单级倒立摆经典控制系统方案

合集下载

单级倒立摆稳定控制

单级倒立摆稳定控制

单级倒立摆稳定控制摘要单级倒立摆是一种受控系统,在工业控制和机器人技术中有着广泛的应用。

这篇文档将介绍单级倒立摆的结构、原理和控制方法,特别是借助PID控制系统来实现单级倒立摆的稳定控制。

单级倒立摆是一种类人形机器人,它通常由一个水平旋转的轮子和一个通过电机传动的滑移杆组成,最后再由摆杆上的陀螺控制实现倒立。

这种结构使得单级倒立摆成为了机器人应用领域中的一个挑战问题。

为了实现单级倒立摆的稳定控制,需要在控制系统中引入一个合适的控制机制。

PID控制算法是一种最为通用的控制算法之一,常被用于像单级倒立摆这样的机器人平衡控制。

PID控制PID控制是一种基于反馈的控制系统,在工业和机器人技术中得到了广泛的应用。

PID控制通过比较实际的输出值与期望的输入值之间的差异,来作出对输出值的控制。

PID控制可以对输出值的稳定性、可靠性和精度进行控制,适用于不同类型的工业和机器人控制系统。

PID控制通常由三个部分组成:比例(P)、积分(I)和微分(D)控制。

比例控制反馈调整输出值,使得实际输出值逼近期望输入值。

积分控制记录过去所有误差,并将这些误差相乘来调整输出值。

微分控制通过记录过去的误差变化率,来防止输出值的快速变化。

在单级倒立摆稳定控制中,采用PID控制可以较好地解决因摩擦力、惯性、重心偏移等因素导致的系统不稳定问题,进而实现系统的平衡控制。

单级倒立摆的稳定控制实现单级倒立摆的稳定控制需要进行以下步骤:步骤1:系统建模将单级倒立摆系统建模,根据运动学和动力学原理,得到系统的运动方程。

步骤2:PID参数调节通过对PID控制算法中比例、积分、微分三个部分的参数进行调整,得到较好的控制效果。

步骤3:PID控制实现将PID控制器与单级倒立摆系统进行连接,实现单级倒立摆的稳定控制。

本文档介绍了单级倒立摆的结构、原理和控制方法,分析了PID控制算法在单级倒立摆稳定控制中的应用。

通过对步骤进行深入的解析,得到了单级倒立摆的稳定控制方法。

一阶倒立摆的控制方法

一阶倒立摆的控制方法

一阶倒立摆的控制方法
一阶倒立摆是一种非常有趣的机械系统,它提供了在控制和稳定化方面的许多挑战。

一阶倒立摆的控制方法取决于许多因素,包括机械结构、系统响应、控制信号和传感器输入等。

在一阶倒立摆中,一个质点在垂直支撑物上平衡,支撑物可以是摆锤也可以是其他机械结构。

在“正常”情况下,质点的位置会小幅度波动,但总体上保持平衡。

在不正常的情况下,例如外力干扰或系统响应问题,质点的位置可能会失去平衡,导致设备失效。

为了解决这些问题,一些常见的控制方法包括PID控制、神经网络控制和模糊控制等。

其中,最常用的PID控制方法是基于比例、积分和微分控制来实现的。

这种方法可以计算出当前状态和目标状态的差异,然后调节偏差的大小和方向,以让设备回归到稳定状态。

另一种常见的控制方法是神经网络控制。

这种方法的理念是通过构建一个基于神经网络结构的模型来控制设备。

神经网络具有学习和记忆功能、非线性映射和复杂的自适应能力等特点,可以较好地应对一阶倒立摆的不稳定性与外部干扰的问题。

最后,模糊控制是一种模糊数学技术,它可以将输入和输出模糊化,以便通过一系列规则来达到控制目标。

模糊控制方法较为简单,但需要有丰富经验和良好的控制规则,否则很容易导致控制结果的不稳定性。

总的来说,在一阶倒立摆的控制中,各种方法都有自己的优缺点。

开发一种切实可行的控制方法需要考虑到各种因素,包括系统响应时间、控制稳定性、控制信号噪声干扰、成本等等。

因此,为了实现一
阶倒立摆的各种应用,需要有较为全面的控制方案和少量控制策略的
实践应用。

一级倒立摆【控制专区】系统设计

一级倒立摆【控制专区】系统设计

基于双闭环PID控制的一阶倒立摆控制系统设计一、设计目的倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。

设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统。

二、设计要求倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。

当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。

实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用MATLAB进行仿真,并用simulink对相应的模块进行仿真。

三、设计原理倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。

计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡。

四、设计步骤首先画出一阶倒立摆控制系统的原理方框图一阶倒立摆控制系统示意图如图所示:分析工作原理,可以得出一阶倒立摆系统原理方框图:一阶倒立摆控制系统动态结构图下面的工作是根据结构框图,分析和解决各个环节的传递函数!1.一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中: M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为(2) 摆杆重心的运动方程为得sin cos ..........(1)y x J F l F l θθθ=-2222(sin ) (2)(cos ) (3)x y d F m x l d td F mg m l d t θθ=+=-(3)小车水平方向上的运动为22..........(4)x d xF F M d t-=联列上述4个方程,可以得出一阶倒立精确气模型:()()()()()()()2222222222222222sin .sin cos cos cos .sin cos .lg sin cos J ml F ml J ml m l g x J ml M m m l ml F m l M m m m l M m J ml θθθθθθθθθθθθ⎧+++-⎪=++-⎪⎨+-+⎪=⎪-++⎩式中J 为摆杆的转动惯量:32ml J =若只考虑θ在其工作点附近θ0=0附近(︒︒≤≤-1010θ)的细微变化,则可以近似认为:⎪⎩⎪⎨⎧≈≈≈1cos sin 02θθθθ ⎪⎪⎩⎪⎪⎨⎧++-+=++-+=2..2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 若取小车质量M=2kg,摆杆质量m=1kg,摆杆长度2 l =1m,重力加速度取g=2/10s m ,则可以得 一阶倒立摆简化模型:....0.44 3.330.412x F F θθθ⎧=-⎪⎨⎪=-+⎩即 G 1(s)= ; G 2(s)=一阶倒立摆环节问题解决!2.电动机驱动器选用日本松下电工MSMA021型小惯量交流伺服电动机,其有关参数如下:222()0.4()12() 1.110()s F s s x s s s s θθ-⎧=⎪-⎪⎨-+⎪=⎪⎩驱动电压:U=0~100V 额定功率:PN=200W 额定转速:n=3000r/min 转动惯量:J=3×10-6kg.m2 额定转矩:TN=0.64Nm 最大转矩:TM=1.91Nm 电磁时间常数:Tl=0.001s 电机时间常数:TM=0.003s经传动机构变速后输出的拖动力为:F=0~16N ;与其配套的驱动器为:MSDA021A1A ,控制电压:UDA=0~±10V 。

