角动量守恒定律是什么 公式有哪些

角动量守恒定律是什么 公式有哪些

角动量守恒定律是什么公式有哪些

有很多的同学是非常想知道,角动量守恒定律是什幺,公式有哪些,小编整理了相关信息,希望会对大家有所帮助!

1 角动量守恒定律内容对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。

物理学的普遍定律之一。反映质点和质点系围绕一点或一轴运动的普遍规律

如果合外力矩零(即M 外=0),则L1=L2,即L=常矢量。

这就是说,对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。

1 角量守恒公式是什幺角动量守恒定律是用来叙述刚体旋转运动的方法,要想了解它建议用和动量守恒定律类比的方法

很容易理解,我给您谢几个公式,注意他们是对应的:

1 动量:质量m,速度v,加速度a,动量mv,力F,F=ma

2 角动量:转动惯量J,角速度w,角加速度β,角动量Jw,力矩M,M=Jβ

可以看出转动惯量是“充当”质量的角色,力矩充当了力的角色

牛2:物体不受外力或合外力为0,则物体保持运动状态不变

角:旋转物体不受外力矩或和力矩为0,则物体保持旋转状态不变

以上可以看出其数学结构很统一,但是角动量中转动惯量的求法要复杂的多, 有些需要微积分基础,这里给出质点:J=mr

最后,角动量守恒定理:

高中物理动量守恒定律练习题及答案及解析

高中物理动量守恒定律练习题及答案及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求: (1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =01 4 P E mgx =0(2043)v gx =+【解析】 试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°= 1 2 mv 12 解得:103v gx = 又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011 322 v v gx == (2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P + 1 2 ?2mv 22=0+2mg?x 0sin30° 解得:E P =2mg?x 0sin30°? 1 2?2mv 22=mgx 0?34 mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,

动量、冲量及动量守恒定律

动量、冲量及动量守恒定律

动量和动量定理 一、动量 1.定义:运动物体的质量和速度的乘积叫动量;公式p=m v; 2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则. 3.动量的变化量 (1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式). (2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正负号的数值表示,从而将矢量运算简化为代数运算(此时的正负号仅代表方向,不代表大小). 4.与动能的区别与联系: (1)区别:动量是矢量,动能是标量. (2)联系:动量和动能都是描述物体运动状态的物 理量,大小关系为E k=p2 2m或p=2mE k. 二、动量定理 1.冲量 (1)定义:力与力的作用时间的乘积.公式:I=

Ft.单位:牛顿·秒,符号:N·s. (2)矢量性:方向与力的方向相同. 2.动量定理 (1)内容:物体在一个运动过程中始末的动量变化量等于它在这个过程中所受力的冲量. (2)公式:m v′-m v=F(t′-t)或p′-p=I.3.动量定理的应用 碰撞时可产生冲击力,要增大这种冲击力就要设法减少冲击力的作用时间.要防止冲击力带来的危害,就要减小冲击力,设法延长其作用时间.(缓冲) 题组一对动量和冲量的理解 1.关于物体的动量,下列说法中正确的是() A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向 B.物体的动能不变,其动量一定不变 C.动量越大的物体,其速度一定越大 D.物体的动量越大,其惯性也越大 2.如图所示,在倾角α=37°的斜面上, 有一质量为5 kg的物体沿斜面滑下,物 体与斜面间的动摩擦因数μ=0.2,求物体下滑2

高中物理公式大全(全集) 八、动量与能量

八、动量与能量 1.动量 2.机械能 1.两个“定理” (1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p ) (2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k ) 动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化. 例如,质量为m 的小球以速度v 0与竖直方向成θ角 打在光滑的水平面上,与水平面的接触时间为Δt ,弹起 时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则 在Δt 内: 以小球为研究对象,其受力情况如图所示.可见小球 所受冲量是在竖直方向上,因此,小球的动量变化只能在 竖直方向上.有如下的方程: F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ) 小球水平方向上无冲量作用,从图中可见小球水平方向动量不变. 综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方 面考虑了.Δt 内应用动能定理列方程:W 合=m υ02/2-m υ02 /2 =0 2.两个“定律” (1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零 公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′ (2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功 公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k 3.动量守恒定律与动量定理的关系 一、知识网络 二、画龙点睛 规律

