水体结冰期营养盐和叶绿素a的分布特征

水体结冰期营养盐和叶绿素a的分布特征
水体结冰期营养盐和叶绿素a的分布特征

YSI(多参数水质检测仪)测定叶绿素a浓度的准确性及误差探讨解析

上肠ksd.(湖泊科学),2010,22(6):965-968 http:∥www.jlakes.org.E-mail:jhk∞@IligIas.ac.cn @20lOby如£册耐矿kksc泐鲫 YSI(多参数水质检测仪)测定叶绿素a浓度的准确性及误差探讨‘刘苑1”,陈宇炜H。,邓建明1’2 (1:中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,南京210008) (2:中国科学院研究生院,北京lo0049) 摘要:Ysl(多参数水质检测仪)由于其快速、轻便的特点,已广泛应用于野外水体中时绿素a的测定.通过将Y跚溯得的叶绿素a值与分光光度法测定值进行比较,对Ysl6600水质测定的准确性和数据采集进行评估.结果显示,Ysl测定值多数偏低。且与分光光度法测定值之间存在显著性差异;时间上,冬季比夏季具有更大的线性相关性.分段同归结果显示,随着叶绿素a浓度不断增大.两组数据的差值也不断增大.YsI测定误差产生于3个方面:(1)测定前YsI校准方法的不同;(2)其它种类具有荧光特性色素的存在;(3)YsI自身结构. 关键词:叶绿素a浓度;YSI;分光光度法;误差 DisCussiOn0naccuracyanderrOrSforphytopIanI∞nchlorophy¨-aconcentra埘0nanaIySiSusingYSl(MuItI-parameterwateranalyzer) U[UYu觚1r,C胍NYhweil&DENGJi柚min91.2 巧scie,lces.Nn嘲i他2、000s.P.Rcht舱)(1:胁把研k幻加fo秽巧上4妇&妇懈4耐勖佃研珊跏f,觑l咖g肺咄姚可&珊,印砂研d肠彻咖,劭加甜PAc扭娜(2:G,眦妇纪&幻Dz盯cJ咖e卵A棚d唧矿&£伽,&驴f,增l(-D049,P.尼西f,埘) Abst陀ct:YsI(Mlllti?pa强ln曲盱waler锄aly蹭r)is诵delyusedto山把皿i肿phytlDm锄kton 6eIdschl啪phyll-aconcentr撕加inm蛐ybec舢卵0fitsrapidne睇锄dportablene鹄.Tbepu叩∞e0ftllis咖由i8t0evalu砒etIlee伍c卵y0ft王leYSIEn“姒蛐entalMo_Ili试ngsye锄hw栅qIlalityⅡ地a棚他眦“tsanddalacouectionbycompfariItgtw0group邑0fdala憾illg蚰啪ltory耐}

遮光后叶绿素含量升高和叶绿素a和b比值降低的原因

遮光后叶绿素含量升高和叶绿素a/b降低的原因 试题:如图,叶绿素的含量随着遮光比例的升高而升高,遮光后叶绿素a/b 降低,捕光能力上升。原因。 因为学生知道,光是叶绿素形成的必需条件,所以大部分学生都错误认为叶绿素含量随光照增强而增加。 从资料中可以看出,这些变化都是为了适应植物在遮光条件下的生长。 一、遮光后叶绿素含量为什么会升高 叶绿素含量受到光照、温度、矿质元素、逆境等外界因素及核基因、质基因等内在因素的共同影响,在外部因素中光对叶绿素的合成与分解起主导作用。植物体中叶绿素的合成和分解处于一个动态平衡中,叶片光照后,才能顺利地合成叶绿素,但形成叶绿素所要求光照强度相对较低,当然过弱也不利于叶绿素的生物合成,除680nm以上波长以外,可见光中各种波长的光照都能促使叶绿素形成,光过强反而会发生光氧化而受破坏。 植物中叶绿素和蛋白质结合为结合态叶绿素才能发挥作用,而自由态的叶绿素则会对细胞造成光氧化损伤。为了避免自由态叶绿素对细胞造成的光氧化损伤,植物必须快速降解这些物质。 在遮光条件下,集光色素蛋白在光合单位中的相对含量会增加,从而导致结合态叶绿素增加。与此同时,降低了叶绿素的降解和光氧化,所以遮光后叶绿素的含量会增加。 遮荫环境下,植物通过增加单位叶面积色素密度和叶绿素含量,有利于提高植株的捕光能力,吸收更多的光,提高光能利用率,是对弱光环境的一种适应。 二、遮光后叶绿素a/b降低 在不同生理条件下,叶绿素a和叶绿素b的合成、分解速度影响了叶绿素a/b的比值,但调节叶绿素a/b的比值主要通过“叶绿素循环”实现。叶绿素a 和叶绿素b的相互转化称为“叶绿素循环”。 在遮光条件下,叶绿素a向叶绿素b的转化加快,叶绿素a水解形成脱植基叶绿素a,脱植基叶绿素a再转化为脱植基叶绿素b,最后合成叶绿素b,从而降低了叶绿素a/b的比值。弱光下叶绿素b的相对含量增高是有其生理适应,有利于对弱光的利用。