大学课程设计-直线一级倒立摆控制系统设计

大学课程设计-直线一级倒立摆控制系统设计

摘要倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒立摆的控制研究无论在理论上和方法上都有深远的意义。

本论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其PID控制方法,设计出相应的PID控制器,并将控制过程在MATLAB上加以仿真。

本文主要研究内容是:首先概述自动控制的发展和倒立摆系统研究的现状;介绍倒立摆系统硬件组成,对单级倒立摆模型进行建模,并分析其稳定性;研究倒立摆系统的几种控制策略,分别设计了相应的控制器,以MATLAB为基础,做了大量的仿真研究,比较了各种控制方法的效果;借助固高科技MATLAB实时控制软件实验平台;利用设计的控制方法对单级倒立摆系统进行实时控制,通过在线调整参数和突加干扰等,研究其实时性和抗千扰等性能;对本论文进行总结,对下一步研究作一些展望。

关键词:一级倒立摆,PID,MATLAB仿真目录第1章MATLAB仿真软件的应用 (9)1.1 MA TLAB的基本介绍 (9)1.2 MA TLAB的仿真 (9)1.3 控制系统的动态仿真 (10)1.4 小结 (12)第2章直线一级倒立摆系统及其数学模型 (13)2.1 系统组成 (13)2.1.1 倒立摆的组成 (14)2.1.2 电控箱 (14)2.1.3 其它部件图 (14)2.1.4 倒立摆特性 (15)2.2 模型的建立 (15)2.2.1 微分方程的推导 (16)2.2.2 传递函数 (17)2.2.3 状态空间结构方程 (18)2.2.4 实际系统模型 (20)2.2.5 采用MA TLAB语句形式进行仿真 (21)第3章直线一级倒立摆的PID控制器设计与调节 (34)3.1 PID控制器的设计 (34)3.2 PID控制器设计MA TLAB仿真 (36)结论 (41)致谢 (42)参考文献 (43)第1章 MATLAB仿真软件的应用1.1 MATLAB的基本介绍MTALAB系统由五个主要部分组成,下面分别加以介绍。

一级倒立摆系统最优控制

一级倒立摆系统最优控制

摘要倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,许多抽象的控制理论概念都可以通过倒立摆实验直观的表现出来。

因此,倒立摆系统经常被用来检验控制策略的实际效果。

应用上,倒立摆广泛应用于航空航天控制、机器人,朵项顶杆表演等领域,研究倒立摆的精确控制对工业复杂对象的控制也有着重要的工程应用价值。

本文以固高公司生产的GIP-100-L型一阶倒立摆系统为研究对象,对直线一级倒立摆模型进行了建模,控制算法的仿真对比,并得出了相应的结论。

文中介绍了倒立摆的分类、特性、控制訂标、控制方法等以及倒立摆控制研究的发展及其现状。

利用牛顿力学方法推到了直线以及倒立摆的动力学模型,求出其传递函数及其状态空间方程。

在建立了系统模型的基础下,本文还研究了倒立摆系统的线性二次型最优控制问题,并且使用了MATLAB软件进行仿真,通过改变LQR模块及状态空间模块中的参数,在仿真中取得了不同的控制效果,最终得到了最好的控制效果。

关键字:一级倒立摆线性系统、数学建模、最优控制、LQR、仿真目录1 一阶倒立摆的概述 01」倒立摆的起源与国内外发展现状 01.2倒立摆系统的组成 01.3倒立摆的分类: 01.4倒立摆的控制方法: (1)2. 一阶倒立摆数学模型的建立 (2)2.1概述 (2)2.2数学模型的建立 (3)2.4实际参数代入: (4)3・定量、定性分析系统的性能 (6)3」对系统的稳定性进行分析 (6)3.2对系统的能空性和能观测性进行分析: (7)4.线性二次型最优控制设计 (8)4」线性二次最优控制简介 (8)4.2直线一级倒立摆LQR控制算法 (9)4.3 最优控制MATLAB仿真 (17)总结 (20)参考文献 (21)1 一阶倒立摆的概述1.1倒立摆的起源与国内外发展现状倒立摆的最初研究开始于二十世纪五十年代,麻省理工学院的控制理论专家根据火箭助推器原理设讣出来一级倒立摆实验设备。

倒立摆作为一个典型的不稳定,严重非线性例证被正式提出于二十世纪六十年代后期。

一阶倒立摆控制系统

一阶倒立摆控制系统

一阶直线倒立摆系统姓名:班级:学号:目录摘要 (3)第一部分单阶倒立摆系统建模 (4)(一) 对象模型 (4)(二)电动机、驱动器及机械传动装置的模型 (6)第二部分单阶倒立摆系统分析 (7)第三部分单阶倒立摆系统控制 (11)(一)内环控制器的设计 (11)(二)外环控制器的设计 (14)第四部分单阶倒立摆系统仿真结果 (16)系统的simulink仿真 (16)摘要:该问题源自对于娱乐型”独轮自行车机器人"的控制,实验中对该系统进行系统仿真,通过对该实物模型的理论分析与实物仿真实验研究,有助于实现对独轮自行车机器人的有效控制。

控制理论中把此问题归结为“一阶直线倒立摆控制问题”。

另外,诸如机器人行走过程中的平衡控制、火箭发射中的垂直度控制、卫星飞行中的姿态控制、海上钻井平台的稳定控制、飞机安全着陆控制等均涉及到倒立摆的控制问题。

实验中通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成.实验将借助于“Simulink封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。

实验过程涉及对系统的建模、对系统的分析以及对系统的控制等步骤,最终得出实验结果。

仿真实验结果不仅证明了PID方案对系统平衡控制的有效性,同时也展示了它们的控制品质和特性。

第一部分单阶倒立摆系统建模(一) 对象模型由于此问题为"单一刚性铰链、两自由度动力学问题",因此,依据经典力学的牛顿定律即可满足要求。

如图1。

1所示,设小车的质量为0m ,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向上的力为F ,1O 为摆杆的质心。