动量守恒定律

动量守恒定律 一.动量和冲量 1.动量:物体的质量和速度的乘积叫做动量:p =mv ⑴动量是描述物体运动状态的一个状态量,它与时刻相对应。 ⑵动量是矢量,它的方向和速度的方向相同。 2.冲量:力和力的作用时间的乘积叫做冲量:I =Ft ⑴冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。 ⑵冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。 ⑶高中阶段只要求会用I=Ft 计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。 ⑷要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。 例1. 质量为m 的小球由高为H 的光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大 - 解:力的作用时间都是g H g H t 2sin 1 sin 22 α α== ,力的大小依次是mg 、 mg cos α和mg sin α,所以它们的冲量依次是: gH m I gH m I gH m I N G 2,tan 2,sin 2=== 合α α 特别要注意,该过程中弹力虽然不做功,但对物体有冲量。 二、动量定理 1.动量定理:物体所受合外力的冲量等于物体的动量变化。既I =Δp ⑴动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。 ⑵动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。 ⑶现代物理学把力定义为物体动量的变化率:t P F ??=(牛顿第二定律的动量形式)。 ⑷动量定理的表达式是矢量式。在一维的情况下,各个矢量必须以同一个规定的方向为正。 ^ 三.动量守恒定律 1.动量守恒定律的条件 ⑴系统不受外力或者所受外力之和为零; ⑵系统受外力,但外力远小于内力,可以忽略不计; ⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 2.动量守恒定律的表达形式 (1) 即p1 p2=p1/ p2/, (2)Δp1 Δp2=0,Δp1= -Δp2 3.运用动量守恒定律的解题步骤 1.明确研究对象,一般是两个或两个以上物体组成的系统; . 2.分析系统相互作用时的受力情况,判定系统动量是否守恒; 3.选定正方向,确定相互作用前后两状态系统的动量; 4.在同一地面参考系中建立动量守恒方程,并求解.

冲量与动量公式汇编

冲量与动量公式汇编 1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同} 2.冲量:I=Ft {I:冲量(N s),F:恒力(N),t:力的作用时间(s),方向由F决定} 3.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式} 4.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′ 5.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒} 6.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能} 7.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体} 8.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2) 9.由8得的推论——等质量弹性正碰时二者交换速度(动能守恒、动量守恒) 10.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动 时的机械能损失。 E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块 的位移} 注: (1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上; (2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算; (3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、 爆炸问题、反冲问题等); (4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒; (5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;

刚体的角动量及守恒定律

刚体的角动量及守恒定律 一、选择题 1、一个人站在有光滑固定转轴的转动平台上,双臂水平地举二哑铃。在该人把此二哑 铃水平收缩到胸前的过程中,对于人、哑铃与转动平台组成的系统来说,正确的 是: 。 A.机械能守恒,角动量守恒; B.机械能守恒,角动量不守恒; C.机械能不守恒,角动量守恒; D.机械能不守恒,角动量不守恒; 2、 刚体角动量守恒的充分而必要的条件是 。 (A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变. 3、一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今 有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力, 在碰撞中守恒的量是 。 (A) 动能. (B) 绕木板转轴的角动量. (C) 机械能. (D) 动量. 4、光滑的水平桌面上,有一长为2L 、质量为m 的匀质细 杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同 速率v 相向运动,如图所示。当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与 杆粘在一起转动,则这一系统碰撞后的转动角速度应为 。 (A) L 32v . (B) L 54v . (C) L 76v . (D) L 98v . (E) L 712v . 5、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 。 (A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒. 6、 质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直 光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地 面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向 分别为 。 (A) ??? ??=R J mR v 2ω,顺时针. (B) ?? ? ??=R J mR v 2ω,逆时针. (C) ??? ??+=R mR J mR v 22ω,顺时针. (D) ?? ? ??+=R mR J mR v 22ω,逆时针. 7、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作 系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统 。 (A) 动量守恒. (B) 机械能守恒. O v 俯视图

