1s 和第2s 重力做功之比为1:3.重力做功的功率W=mg·v=mg·gt,所以第1s 末和第2s 末重力做功功率之比为1:2)
10、如图所示,甲、乙两个相同的小球分别系于一根细绳和一根橡
皮绳的一端,细绳和橡皮绳的另一端固定在同一点O ,将两小球都
拉至水平,且绳刚拉直,然后静止起释放它们。

当它们摆到最低点
时细绳和橡皮绳长度相同,摆到最低点时甲、乙两球具有的势能相
比( B )
(A )甲较大(B )乙较大
(C )一样大(D )无法确定
二、重力势能的计算
11、在空中将物体M 以初速度v 平抛,不计阻力,则ts 末的重力的瞬时功率为多少?ts 内重力的平均功率为多少?
答案:mg2t,mg2t /2(点拨:瞬时功率
2cos P F v mg gt mg t θ=⋅=⋅=平均功率 2212/2mg gt W P mg t t t ⋅===)
12、如图所示,质量为m 的小球从高为h 的斜面的A 点滚下经水
平面BC 后,再滚上另一斜面,当它到达h /3高度的D
点时的速
度为零,此过程中物体重力做的功是多少?
答案:2mgh /3(点拨:重力做功只跟初末位置的高度差有关,与路径无关.23h W mg h mg
=∆=)
13、如图所示,质量为m 的物体,放于水平面上,物体上竖直固定一长
度为l 、劲度系数为h 的轻质弹簧现用手拉住弹簧上端P 缓慢向上提,
使物体离开地面上升一段距离在这一过程中,若P 端上移的距离为H ,
求物体重力势能的增加量. 答案:()mg mg H k -
(点拨:假设P 点向上移的过程中弹簧无形变即重物也上移H ,事实上弹簧伸长了mg k ,所以重物实际上升了
mg H k -) 14、某海湾共占面积1.0×107m2,涨潮时水深20m,此时关上水坝闸门,可使水位保持20m 不变.退潮时,坝外水位降至18m.假如利用此水坝建水力发电站,且重力势能转变为电能的效率是10%,每天有两次涨潮,问该电站一天能发出多少电能?
答案:4×1010J
三、功和能的关系
15、关于功和能的关系,下列说法中正确的是
( )
A.能是物体具有做功的本领
B.功是能量转化的量度
C.功是在物体状态发生变化过程中的过程量,能是由物体状态决定的状态量
D.功和能的单位相同,它们的意义也完全相同
答案:ABC
16、对于功和能的关系,下列说法中正确的是
( ) A.功就是能,能就是功
B.功可以变为能,能可以变为功
C.做功的过程就是物体能量的转化过程
D.功是物体能量的量度
答案:C
17、有关功和能,下列说法正确的是 ( ) A.力对物体做了多少功,物体就具有多少能
B.物体具有多少能,就一定能做多少功
C.物体做了多少功,就有多少能量消失
D.能量从一种形式转化为另一种形式时,可以用功来量度能量转化的多少
答案:D
18、一质量分布均匀的不可伸长的绳索重为G,A、B两端固定在水平
天花板上,如图所示,今在绳的最低点C施加一竖直向下的力将绳绷
直,在此过程中,绳索AB的重心位置( )
A.逐渐升高
B.逐渐降低
C.先降低后升高
D.始终不变
答案:A(点拨:拉力向下拉绳索的过程对绳索做正功,使绳索的重力势能逐渐增加.绳索的重心逐渐升高)
19、物体从光滑斜面AB上离水平面高为H处由静止起下
滑,然后进入粗糙水平面BC,BC的长为d,此后再滑上
另一个光滑斜面CD,且到达离水平面H/3高时速度减为
零。

则物体经过B点时的速度大小为,经过C点时的速
度大小为,物体与水平面间的动摩擦因数为,物体最后静
止处和B点的距离为(斜面与平面间接点光滑)。

参考答案:2gH ,2gH/3 ,2H/3d,d/2
20、如图所示,质量为m、长为L的均匀直木杆AB,上端A装有水
平转轴,若在其下端B用恒定的水平外力F拉,使杆从竖直位置绕
A轴转过θ角,到达图中虚线位置,则水平外力F对木杆AB做的功
为,此时木杆的动能为。

参考答案:FLsinθ,FLsinθ-mgL(1-cosθ)/2
22、一列质量为M的列车在平直轨道上匀速行驶,某时刻最后面一节质量为m的车厢脱钩,当司机发现并关闭发动机时,列车自脱钩起到此时已经行驶了距离L。

设关闭发动机前机车的牵引力保持不变,车所受到的阻力和车重成正比,求列车的两部分在停稳后的距离。

参考答案:ML/(M-m)
1.23、如图所示,一人通过定滑轮(大小不计)用细绳拉一质量为m的物
体,开始时手拉的绳头在滑轮正下方距离H处。

当人保持这一高度向右走H
距离时,人的速度大小为v,求在此过程中人对物体所做的功。

参考答案:( 2 -1)mgH+mv2/4。

相关文档
最新文档