图1。

1 一阶倒立摆的物理模型根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则1)摆杆绕其重心的转动方程为sin cos y x l F J F l θθθ=- (1-1)2)摆杆重心的水平运动可描述为22(sin )x d F m x l dtθ=+ (1-2) 3)摆杆重心在垂直方向上的运动可描述为22(cos )y d F mg m l dtθ-= (1—3) 4)小车水平方向运动可描述为202x d x F F m dt-= (1—4)由式(1-2)和式(1—4)得20()(cos sin )m m x ml F θθθθ++⋅-⋅= (1—5)由式(1-1)、式(1-2)和式(1-3)得2()cos lgsin J ml ml x m θθθ++⋅= (1-6)整理式(1—5)和式(1-6),得2222222220222022220()()sin sin cos ()()cos cos sin cos ()lgsin cos ()()J ml F lm J ml m l g x J ml m m m l ml F m l m m m m l m m J ml θθθθθθθθθθθθ⎧+++⋅-=⎪++-⎪⎨⋅+⋅-+⎪=⎪-++⎩(1-7) 因为摆杆是匀质细杆,所以可求其对于质心的转动惯量。

一阶倒立摆控制系统设计

一阶倒立摆控制系统设计

一阶倒立摆控制系统设计首先,设计一阶倒立摆控制系统需要明确系统的参数和模型。

一阶倒立摆通常由一个平衡杆和一个摆组成。

平衡杆的长度、摆的质量和位置等都是系统的参数。

根据平衡杆的转动原理和摆的运动方程,可以得到一阶倒立摆的数学模型。

接下来,根据系统的数学模型,进行系统的稳定性分析。

稳定性分析是判断一阶倒立摆控制系统是否能够保持平衡的重要步骤。

常用的稳定性分析方法有判据法和根轨迹法。

判据法通过计算特征方程的根来判断系统的稳定性,根轨迹法则通过特征方程的根随一些参数变化的路径来分析系统的稳定性。

在进行稳定性分析的基础上,选择合适的控制策略。

常见的控制策略有比例控制、积分控制和微分控制等。

比例控制通过将系统的输出与期望值之间的差异放大一定倍数来控制系统;积分控制通过积分系统误差来进行控制;微分控制通过对系统误差的微分来进行控制。

在选择控制策略时,需要考虑系统的动态响应、稳态误差和鲁棒性等指标。

在选定控制策略后,进行控制器的设计和参数调节。

控制器是实现控制策略的核心部分。

控制器可以是传统的PID控制器,也可以是现代控制理论中的模糊控制器、神经网络控制器等。

控制器的参数需要通过试探法、经验法或者系统辨识等方法进行调节,以使系统达到最佳的控制效果。

最后,进行实验验证和性能评估。

在实验中,需要将控制器与倒立摆系统进行连接,并输入一定的控制信号。

通过测量系统的输出响应和误差,可以评估控制系统的性能,并进行调整和改进。

综上所述,一阶倒立摆控制系统设计的步骤包括系统参数和模型确定、稳定性分析、控制策略选择、控制器设计和参数调节、实验验证和性能评估等。

在设计过程中,需要综合考虑系统的稳定性、动态响应和鲁棒性等因素,以实现一个稳定可靠、性能优良的一阶倒立摆控制系统。

直线型一级倒立摆系统的控制器设计

直线型一级倒立摆系统的控制器设计

直线型一级倒立摆系统的控制器设计引言1. 设计目的(1)熟悉直线型一级倒立摆系统(2)掌握极点配置算法(3)掌握MATLAB/simulink动态仿真技术2. 设计要求基于极点配置算法完成对于直线型一级倒立摆系统的控制器设计3. 系统说明倒立摆控制系统是一个复杂的、不稳定的、非线性系统,对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。

通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。

同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。

4. 设计任务(1)建立直线型一级倒立摆系统的状态空间表达式。

(2)对该系统的稳定性、能观性、能控性进行分析。

(3)应用极点配置法对该直线型一级倒立摆系统进行控制器设计。

(4)使用MATLAB/simulink软件验证设计结果目录设计目的........................................................................................... 2-4设计要求:. (4)系统说明:....................................................................................... 4-5设计任务........................................................................................... 5-8运行结果......................................................................................... 8-11收获与体会.. (10)参考文献 (12)1. 设计目的(1)熟悉直线型一级倒立摆系统倒立摆控制系统是一个复杂的、不稳定的、非线性系统,对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。

一阶倒立摆控制设计与实现

一阶倒立摆控制设计与实现

一阶倒立摆控制设计与实现一阶倒立摆是一种常见的控制系统模型,它由一个垂直的支柱和一个质量为m 的物体组成,物体通过支柱与地面相连。

在控制系统中,我们需要设计一个控制器来控制物体的位置和速度,使其保持在垂直位置上。

本文将介绍一阶倒立摆控制设计与实现的相关内容。

一、一阶倒立摆模型一阶倒立摆模型可以用以下方程描述:m*d^2y/dt^2 = -mg*sin(y) + u其中,y是物体的位置,u是控制器的输出,m是物体的质量,g是重力加速度,t是时间。

该方程可以通过拉普拉斯变换转换为传递函数:G(s) = Y(s)/U(s) = 1/(ms^2 + mg)二、控制器设计为了控制一阶倒立摆,我们需要设计一个控制器来产生控制信号u。

常见的控制器包括比例控制器、积分控制器和微分控制器,它们可以组合成PID控制器。

在本文中,我们将使用比例控制器来控制一阶倒立摆。

比例控制器的输出与误差成正比,误差越大,输出越大。

比例控制器的传递函数为:Gc(s) = Kp其中,Kp是比例增益。

三、闭环控制系统将控制器和一阶倒立摆模型组合起来,得到闭环控制系统的传递函数:G(s) = Y(s)/R(s) = Kp/(ms^2 + mg + Kp)其中,R(s)是参考信号,表示我们期望物体保持的位置。