16.3动量守恒定律教案

16.3动量守恒定律 主备人:审核人:主讲教师:授课班级:【三维目标】 一、知识与技能: 1.理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围 2.,会应用动量守恒定律分析计算有关问题。 二、过程与方法: 在理解动量守恒定律的确切含义的基础上正确区分内力和外力; 三. 情感、态度与价值观: 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题。 【教学重点】:动量的概念和动量守恒定律。 【教学难点】:动量的变化和动量守恒的条件。 【教学方法】:教师启发、引导,学生讨论、交流。 【教学用具】:投影片,多媒体辅助教学设备。 【教学过程】: 【自主学习】 指导学生完成“知识体系梳理” 【新知探究】 一. 设疑激趣,创设研究情境 设置悬念:鸡蛋是我们每天都需要的营养食品,如果我将这只生鸡蛋用力扔出去,鸡蛋的命运会怎样? 演示:站在教室中部用力将鸡蛋水平扔向竖直悬挂在黑板前的大绒布。 提问:你观察到什么现象? 学生:扔在绒布上鸡蛋没破。 教师从绒布下拿出那只鸡蛋并提问:如果站在同一位置将同一只鸡蛋以相同的力向墙上扔,会出现什么结果? 演示:用力将鸡蛋水平扔向墙壁(墙壁上事先贴有白纸)。 学生:鸡蛋破了。 激疑:两种情况下鸡蛋与墙或布作用前的动量可以认为是相同的,作用后的 动量变为零,鸡蛋的动量变化是相同的。但究竟是什么原因使得鸡蛋出现不

同的结局? 教师:再请大家看一段录象。 教师演示课件:播放几个体育运动的视频录象(在节奏感强烈的音乐背景下 依次出现亚运会跳高、拳击、跳马、吊环等比赛镜头)。 提问:看完这段录象后,我们可能会提出很多问题,比如跳高、跳马、吊环运动员落地时为什么要落在软垫上?激烈的拳击比赛中,运动员为什么要戴拳击手套?以上这些问题是大家熟悉却不能科学解释的问题,也正是本节课我们要研究的问题。 课件显示: 二. 分层展开,引导自主探究 1. 关于物体动量的变化跟哪些因素有关的研究 ①提出假说 教师:要解决刚才提出的问题,必须首先研究、解决物体的动量变化跟哪些因素有关这一问题。你们先猜一猜看,物体的动量变化与哪些因素有关? 学生甲猜想:可能与物体的质量和它受到的力有关。 学生乙猜想:可能与物体受到的力的大小和力的作用时间有关。 ②定性验证 教师:同学们会提出各种不同的假说,这些假说是否正确?请你们操作第一个学习软件,先对两个实例进行定性讨论,由此你能得出什么结论? 学生:动手操作学习软件并相互协作讨论。 学生计算机显示:讨论题—— a.一辆以某一速度行驶的汽车,关闭发动机后,要使汽车停下来即使它的动 量为零,如果你是驾驶员可以采取哪些措施? b.静止的足球,要使它运动起来即使它获得一定的动量,可用哪些方法? 请一学生回答对讨论题的分析结果:…… 学生归纳:物体动量的变化跟物体所受力的大小和作用时间的长短有关。 ③定量验证 提问:你得出的这一结论是否正确?你如何验证? 学生提出观点:可以采用数学推导的方法。 教师:很好!数学推导的方法也称定量分析法,请大家继续研究。 学生:继续操作计算机进行定量分析推导。 学生计算机显示(动画):一个质量为m 的物体,初速度为v ,在合外力F 的作用下,经过时间t,速度变为v',该物体动量的变化与什么有关? v v'

角动量守恒定律

第四节 角动量守恒定律 一、角动量 1. 质点对定点的角动量 (1)v m r p r L ?=?= (力矩:F r M ?=) (2)说明:r 指质点相对于固定点O 的位置矢量;指质点的动量;v 指质点的速度 (3)大小:=L αsin rmv , (4)方向:(右手法则)v r ?向 (5)单位:12-s kgm (6)量纲:12-T ML 2. 刚体对定轴的角动量 (将刚体分解为质点组)∑∑=???==????=???=ωI w r m L L w r m v r m L i i i oz i i i i i i 22 ω I L = 此式对质点也适用 3. 角动量定理: (1) 公式:dt dL dt I d dt d I I M ====)(ωωβ 或dL dt M =? (2)文字表述:刚体对某一给定转轴或点的角动量对时间的变化率等于刚体所受到的对同一转轴或点的和外力矩的大小。 (3)说明:dt M ?称冲量矩,表示力矩的时间积累效果,单位:牛·米·秒 若何外力矩M=0,则L=IW=恒量 4. 转动定律的普遍形式 dt dI dt d I dt L d M ωω +== 二、角动量守恒 1、角动量守恒的条件:质点所受相对于参考点的力矩的矢量和等于零;在有心 力作用下,质点相对于力心的角动量守恒。 2、应用:

例1:花样滑冰运动员的“旋”动作,当运动员旋转时伸臂时转动惯量较大,转速较慢;收臂时转动惯量减小,转速加快;再如:跳水运动员的“团身--展体”动作,当运动员跳水时团身,转动惯量较小,转速较快;在入水前展体,转动惯量增大,转速降低,垂直入水。 3、习题: 1.质点做直线运动时,其角动量( )(填一定或不一定)为零。 答案: 不一定 2.一质点做直线运动,在直线外任选一点O为参考点,若该质点做匀速直线运动,则它相对于点O的角动量( )常量;若该质点做匀加速直线运动,则它相对于点O的角动量( )常量,角动量的变化率( )常量。(三空均填是或不是)答案: 是; 不是; 是。 3.一质点做匀速圆周运动,在运动过程中,质点的动量( ),质点相对于圆心的角动量( )。(两空均填守恒或不守恒) 答案:不守恒;守恒。 4.一颗人造地球卫星的近地点高度为h 1 ,速率为υ 1 ,远地点高度为h 2, 已知地 球半径为R.求卫星在远地点时的速率υ 2.. 解:因为卫星所受地球引力的作用线通过地球中心,所以卫星对地球中心的角动量守恒。 根据角动量守恒定律得 r 1 mυ 1 = r 2 mυ 2 且r 1=R+ h 1 r 2 =R+ h 2 解得υ 2 =(R+ h 1 /R+ h 2 )υ 1

动量守恒定律

动量、动量守恒定律 所给出的速度值不加分析,盲目地套入公式,这也是一些学生常犯的错误。 例1从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是: aA.掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小 B.掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小 C.掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢 D.掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长。 【错解】选B。 【错解原因】认为水泥地较草地坚硬,所以给杯子的作用力大,由动量定理I=△P,即F·t=△P,认为F大即△P,大,所以水泥地对杯子的作用力大,因此掉在水泥地上的动量改变量大,所以,容易破碎。 【分析解答】设玻璃杯下落高度为h。它们从h高度落地瞬间的 量变化快,所以掉在水泥地上杯子受到的合力大,冲力也大,所以杯子 所以掉在水泥地受到的合力大,地面给予杯子的冲击力也大,所以杯子易碎。正确答案应选C,D。 【评析】判断这一类问题,应从作用力大小判断入手,再由动量 大,而不能一开始就认定水泥地作用力大,正是这一点需要自己去分析、判断。

例2 把质量为10kg的物体放在光滑的水平面上,如图5-1所示,在与水平方向成53°的N的力F作用下从静止开始运动,在2s内力F对物体的冲量为多少?物体获得的动量是多少? 【错解】错解一:2s内力的冲量为 设物体获得的动量为P2,由动量定理 【错解原因】对冲量的定义理解不全面,对动量定理中的冲量理解不移。 错解一主要是对冲量的概念的理解,冲最定义应为“力与力作用时间的乘积”,只要题目中求力F 的冲量,就不应再把此力分解。这类解法把冲量定义与功的计算公式W=Fcosa·s混淆了。 错解二主要是对动量定理中的冲量没有理解。实际上动量定理的叙述应为“物体的动量改变与物体所受的合外力的冲量相等”而不是“与某一个力的冲量相等”,此时物体除了受外力F的冲量,还有重力及支持力的冲量。所以解错了。 【分析解答】首先对物体进行受力分析:与水平方向成53°的拉力F,竖直向下的重力G、竖直向上的支持力N。由冲量定义可知,力F的冲量为: I F=F·t=10×2=10(N·s) 因为在竖直方向上,力F的分量Fsi n53°,重力G,支持力N的合力为零,合力的冲量也为零。所以,物体所受的合外力的冲量就等干力F在水平方向上的分量,由动量定理得: Fcos53°·t=P2-0 所以P2=Fcos53°·t=10×0.8×2(kg·m/s) P2=16kg·m/s