盐胁迫对植物的影响

盐胁迫对植物的影响 植物的抗盐性: 我国长江以北以及沿海许多地区,土壤中盐碱含量往往过高,对植物造成危害。这种由于土壤盐碱含量过高对植物造成的危害称为盐害,植物对盐害的适应能力叫抗盐性。根据许多研究报道,土壤含盐量超过0.2%~0.25%时就会造成危害。钠盐是形成盐分过多的主要盐类,习惯上把硫酸钠与碳酸钠含量较高的土壤叫盐土,但二者同时存在,不能绝对划分,实际上把盐分过多的土壤统称为碱土。世界上盐碱土面积很大,估计占灌溉农田的1/3,约4×107ha,而且随着灌溉农业的发展,盐碱面积将继续扩大。我国盐碱土主要分布于西北、华北、东北和海滨地区,盐碱土总面积约2~7×107ha,而且这些地区都属平原,盐地土层深厚,如能改良盐碱危害,发展农业的潜力很大,特别应值得重视。 土壤盐分过多对植物的危害: 1.生理干旱:土壤中可溶性盐类过多,由于渗透势增高而使土壤水势降低,根据水从高水势向低水势流动的原理,根细胞的水势必须低于周围介质的水势才能吸水,所以土壤盐分愈多根吸水愈困难,甚至植株体内水分有外渗的危险。因而盐害的通常表现实际上是旱害,尤其在大气相对湿度低的情况下,随蒸腾作用加强,盐害更为严重,一般作物在湿季耐盐性增强。 2.离子的毒害作用:在盐分过多的土壤中植物生长不良的原因,不完全是生理干旱或吸水困难,而是由于吸收某种盐类过多而排斥了对另一些营养元素的吸收,产生了类似单盐毒害的作用。 3.破坏正常代谢:盐分过多对光合作用、呼吸作用和蛋白质代谢影响很大。盐分过多会抑制叶绿素生物合成和各种酶的产生,尤其是影响叶绿素-蛋白复合体的形成。盐分过多还会使PEP羧化酶与RuBP 羧化酶活性降低,使光呼吸加强。生长在盐分过多的土壤中的作物(棉花、蚕豆、番茄等),其净光合速率一般低于淡土的植物,不过盐分过多对光合作用的影响是初期明显降低,而后又逐渐恢复,这似乎是一种适应性变化。盐分过多对呼吸的影响,多数情况下表现为呼吸作用降低,也有些植物增加盐分具有提高呼吸的效应,如小麦的根。呼吸增高是由于Na+活化了离子转移系统,尤其是对质膜上的Na+、K+与A TP活化,刺激了呼吸作用。盐分过多对植物的光合与呼吸的影响尽管不一致,但总的趋势是呼吸消耗增多,净光合速度降低,不利于生长。 一、实验目的 盐胁迫对植物生长发育的各个阶段都有不同程度的影响,如种子萌发、幼苗生长、成株生长等。不同种类的植物受盐胁迫影响的程度也各不相同。本实验主要观察Na2CO3对小麦种子萌发过程的影响,探讨小麦种子在盐胁迫下的萌发特性,对小麦的耐盐能力做出了初步评价。通过实验了解盐胁迫对植物(种子萌发)的影响;掌握种子萌发过程中发芽率、发芽势、发芽指数、芽长、总长、芽重、总重等各项指标的观察和计算方法;各项指标在盐胁迫条件下的变化趋势,绘制盐浓度与生长指标相关曲线,并分析盐胁迫对种子萌发的影响。 二、仪器设备和材料 电子天平;培养皿(直径120mm),滤纸(直径125mm定量滤纸若干),500ml、200ml烧杯,250ml 容量瓶,10ml移液管,玻璃棒,镊子,毫米刻度尺,剪刀;次氯酸钠、碳酸钠;小麦种子等。 三、实验方法和步骤 1.预处理 (1)种子的预处理:用10%的次氯酸钠消毒10min,蒸馏水冲洗数次后,于培养皿中做发芽实验。

不同环境条件下植物叶绿素a、b含量地比较

一、实验课题名称:不同环境条件下植物叶绿素a、b含量的比较 二、选题背景或文献综述: 《植物生理学实验指导》(第四版)、《植物生理学》(第六版)、上网查阅相关资料 阴生植物也称“阴性植物”,是在较弱的光照条件下生长良好的植物,但并不是阴生植物对光照强度的要求越弱越好,而是必须达到阴生植物的补偿点,植物才能正常生长,阳生植物也称“阳性植物”,光照强度对植物的生长发育及形态结构的形成有重要作用,在强光环境中生长发育健壮,在阴蔽和弱光条件下生长发育不良的植物称阳性植物,这类植物要求全日照,并且在水分、温度等条件适合的情况下,不存在光照过强的问题。 阳生植物和阴生植物的区别:关于光的饱和点和补偿点光是光合作用的能量来源,光照强度直接影响光合速率,在其它条件都适宜的情况下,在一定范围内,光合速率随光照强度提高而加快,当光照强度高到一定数值后,光照强度再提高而光合速率不再加快,这种现象叫光饱和现象。开始达到光饱和现象的光照强度称为光饱和点,在光饱和点以下,随着光照强度减弱,光合速率减慢,当减弱到一定光照强度时,光合作用吸收二氧化碳量与呼吸释放二氧化碳的量处于动态平衡,这时的光照强度称为光补偿点。此时植物制造有机物量和消耗有机物量相等,不同类型植物的光饱和点和

补偿点是不同的,阳性植物的光饱和点和补偿点一般都高于阴性植物。 结构和特性的区别:阴生植物的叶片的疏导组织比阳生植物稀疏,以叶绿体来说,阳生植物有较大的基粒,基粒片层数目多的多,叶绿素含量也高,阴生植物在较低的光照条件下充分的吸收光线,叶绿素a/叶绿素b的比值小,能够强烈的利用蓝紫光,阳性植物叶片小而厚,表面具蜡质或绒毛,叶脉密,单位面积内气孔多,叶绿素含量高,体内含盐分多,渗透压高,可以抗高温干旱,阳生植物的气孔一般在叶片下表皮分布的数量多于上表皮,这样可以避免阳光直晒而减少水分散失,阳生植物的呼吸速率高于阴生植物。 区分阳生植物与阴生植物,主要是根据植物对光照强度需要的不同,阳生植物要求充分直射日光才能生长或生长良好,阴生植物适宜于生长在荫蔽环境中,它们在完全日照下反而生长不良或不能生长,阳生植物和阴生植物之所以能适应不同光照,是与它们的生理特征和形态特征不同有关,以光饱和点来说,阳生植物的光饱合点是全光照(即全部太阳光照)的100%,而阴生植物是全光照的10%~50%。因为阴生植物叶片的输导组织比阳生植物的稀疏,当光照强度增大时,水分对叶片的供给不足,阴生植物便不再增加光合速率,以叶绿体来说,阴生植物与阳生植物相比,前者有较大的基粒,基粒片层数目多,叶绿素含量较高,能在较低光照强度下充分