四、控制系统实现在实现控制系统之前,我们需要对一阶倒立摆进行建模和仿真。

我们可以使用MATLAB等工具进行建模和仿真。

在MATLAB中,我们可以使用Simulink模块来建立一阶倒立摆模型和控制器模型。

在建立模型之后,我们可以进行仿真,观察系统的响应和稳定性。

在实现控制系统时,我们需要选择合适的硬件平台和控制器。

常见的硬件平台包括Arduino和Raspberry Pi等,常见的控制器包括PID控制器和模糊控制器等。

在实现控制系统之后,我们需要进行调试和优化,以达到最佳控制效果。

五、总结本文介绍了一阶倒立摆控制设计与实现的相关内容,包括一阶倒立摆模型、控制器设计、闭环控制系统和控制系统实现。

一阶倒立摆控制设计与实现

一阶倒立摆控制设计与实现

一阶倒立摆控制设计与实现以一阶倒立摆控制设计与实现为题,本文将介绍倒立摆控制系统的设计原理和实现过程。

倒立摆是一种经典的控制系统问题,它涉及到动力学建模、控制算法设计和实时控制等多个方面。

本文将从这些方面逐步展开,为读者介绍一阶倒立摆控制的基本知识。

1. 动力学建模倒立摆是一个复杂的动力学系统,它由一个可以旋转的杆和一个连接在杆末端的质点组成。

杆的旋转可以由一个电机控制,质点则受到重力和杆的作用力。

为了建立倒立摆的动力学模型,我们需要考虑杆的旋转角度和质点的位置。

2. 控制算法设计一阶倒立摆的控制目标是使杆保持竖直位置,即旋转角度为零,并且使质点保持在某个给定的位置上。

为了实现这个目标,我们可以设计一个控制器来控制杆的旋转角度和质点的位置。

常用的控制算法有PID控制算法、模糊控制算法和神经网络控制算法等。

PID控制算法是一种经典的控制算法,它通过调节比例、积分和微分三个参数来实现控制效果。

模糊控制算法则利用模糊逻辑的思想,将输入和输出之间的关系用模糊集合表示。

神经网络控制算法则利用神经网络的学习能力,通过训练网络来实现控制效果。

3. 实时控制倒立摆的控制需要实时采集传感器数据,并根据这些数据计算控制信号。

在实际应用中,我们可以使用编码器来测量杆的旋转角度,使用加速度计来测量质点的加速度,然后通过控制器来计算电机的控制信号。

为了实现实时控制,我们可以使用嵌入式系统来实现。

嵌入式系统是一种专门设计用于控制和处理实时数据的计算机系统,它通常由微处理器、存储器和输入输出设备组成。

通过将控制算法和传感器接口集成到嵌入式系统中,我们可以实现倒立摆的实时控制。

总结本文介绍了一阶倒立摆控制的基本原理和实现方法。

倒立摆是一个复杂的动力学系统,控制它需要建立动力学模型,并设计合适的控制算法。

通过实时采集传感器数据并计算控制信号,我们可以实现倒立摆的控制。

希望本文对读者理解一阶倒立摆控制有所帮助,同时也希望读者能够进一步探索和研究这个有趣的控制问题。

基于MATLAB的单级倒立摆控制系统设计

基于MATLAB的单级倒立摆控制系统设计

基于MATLAB的单级倒立摆控制系统设计单级倒立摆是一种常见的控制系统,其结构简单,但具有较强的动态控制性能。

本文基于MATLAB对单级倒立摆控制系统进行设计,并详细介绍了设计过程和结果。

首先,我们需要了解单级倒立摆的结构和动力学模型。

单级倒立摆由轴、电机和旋转杆组成,电机通过轴和旋转杆相连。

倒立摆的目标是使旋转杆竖直,即使旋转杆的角度保持为0°。

为了实现倒立摆的控制,我们借助PID(Proportional-Integral-Derivative)控制器。

PID控制器是一种常用的线性控制系统,其中,比例系数(P)、积分系数(I)和微分系数(D)能够根据系统的需求进行调整。

接下来,我们需要确定系统的控制目标。

倒立摆的目标是使旋转杆的角度保持为0°。

因此,我们需要设计一个控制器,使得当旋转杆角度发生偏差时,控制器能够迅速响应,并产生相应的控制信号。

首先,我们需要获取倒立摆的角度信息。

我们可以通过连接传感器获取角度信息,并将其输入到MATLAB中进行处理。

然后,我们需要设计PID控制器来控制倒立摆。

在MATLAB中,可以使用pid函数来创建PID控制器对象,然后使用tune函数来调整PID控制器对象的参数。

调整PID控制器参数的过程通常可以通过试验和观察实现。

我们可以将倒立摆设置为初始状态,并控制器输出控制信号,然后观察倒立摆的响应。

根据实际观察,我们可以逐步调整PID控制器的参数,以达到系统的稳定性和响应速度的要求。

在完成PID控制器的参数调整后,我们可以进行仿真实验。

在MATLAB中,可以使用sim函数来进行仿真实验。

通过仿真实验,我们可以观察倒立摆的控制效果,并根据需要进行进一步的调整。

通过在MATLAB中进行控制器设计和仿真实验,我们可以对单级倒立摆进行控制系统设计。

该设计可以帮助我们理解控制系统的工作原理,并为实际应用提供参考。

同时,我们还可以根据具体需求对设计进行进一步调整和优化。

(完整word版)一级倒立摆控制系统设计

(完整word版)一级倒立摆控制系统设计

基于双闭环PID控制的一阶倒立摆控制系统设计一、设计目的倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。

设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统.二、设计要求倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度.当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。

实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用MATLAB进行仿真,并用simulink对相应的模块进行仿真。

三、设计原理倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。

计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡.四、设计步骤首先画出一阶倒立摆控制系统的原理方框图一阶倒立摆控制系统示意图如图所示:分析工作原理,可以得出一阶倒立摆系统原理方框图:一阶倒立摆控制系统动态结构图下面的工作是根据结构框图,分析和解决各个环节的传递函数!1.一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中:M:小车质量m:为摆杆质量J :为摆杆惯量 F:加在小车上的力 x :小车位置θ:摆杆与垂直向上方向的夹角l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律,可知:(1) 摆杆绕其重心的转动方程为(2) 摆杆重心的运动方程为得(3)小车水平方向上的运动为22..........(4)x d xF F M d t -=联列上述4个方程,可以得出一阶倒立精确气模型:()()()()()()()2222222222222222sin .sin cos cos cos .sin cos .lg sin cos J ml F ml J ml m l g x J ml M m m l ml F m l M m m m l M m J ml θθθθθθθθθθθθ⎧+++-⎪=++-⎪⎨+-+⎪=⎪-++⎩式中J 为摆杆的转动惯量:32m l J =sin cos ..........(1)y x J F l F l θθθ=-2222(sin ) (2)(cos ) (3)x y d F m x l d td F mg m l d t θθ=+=-若只考虑θ在其工作点附近θ0=0附近(︒︒≤≤-1010θ)的细微变化,则可以近似认为:⎪⎩⎪⎨⎧≈≈≈1cos sin 02θθθθ ⎪⎪⎩⎪⎪⎨⎧++-+=++-+=2..2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 若取小车质量M=2kg,摆杆质量m=1kg,摆杆长度2 l =1m ,重力加速度取g=2/10s m ,则可以得一阶倒立摆简化模型:....0.44 3.330.412x F F θθθ⎧=-⎪⎨⎪=-+⎩ 拉氏变换即 G 1(s )= ; G 2(s)=一阶倒立摆环节问题解决!2.电动机驱动器选用日本松下电工MSMA021型小惯量交流伺服电动机,其有关参数如下: 驱动电压:U=0~100V 额定功率:PN=200W 额定转速:n=3000r/min 转动惯量:J=3×10-6kg 。