动量守恒定律公式

高二物理知识点动量守恒定律的应用_动量守恒定 律公式 1、甲球与乙球相碰,甲球的速度减少5m/s,乙球的速度增加了3m/s,则甲、乙两球质量之比m甲∶m乙是[] A、2∶1 B、3∶5 C、5∶3 D、1∶2 2、A、B两球在光滑水平面上相向运动,两球相碰后有一球停止运动,则下述说法中正确的是[] A、若碰后,A球速度为0,则碰前A的动量一定大于B的动量 B、若碰后,A球速度为0,则碰前A的动量一定小于B的动量 C、若碰后,B球速度为0,则碰前A的动量一定大于B的动量 D、若碰后,B球速度为0,则碰前A的动量一定小于B的动量 3、质量为M的原子核,原来处于静止状态,当它以速度V放出一个质量为m的粒子时,剩余部分的速度为[] A、mV/(M-m) B、-mV/(Mm) C、mV/(M+m) D、-mV/(M+m) 4、小车静止在光滑的水平面上,A、B二人分别站在车的左、右两端,A、B二人同时相向运动,此时小车向左运动,下述情况可能是[] A、A、B质量相等,速率相等 B、A、B质量相等,A的速度小 C、A、B速率相等,A的质量大 D、A、B速率相等,B的质量大

5、在光滑水平面上有两辆车,上面分别站着A、B两个人,人与车的质量总和相等,在A的手中拿有一个球,两车均保持静止状态,当A将手中球抛给B,B接到后,又抛给A,如此反复多次,最后球 落在B的手中,则关于A、B速率大小是[] A、A、B两车速率相等 B、A车速率大 C、A车速率小 D、两车均保持静止状态 6、在光滑的水平面上有A、B两辆质量均为m的小车,保持静止状态,A车上站着一个质量为m/2的人,当人从A车跳到B车上, 并与B车保持相对静止,则A车与B车速度大小比等于______,A 车与B车动量大小比等于______ 7、沿水平方向飞行的手榴弹,它的速度是20m/s,在空中爆炸 后分裂成1kg和0.5kg的那两部分。其中0.5kg的那部分以10m/s 的速度与原速反向运动,则另一部分此时的速度大小为______,方 向______。 参考答案 1、B 2、AD 3、B4C5、B6、3∶2,3∶2 7、35m/s,原速方向

《大学物理》习题册题目及答案第3单元 角动量守恒定律

第3单元 角动量守恒定律 序号 学号 姓名 专业、班级 一 选择题 [ A ]1.已知地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常数为G ,则地球绕太阳作圆周运动的角动量为 (A) GMR m (B) R GMm (C) R G Mm (D) R GMm 2 [ C ]2. 关于刚体对轴的转动惯量,下列说法中正确的是 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关。 (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关。 (C) 取决于刚体的质量、质量的空间分布和轴的位置 (D) 只取决于转轴的位置、与刚体的质量和质量的空间分布无关。 [ E ]3. 如图所示,有一个小块物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将 绳从小孔缓慢往下拉,则物体 动能不变,动量改变。 动量不变,动能改变。 角动量不变,动量不变。 角动量改变,动量改变。 角动量不变,动能、动量都改变。 [ A ]4.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正 确的? (A) 角速度从小到大,角加速度从大到小 ; (B) 角速度从小到大,角加速度从小到大 ; (C) 角速度从大到小,角加速度从大到小 ; (D) 角速度从大到小,角加速度从小到大 。 [ B ]5.两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,但两圆盘质量与厚度相

同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则 (A) A J >B J (B) B J >A J (C) A J =B J (D) A J 、B J 哪个大,不能确定 [ A ]6.有两个力作用在一个有固定转轴的刚体上: (1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩一定是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。 在上述说法中: (A) 只有(1)是正确的。 (B) (1)、(2)正确,(3)、(4)错误。 (C) (1)、(2)、(3)都正确,(4)错误。 (D) (1)、(2)、(3)、(4)都正确。 [ C ]7.一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同、速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大 (B) 不变 (C) 减小 (D) 不能确定 二 填空题 1.质量为m 的质点以速度 v 沿一直线运动,则它对直线上任一点的角动量为 ___0_ 。 2.飞轮作匀减速转动,在5s 内角速度由40πrad·s 1 -减到10πrad·s 1 -,则飞轮在这5s 内总共转过了___62.5_____圈,飞轮再经_______1.67S_____ 的时间才能停止转动。 3. 一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m 和m 的小球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动。 开始杆与水平方向成某一角度θ,处于静止状态,如图所示。释放后,杆绕O 轴转动,则当杆转到水平位置时,该系统所受的合外力矩的大小M = mgl 21 ,此时该系统角加速度的大小β= l g 32 。 4.可绕水平轴转动的飞轮,直径为1.0m ,一条绳子绕在飞轮的外周边缘上,如果从静 止开始作匀角加速运动且在4s 内绳被展开10m ,则飞轮的角加速度为2 /5.2s rad 。 5.决定刚体转动惯量的因素是 ___刚体的质量____ __;__刚体的质量分布____