测定叶绿素a和b的方法及其计算完整版

测定叶绿素a和b的方 法及其计算 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

实验二十五测定叶绿素a和b的方法及其计算 一目的要求: 熟悉在未经分离的叶绿体色素溶液中测定叶绿素a和b的方法及其计算。 二实验原理: 如果混合液中的两个组分,它们的光谱吸收峰虽然有明显的差异,但吸收曲线彼此有些重叠,在这种情况下要分别测定两个组分,可根据Lambert-Beer定律,通过代数方法,计算一种组分由于另一种组分存在时对光密度的影响,最后分别得到两种组分的含量。 如图z-4叶绿素a和b的吸收光谱曲线,叶绿素a的最大吸收峰在663nm,叶绿素b在645nm,吸收曲线彼此又有重叠。 图z-4 叶绿素a和b的吸收光谱曲线 横坐标为波长(nm),纵坐标为比吸收系数 根据Lambert-Beer定律,最大吸收光谱峰不同的两个组分的混合液,它们的浓度C与光密度OD之间有如下的关系: OD1=Ca·ka1+Cb·kb1 (1) OD2=Ca·ka2+Cb·kb2 (2) 式中:Ca为组分a的浓度,g/L。 Cb为组分b的浓度,g/L。 OD1为在波长λ1(即组分a的最大吸收峰波长)时,混合液的光密度OD值。 OD2为在波长λ2(即组分b的最大吸收峰波长)时,混合液的光密度OD值。

ka1为组分a的比吸收系数,即组分a当浓度为1g/L时,于波长λ1时的光密度OD值。 kb2为组分b的比吸收系数,即组分b当浓度为1g/L时,于波长λ2时的光密度OD值。 ka2为组分a(浓度为1g/L),于波长λ2时的光密度OD值。 kb1为组分b(浓度为1g/L),于波长λ1时的光密度OD值。 从文献中可以查到叶绿素a和b的80%丙酮溶液,当浓度为1g/L时,比吸收系数k值如下: 将表中数值代入上式(1)、(2),则得: OD663=×Ca+×Cb OD645=×Ca+×Cb 经过整理之后,即得到下式: Ca= OD645 Cb= OD663 如果把Ca,Cb的浓度单位从原来的g/L改为mg/L,则上式可改写为下列形式: Ca= OD645 (3) Cb= OD663 (4) CT= Ca+ Cb= OD663+ OD645 (5) (5)式中CT为总叶绿素浓度,单位为mg/L。 利用上面(3)、(4)、(5)式,即可计算出叶绿素a和b及总叶绿素的浓度 (mg/L)。 [附注]一般大学教学实验室所用的分光度计多为721型,属低级类型,其单色光的半波宽要比中级类型的751型宽得多,而叶绿素a和b吸收峰的波长相差仅18nm(663-645nm),难以达到精确测定。此外有时还由于仪器本身的标称波长与实际波长不符,

不同环境条件下植物叶绿素a、b含量的比较(分光光度法测定)

一、实验课题名称 不同环境条件下植物叶绿素a、b含量的比较(分光光度法测定) 二、文献综述 1.叶绿素a的生物合成过程 起始物是谷氨酸,之后为5-氨基酮戊酸,两分子的ALA缩合形成胆色素原(PBG),4分子PBG相互连结形成原中卟啉IX.原卟啉IX与Mg结合形成Mg-原卟啉原IX,光下E环的环化形成,D环的还原作用和叶绿醇尾部的连接完成了整个合成过程,合成过程中的许多步骤在图中已省略 2.影响叶绿素形成的条件 (1)光光是影响叶绿素形成的主要条件。从原叶绿素酸酯转变为叶绿酸酯需要光,而光过强,叶绿素又会受光氧化而破坏。黑暗中生长的幼苗呈黄白色,遮光或埋在土中的茎叶也呈黄白色。这种因缺乏某些条件而影响叶绿素形成,使叶子发黄的现象,称为黄化现象(etiolation)。 也有例外情况,例如藻类、苔藓、蕨类和松柏科植物在黑暗中可合成叶绿素,其数量当然不如在光下形成的多;柑橘种子的子叶及莲子的胚芽在无光照的条件下也能形成叶绿素,推测这些植物中存在可代替可见光促进叶绿素合成的生物物质。 (2)温度叶绿素的生物合成是一系列酶促反应,受温度影响。叶绿素形成的最低温度约2℃,最适温度约30℃,最高温度约40℃。秋天叶子变黄和早春寒潮过后秧苗变白,都与低温抑制叶绿素形成有关。高温下叶绿素分解大于合成,因而夏天绿叶蔬菜存放不到一天就变黄;相反,温度较低时,叶绿素解体慢,这也是低温保鲜的原因之一。 (3)营养元素叶绿素的形成必须有一定的营养元素。氮和镁是叶绿素的组成成分,铁、锰、铜、锌等则在叶绿素的生物合成过程中有催化功能或其它间接作用。因此,缺少这些元素时都会引起缺绿症(chlorosis),其中尤以氮的影响最大,因而叶色的深浅可作为衡量植株体内氮素水平高低的标志。 (4)氧缺氧能引起Mg-原卟啉IX或Mg-原卟啉甲酯的积累,影响叶绿素的合成。 (5)水缺水不但影响叶绿素生物合成,而且还促使原有叶绿素加速分解,所以干旱时叶片呈黄褐色。 通过对室外旱池处理条件下的甘薯叶片叶绿素含量变化的研究,结果表明,水分胁迫下甘薯品种叶片中叶绿素a、b及总叶

盐分胁迫对植物生长和生理影响

盐分胁迫对植物生长生理的影响 张华新,刘正祥等研究了光叶漆、银水牛果等11种树种后发现,盐胁迫后,各树种的苗高生长量下降、生物量累积减少,且随着处理浓度的增加均呈下降趋势,,各树种的根冠比值增大1 王润贤,周兴元,葛晋纲等人对草的研究后发现,在草坪草适应范围之内,根系活力和蛋白质含量呈先升后降的趋势,如超过忍受范围则持续下降。随盐分胁迫强度的增加和胁迫时间的延长,草坪草叶片的WSD上升,脯氮酸含量均表现为先升后降的趋势,但因胁迫程度和草种的不同,其峰值和下降幅度有较大差异。各项生理指标变化的趋势因草种的不同而有较大的差异,与其耐盐性有关,可以作为判定草坪草抗盐能力的评定依据。2 孙方行,李国雷对刺槐进行3天和17天盐胁迫处理后发现,MDA含量和细胞膜透性存在极显著正相关。叶绿素浓度和可溶性蛋白含量也存在极显著关。SOD活性和叶绿素浓度成负相关。从逐步回归分析可以看出细胞膜透性是影响高生长的主要指标3 张金香,钱金娥等人发现,经过前处理的1/2海水区中生长的苗木其叶、茎、根的生长量均超过淡水区中生长的苗木。说明一定程度的耐盐锻炼能够增强苗木对盐碱、干旱环境的适应能力4 张士功,高吉寅,宋景芝发现,6-苄基腺嘌呤、水杨酸、阿斯匹林,硝酸钙能够在一定程度上限制幼苗对Na+的吸收,阻滞其向地上部分运输的数量和速度。提高体内K+含量、向上运输效率,降低地上部分对Na+、K+的选择性(SNa+、K+>,同时6-苄基腺嘌呤还能够促进幼苗根系对Cl-的吸收,并有效地将Cl-限制在根部,阻滞Cl-向上运输,相对降低地上部分的Cl,这些都有利于