PID控制的一阶倒立摆控制系统设计

PID控制的一阶倒立摆控制系统设计

PID控制的一阶倒立摆控制系统设计一阶倒立摆是一种基本的控制系统,在工业及自动化领域有广泛的应用。

PID控制是一种常用的控制算法,可以有效地控制系统的输出,使其稳定在期望值附近。

本文将介绍如何设计一个PID控制器来控制一阶倒立摆。

一阶倒立摆是一个简化的倒立摆系统,由一个质量为m的小球通过一个无摩擦杆连接到一个固定支撑点上。

系统的输入是杆的角度,输出是小球的位置。

我们的目标是通过调节杆的角度来控制小球的位置。

首先,我们需要建立一阶倒立摆的动力学方程。

根据牛顿第二定律和杆的力学特性,可以得到以下方程:m * x'' = m * g * sin(theta) - k * x' + u其中,x是小球的位置,theta是杆的角度,u是控制输入,k是杆的阻尼系数,g是重力加速度。

为了简化问题,我们可以假设杆的阻尼系数k为零,即忽略杆的阻尼。

此外,我们可以将上述方程转换为状态空间方程形式,可以得到以下方程:x'=vv' = g * sin(theta) + u / m其中,v是小球的速度。

接下来,我们需要设计PID控制器来控制系统的输出。

PID控制器由比例项(P项)、积分项(I项)和微分项(D项)组成。

PID控制器的输出可以通过以下公式计算:u = Kp * e + Ki * ∫e + Kd * de/dt其中,e是系统的误差(期望值与实际值之差),Kp、Ki和Kd分别是比例项、积分项和微分项的系数。

在一阶倒立摆控制中,我们可以将系统的误差定义为小球的位置与期望位置之差。

因此,可以将控制器的输出计算公式改写为:u = Kp * (x_d - x) + Ki * ∫(x_d - x) + Kd * d(x_d - x) / dt 其中,x_d为期望位置。

接下来,我们需要调整PID控制器的参数,以使系统稳定在期望位置附近。

调整参数的方法包括手动调整和自动调整。

手动调整需要根据经验和观察来选择参数,而自动调整可以通过一些专门的调参算法来实现,例如Ziegler-Nichols方法和遗传算法等。

单级倒立摆经典控制系统

单级倒立摆经典控制系统

单级倒立摆经典控制系统摘要:倒立摆控制系统虽然作为热门研究课题之一,但见于资料上的大多采用现代控制方法,本课题的目的就是要用经典的方法对单级倒立摆设计控制器进行探索。

本文以经典控制理论为基础,建立小车倒立摆系统的数学模型,使用PID控制法设计出确定参数(摆长和摆杆质量)下的控制器使系统稳定,并利用MATLAB软件进行仿真。

关键词:单级倒立摆;经典控制;数学模型;PID控制器;MATLAB 1绪论自动控制理论是研究自动控制共同规律的技术科学。

它的发展初期,是以反馈理论为基础的自动调节原理,并主要用于工业控制。

控制理论在几十年中,迅速经历了从经典理论到现代理论再到智能控制理论的阶段,并有众多的分支和研究发展方向。

1.1经典控制理论控制理论的发展,起于“经典控制理论”。

早期最有代表性的自动控制系统是18世纪的蒸汽机调速器。

20世纪前,主要集中在温度、压力、液位、转速等控制。

20世纪起,应用范围扩大到电压、电流的反馈控制,频率调节,锅炉控制,电机转速控制等。

二战期间,为设计和制造飞机及船用自动驾驶仪、火炮定位系统、雷达跟踪系统及其他基于反馈原理的军用装备,促进了自动控制理论的发展。

至二战结束时,经典控制理论形成以传递函数为基础的理论体系,主要研究单输入-单输出、线性定常系统的分析问题。

经典控制理论的研究对象是线性单输入单输出系统,用常系数微分方程来描述。

它包含利用各种曲线图的频率响应法和利用拉普拉斯变换求解微分方程的时域分析法。

这些方法现在仍是人们学习控制理论的入门之道。

1.2倒立摆1.2.1倒立摆的概念图1 一级倒立摆装置倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。

如杂技演员顶杆的物理机制可简化为一级倒立摆系统,是一个复杂、多变量、存在严重非线性、非自治不稳定系统。

常见的倒立摆系统一般由小车和摆杆两部分构成,其中摆杆可能是一级、两级甚至多级。

在复杂的倒立摆系统中,摆杆长度和质量均可变化。

PID控制的一阶倒立摆控制系统设计

PID控制的一阶倒立摆控制系统设计

PID控制的一阶倒立摆控制系统设计一阶倒立摆控制系统是一种常见的控制系统,通过PID控制器对倒立摆系统进行稳定控制,使其在一定的时间内达到平衡位置。

本文将详细介绍一阶倒立摆控制系统的设计流程和方法。

1.引言一阶倒立摆控制系统是一类具有非线性动力学特性的控制系统。

其基本结构包含一个摆杆和一个摆杆在垂直方向上运动的小车。

该控制系统的目标是通过调节小车的运动,使摆杆能够在垂直方向上保持平衡。

为了实现这个目标,我们需要设计一个有效的控制方案,并使用PID控制器对系统进行控制。

2.模型建立首先,我们需要建立一阶倒立摆系统的数学模型。

假设摆杆的长度为L,摆杆与水平线的夹角为θ,小车与水平线的位置为x,小车与水平线的速度为v。

根据牛顿运动定律和平衡条件,可以得到如下模型:m*x'=m*a=F(1)M*x'' = -F*l*sin(θ) - b*v (2)I*θ'' = F*l*cos(θ) - M*g*l*sin(θ) (3)其中,m是小车的质量,M是摆杆的质量,l是摆杆的长度,b是摩擦系数,g是重力加速度,I是摆杆的转动惯量。