角动量守恒定律

《大学物理》作业 No.4 角动量守恒定律 一、选择题 1.已知地球的质量为m,太阳的质量为M,地心与日心的距离为R,引力常数为G,则地球绕太阳作圆周运动的角动量为 [ ](A) (B) (C) (D) 2.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? [ ](A) 角速度从小到大,角加速度从大到小 ; (B) 角速度从小到大,角加速度从小到大 ; (C) 角速度从大到小,角加速度从大到小 ; (D) 角速度从大到小,角加速度从小到大。 3. 两个均质圆盘A和B密度分别为和,若>,但两圆盘质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为和,则 [ ](A) > (B) > (C) = (D) 、哪个大,不能确定 4.有两个力作用在一个有固定转轴的刚体上: (1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。 在上述说法中: [ ](A) 只有(1)是正确的。 (B) (1)、(2)正确,(3)、(4)错误。 (C) (1)、(2)、(3)都正确,(4)错误。 (D) (1)、(2)、(3)、(4)都正确。 5.关于力矩有以下几种说法: (1) 对某个定轴而言,内力矩不会改变刚体的角动量。 (2) 作用力和反作用力对同一轴的力矩之和必为零。 (3) 质量相等、形状和大小不同的两个物体,在相同力矩的作用下,它 们的角加速度一定相等。 在上述说法中,

物理动量守恒定律专项及解析

物理动量守恒定律专项及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求: (1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =01 4 P E mgx =0(2043)v gx =+【解析】 试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°= 1 2 mv 12 解得:103v gx = 又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011 322 v v gx == (2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P + 1 2 ?2mv 22=0+2mg?x 0sin30° 解得:E P =2mg?x 0sin30°? 1 2?2mv 22=mgx 0?34 mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,

7.角动量守恒定律

《大学物理》练习题 No 7 角动量守恒定律 班级__________学号 _________ 姓名 _________ 成绩 ________ 基本要求: (1) 掌握质点和刚体在定轴转动中的角动量、角动量定理、角动量守恒定律及应用 内容提要: 1. 质点的角动量 a. 质点对点的角动量:v m r p r L ?=?= b. 对固定轴的角动量:ω J L = 2. 刚体对定轴的角动量:等于刚体对此轴的转动惯量与角速度的乘积 即:ω z z J L = 3.刚体的角动量定理: 外力矩对系统的角冲量(冲量矩)等于角动量的增量. 即:00 ωω J J L d dt M L L t t -==?? 若J 可以改变,则:000 ωω J J L d dt M L L t t -==?? 4.角动量守恒定律:当物体所受的合外力矩为零时,物体的角动量保持不变, 即00 ωωω J J J ==或 常矢量 角动量守恒定律的两种情况: a. 转动惯量保持不变的单个刚体 00,0ωωωω ===则时,当J J M b. 转动惯量可变的物体。 . 保持不变就增大,从而减小时,当就减小; 增大时,当ωωω J J J 一、选择题 1.刚体角动量守恒的充分必要条件是 [ ] (A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变

2.有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J , 开始时转台以匀角速度ω 0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时, 转台的角速度为 [ ] (A) J ω 0/(J +mR 2) . (B) J ω 0/[(J +m )R 2]. (C) J ω 0/(mR 2) . (D) ω 0. 3.如图7.1所示,一静止的均匀细棒,长为L 、质量为M , 可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动, 转动惯量为ML 2/3.一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射入并穿出棒的自由端,设穿过棒后子弹的速率为v /2,则此时棒的角速度应为 [ ] (A) mv/(ML ) . (B) 3mv/(2ML ). (C) 5mv/(3ML ). (D) 7mv/(4ML ). 二、填空题 1. 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量I z = . 2.质量均为70kg 的两滑冰运动员,以6.5s m /等速反向滑行,滑行路线的垂直距离为10m 。当彼此交错时,各抓住10m 长绳子的两端,然后相对旋转。则各自对中心的角动量=L ,当各自收绳到绳长为5m 时,各自速率为=v 。 3.一飞轮以角速度ω 0绕轴旋转, 飞轮对轴的转动惯量为J 1;另一静止飞轮突然被同轴地啮合到转动的飞轮上,该飞轮对轴的转动惯量为前者的二倍,啮合后整个系统的角速度ω = . 三、计算题 1. 如图7.2所示,有一飞轮,半径为r = 20cm,可绕水平轴转动,在轮上绕一根很长的轻绳,若在自由端系一质量m 1 = 20g 的物体,此物体匀速下降;若系m 2=50g 的物体,则此物体在10s 内由静止开始加速下降40cm . 绳系重物m 2后的张力? v /2 图7.1 图7.2 图7.3