提高小麦幼苗抗盐性和对盐分胁迫的适应性5 王强,石伟勇,符建荣,指出,叶面喷施海藻液肥能提高黄瓜根冠比和干物质含量,提高根系总吸收面积和活跃吸收面积。不同浓度的海藻液肥均能降低盐胁迫对叶片质膜的伤害,提高SOD、POD等酶的活性,降低膜脂过氧化产物MDA的积累,提高脯氨酸、可溶性糖、可溶性蛋白等渗透调节物质的含量6 许兴,郑国琦.等指出,在等渗条件下,NaCl胁迫引起的小麦叶片组织含水量的下降、胁迫伤害率的增大及叶片和根部的脯氨酸、可溶性糖、Na+、K+含量的增加,均大于PEG胁迫引起的变化7 郑国琦,许兴,徐兆桢研究了盐分胁迫对植物的伤害和探讨了植物的耐盐的生物学机理以及通过基于改良作物耐盐性的研究进程。8 吴忠东,王全九.研究发现,在不同的生育期降水量条件下,冬小麦对盐分胁迫有着不同的响应。生育期一般年和湿润年可以采用的最高矿化度为3 g/L,而在生育期偏旱年,如果不采取其他措施的条件下,可以采用的最高矿化度为2 g/L,该结果为合理开发利用当地的地下咸水资源提供了一定的依据。9 郭淑霞,龚元石在研究盐分胁迫对菠菜生长和吸氮量的影响后发现,对菠菜进行盐分胁迫,前 44 天,随着盐分胁迫程度增加,菠菜相对生长速率

叶绿素a测定实验报告

叶绿素a测定实验报告 (一)实验目的及意义 水体富营养化可以通过跟踪监测水中叶绿素的含量来实现,其中叶绿素a是所有叶绿素中含量最高的,因此叶绿素a的测定能示踪水体的富营养化程度。 (二)水样的采集与保存 1.确定具体采样点的位置 2.在采样点将采样瓶及瓶盖用待测水体的水冲洗3-5遍 3.将采样瓶下放到距水面0.5-1m处采集水样2.5L 4.在采样瓶中加保存试剂,每升水样中加1%碳酸镁悬浊液1mL 5.将采样瓶拧上并编号 6.用GPS同步定位采样点的位置 (三)仪器及试剂 仪器: 1.分光光度计 2.比色池:10mm 3.过滤装置:过滤器、微孔滤膜(孔径0.45μm,直径60mm) 4.研钵 5.常用实验设备 试剂: 1.碳酸镁悬浮液:1%。称取1.0g细粉末碳酸镁悬浮于100mL蒸馏水中。每次使用时要充分摇匀 2.乙醇溶液 (四)实验原理 将一定量的试样用微孔滤膜过滤,叶绿素会留在滤膜上,可用乙醇溶液提取。 将提取液离心分离后,测定750、663、645、630mm的吸光度,计算叶绿素的浓度。 (五)实验步骤 1.浓缩:在一定量的试样中添加0.2mL碳酸镁悬浮液,充分搅匀后,用直径60mm 的微孔滤膜吸滤.过滤器内无水分后,还要继续抽吸几分钟.如果要延时提取,可把载有浓缩样品的滤膜放在干燥器里冷冻避光贮存。 2. 提取:将载有浓缩样品的滤膜放入研钵中,加入7mL乙醇溶液至滤纸浸湿的程度,把滤膜研碎,再少量地加乙醇溶液,把滤膜完全研碎,然后用乙醇溶液将已磨碎的滤膜和乙醇溶液洗入带刻度的带塞离心管中,使离心管内提取液的总体积不超过10mL,盖上管塞,置于的暗处浸泡24h。 3.离心:将离心管放入离心机中,以4000r/min速度离心分离20min。将上清液移入标定过的10mL具塞刻度管中,加少量乙醇于原提取液的离心管中,再次悬浮沉淀物并离心,合并上清液。此操作重复2-3次,直至沉淀不含色素为止,最后将上清液定容至10mL。 4.测定:取上清液于10mm的比色池中,以乙醇溶液为对照溶液,读取波长750,663,645和630mm的吸光度。

测定叶绿素a和b的方法及其计算

实验二十五测定叶绿素a和b的方法及其 计算 一目的要求: 熟悉在未经分离的叶绿体色素溶液中测定叶绿素a和b 的方法及其计算。 二实验原理: 如果混合液中的两个组分,它们的光谱吸收峰虽然有明显的差异,但吸收曲线彼此有些重叠,在这种情况下要分别测定两个组分,可根据Lambert-Beer定律,通过代数方法,计算一种组分由于另一种组分存在时对光密度的影响,最后分别得到两种组分的含量。 如图z-4叶绿素a和b的吸收光谱曲线,叶绿素a的最大吸收峰在663nm,叶绿素b在645nm,吸收曲线彼此又有重叠。 图z-4 叶绿素a和b的吸收光谱曲线 横坐标为波长(nm),纵坐标为比吸收系数

根据Lambert-Beer定律,最大吸收光谱峰不同的两个组分的混合液,它们的浓度C与光密度OD之间有如下的关系: OD1=Ca·ka1+Cb·kb1 (1) OD2=Ca·ka2+Cb·kb2 (2) 式中:Ca为组分a的浓度,g/L。 Cb为组分b的浓度,g/L。 OD1为在波长λ1(即组分a的最大吸收峰波长)时,混合液的光密度OD值。 OD2为在波长λ2(即组分b的最大吸收峰波长)时,混合液的光密度OD值。 ka1为组分a的比吸收系数,即组分a当浓度为1g/L时,于波长λ1时的光密度OD值。 kb2为组分b的比吸收系数,即组分b当浓度为1g/L时,于波长λ2时的光密度OD值。 ka2为组分a(浓度为1g/L),于波长λ2时的光密度OD 值。 kb1为组分b(浓度为1g/L),于波长λ1时的光密度OD 值。 从文献中可以查到叶绿素a和b的80%丙酮溶液,当浓度为1g/L时,比吸收系数k值如下:

不同浓度盐胁迫对小麦幼苗生理特性的影响

不同浓度盐胁迫对小麦幼苗生理特性的影响 学院:生命科学学院 作者:马宗英马丽娜 王琳木娜瓦尔 刘榕

摘要小麦的生长在不同盐浓度土壤中呈现不同的生理特性。当分别用清水、60mmol?L盐溶液、120mmol?L盐溶液处理小麦幼苗后,小麦植株的株高、叶长、叶宽、生物量、气孔形态数目和叶片脯氨酸、可溶性糖含量等生理指标都受到了正面或者负面的影响。 关键词小麦;盐胁迫;生理特性 Abstract The growth of the wheat in different salt concentration is different in different soil physical properties. When separately with clear water, 60 tendency/salt solution, the tendency for 120 mmol/L after salt solution processing wheat seedling, plant height, leaf length, leaf width of wheat plant, biomass, number of stomatal morphology and physiological indexes such as leaf proline, soluble sugar content was positive or negative influence. Keywords wheat ;salt stress ;physiological characteristic 盐胁迫对植物的影响是多方面的,会改变植物的生理特性,破坏组织和细胞的结构功能,抑制植物的生长发育、光合作用、叶绿素合成等等,而且在盐胁迫时,植物本身为了减少水分的损失,会相应的减少气孔的大小和数目。 但是盐胁迫条件下,植物体中游离脯氨酸合成受到促进,含量会发生明显增加,与之变化趋势相同的生理指标还有植物体内的可溶性糖含量,植物为了适应逆境条件,会主动积累一些可溶性糖,降低渗透势和冰点,以增加抗逆性。 1.实验材料 室内栽培的小麦幼苗 2.试验方法及步骤 2.1小麦的种植方法: 1.在花盆底铺一层纱网,装满土,由同一人用大小适中的力气把土压 实,并用自来水浇透。 2.把种子放于浅盆内萌发。 3.将萌发的麦种种在花盆中,每盆10棵,共六盆,各盆做好标记。 种子埋于土表下1㎝左右,每盆选两株做好标记。 4.植株长叶后每天于同一时间测量每盆中标记株的株高和叶长,做好 记录。

水体叶绿素a测定方法

叶绿素a的测定方法——乙醇+分光光度法 1、水样的保存 水样注入水样瓶后,应放置在阴凉处,并避免阳光直射。若水样的进一步处理需要较长时间(大于12h),则应置于0℃~4℃低温下保存。水样量视水体中浮游植物多少而定,一般应采0.5~2L。 2、抽滤 在抽滤装置的滤器中放入GF/C滤膜。抽滤时负压应不大于50kPa。抽滤完毕后,用镊子小心地取下滤膜,将其对折(有藻类样品的一面向里),再用普通滤纸吸压,尽量去除滤纸上的水分。如不立即提取,应将滤膜放在黑暗低温条件下保存。在普通冰箱冷冻室中可存放几天,在-20℃低温冰箱中可保存30天。 3、提取 研磨可用玻璃研钵。将滤膜剪碎放入研钵,加入90%乙醇溶液7~8ml,研磨3~5分钟直至变为匀浆。将研磨后的匀浆移入具塞带刻度的离心管中。用少量提取液冲洗研钵或匀浆器,冲洗液并入离心管中,使终容积略小于10ml。盖上关塞,摇动后置于黑暗低温处进行提取至少6-24h。 4、离心 将装有提取液的离心管放入离心机中,转速3500~4000rpm,离心10~15min。将上层叶绿素提取液移入定量试管中,再用少量提取液清洗、离心二次取得提取液。最后将提取液定容到10ml。如果大批样品需同步操作时,可减少离心步骤,直接在提取液中浸泡滤膜6-24h,取其清液即可。 5、测定 用90%乙醇溶液作为参照液(参照比色皿中盛放90%乙醇溶液,并用90%乙醇调分光光度计零点)。测定定容后的提取液在665nm和750nm处的吸光度,并计算两个吸光度的差记为A1;然后向比色皿中加入1滴1mol/L的盐酸酸化,酸化5—10min(可以用不同时间实验再进行调整)后再次测定酸化后的提取液在665和750nm处的吸光度,并且把酸化后的两个吸光度的差记为A2.则提取液中叶绿素a的浓度为: Chla=27.9×(A1-A2)×V提取液/V 脱镁叶绿素浓度为: Chla=27.9×(1.7 A2-A1)×V提取液/V 其中Chla为水样中的叶绿素a含量,单位为ug/L;V提取液为提取液的最终定容体积,单位为mL;V为抽滤水样的体积,单位为L。