将式(3)对时间t求导得到:I*θ''' = -b*l*θ' - M*g*l*cos(θ) (4)3.控制设计为了设计PID控制器,我们需要首先将系统模型线性化。

可以将非线性的动力学模型近似为线性模型,并在静态平衡点附近进行线性化。

静态平衡点是系统的平衡位置,满足以下条件:x=0,v=0,θ=0,θ'=0。

我们可以对系统模型进行泰勒级数展开,保留一阶项,得到如下线性化模型:m*x'=F(5)M*x''=-F*l*θ(6)I*θ''=F*l(7)经过线性化,系统的动力学模型变为了一组线性微分方程。

接下来,我们使用PID控制器对系统进行控制。

4.PID控制器设计PID控制器由比例项、积分项和微分项组成,用于校正系统输出与目标值之间的差异。

单级倒立摆LQR控制

单级倒立摆LQR控制

单级倒立摆LQR 控制1、建模在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示。

其中:M 小车质量 m 摆杆质量 b 小车摩擦系数l 摆杆转动轴心到杆质心的长度 I 摆杆惯量 F 加在小车上的力 x 小车位置φ 摆杆与垂直向上方向的夹角θ 摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下) 采用牛顿动力学方法可建立单级倒立摆系统的微分方程如下:2()cos sin ()sin cos M m x bx ml ml F I ml mgl mlx θθθθθθθ+++-=++=-倒立摆的平衡是使倒立摆的摆杆垂直于水平方向倒立,所以假设θπφ=+,φ为足够小的角度,即可近似处理得:cos 1θ=-,sin θφ=-,220tθ∂=∂。

用u 来代表被控对象的输入力F ,线性化后两个方程如下:2()()I ml mgl mlxM m x bx ml uφφφ⎧+-=⎪⎨+-+=⎪⎩取状态变量:1234x x x x x x x θθ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦即摆杆的角度和角速度以及小车的位移和速度四个状态变量。

则系统的状态方程为:122122342224122()()()()()x x mgl M m ml x x uI M m Mml I M m Mml x x m gl I ml x x u I M m Mml I M m Mml =⎧⎪+-⎪=+++++⎪⎨=⎪⎪+=+⎪++++⎩将上式写成向量和矩阵的形式,就成为线性系统的状态方程:x Ax Bu y Cx x θ=+⎡⎤==⎢⎥⎣⎦这里设:21.320.070.1//0.200.0009M Kgm Kgb N m s l m I Kgm ===== 将参数带入,有:010038.182500000010.384700002.803700.747710000010A B C ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤=⎢⎥⎣⎦2、LQR 控制线性二次型是指系统的状态方程是线性的,指标函数是状态变量和控制变量的二次型。

一阶倒立摆控制系统设计

一阶倒立摆控制系统设计

课程设计说明书课程名称:控制系统课程设计设计题目:一阶倒立摆控制器设计院系:信息与电气工程学院班级:设计者:学号:指导教师:设计时间:2013年2月25日到2013年3月8号课程设计(论文)任务书指导教师签字:系(教研室)主任签字:2013年3月5日目录一、建立一阶倒立摆数学模型 (4)1. 一阶倒立摆的微分方程模型 (4)2. 一阶倒立摆的传递函数模型 (5)3. 一阶倒立摆的状态空间模型 (5)二、一阶倒立摆matlab仿真 (6)三、倒立摆系统的PID控制算法设计 (8)四、倒立摆系统的最优控制算法设计 (13)五、总结.................................................................................................. 错误!未定义书签。

六、参考文献 (16)一、建立一阶倒立摆数学模型首先建立一阶倒立摆的物理模型。

在忽略空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示。

系统内部各相关参数定义如下:M 小车质量m 摆杆质量b 小车摩擦系数l 摆杆转动轴心到杆质心的长度I 摆杆惯量F 加在小车上的力x 小车位置φ摆杆与垂直向上方向的夹角θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下) 1.一阶倒立摆的微分方程模型对一阶倒立摆系统中的小车和摆杆进行受力分析,其中,N和 P为小车与摆杆相互作用力的水平和垂直方向的分量。

图错误!未定义书签。

—2 小车及摆杆受力图分析小车水平方向所受的合力,可以得到以下方程:(1—1)由摆杆水平方向的受力进行分析可以得到下面等式:(1—2)即:(1-3)把这个等式代入式(1—1)中,就得到系统的第一个运动方程:(1—4)为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:(1-5)即:(1—6)力矩平衡方程如下:(1-7)由于所以等式前面有负号.合并这两个方程,约去 P和 N,得到第二个运动方程:(1—8)设,(φ是摆杆与垂直向上方向之间的夹角),假设φ〈<1弧度,则可以进行近似处理:。

单级倒立摆的PID控制

单级倒立摆的PID控制

控制系统的分析与设计报告姓名:专业班级:任课教师:年月日单级倒立摆的PID 控制一、 单级倒立摆的建模倒立摆系统的控制问题一直是控制界研究的一个典型问题。

控制的目标是通过给小车的底座施加一个力u (控制量),是小车停留在一个预定的位置,并且能让杆不倒下,即不超过一个预先定义好的垂直偏离角度范围。

图1为一级倒立摆系统示意图,小车质量为M ,摆的质量为m ,小车的位置为x ,摆的角度为θ。

图1 一阶倒立摆系统示意图设摆杆偏离垂直线的角度为θ,同时规定摆杆重心的坐标为(,)G G G x y ,则有:sin G x x l θ=+, cos G y l θ=。

根据牛顿定律,建立水平和垂直运动状态方程。

摆杆围绕其重心的转动运动可以用力矩方程来描述:sin cos I Vl H θθθ=-式中,l 为摆杆围绕其重心的转动惯量。

摆杆重心的水平运动由下式描述:22td (sin )d m x l H θ+= 摆杆重心的垂直运动由下式描述:22td cos d m l V mg θ=- 小车的水平运动由下式描述:22td d M u H =-假设θ很小,sin θθ≈,cos 1θ=,则以上各式变为:I Vl Hl θθ=- (1)()m x l H θ+= (2)O V mg =- (3) mx u H =- (4)由式(2)和式(4)得:(M m)x ml u θ++= (5) 由式(1)和式(3)得:2(I ml )mlx mgl θθ++= (6)由式(5)和式(6)得单级倒立摆方程:22m(m+M)gl m(M+m)I+Mm (M+m)I+Mm u l l θθ=- (7)22222m (M+m)I+Mm (M+m)I+Mml gl I ml x u l θ+=-+ (8)式中,2112I mL =,12l L =。