角动量守恒定理及其应用

角动量守恒定理及其应用

角动量守恒定理及其应用 摘要:角动量这一概念是经典物理学里面的重要组成部分,角动量的研究主要是对于物体的转动方面,并且可以延伸到量子力学以、原子物理及天体物理等方面。角动量这一概念范畴系统的介绍的力矩、角速度、角加速度的概念,并且统筹的联系到质点系、质心系、对称性等概念。 关键词:角动量;力矩;角动量守恒;矢量;转动;应用 Angular momentum conservation theorems and their application Abstract:Angular momentum to the concept of classical physics there is an important component of angular momentum of research mainly for the rotation, and may extend to the quantum mechanics and physical and in the astrophysical. angular momentum in the categorical system of the present moment, the angular velocity, the concepts of angular acceleration and co-ordination of the particle, the quality of heart, symmetry, and concepts. Key words:Angular momentum;Torque; Conservation of angular momentum; Vector; Turn; application. 引言 在研究物体运动时,人们经常可以遇到质点或质点系绕某一定点或轴线运动的 情况。例如太阳系中行星绕太阳的公转、月球绕地球的运转、物体绕某一定轴的转动等,在这类运动中,运动物体速度的大小和方向都在不断变化,因而其动量也在不 断变化。在行星绕日运动中,行星受指向太阳的向心力作用,其运动满足角动量守恒。我们很难用动量和动量守恒定律揭示这类运动的规律,但是引入角动量和角动量守 恒定律后,则可较为简单地描述这类运动。 角动量可从另一侧面反映物体运动的规律。事实上,角动量不但能描述宏观物体的运动,而且在近代物理理论中,角动量对于表征状态也必不可少。角动量守恒定律在经典物理学、运动生物学、航空航天技术等领域中的应用非常广泛。角动量在20

角动量定理及角动量守恒定律

角动量定理及角动量守恒定律 一、力对点的力矩: 如图所示,定义力F 对O 点的力矩为: F r M ?= 大小为: θsin Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋法则来判断:把右手拇指伸直,其余四指弯曲,弯曲的方向由矢径通过小于1800的角度转向力的方向时,拇指指向的方向就是力矩的方向。 二、力对转轴的力矩: 力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。 1)力与轴平行,则0=M ; 2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之 间的距离d 称为力对转轴的力臂。力的大小与力臂的乘积,称为力F 对 转轴的力矩,用M 表示。力矩的大小为: Fd M = 或: θsin Fr M = 其中θ是F 与r 的夹角。 3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一 个与转轴平行的分力1F ,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响。 对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方向反方向,可以化为标量形式,用正负表示其方向。 三、合力矩对于每个分力的力矩之和。 合力 ∑=i F F 合外力矩 ∑∑∑=?=?=?i i i M F r F r F r M = 即 ∑i M M = 四、质点的角动量定理及角动量守恒定律 在讨论质点运动时,我们用动量来描述机械运动的状态,并讨论了在机械运动过程中所遵循的动量守恒定律。同样,在讨论质点相对于空间某一定点的运动时,我们也可以用角动量来描述物体的运动状态。角动量是一个很重要的概念,在转动问题中,它所起的作用和(线)动量所起的作用相类似。 在研究力对质点作用时,考虑力对时间的累积作用引出动量定理,从而得到动量守恒定律;考虑力对空间的累积作用时,引出动能定理,从而得到机械能守恒定律和能量守恒定律。至于力矩对时间的累积作用,可得出角动量定理和角动量守恒定律;而力矩对空间的累积作用,则可得出刚体的转动动能定理,这是下一节的内容。本节主要讨论的是绕定轴转动的刚体的角动量定理和角动量守恒定律,在这之前先讨论质点对给定点的角动量定理和角动量守恒定律。 下面将从力矩对时间的累积作用,引入的角动量的概念,讨论质点和刚体的角动量和角动量守恒定律。 1.质点的角动量(Angular Momentum )——描述转动特征的物理量 1)概念 一质量为m 的质点,以速度v 运动,相对于坐标原点O 的位置矢量