盐胁迫对植物的影响

盐胁迫对植物的影响 植物的抗盐性: 我国长江以北以及沿海许多地区,土壤中盐碱含量往往过高,对植物造成危害。这种由于土壤盐碱含量过高对植物造成的危害称为盐害,植物对盐害的适应能力叫抗盐性。根据许多研究报道,土壤含盐量超过0、2%~0、25%时就会造成危害。钠盐就是形成盐分过多的主要盐类,习惯上把硫酸钠与碳酸钠含量较高的土壤叫盐土,但二者同时存在,不能绝对划分,实际上把盐分过多的土壤统称为碱土。世界上盐碱土面积很大,估计占灌溉农田的1/3,约4×107ha,而且随着灌溉农业的发展,盐碱面积将继续扩大。我国盐碱土主要分布于西北、华北、东北与海滨地区,盐碱土总面积约2~7×107ha,而且这些地区都属平原,盐地土层深厚,如能改良盐碱危害,发展农业的潜力很大,特别应值得重视。 土壤盐分过多对植物的危害: 1、生理干旱:土壤中可溶性盐类过多,由于渗透势增高而使土壤水势降低,根据水从高水势向低水势流动的原理,根细胞的水势必须低于周围介质的水势才能吸水,所以土壤盐分愈多根吸水愈困难,甚至植株体内水分有外渗的危险。因而盐害的通常表现实际上就是旱害,尤其在大气相对湿度低的情况下,随蒸腾作用加强,盐害更为严重,一般作物在湿季耐盐性增强。 2、离子的毒害作用:在盐分过多的土壤中植物生长不良的原因,不完全就是生理干旱或吸水困难,而就是由于吸收某种盐类过多而排斥了对另一些营养元素的吸收,产生了类似单盐毒害的作用。 3、破坏正常代谢:盐分过多对光合作用、呼吸作用与蛋白质代谢影响很大。盐分过多会抑制叶绿素生物合成与各种酶的产生,尤其就是影响叶绿素-蛋白复合体的形成。盐分过多还会使PEP羧化酶与RuBP羧化酶活性降低,使光呼吸加强。生长在盐分过多的土壤中的作物(棉花、蚕豆、番茄等),其净光合速率一般低于淡土的植物,不过盐分过多对光合作用的影响就是初期明显降低,而后又逐渐恢复,这似乎就是一种适应性变化。盐分过多对呼吸的影响,多数情况下表现为呼吸作用降低,也有些植物增加盐分具有提高呼吸的效应,如小麦的根。呼吸增高就是由于Na+活化了离子转移系统,尤其就是对质膜上的Na+、K+与ATP活化,刺激了呼吸作用。盐分过多对植物的光合与呼吸的影响尽管不一致,但总的趋势就是呼吸消耗增多,净光合速度降低,不利于生长。 一、实验目的 盐胁迫对植物生长发育的各个阶段都有不同程度的影响,如种子萌发、幼苗生长、成株生长等。不同种类的植物受盐胁迫影响的程度也各不相同。本实验主要观察Na2CO3对小麦种子萌发过程的影响,探讨小麦种子在盐胁迫下的萌发特性,对小麦的耐盐能力做出了初步评价。通过实验了解盐胁迫对植物(种子萌发)的影响;掌握种子萌发过程中发芽率、发芽势、发芽指数、芽长、总长、芽重、总重等各项指标的观察与计算方法;各项指标在盐胁迫条件下的变化趋势,绘制盐浓度与生长指标相关曲线,并分析盐胁迫对种子萌发的影响。 二、仪器设备与材料 电子天平;培养皿(直径120mm),滤纸(直径125mm定量滤纸若干),500ml、200ml烧杯,250ml容量瓶,10ml移液管,玻璃棒,镊子,毫米刻度尺,剪刀;次氯酸钠、碳酸钠;小麦种子等。 三、实验方法与步骤 1、预处理 (1)种子的预处理:用10%的次氯酸钠消毒10min,蒸馏水冲洗数次后,于培养皿中做发芽实验。

植物对盐胁迫的反应

植物对盐胁迫的反应 植物对盐胁迫的反应及其抗盐机理研究进展 杨晓慧1,2,蒋卫杰1*,魏珉2,余宏军1 (1.中国农业科学院蔬菜花卉研究所,北京100081;2.山东农业大学园艺科学与工程学院,山东泰安271018) REVIEW ON PLANT RESPONSE AND RESISTANCE MECHANISM TO SALT STRESS YANG Xiao-hui1,2,JIANG Wei-jie1*,WEI Min2,YU Hong-jun1( 1.Institute of Vegetables and Flowers,Chinese Academy of Agricultural Science,Beijing100081,China;2.College of Horticulture Science and Engineering,Shandong Agriculture University,Taian 271018,China) Key words:Iron stress,Osmotic stress,Salt resistant mechanism,Plant 摘要:本文从植物形态发育、质膜透性、光合和呼吸作用以及能量代谢等方面概述了盐胁迫下植物的生理生化反应,分析了盐害条件下离子胁迫和渗透胁迫作用机理以及植物的耐盐机制:植物小分子物质的积累、离子摄入和区域化、基因表达和大分子蛋白质的合成等,并简要综述了植物抗盐的分子生物学研究进展。 关键词:离子胁迫;渗透胁迫;耐盐机制;植物 中图分类号:S601文献标识码:A文章编号:1000-2324(2006)

植物生理学实验-叶绿素a b测定

叶绿素a,b含量测定 [实验目的]熟悉在未经分离的叶绿素溶液中测定叶绿素a和b的方法及其计算。 [实验原理]在叶绿素a和b的吸收光谱曲线中,红波波长范围内,叶绿素a的最大吸收峰在663nm,叶绿素b的最大吸收峰在645nm。吸收曲线彼此又有重叠。 根据Lambert—Beer定律,最大吸收峰不同的两个组分的混合液,它们的浓度C与光密度OD之间有如下关系:OD1=Ca·ka1+Cb·kb1 (1) OD2=Ca·ka2+Cb·kb2 (2) Ca为组分a的浓度(g/L) Cb为组分b的浓度(g/L) OD1为在波长λ1(即组分a的最大吸收峰波长)时,混合液的光密度OD值。 OD2为在波长λ2(即组分b的最大吸收缝波长)时,混合液的光密度OD值。 ka1,kb1,ka2,kb2分别为组分a,b的比吸收系数,即组分a(b)的浓度为(1g/L)时,其在相应波长(λ1,λ2)时的光密度OD值。 叶绿素A和B的80%丙酮溶液,当浓度为1时,比吸收系数K值如下表: 将表中数值代入上式(1),(2)并整理的: Ca=0.0127OD663-0.00269OD645 Cb=0.0229OD645-0.00468OD663 若把Ca,Cb的浓度单位从原来的g/L改为mg/L,则上式可改写为下列形式: Ca=12.7OD663-2.69OD645 (3) Cb=22.9OD645-4.68OD663 (4) Ct=Ca+Cb=8.02OD663+20.21OD645 (5) Ct为叶绿素总浓度,单位为g/L。 利用(3),(4),(5)式即可计算出叶绿素A和B及总叶绿素的浓度(g/L)。 [器材与试剂] 1.实验仪器:高级型分光光度计,离心机,台天平,剪刀,研钵,漏斗,移液管 2.实验试剂:丙酮,碳酸钙 3.实验材料:植物叶片 [实验步骤] 1.色素的提取:取新鲜叶片,剪去粗大的叶脉并剪成碎块,称取0.5G放入研钵中加纯丙酮5ML,少许碳酸钙和石英砂,研磨成匀浆,再加80%丙酮5ML,将匀浆转入离心管,并用适量80%丙酮洗涤研钵,一并转入离心管,离心后弃沉淀,上清液用80%丙酮定容至20ML。 2.测定光密度:取上述色素提取液1ml,加80%丙酮4ml稀释和转入比色杯中,以80%丙酮为对照,分别测定663nm,645nm处的光密度值。 3.按公式分别计算色素提取液中叶绿素A,B及叶绿素总浓度。再根据稀释倍数分别计算每克鲜重叶片中色素的含量。 [注意事项] 1.由于植物子叶中含有水分,故先用纯丙酮进行提取,以色素提取液中丙酮的最终浓度近似80%。 2.由于叶绿素A,B的吸收峰很陡,仪器波长稍有偏差,就会使结果产生很大的误差,因此最好能用波长较正确的高级型分光光度计。 [实验作业] 1.试比较阴生植物和阳生植物的叶绿素A和叶绿素B的比值有无不同。 2.分光光度法和比色法有何不同? 3.叶绿素A和叶绿素B在红光区和蓝光区都有最大吸收峰,能否用蓝光区的最大吸收峰波长进行叶绿素A和叶绿素B 的定量分析,为什么?