控制指标有4个,即单级倒立摆的摆角θ,摆速θ,小车位置x 和小车速度x ,将倒立摆的运动方程转化为状态方程的形式。

单级倒立摆系统课件

单级倒立摆系统课件
状态方程的求解
采用适当的数值方法求解状态方程,得到摆杆的 运动轨迹。
单级倒立摆系统的稳定性分析
稳定性判据
01
采用适当的稳定性判据,如李雅普诺夫稳定性判据,判断倒立
摆系统的稳定性。
控制器设计
02
根据稳定性分析结果,设计适当的控制器,使倒立摆系统保持
稳定。
仿真与实验验证
03
通过仿真和实验验证所设计的控制器的有效性。
多级倒立摆系统的研究
非线性模型与控制
实时控制与优化算法
实验平台搭建与验证
鉴于单级倒立摆系统的研究基 础,未来可进一步研究多级倒 立摆系统的稳定性、控制策略 和优化问题。这将有助于拓展 倒立摆系统在实际应用领域中 的应用范围。
目前的研究主要基于线性模型 ,但实际系统往往存在非线性 特性。未来可考虑建立更精确 的非线性模型,并研究相应的 控制策略。
单级倒立摆系统课件
CONTENTS 目录
• 倒立摆系统简介 • 单级倒立摆系统原理 • 单级倒立摆系统建模 • 单级倒立摆系统控制方法 • 单级倒立摆系统实验与仿真 • 结论与展望
CHAPTER 01
倒立摆系统简介
倒立摆系统的定义
倒立摆系统是一种典型的多变量、强耦合、非线性的自然不稳定系统,其动力学行 为非常复杂,具有多种平衡状态和不稳定状态。
神经网络控制
利用神经网络的自学习和自适应能力,实现对倒立摆系统的智能控 制。
遗传算法优化
利用遗传算法对控制器参数进行优化,提高倒立摆系统的性能指标 。
CHAPTER 05
单级倒立摆系统实验与仿真
单级倒立摆系统实验平台的搭建
实验平台组成
单级倒立摆实验平台通常由摆杆、导轨、电机、传感器等部分组成 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单级倒立摆经典控制系统摘要:倒立摆控制系统虽然作为热门研究课题之一,但见于资料上的大多采用现代控制方法,本课题的目的就是要用经典的方法对单级倒立摆设计控制器进行探索。

本文以经典控制理论为基础,建立小车倒立摆系统的数学模型,使用PID控制法设计出确定参数(摆长和摆杆质量)下的控制器使系统稳定,并利用MATLAB软件进行仿真。

关键词:单级倒立摆;经典控制;数学模型;PID控制器;MATLAB 1绪论自动控制理论是研究自动控制共同规律的技术科学。

它的发展初期,是以反馈理论为基础的自动调节原理,并主要用于工业控制。

控制理论在几十年中,迅速经历了从经典理论到现代理论再到智能控制理论的阶段,并有众多的分支和研究发展方向。

1.1经典控制理论控制理论的发展,起于“经典控制理论”。

早期最有代表性的自动控制系统是18世纪的蒸汽机调速器。

20世纪前,主要集中在温度、压力、液位、转速等控制。

20世纪起,应用围扩大到电压、电流的反馈控制,频率调节,锅炉控制,电机转速控制等。

二战期间,为设计和制造飞机及船用自动驾驶仪、火炮定位系统、雷达跟踪系统及其他基于反馈原理的军用装备,促进了自动控制理论的发展。

至二战结束时,经典控制理论形成以传递函数为基础的理论体系,主要研究单输入-单输出、线性定常系统的分析问题。

经典控制理论的研究对象是线性单输入单输出系统,用常系数微分方程来描述。

它包含利用各种曲线图的频率响应法和利用拉普拉斯变换求解微分方程的时域分析法。

这些方法现在仍是人们学习控制理论的入门之道。

1.2倒立摆1.2.1倒立摆的概念图1 一级倒立摆装置倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。

如杂技演员顶杆的物理机制可简化为一级倒立摆系统,是一个复杂、多变量、存在严重非线性、非自治不稳定系统。

常见的倒立摆系统一般由小车和摆杆两部分构成,其中摆杆可能是一级、两级甚至多级。

在复杂的倒立摆系统中,摆杆长度和质量均可变化。

据研究的目的和方法不同,又有悬挂式倒立摆、球平衡系统和平行式倒立摆等。

1.2.2研究倒立摆稳定性的意义倒立摆的研究具有重要的工程背景。

机器人行走就类似倒立摆系统。

从日常生活中所见到的任何重心在上、也是支点在下的控制问题,到空间飞行器和各类伺服云台的稳定,都和倒立摆系统的稳定控制有很大相似性,故对其稳定控制在实际中有很多用场,如海上钻井平台的稳定控制、卫星发射架的稳定控制、火箭姿态控制、飞机安全着陆、化工过程控制等。