动量守恒经典例题

动量守恒定律的典型例题 【例1】把一支枪固定在小车上,小车放在光滑的水平桌面上.枪发射出一颗子弹.对于此过程,下列说法中 正确的有哪些?[] a.枪和子弹组成的系统动量守恒 b.枪和车组成的系统动量守恒 c.车、枪和子弹组成的系统动量守恒d.车、枪和子弹组成的系统近似动量守恒,因为子弹和枪筒之间有摩擦力.且摩擦力的冲量甚小 【分析】本题涉及如何选择系统,并判断系统是否动量守恒.物体间存在相互作用力是构成系统的必要条件,据此,本题中所涉及的桌子、小车、枪和子弹符合构成系统的条件.不仅如此,这些物体都跟地球有相互作用

力.如果仅依据有相互作用就该纳入系统,那么推延下去只有把整个宇宙包括进去才能算是一个完整的体系,显然这对于分析、解决一些具体问题是没有意义的.选择体系的目的在于应用动量守恒定律去分析和解决问题,这样在选择物体构成体系的时候,除了物体间有相互作用之外,还必须考虑“由于物体的相互作用而改变了物体的动量”的条件.桌子和小车之间虽有相互作用力,但桌子的动量并没有发生变化.不应纳入系统内,小车、枪和子弹由于相互作用而改变了各自的动量,所以这三者构成了系统.分析系统是否动量守恒,则应区分内力和外力.对于选定的系统来说,重力和桌面的弹力是外力,由于其合力为零所以系统动量守恒.子弹与枪筒之间的摩擦力是系统的内力,只能影响子弹和枪各自的动量,不能改变系统的总动量.所以d的因果论述 是错误的. 【解】正确的是c. 【例2】一个质量m=1kg的鸟在空中v0=6m/s沿水平方向飞行,离地面高度h=20m,忽被一颗质量m=20g沿水平方向同向飞来的子弹击中,子弹速度v=300m/s,击中后子弹留在鸟体内,鸟立即死去,g=10m/s2.求:

动量守恒定律

动量守恒定律 一.动量和冲量 1.动量:物体的质量和速度的乘积叫做动量:p =mv ⑴动量是描述物体运动状态的一个状态量,它与时刻相对应。 ⑵动量是矢量,它的方向和速度的方向相同。 2.冲量:力和力的作用时间的乘积叫做冲量:I =Ft ⑴冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。 ⑵冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。 ⑶高中阶段只要求会用I=Ft 计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。 ⑷要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。 例1. 质量为m 的小球由高为H 的光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大? 解:力的作用时间都是g H g H t 2sin 1 sin 22 α α==,力的大小依次是mg 、 mg cos α和mg sin α,所以它们的冲量依次是: gH m I gH m I gH m I N G 2,tan 2,sin 2=== 合α α 特别要注意,该过程中弹力虽然不做功,但对物体有冲量。 二、动量定理 1.动量定理:物体所受合外力的冲量等于物体的动量变化。既I =Δp ⑴动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。 ⑵动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。 ⑶现代物理学把力定义为物体动量的变化率:t P F ??=(牛顿第二定律的动量形式)。 ⑷动量定理的表达式是矢量式。在一维的情况下,各个矢量必须以同一个规定的方向为正。 三.动量守恒定律 1.动量守恒定律的条件 ⑴系统不受外力或者所受外力之和为零; ⑵系统受外力,但外力远小于内力,可以忽略不计; ⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 2.动量守恒定律的表达形式 (1) 即p1 p2=p1/ p2/, (2)Δp1 Δp2=0,Δp1= -Δp2 3.运用动量守恒定律的解题步骤 1.明确研究对象,一般是两个或两个以上物体组成的系统; 2.分析系统相互作用时的受力情况,判定系统动量是否守恒; 3.选定正方向,确定相互作用前后两状态系统的动量; 4.在同一地面参考系中建立动量守恒方程,并求解. 四、碰撞 1.弹性碰撞 特点:系统动量守恒,机械能守恒. 设质量m 1的物体以速度v 0与质量为m 2 的在水平面上静止的物体发生弹性正碰,则有动量守恒:

相关文档
最新文档