实验十 叶绿素a和b含量的测定

实验十叶绿素a和b含量的测定(分光光度法) 一、目的 学会Chla、b含量的测定方法,了解叶片中Chla、b的含量。 二、原理 根据朗伯-比尔(Lambert-Beer)定律,某有色溶液的吸光度A值与其中溶质浓度C以及光径L成正比,即A=aCL(a为该物质的吸光系数)。各种有色物质溶液在不同波长下的吸光值可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下的吸光度的总和,这就是吸光度的加和性。 乙醇溶液中叶绿素a、b在长波光方面的最大吸收峰位于665nm和649nm,同时在该波长时叶绿素a、b的比吸收系数K(溶液厚度是1cm,溶液浓度为1g/L的吸光度)为已知,我们即可以根据Lambert Beer定律,它们的浓度C与吸光度A之间有如下的关系: A665 = 83.31 Ca + 18.60 C b (1) A649 = 24.54 Ca + 44.24 C b (2) (1)(2)式中的A665、A649为叶绿素溶液在波长665nm和649nm时的光密度。

C a、C b为叶绿素a、b的浓度、单位为每升克数。 83.31、18.60为叶绿素a、b在、在波长665nm时的比吸收系数。 24.54、44.24为叶绿素a、b在、在波长649nm时的比吸收系数。 解方程式(1)(2),则得: C A = 13.7 A665 - 5.76 A649 (3) C B = 25.8 A649 - 7.6 A665 (4) G = C A + C B = 6.10 A665 + 20.04 A649 (5) 此时,G为总叶绿素浓度,C A、C B为叶绿素a、b浓度,单位为每升毫克,利用上面(3)(4)(5)式,即可以计算叶绿素a、b及总叶绿素的总含量。 三、材料用具及仪器药品 菠菜叶片、分光光度计、天平、研钵、剪刀、容量瓶(25ml)、漏斗、滤纸、乙醇(95%) 四、方法步骤 1.称取0.2克新鲜去叶脉叶片,剪碎,放在研钵中,加少许CaCO3,加入乙醇10ml共研磨成匀浆,再加5ml乙醇,过滤,最后将滤液用乙醇定容到25ml。 2.取一光径为1cm的比色杯,注入上述的叶绿素乙醇溶液,另加乙醇注入另一同样规格的比色杯中,作为对照,在分光光度计下分别以665nm和649nm波长测出该色素液的光密度。 计算结果: 五、实验报告

植物盐胁迫及其抗性生理研究进展解读

植物盐胁迫及其抗性生理研究进展 李艺华1罗丽2 (1、漳州华安县科技局华安 363800 2、福建农林大学园艺学院福州 350002 摘要:盐胁迫是制约农作物产量的主要逆境因素之一。本文综合了几年来植物盐胁迫研究的报道,对盐胁迫下植物生理生化和生长发育变化、植物自身生理系统的响应以及增强植物抗盐胁迫的方法进行综述和讨论。 关键词:植物抗盐胁迫生理 中图分类号:Q945.7 文献标识码:A 文章编号:1006—2327—(200603—0046—04 盐胁迫是目前制约农作物产量的主要逆境因素之一[1],既有渗透胁迫又有离子胁迫[2]。随着土壤盐渍化面积的扩展,许多非盐生植物因受盐胁迫而导致产量和品质的快速下降,已成为中国西北部和沿海地区迫切解决的难题。迄今,植物盐胁迫这方面有较多的研究报道,多数侧重于某一植物或是植物某一生长阶段耐盐胁迫性与抗盐胁迫性的研究,缺少对植物抗盐胁迫有一个较为系统的综合阐述。鉴于植物抗盐胁迫的研究面的广泛性和分散性,本文综合了几年来抗盐胁迫研究报道,对植物抗盐胁迫的生理机制做一个综合阐述,为阐明植物对盐胁迫的反应机制提供一个较系统的理论依据。 1 盐胁迫对植物生理生化和生长发育的影响 盐胁迫对植物生理生化的影响可分为三方面:离子毒害、渗透胁迫和营养亏缺。离子毒害作用包括过量的有毒离子钠和氯对细胞膜系统的伤害,导致细胞膜透性的增大,电解质的外渗以及由此而引起的细胞代谢失调;渗透胁迫是由于根系环境中盐分浓度的提高、水势下降而引起的植物吸水困难;营养亏缺则是由于根系吸收过程中高浓度Na和Cl 离子存在,干扰了植物对营养元素K、Ca和N的吸收,造成植物体内营养元素的缺乏,影响植物生长发育[1]。大量试验结果表明,盐胁迫不同程度地影响植物的光合作用、呼吸作用和渗透作用,影响植物的同、异化功能[3],当盐