2单级倒立摆的数学模型2.1模型的推导原理建立控制系统的数学模型有两种基本方法。

其一,对系统各部分的运动机理进行分析,根据它们所依据的物理规律或化学规律分别列写相应的运动方程,合在一起便成为描述整个系统的方程。

其二,人为地给系统施加某种测试信号,记录其输出响应,并用适当的数学模型去逼近。

主要用于系统运动机理复杂因而不便分析或不可能分析的情况。

系统的建模原则:1、建模之前,要全面了解系统的自然特征和运动机理,明确研究目的和准确性要求,选择合适的分析方法。

2、按照所选分析法,确定相应的数学模型的形式;3、根据允许的误差围,进行准确性考虑,然后建立尽量简化的合理的数学模型。

倒立摆的形状较为规则,而且是一个绝对不稳定系统,无法通过测量频率特性方法获取其数学模型。

故适合用数学工具进行理论推倒。

2.2单级倒立摆系统描述小车—倒立摆系统是各种控制理论的研究对象。

只要一提小车—倒立摆系统,一般均认为其数学模型也已经定型。

事实上,小车—倒立摆的数学模型与驱动系统有关,常见到的模型只是对应于直流电机的情况,如果执行机构是交流伺服电机,就不是这个模型了。

本文主要分析由直流电机驱动的小车—倒立摆系统。

小车倒立摆系统是检验控制方式好坏的一个典型对象,其特点是高阶次、不稳定、非线性、强耦合,只有采取有效的控制方式才能稳定控制。

图2 单级倒立摆系统的原理图图中u是施加于小车的水平方向的作用力,x是小车的位移,θ是摆的倾斜角。

若不给小车施加控制力,倒摆会向左或向右倾斜,控制的目的是当倒摆出现偏角时,在水平方向上给小车以作用力,通过小车的水平运动,使倒摆保持在垂直的位置。

即控制系统的状态参数,以保持摆的倒立稳定。

2.3单级倒立摆系统数学建模为了建立倒立摆系统的数学模型,先作如下假设:①倒立摆与摆杆均为匀质刚体。

②可忽略摆与载体,载体与外界的摩擦,即忽略摆轴、轮轴、轮与接触面之间的摩擦力等。

2.3.1结构参数倒立摆是不稳定的,如果没有适当的控制力作用在它的上面,它将随时可能向任何方向倾倒。

这里只考虑二维问题,即认为倒立摆只在图2所示平面运动。

控制力u作用于小车上。

摆杆长度为2L,质量为m,小车的质量为M,小车瞬时位移为x,摆杆瞬时位置为(x+2L*sinθ),在外力的作用下,系统产生运动。

假设摆杆的重心位于其几何中心。

设输入为作用力u,输出为摆角θ。

2.3.2系统的运动方程图3 小车沿x轴的受力分析图4 摆的受力分析小车沿x轴方向的受力分析如图4所示,根据牛顿第二定律得方程⑴⑵⑶⑷为车载倒立摆系统运动方程组。

因为含有项,所以为非线性微分方程组。

中间变量不易相消。

2.4单级倒立摆系统模型的线性化处理及传递函数3单级倒立摆控制系统原理3.1线性系经统的校正方法所谓校正,就是在系统中加入一些其参数可以根据需要而改变的机构或装置,使系统整个特性发生变化,从而满足给定的各项性能指标。

按照校正装置在系统中的连接方式,控制系统校正方式可分为串联校正、反馈校正和复合校正四种。

根据被控对象及技术指标要求这里采用串联校正。

3.2基本控制定律确定校正装置的具体形式时,应先了解校正装置所提供的控制规律,以便选择相应的元件。

包含校正装置在的控制器,常常采用比例、微分、积分等基本控制规律,或者采用这些基本控制规律的某种组合,如比例-微分、比例-积分、比例-积分-微分等组合控制规律,以实现对被控对象的有效控制。

比例--微分—微分(P ID)控制定律具有比例—积分—微分控制规律的控制器,称PID控制器。

这种组合具有三种基本控制规律各自的特点,其运动方程为当利用PID控制器进行串联校正时,除可使系统的型别提高一级外,还将提供两个负实零点。

与PI控制器相比,除了同样具有提高系统的稳态性能的优点外,还多提供了一个负实零点,从而在提高系统动态性能方面,具有更大的优越性。

因此,在工业过程控制系统中,广泛使用PID控制器。

PID控制器各部分参数的选择,在系统现场调试中最后确定。

通常,应使I部分发生在系统频率特性的低频段,以提高系统的稳态性能;而使D部分发生在系统频率特性的中频段,以改善系统的动态性能。

本系统采用即为PID控制器。

3.3PID控制3.3.1.1PID控制器的结构所有的PID控制器都有可以分解成给定值控制单元,PID作用单元及手动/自动转换单元等三个主要单元,如图6所示。

图中,给定值单元①接收工业控制过程的测量量c,以及控制装置的给定值。

PID作用单元②接受给定值控制单元产生的误差信号e,并按给定控制律算出闭环控制信号。

手动/自动单元③在“自动A位置时,将PID单元的输出信号送入工业过程,此时工业过程在闭环中受到控制;而在“手动M位置时,把用户直接在控制器上调整手动输出信号送至工业过程,于是系统采用开环控制方式。

图5 PID控制器原理性结构 3.3.1.2PID控制器的使用实用PID控制器的传递函数可以表示为PID单元的原理电路如图7所示。

图6 PID单元原理电路 4单级倒立摆的系统控制器设计4.1系统的控制校正设计控制系统的目的是使系统动态稳定,即保持倒立摆在垂直的位置,使小车在外力作用下其位移以较小的误差跟随输入的变化。

由于系统的动态响应主要是由它的极点位置决定的,而假如系统是状态完全能控的,即可使系统得到良好的动态性能。

我们在第2.4节中对单级倒立摆系统模型的进行了线性化并推导出了其传递函数。

本课题将采用PID控制法为系统设计控制器。

设原系统小车的质量M=2.00kg,摆的质量m=0.20kg,摆长2L=0.80m,重力加速度4.2利用MATLAB的系统仿真进入MATLAB的工作环境之后,通过键盘输入MATLAB命令,便可以执行相应的操作了,这与DOS的操作十分接近。

如,通过下面的MATLAB 程序即可获得G (s)的单位阶跃响应及极零点分布。

(见图7)图7 G (s)的单位阶跃响应及极零点分布 >> s=tf('s') Transfer function:s>> sys=tf(-1,[1 0 29.6964])Transfer function:-1----------s^2 + 29.7>> step(sys)>> pzmap(sys)4.3仿真结果的修正与分析本实验采用MATLAB软件进行仿真实验,进一步验证了PID控制器中各个参数对系统的稳定性和动态性能的影响,在大量的仿真结果中进行比较和挑选,同时根据调节时间<3s的设计要求,最后确定PID控制器的各参数分别为:微分时间系数 =1,积分时间系数T =1,比例系数 K =20。

则系统的闭环传递函数为(系统的闭环传递函数的单位阶跃响应为图8):20 s^2 + 20 s + 20------------------------s^3 + 23 s^2 + 25 s + 20图8 的单位阶跃响应结论倒立摆系统的控制研究长期以来被认为是控制理论极其应用领域里引起人们极大兴趣的问题。

它是检验各种控制理论和方法的有效性的著名实验装置,作为一个高阶、非线性、不稳定系统,倒立摆的稳定控制相当困难,对该领域的学者来说是一个极具挑战性的难题。

本文以经典控制理论为基础,建立了小车倒立摆系统的数学模型,使用PID控制法设计出确定参数下的控制器使系统稳定。

本实验采用MATLAB软件进行仿真实验,进一步验证了PID控制器中各个参数对系统的稳定性和动态性能的影响,在大量的仿真结果中进行比较和挑选,同时根据调节时间<3s的设计要求,最后确定PID控制器的各参数值,通过MATLAB软件的仿真可知,单级倒立摆的经典控制可以实现。

相关文档
最新文档