叶绿素a测定

实验三富营养化湖中藻量的测定(叶绿素a法) 一、实验目的 富营养化湖由于水体受到污染,尤以氮磷为甚,致使其中的藻类旺盛生长。此类水体中代表藻类的叶绿素a浓度常大于10微克/升。 本实验通过测定不同水体中藻类叶绿素a浓度,以考查其富营养化情况。 二、器材与用品 1、分光光度计(波长选择大于750nm,精度为0.5-2nm)。 2、比色杯(1cm;4cm)。 3、台式离心机(3500r/min) 4、离心管(15ml具刻度和塞子);冰箱 5、匀浆器或小研钵。 6、蔡氏滤器;滤膜(0.45微克,直径47mm)。 7、真空泵(最大压力不超过300kpa)。 8、MgCO3悬液:lg MgCO3细粉悬于100ml蒸馏水中。 9、90%的丙酮溶液:90份丙酮+10份蒸馏水。 10、水样:两种不同污染程度的湖水水样各2L. 三、方法和步骤

1、按浮游植物采样方法,湖泊、水库采样500ml,池塘300ml。采样点及采水时间同“浮游植物”。 2、清洗玻璃仪器:整个实验中所使用的玻璃仪器应全部用洗涤剂清洗干净,尤其应避免酸性条件下而引起的叶绿素a分解。 3、过滤水样;在蔡氏滤器上装好滤膜,每种测定水样取50-500ml减压过滤。待水样剩余若干毫升之前加入0.2ml MgCO3悬液、摇匀直至抽干水样。加入MgCO3可增进藻细胞滞留在滤膜上,同时还可防止提取过程中叶绿素a被分解。如过滤后的载藻滤膜不能马上进行提取处理,应将其置于干燥器内,放冷(4℃)暗处保存,放置时间最多不能超过48小时。 4、提取;将滤膜放于匀浆器或小研钵内,加2-3ml90%的丙酮溶液,匀浆,以破碎藻细胞。然后用移液管将匀浆液移入刻度离心管中,用5ml90%丙酮冲洗2次,最后向离心管中补加90%丙酮,使管内总体积为10ml。塞紧塞子并在管子外部罩上遮光物,充分振荡,放冰箱避光提取18-24小时。 5、离心:提取完毕后,置离心管于台式离心机上3500r/min,离心10min,取出离心管,用移液管将上清液移入刻度离心管中,塞上塞子,3500r/min在离心10min。正确记录提取液的体积。

盐胁迫对植物的影响及植物的抗盐机理

盐胁迫对植物的影响及植物的抗盐机理 摘要: 盐是影响植物生长和产量的主要环境因子之一, 根据国内外最新的研究资料, 从盐胁迫对植物的生长、水分关系、叶片解剖学、光和色素及蛋白、脂类、离子水平、抗氧化酶及抗氧化剂、氮素代谢、苹果酸盐代谢、叶绿体超微结构的影响, 及影响光合作用的机制等方面入手, 对植物盐胁迫研究现状及进展情况进行了综述, 旨在为开展植物抗盐机理研究、选育培育耐盐植物新品种提供依据。 关键词: 植物盐胁迫抗盐性机理 Effects of Salt Stress on Plants and the Mechanism of Salt Tolerance Abstract: Salinity is the major environmental factor limit ing plant growth and productivity. According to the documents and data at home and abroad, the research currents of salt stress in plants were summarized including the effect on plant growth, the water relations, leaf anatomy, photosynthetic pigments and proteins, lipids, ion levels, antioxidative enzymes and antioxidants etc. This r eview may help to study the salt2toler ant mechanism and breeding new salt-toler ant plants. Key words: plant, salt2stress, salt2tolerant, mechanism 目前, 受全球气候变化、人口不断增长的影响,土壤盐碱化日趋严重。盐分是影响植物生长和产量的一个重要环境因子, 高盐会造成植物减产或死亡。过去的二十年已有很多有关盐胁迫生物学及植物对高盐反应的报道。这些研究涉及到胁迫相关的生物学、生理学、生化及植物对盐胁迫产生的一些复杂的反应等很多方面。本文分别在盐胁迫对植物产生的影响、植物抗盐途径、抗盐的生理基础和分子机制等方面进行了综述。 1 盐胁迫对植物的影响 各种盐类都是由阴阳离子组成的, 盐碱土中所含的盐类, 主要是由四种阴离子(Cl- 、SO42- 、CO32- 、HCO3- ) 和三种阳离子( Na+ 、Ca2+ 、Mg2+ ) 组合而成。阳离子与Cl- 、SO42- 所形成的盐为中性盐; 阳离子与CO32- 、HCO3- 所形成的盐为碱性盐, 其中对植物危害的盐类主要为Na 盐和Ca 盐, 其中以Na盐的危害最为普遍。盐胁迫下, 所有植物的生长都会受到抑制, 不同植物对于致死盐浓度的耐受水平和生长降低率不同。盐胁迫几乎影响植物所有的重 要生命过程, 如生长、光合、蛋白合成、能量和脂类代谢。 1. 1 对生长及植株形态的影响 盐胁迫会造成植物发育迟缓, 抑制植物组织和器官的生长和分化, 使植物的发育进程提前。植物被转移到盐逆境中几分钟后, 生长速率即有所下降,其下降程度与根际渗透压呈正比。最初盐胁迫造成植物叶面积扩展速率降低, 随着含盐量的增加, 叶面积停止增加, 叶、茎和根的鲜重及干重降低。盐分主要是通过减少单株植物的光合面积而造成植物碳同化量的减少。在控制条件下测试了11 种木麻黄属植物以后, 发现木麻黄的发芽率和生长速率随NaCl浓度的增加而降低[1] 。植物叶片中Na+ 的过量积累常见叶尖和叶缘焦枯( 钠灼伤) , 而且会抑制对钙的吸收, 造成植物的缺钙现象, 新叶抽出困难, 早衰, 结实少或不结实; Ca2+ 过量可能导致缺乏硼、铁、锌、锰等养分;Mg2+过量则会使植物叶缘焦枯, 导致缺钾, 老叶叶尖叶缘开始失绿黄化, 直至焦枯。SO2-4 离子浓度高也会引起缺钙, 使植物的叶片发黄, 从叶柄处脱落。氯离子的过量积累也会引起氧灼伤, 植株生长停滞、叶片黄化, 叶缘似烧伤, 早熟性发黄及叶片脱落, 而且还会影响硝态氮的吸收和利用。 1. 2 对水分关系的影响 植物的水势和渗透压势与盐分的增加呈负相关, 而细胞膨胀压则会随着盐分的增加而升高。

相关文档
最新文档